Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 3e25f951

History | View | Annotate | Download (12.4 kB)

1
/*
2
 *  i386 execution defines 
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "dyngen-exec.h"
21

    
22
/* at least 4 register variables are defines */
23
register struct CPUX86State *env asm(AREG0);
24
register uint32_t T0 asm(AREG1);
25
register uint32_t T1 asm(AREG2);
26
register uint32_t T2 asm(AREG3);
27

    
28
#define A0 T2
29

    
30
/* if more registers are available, we define some registers too */
31
#ifdef AREG4
32
register uint32_t EAX asm(AREG4);
33
#define reg_EAX
34
#endif
35

    
36
#ifdef AREG5
37
register uint32_t ESP asm(AREG5);
38
#define reg_ESP
39
#endif
40

    
41
#ifdef AREG6
42
register uint32_t EBP asm(AREG6);
43
#define reg_EBP
44
#endif
45

    
46
#ifdef AREG7
47
register uint32_t ECX asm(AREG7);
48
#define reg_ECX
49
#endif
50

    
51
#ifdef AREG8
52
register uint32_t EDX asm(AREG8);
53
#define reg_EDX
54
#endif
55

    
56
#ifdef AREG9
57
register uint32_t EBX asm(AREG9);
58
#define reg_EBX
59
#endif
60

    
61
#ifdef AREG10
62
register uint32_t ESI asm(AREG10);
63
#define reg_ESI
64
#endif
65

    
66
#ifdef AREG11
67
register uint32_t EDI asm(AREG11);
68
#define reg_EDI
69
#endif
70

    
71
extern FILE *logfile;
72
extern int loglevel;
73

    
74
#ifndef reg_EAX
75
#define EAX (env->regs[R_EAX])
76
#endif
77
#ifndef reg_ECX
78
#define ECX (env->regs[R_ECX])
79
#endif
80
#ifndef reg_EDX
81
#define EDX (env->regs[R_EDX])
82
#endif
83
#ifndef reg_EBX
84
#define EBX (env->regs[R_EBX])
85
#endif
86
#ifndef reg_ESP
87
#define ESP (env->regs[R_ESP])
88
#endif
89
#ifndef reg_EBP
90
#define EBP (env->regs[R_EBP])
91
#endif
92
#ifndef reg_ESI
93
#define ESI (env->regs[R_ESI])
94
#endif
95
#ifndef reg_EDI
96
#define EDI (env->regs[R_EDI])
97
#endif
98
#define EIP  (env->eip)
99
#define DF  (env->df)
100

    
101
#define CC_SRC (env->cc_src)
102
#define CC_DST (env->cc_dst)
103
#define CC_OP  (env->cc_op)
104

    
105
/* float macros */
106
#define FT0    (env->ft0)
107
#define ST0    (env->fpregs[env->fpstt])
108
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7])
109
#define ST1    ST(1)
110

    
111
#ifdef USE_FP_CONVERT
112
#define FP_CONVERT  (env->fp_convert)
113
#endif
114

    
115
#include "cpu.h"
116
#include "exec-all.h"
117

    
118
typedef struct CCTable {
119
    int (*compute_all)(void); /* return all the flags */
120
    int (*compute_c)(void);  /* return the C flag */
121
} CCTable;
122

    
123
extern CCTable cc_table[];
124

    
125
void load_seg(int seg_reg, int selector, unsigned cur_eip);
126
void helper_ljmp_protected_T0_T1(void);
127
void helper_lcall_real_T0_T1(int shift, int next_eip);
128
void helper_lcall_protected_T0_T1(int shift, int next_eip);
129
void helper_iret_real(int shift);
130
void helper_iret_protected(int shift);
131
void helper_lret_protected(int shift, int addend);
132
void helper_lldt_T0(void);
133
void helper_ltr_T0(void);
134
void helper_movl_crN_T0(int reg);
135
void helper_movl_drN_T0(int reg);
136
void helper_invlpg(unsigned int addr);
137
void cpu_x86_update_cr0(CPUX86State *env);
138
void cpu_x86_update_cr3(CPUX86State *env);
139
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
140
int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr, 
141
                             int is_write, int is_user, int is_softmmu);
142
void tlb_fill(unsigned long addr, int is_write, int is_user, 
143
              void *retaddr);
144
void __hidden cpu_lock(void);
145
void __hidden cpu_unlock(void);
146
void do_interrupt(int intno, int is_int, int error_code, 
147
                  unsigned int next_eip, int is_hw);
148
void do_interrupt_user(int intno, int is_int, int error_code, 
149
                       unsigned int next_eip);
150
void raise_interrupt(int intno, int is_int, int error_code, 
151
                     unsigned int next_eip);
152
void raise_exception_err(int exception_index, int error_code);
153
void raise_exception(int exception_index);
154
void __hidden cpu_loop_exit(void);
155
void helper_fsave(uint8_t *ptr, int data32);
156
void helper_frstor(uint8_t *ptr, int data32);
157

    
158
void OPPROTO op_movl_eflags_T0(void);
159
void OPPROTO op_movl_T0_eflags(void);
160
void raise_interrupt(int intno, int is_int, int error_code, 
161
                     unsigned int next_eip);
162
void raise_exception_err(int exception_index, int error_code);
163
void raise_exception(int exception_index);
164
void helper_divl_EAX_T0(uint32_t eip);
165
void helper_idivl_EAX_T0(uint32_t eip);
166
void helper_cmpxchg8b(void);
167
void helper_cpuid(void);
168
void helper_rdtsc(void);
169
void helper_rdmsr(void);
170
void helper_wrmsr(void);
171
void helper_lsl(void);
172
void helper_lar(void);
173

    
174
void check_iob_T0(void);
175
void check_iow_T0(void);
176
void check_iol_T0(void);
177
void check_iob_DX(void);
178
void check_iow_DX(void);
179
void check_iol_DX(void);
180

    
181
/* XXX: move that to a generic header */
182
#if !defined(CONFIG_USER_ONLY)
183

    
184
#define ldul_user ldl_user
185
#define ldul_kernel ldl_kernel
186

    
187
#define ACCESS_TYPE 0
188
#define MEMSUFFIX _kernel
189
#define DATA_SIZE 1
190
#include "softmmu_header.h"
191

    
192
#define DATA_SIZE 2
193
#include "softmmu_header.h"
194

    
195
#define DATA_SIZE 4
196
#include "softmmu_header.h"
197

    
198
#define DATA_SIZE 8
199
#include "softmmu_header.h"
200
#undef ACCESS_TYPE
201
#undef MEMSUFFIX
202

    
203
#define ACCESS_TYPE 1
204
#define MEMSUFFIX _user
205
#define DATA_SIZE 1
206
#include "softmmu_header.h"
207

    
208
#define DATA_SIZE 2
209
#include "softmmu_header.h"
210

    
211
#define DATA_SIZE 4
212
#include "softmmu_header.h"
213

    
214
#define DATA_SIZE 8
215
#include "softmmu_header.h"
216
#undef ACCESS_TYPE
217
#undef MEMSUFFIX
218

    
219
/* these access are slower, they must be as rare as possible */
220
#define ACCESS_TYPE 2
221
#define MEMSUFFIX _data
222
#define DATA_SIZE 1
223
#include "softmmu_header.h"
224

    
225
#define DATA_SIZE 2
226
#include "softmmu_header.h"
227

    
228
#define DATA_SIZE 4
229
#include "softmmu_header.h"
230

    
231
#define DATA_SIZE 8
232
#include "softmmu_header.h"
233
#undef ACCESS_TYPE
234
#undef MEMSUFFIX
235

    
236
#define ldub(p) ldub_data(p)
237
#define ldsb(p) ldsb_data(p)
238
#define lduw(p) lduw_data(p)
239
#define ldsw(p) ldsw_data(p)
240
#define ldl(p) ldl_data(p)
241
#define ldq(p) ldq_data(p)
242

    
243
#define stb(p, v) stb_data(p, v)
244
#define stw(p, v) stw_data(p, v)
245
#define stl(p, v) stl_data(p, v)
246
#define stq(p, v) stq_data(p, v)
247

    
248
static inline double ldfq(void *ptr)
249
{
250
    union {
251
        double d;
252
        uint64_t i;
253
    } u;
254
    u.i = ldq(ptr);
255
    return u.d;
256
}
257

    
258
static inline void stfq(void *ptr, double v)
259
{
260
    union {
261
        double d;
262
        uint64_t i;
263
    } u;
264
    u.d = v;
265
    stq(ptr, u.i);
266
}
267

    
268
static inline float ldfl(void *ptr)
269
{
270
    union {
271
        float f;
272
        uint32_t i;
273
    } u;
274
    u.i = ldl(ptr);
275
    return u.f;
276
}
277

    
278
static inline void stfl(void *ptr, float v)
279
{
280
    union {
281
        float f;
282
        uint32_t i;
283
    } u;
284
    u.f = v;
285
    stl(ptr, u.i);
286
}
287

    
288
#endif /* !defined(CONFIG_USER_ONLY) */
289

    
290
#ifdef USE_X86LDOUBLE
291
/* use long double functions */
292
#define lrint lrintl
293
#define llrint llrintl
294
#define fabs fabsl
295
#define sin sinl
296
#define cos cosl
297
#define sqrt sqrtl
298
#define pow powl
299
#define log logl
300
#define tan tanl
301
#define atan2 atan2l
302
#define floor floorl
303
#define ceil ceill
304
#define rint rintl
305
#endif
306

    
307
extern int lrint(CPU86_LDouble x);
308
extern int64_t llrint(CPU86_LDouble x);
309
extern CPU86_LDouble fabs(CPU86_LDouble x);
310
extern CPU86_LDouble sin(CPU86_LDouble x);
311
extern CPU86_LDouble cos(CPU86_LDouble x);
312
extern CPU86_LDouble sqrt(CPU86_LDouble x);
313
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
314
extern CPU86_LDouble log(CPU86_LDouble x);
315
extern CPU86_LDouble tan(CPU86_LDouble x);
316
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
317
extern CPU86_LDouble floor(CPU86_LDouble x);
318
extern CPU86_LDouble ceil(CPU86_LDouble x);
319
extern CPU86_LDouble rint(CPU86_LDouble x);
320

    
321
#define RC_MASK         0xc00
322
#define RC_NEAR                0x000
323
#define RC_DOWN                0x400
324
#define RC_UP                0x800
325
#define RC_CHOP                0xc00
326

    
327
#define MAXTAN 9223372036854775808.0
328

    
329
#ifdef __arm__
330
/* we have no way to do correct rounding - a FPU emulator is needed */
331
#define FE_DOWNWARD   FE_TONEAREST
332
#define FE_UPWARD     FE_TONEAREST
333
#define FE_TOWARDZERO FE_TONEAREST
334
#endif
335

    
336
#ifdef USE_X86LDOUBLE
337

    
338
/* only for x86 */
339
typedef union {
340
    long double d;
341
    struct {
342
        unsigned long long lower;
343
        unsigned short upper;
344
    } l;
345
} CPU86_LDoubleU;
346

    
347
/* the following deal with x86 long double-precision numbers */
348
#define MAXEXPD 0x7fff
349
#define EXPBIAS 16383
350
#define EXPD(fp)        (fp.l.upper & 0x7fff)
351
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
352
#define MANTD(fp)       (fp.l.lower)
353
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
354

    
355
#else
356

    
357
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
358
typedef union {
359
    double d;
360
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
361
    struct {
362
        uint32_t lower;
363
        int32_t upper;
364
    } l;
365
#else
366
    struct {
367
        int32_t upper;
368
        uint32_t lower;
369
    } l;
370
#endif
371
#ifndef __arm__
372
    int64_t ll;
373
#endif
374
} CPU86_LDoubleU;
375

    
376
/* the following deal with IEEE double-precision numbers */
377
#define MAXEXPD 0x7ff
378
#define EXPBIAS 1023
379
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
380
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
381
#ifdef __arm__
382
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
383
#else
384
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
385
#endif
386
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
387
#endif
388

    
389
static inline void fpush(void)
390
{
391
    env->fpstt = (env->fpstt - 1) & 7;
392
    env->fptags[env->fpstt] = 0; /* validate stack entry */
393
}
394

    
395
static inline void fpop(void)
396
{
397
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
398
    env->fpstt = (env->fpstt + 1) & 7;
399
}
400

    
401
#ifndef USE_X86LDOUBLE
402
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
403
{
404
    CPU86_LDoubleU temp;
405
    int upper, e;
406
    uint64_t ll;
407

    
408
    /* mantissa */
409
    upper = lduw(ptr + 8);
410
    /* XXX: handle overflow ? */
411
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
412
    e |= (upper >> 4) & 0x800; /* sign */
413
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
414
#ifdef __arm__
415
    temp.l.upper = (e << 20) | (ll >> 32);
416
    temp.l.lower = ll;
417
#else
418
    temp.ll = ll | ((uint64_t)e << 52);
419
#endif
420
    return temp.d;
421
}
422

    
423
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
424
{
425
    CPU86_LDoubleU temp;
426
    int e;
427

    
428
    temp.d = f;
429
    /* mantissa */
430
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
431
    /* exponent + sign */
432
    e = EXPD(temp) - EXPBIAS + 16383;
433
    e |= SIGND(temp) >> 16;
434
    stw(ptr + 8, e);
435
}
436
#else
437

    
438
/* XXX: same endianness assumed */
439

    
440
#ifdef CONFIG_USER_ONLY
441

    
442
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
443
{
444
    return *(CPU86_LDouble *)ptr;
445
}
446

    
447
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
448
{
449
    *(CPU86_LDouble *)ptr = f;
450
}
451

    
452
#else
453

    
454
/* we use memory access macros */
455

    
456
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
457
{
458
    CPU86_LDoubleU temp;
459

    
460
    temp.l.lower = ldq(ptr);
461
    temp.l.upper = lduw(ptr + 8);
462
    return temp.d;
463
}
464

    
465
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
466
{
467
    CPU86_LDoubleU temp;
468
    
469
    temp.d = f;
470
    stq(ptr, temp.l.lower);
471
    stw(ptr + 8, temp.l.upper);
472
}
473

    
474
#endif /* !CONFIG_USER_ONLY */
475

    
476
#endif /* USE_X86LDOUBLE */
477

    
478
const CPU86_LDouble f15rk[7];
479

    
480
void helper_fldt_ST0_A0(void);
481
void helper_fstt_ST0_A0(void);
482
void helper_fbld_ST0_A0(void);
483
void helper_fbst_ST0_A0(void);
484
void helper_f2xm1(void);
485
void helper_fyl2x(void);
486
void helper_fptan(void);
487
void helper_fpatan(void);
488
void helper_fxtract(void);
489
void helper_fprem1(void);
490
void helper_fprem(void);
491
void helper_fyl2xp1(void);
492
void helper_fsqrt(void);
493
void helper_fsincos(void);
494
void helper_frndint(void);
495
void helper_fscale(void);
496
void helper_fsin(void);
497
void helper_fcos(void);
498
void helper_fxam_ST0(void);
499
void helper_fstenv(uint8_t *ptr, int data32);
500
void helper_fldenv(uint8_t *ptr, int data32);
501
void helper_fsave(uint8_t *ptr, int data32);
502
void helper_frstor(uint8_t *ptr, int data32);
503

    
504
const uint8_t parity_table[256];
505
const uint8_t rclw_table[32];
506
const uint8_t rclb_table[32];
507

    
508
static inline uint32_t compute_eflags(void)
509
{
510
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
511
}
512

    
513
#define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
514

    
515
#define FL_UPDATE_CPL0_MASK (TF_MASK | IF_MASK | IOPL_MASK | NT_MASK | \
516
                             RF_MASK | AC_MASK | ID_MASK)
517

    
518
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
519
static inline void load_eflags(int eflags, int update_mask)
520
{
521
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
522
    DF = 1 - (2 * ((eflags >> 10) & 1));
523
    env->eflags = (env->eflags & ~update_mask) | 
524
        (eflags & update_mask);
525
}
526