Statistics
| Branch: | Revision:

root / target-arm / helper.c @ 3f26c122

History | View | Annotate | Download (71.2 kB)

1
#include <stdio.h>
2
#include <stdlib.h>
3
#include <string.h>
4

    
5
#include "cpu.h"
6
#include "exec-all.h"
7
#include "gdbstub.h"
8
#include "helpers.h"
9
#include "qemu-common.h"
10
#include "host-utils.h"
11

    
12
static uint32_t cortexa9_cp15_c0_c1[8] =
13
{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
14

    
15
static uint32_t cortexa9_cp15_c0_c2[8] =
16
{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
17

    
18
static uint32_t cortexa8_cp15_c0_c1[8] =
19
{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
20

    
21
static uint32_t cortexa8_cp15_c0_c2[8] =
22
{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
23

    
24
static uint32_t mpcore_cp15_c0_c1[8] =
25
{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
26

    
27
static uint32_t mpcore_cp15_c0_c2[8] =
28
{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
29

    
30
static uint32_t arm1136_cp15_c0_c1[8] =
31
{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
32

    
33
static uint32_t arm1136_cp15_c0_c2[8] =
34
{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
35

    
36
static uint32_t cpu_arm_find_by_name(const char *name);
37

    
38
static inline void set_feature(CPUARMState *env, int feature)
39
{
40
    env->features |= 1u << feature;
41
}
42

    
43
static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
44
{
45
    env->cp15.c0_cpuid = id;
46
    switch (id) {
47
    case ARM_CPUID_ARM926:
48
        set_feature(env, ARM_FEATURE_VFP);
49
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
50
        env->cp15.c0_cachetype = 0x1dd20d2;
51
        env->cp15.c1_sys = 0x00090078;
52
        break;
53
    case ARM_CPUID_ARM946:
54
        set_feature(env, ARM_FEATURE_MPU);
55
        env->cp15.c0_cachetype = 0x0f004006;
56
        env->cp15.c1_sys = 0x00000078;
57
        break;
58
    case ARM_CPUID_ARM1026:
59
        set_feature(env, ARM_FEATURE_VFP);
60
        set_feature(env, ARM_FEATURE_AUXCR);
61
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
62
        env->cp15.c0_cachetype = 0x1dd20d2;
63
        env->cp15.c1_sys = 0x00090078;
64
        break;
65
    case ARM_CPUID_ARM1136_R2:
66
    case ARM_CPUID_ARM1136:
67
        set_feature(env, ARM_FEATURE_V6);
68
        set_feature(env, ARM_FEATURE_VFP);
69
        set_feature(env, ARM_FEATURE_AUXCR);
70
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
71
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
72
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
73
        memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
74
        memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
75
        env->cp15.c0_cachetype = 0x1dd20d2;
76
        break;
77
    case ARM_CPUID_ARM11MPCORE:
78
        set_feature(env, ARM_FEATURE_V6);
79
        set_feature(env, ARM_FEATURE_V6K);
80
        set_feature(env, ARM_FEATURE_VFP);
81
        set_feature(env, ARM_FEATURE_AUXCR);
82
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
83
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
84
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
85
        memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
86
        memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
87
        env->cp15.c0_cachetype = 0x1dd20d2;
88
        break;
89
    case ARM_CPUID_CORTEXA8:
90
        set_feature(env, ARM_FEATURE_V6);
91
        set_feature(env, ARM_FEATURE_V6K);
92
        set_feature(env, ARM_FEATURE_V7);
93
        set_feature(env, ARM_FEATURE_AUXCR);
94
        set_feature(env, ARM_FEATURE_THUMB2);
95
        set_feature(env, ARM_FEATURE_VFP);
96
        set_feature(env, ARM_FEATURE_VFP3);
97
        set_feature(env, ARM_FEATURE_NEON);
98
        set_feature(env, ARM_FEATURE_THUMB2EE);
99
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
100
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
101
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
102
        memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
103
        memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
104
        env->cp15.c0_cachetype = 0x82048004;
105
        env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
106
        env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
107
        env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
108
        env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
109
        break;
110
    case ARM_CPUID_CORTEXA9:
111
        set_feature(env, ARM_FEATURE_V6);
112
        set_feature(env, ARM_FEATURE_V6K);
113
        set_feature(env, ARM_FEATURE_V7);
114
        set_feature(env, ARM_FEATURE_AUXCR);
115
        set_feature(env, ARM_FEATURE_THUMB2);
116
        set_feature(env, ARM_FEATURE_VFP);
117
        set_feature(env, ARM_FEATURE_VFP3);
118
        set_feature(env, ARM_FEATURE_VFP_FP16);
119
        set_feature(env, ARM_FEATURE_NEON);
120
        set_feature(env, ARM_FEATURE_THUMB2EE);
121
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
122
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
123
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
124
        memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
125
        memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
126
        env->cp15.c0_cachetype = 0x80038003;
127
        env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
128
        env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
129
        env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
130
        break;
131
    case ARM_CPUID_CORTEXM3:
132
        set_feature(env, ARM_FEATURE_V6);
133
        set_feature(env, ARM_FEATURE_THUMB2);
134
        set_feature(env, ARM_FEATURE_V7);
135
        set_feature(env, ARM_FEATURE_M);
136
        set_feature(env, ARM_FEATURE_DIV);
137
        break;
138
    case ARM_CPUID_ANY: /* For userspace emulation.  */
139
        set_feature(env, ARM_FEATURE_V6);
140
        set_feature(env, ARM_FEATURE_V6K);
141
        set_feature(env, ARM_FEATURE_V7);
142
        set_feature(env, ARM_FEATURE_THUMB2);
143
        set_feature(env, ARM_FEATURE_VFP);
144
        set_feature(env, ARM_FEATURE_VFP3);
145
        set_feature(env, ARM_FEATURE_VFP_FP16);
146
        set_feature(env, ARM_FEATURE_NEON);
147
        set_feature(env, ARM_FEATURE_THUMB2EE);
148
        set_feature(env, ARM_FEATURE_DIV);
149
        break;
150
    case ARM_CPUID_TI915T:
151
    case ARM_CPUID_TI925T:
152
        set_feature(env, ARM_FEATURE_OMAPCP);
153
        env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
154
        env->cp15.c0_cachetype = 0x5109149;
155
        env->cp15.c1_sys = 0x00000070;
156
        env->cp15.c15_i_max = 0x000;
157
        env->cp15.c15_i_min = 0xff0;
158
        break;
159
    case ARM_CPUID_PXA250:
160
    case ARM_CPUID_PXA255:
161
    case ARM_CPUID_PXA260:
162
    case ARM_CPUID_PXA261:
163
    case ARM_CPUID_PXA262:
164
        set_feature(env, ARM_FEATURE_XSCALE);
165
        /* JTAG_ID is ((id << 28) | 0x09265013) */
166
        env->cp15.c0_cachetype = 0xd172172;
167
        env->cp15.c1_sys = 0x00000078;
168
        break;
169
    case ARM_CPUID_PXA270_A0:
170
    case ARM_CPUID_PXA270_A1:
171
    case ARM_CPUID_PXA270_B0:
172
    case ARM_CPUID_PXA270_B1:
173
    case ARM_CPUID_PXA270_C0:
174
    case ARM_CPUID_PXA270_C5:
175
        set_feature(env, ARM_FEATURE_XSCALE);
176
        /* JTAG_ID is ((id << 28) | 0x09265013) */
177
        set_feature(env, ARM_FEATURE_IWMMXT);
178
        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
179
        env->cp15.c0_cachetype = 0xd172172;
180
        env->cp15.c1_sys = 0x00000078;
181
        break;
182
    default:
183
        cpu_abort(env, "Bad CPU ID: %x\n", id);
184
        break;
185
    }
186
}
187

    
188
void cpu_reset(CPUARMState *env)
189
{
190
    uint32_t id;
191

    
192
    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
193
        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
194
        log_cpu_state(env, 0);
195
    }
196

    
197
    id = env->cp15.c0_cpuid;
198
    memset(env, 0, offsetof(CPUARMState, breakpoints));
199
    if (id)
200
        cpu_reset_model_id(env, id);
201
#if defined (CONFIG_USER_ONLY)
202
    env->uncached_cpsr = ARM_CPU_MODE_USR;
203
    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
204
#else
205
    /* SVC mode with interrupts disabled.  */
206
    env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
207
    /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
208
       clear at reset.  */
209
    if (IS_M(env))
210
        env->uncached_cpsr &= ~CPSR_I;
211
    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
212
    env->cp15.c2_base_mask = 0xffffc000u;
213
#endif
214
    env->regs[15] = 0;
215
    tlb_flush(env, 1);
216
}
217

    
218
static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
219
{
220
    int nregs;
221

    
222
    /* VFP data registers are always little-endian.  */
223
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
224
    if (reg < nregs) {
225
        stfq_le_p(buf, env->vfp.regs[reg]);
226
        return 8;
227
    }
228
    if (arm_feature(env, ARM_FEATURE_NEON)) {
229
        /* Aliases for Q regs.  */
230
        nregs += 16;
231
        if (reg < nregs) {
232
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
233
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
234
            return 16;
235
        }
236
    }
237
    switch (reg - nregs) {
238
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
239
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
240
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
241
    }
242
    return 0;
243
}
244

    
245
static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
246
{
247
    int nregs;
248

    
249
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
250
    if (reg < nregs) {
251
        env->vfp.regs[reg] = ldfq_le_p(buf);
252
        return 8;
253
    }
254
    if (arm_feature(env, ARM_FEATURE_NEON)) {
255
        nregs += 16;
256
        if (reg < nregs) {
257
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
258
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
259
            return 16;
260
        }
261
    }
262
    switch (reg - nregs) {
263
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
264
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
265
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
266
    }
267
    return 0;
268
}
269

    
270
CPUARMState *cpu_arm_init(const char *cpu_model)
271
{
272
    CPUARMState *env;
273
    uint32_t id;
274
    static int inited = 0;
275

    
276
    id = cpu_arm_find_by_name(cpu_model);
277
    if (id == 0)
278
        return NULL;
279
    env = qemu_mallocz(sizeof(CPUARMState));
280
    cpu_exec_init(env);
281
    if (!inited) {
282
        inited = 1;
283
        arm_translate_init();
284
    }
285

    
286
    env->cpu_model_str = cpu_model;
287
    env->cp15.c0_cpuid = id;
288
    cpu_reset(env);
289
    if (arm_feature(env, ARM_FEATURE_NEON)) {
290
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
291
                                 51, "arm-neon.xml", 0);
292
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
293
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
294
                                 35, "arm-vfp3.xml", 0);
295
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
296
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
297
                                 19, "arm-vfp.xml", 0);
298
    }
299
    qemu_init_vcpu(env);
300
    return env;
301
}
302

    
303
struct arm_cpu_t {
304
    uint32_t id;
305
    const char *name;
306
};
307

    
308
static const struct arm_cpu_t arm_cpu_names[] = {
309
    { ARM_CPUID_ARM926, "arm926"},
310
    { ARM_CPUID_ARM946, "arm946"},
311
    { ARM_CPUID_ARM1026, "arm1026"},
312
    { ARM_CPUID_ARM1136, "arm1136"},
313
    { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
314
    { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
315
    { ARM_CPUID_CORTEXM3, "cortex-m3"},
316
    { ARM_CPUID_CORTEXA8, "cortex-a8"},
317
    { ARM_CPUID_CORTEXA9, "cortex-a9"},
318
    { ARM_CPUID_TI925T, "ti925t" },
319
    { ARM_CPUID_PXA250, "pxa250" },
320
    { ARM_CPUID_PXA255, "pxa255" },
321
    { ARM_CPUID_PXA260, "pxa260" },
322
    { ARM_CPUID_PXA261, "pxa261" },
323
    { ARM_CPUID_PXA262, "pxa262" },
324
    { ARM_CPUID_PXA270, "pxa270" },
325
    { ARM_CPUID_PXA270_A0, "pxa270-a0" },
326
    { ARM_CPUID_PXA270_A1, "pxa270-a1" },
327
    { ARM_CPUID_PXA270_B0, "pxa270-b0" },
328
    { ARM_CPUID_PXA270_B1, "pxa270-b1" },
329
    { ARM_CPUID_PXA270_C0, "pxa270-c0" },
330
    { ARM_CPUID_PXA270_C5, "pxa270-c5" },
331
    { ARM_CPUID_ANY, "any"},
332
    { 0, NULL}
333
};
334

    
335
void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
336
{
337
    int i;
338

    
339
    (*cpu_fprintf)(f, "Available CPUs:\n");
340
    for (i = 0; arm_cpu_names[i].name; i++) {
341
        (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
342
    }
343
}
344

    
345
/* return 0 if not found */
346
static uint32_t cpu_arm_find_by_name(const char *name)
347
{
348
    int i;
349
    uint32_t id;
350

    
351
    id = 0;
352
    for (i = 0; arm_cpu_names[i].name; i++) {
353
        if (strcmp(name, arm_cpu_names[i].name) == 0) {
354
            id = arm_cpu_names[i].id;
355
            break;
356
        }
357
    }
358
    return id;
359
}
360

    
361
void cpu_arm_close(CPUARMState *env)
362
{
363
    free(env);
364
}
365

    
366
uint32_t cpsr_read(CPUARMState *env)
367
{
368
    int ZF;
369
    ZF = (env->ZF == 0);
370
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
371
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
372
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
373
        | ((env->condexec_bits & 0xfc) << 8)
374
        | (env->GE << 16);
375
}
376

    
377
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
378
{
379
    if (mask & CPSR_NZCV) {
380
        env->ZF = (~val) & CPSR_Z;
381
        env->NF = val;
382
        env->CF = (val >> 29) & 1;
383
        env->VF = (val << 3) & 0x80000000;
384
    }
385
    if (mask & CPSR_Q)
386
        env->QF = ((val & CPSR_Q) != 0);
387
    if (mask & CPSR_T)
388
        env->thumb = ((val & CPSR_T) != 0);
389
    if (mask & CPSR_IT_0_1) {
390
        env->condexec_bits &= ~3;
391
        env->condexec_bits |= (val >> 25) & 3;
392
    }
393
    if (mask & CPSR_IT_2_7) {
394
        env->condexec_bits &= 3;
395
        env->condexec_bits |= (val >> 8) & 0xfc;
396
    }
397
    if (mask & CPSR_GE) {
398
        env->GE = (val >> 16) & 0xf;
399
    }
400

    
401
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
402
        switch_mode(env, val & CPSR_M);
403
    }
404
    mask &= ~CACHED_CPSR_BITS;
405
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
406
}
407

    
408
/* Sign/zero extend */
409
uint32_t HELPER(sxtb16)(uint32_t x)
410
{
411
    uint32_t res;
412
    res = (uint16_t)(int8_t)x;
413
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
414
    return res;
415
}
416

    
417
uint32_t HELPER(uxtb16)(uint32_t x)
418
{
419
    uint32_t res;
420
    res = (uint16_t)(uint8_t)x;
421
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
422
    return res;
423
}
424

    
425
uint32_t HELPER(clz)(uint32_t x)
426
{
427
    return clz32(x);
428
}
429

    
430
int32_t HELPER(sdiv)(int32_t num, int32_t den)
431
{
432
    if (den == 0)
433
      return 0;
434
    if (num == INT_MIN && den == -1)
435
      return INT_MIN;
436
    return num / den;
437
}
438

    
439
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
440
{
441
    if (den == 0)
442
      return 0;
443
    return num / den;
444
}
445

    
446
uint32_t HELPER(rbit)(uint32_t x)
447
{
448
    x =  ((x & 0xff000000) >> 24)
449
       | ((x & 0x00ff0000) >> 8)
450
       | ((x & 0x0000ff00) << 8)
451
       | ((x & 0x000000ff) << 24);
452
    x =  ((x & 0xf0f0f0f0) >> 4)
453
       | ((x & 0x0f0f0f0f) << 4);
454
    x =  ((x & 0x88888888) >> 3)
455
       | ((x & 0x44444444) >> 1)
456
       | ((x & 0x22222222) << 1)
457
       | ((x & 0x11111111) << 3);
458
    return x;
459
}
460

    
461
uint32_t HELPER(abs)(uint32_t x)
462
{
463
    return ((int32_t)x < 0) ? -x : x;
464
}
465

    
466
#if defined(CONFIG_USER_ONLY)
467

    
468
void do_interrupt (CPUState *env)
469
{
470
    env->exception_index = -1;
471
}
472

    
473
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
474
                              int mmu_idx, int is_softmmu)
475
{
476
    if (rw == 2) {
477
        env->exception_index = EXCP_PREFETCH_ABORT;
478
        env->cp15.c6_insn = address;
479
    } else {
480
        env->exception_index = EXCP_DATA_ABORT;
481
        env->cp15.c6_data = address;
482
    }
483
    return 1;
484
}
485

    
486
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
487
{
488
    return addr;
489
}
490

    
491
/* These should probably raise undefined insn exceptions.  */
492
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
493
{
494
    int op1 = (insn >> 8) & 0xf;
495
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
496
    return;
497
}
498

    
499
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
500
{
501
    int op1 = (insn >> 8) & 0xf;
502
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
503
    return 0;
504
}
505

    
506
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
507
{
508
    cpu_abort(env, "cp15 insn %08x\n", insn);
509
}
510

    
511
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
512
{
513
    cpu_abort(env, "cp15 insn %08x\n", insn);
514
}
515

    
516
/* These should probably raise undefined insn exceptions.  */
517
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
518
{
519
    cpu_abort(env, "v7m_mrs %d\n", reg);
520
}
521

    
522
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
523
{
524
    cpu_abort(env, "v7m_mrs %d\n", reg);
525
    return 0;
526
}
527

    
528
void switch_mode(CPUState *env, int mode)
529
{
530
    if (mode != ARM_CPU_MODE_USR)
531
        cpu_abort(env, "Tried to switch out of user mode\n");
532
}
533

    
534
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
535
{
536
    cpu_abort(env, "banked r13 write\n");
537
}
538

    
539
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
540
{
541
    cpu_abort(env, "banked r13 read\n");
542
    return 0;
543
}
544

    
545
#else
546

    
547
extern int semihosting_enabled;
548

    
549
/* Map CPU modes onto saved register banks.  */
550
static inline int bank_number (int mode)
551
{
552
    switch (mode) {
553
    case ARM_CPU_MODE_USR:
554
    case ARM_CPU_MODE_SYS:
555
        return 0;
556
    case ARM_CPU_MODE_SVC:
557
        return 1;
558
    case ARM_CPU_MODE_ABT:
559
        return 2;
560
    case ARM_CPU_MODE_UND:
561
        return 3;
562
    case ARM_CPU_MODE_IRQ:
563
        return 4;
564
    case ARM_CPU_MODE_FIQ:
565
        return 5;
566
    }
567
    cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
568
    return -1;
569
}
570

    
571
void switch_mode(CPUState *env, int mode)
572
{
573
    int old_mode;
574
    int i;
575

    
576
    old_mode = env->uncached_cpsr & CPSR_M;
577
    if (mode == old_mode)
578
        return;
579

    
580
    if (old_mode == ARM_CPU_MODE_FIQ) {
581
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
582
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
583
    } else if (mode == ARM_CPU_MODE_FIQ) {
584
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
585
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
586
    }
587

    
588
    i = bank_number(old_mode);
589
    env->banked_r13[i] = env->regs[13];
590
    env->banked_r14[i] = env->regs[14];
591
    env->banked_spsr[i] = env->spsr;
592

    
593
    i = bank_number(mode);
594
    env->regs[13] = env->banked_r13[i];
595
    env->regs[14] = env->banked_r14[i];
596
    env->spsr = env->banked_spsr[i];
597
}
598

    
599
static void v7m_push(CPUARMState *env, uint32_t val)
600
{
601
    env->regs[13] -= 4;
602
    stl_phys(env->regs[13], val);
603
}
604

    
605
static uint32_t v7m_pop(CPUARMState *env)
606
{
607
    uint32_t val;
608
    val = ldl_phys(env->regs[13]);
609
    env->regs[13] += 4;
610
    return val;
611
}
612

    
613
/* Switch to V7M main or process stack pointer.  */
614
static void switch_v7m_sp(CPUARMState *env, int process)
615
{
616
    uint32_t tmp;
617
    if (env->v7m.current_sp != process) {
618
        tmp = env->v7m.other_sp;
619
        env->v7m.other_sp = env->regs[13];
620
        env->regs[13] = tmp;
621
        env->v7m.current_sp = process;
622
    }
623
}
624

    
625
static void do_v7m_exception_exit(CPUARMState *env)
626
{
627
    uint32_t type;
628
    uint32_t xpsr;
629

    
630
    type = env->regs[15];
631
    if (env->v7m.exception != 0)
632
        armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
633

    
634
    /* Switch to the target stack.  */
635
    switch_v7m_sp(env, (type & 4) != 0);
636
    /* Pop registers.  */
637
    env->regs[0] = v7m_pop(env);
638
    env->regs[1] = v7m_pop(env);
639
    env->regs[2] = v7m_pop(env);
640
    env->regs[3] = v7m_pop(env);
641
    env->regs[12] = v7m_pop(env);
642
    env->regs[14] = v7m_pop(env);
643
    env->regs[15] = v7m_pop(env);
644
    xpsr = v7m_pop(env);
645
    xpsr_write(env, xpsr, 0xfffffdff);
646
    /* Undo stack alignment.  */
647
    if (xpsr & 0x200)
648
        env->regs[13] |= 4;
649
    /* ??? The exception return type specifies Thread/Handler mode.  However
650
       this is also implied by the xPSR value. Not sure what to do
651
       if there is a mismatch.  */
652
    /* ??? Likewise for mismatches between the CONTROL register and the stack
653
       pointer.  */
654
}
655

    
656
static void do_interrupt_v7m(CPUARMState *env)
657
{
658
    uint32_t xpsr = xpsr_read(env);
659
    uint32_t lr;
660
    uint32_t addr;
661

    
662
    lr = 0xfffffff1;
663
    if (env->v7m.current_sp)
664
        lr |= 4;
665
    if (env->v7m.exception == 0)
666
        lr |= 8;
667

    
668
    /* For exceptions we just mark as pending on the NVIC, and let that
669
       handle it.  */
670
    /* TODO: Need to escalate if the current priority is higher than the
671
       one we're raising.  */
672
    switch (env->exception_index) {
673
    case EXCP_UDEF:
674
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
675
        return;
676
    case EXCP_SWI:
677
        env->regs[15] += 2;
678
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
679
        return;
680
    case EXCP_PREFETCH_ABORT:
681
    case EXCP_DATA_ABORT:
682
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
683
        return;
684
    case EXCP_BKPT:
685
        if (semihosting_enabled) {
686
            int nr;
687
            nr = lduw_code(env->regs[15]) & 0xff;
688
            if (nr == 0xab) {
689
                env->regs[15] += 2;
690
                env->regs[0] = do_arm_semihosting(env);
691
                return;
692
            }
693
        }
694
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
695
        return;
696
    case EXCP_IRQ:
697
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
698
        break;
699
    case EXCP_EXCEPTION_EXIT:
700
        do_v7m_exception_exit(env);
701
        return;
702
    default:
703
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
704
        return; /* Never happens.  Keep compiler happy.  */
705
    }
706

    
707
    /* Align stack pointer.  */
708
    /* ??? Should only do this if Configuration Control Register
709
       STACKALIGN bit is set.  */
710
    if (env->regs[13] & 4) {
711
        env->regs[13] -= 4;
712
        xpsr |= 0x200;
713
    }
714
    /* Switch to the handler mode.  */
715
    v7m_push(env, xpsr);
716
    v7m_push(env, env->regs[15]);
717
    v7m_push(env, env->regs[14]);
718
    v7m_push(env, env->regs[12]);
719
    v7m_push(env, env->regs[3]);
720
    v7m_push(env, env->regs[2]);
721
    v7m_push(env, env->regs[1]);
722
    v7m_push(env, env->regs[0]);
723
    switch_v7m_sp(env, 0);
724
    env->uncached_cpsr &= ~CPSR_IT;
725
    env->regs[14] = lr;
726
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
727
    env->regs[15] = addr & 0xfffffffe;
728
    env->thumb = addr & 1;
729
}
730

    
731
/* Handle a CPU exception.  */
732
void do_interrupt(CPUARMState *env)
733
{
734
    uint32_t addr;
735
    uint32_t mask;
736
    int new_mode;
737
    uint32_t offset;
738

    
739
    if (IS_M(env)) {
740
        do_interrupt_v7m(env);
741
        return;
742
    }
743
    /* TODO: Vectored interrupt controller.  */
744
    switch (env->exception_index) {
745
    case EXCP_UDEF:
746
        new_mode = ARM_CPU_MODE_UND;
747
        addr = 0x04;
748
        mask = CPSR_I;
749
        if (env->thumb)
750
            offset = 2;
751
        else
752
            offset = 4;
753
        break;
754
    case EXCP_SWI:
755
        if (semihosting_enabled) {
756
            /* Check for semihosting interrupt.  */
757
            if (env->thumb) {
758
                mask = lduw_code(env->regs[15] - 2) & 0xff;
759
            } else {
760
                mask = ldl_code(env->regs[15] - 4) & 0xffffff;
761
            }
762
            /* Only intercept calls from privileged modes, to provide some
763
               semblance of security.  */
764
            if (((mask == 0x123456 && !env->thumb)
765
                    || (mask == 0xab && env->thumb))
766
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
767
                env->regs[0] = do_arm_semihosting(env);
768
                return;
769
            }
770
        }
771
        new_mode = ARM_CPU_MODE_SVC;
772
        addr = 0x08;
773
        mask = CPSR_I;
774
        /* The PC already points to the next instruction.  */
775
        offset = 0;
776
        break;
777
    case EXCP_BKPT:
778
        /* See if this is a semihosting syscall.  */
779
        if (env->thumb && semihosting_enabled) {
780
            mask = lduw_code(env->regs[15]) & 0xff;
781
            if (mask == 0xab
782
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
783
                env->regs[15] += 2;
784
                env->regs[0] = do_arm_semihosting(env);
785
                return;
786
            }
787
        }
788
        /* Fall through to prefetch abort.  */
789
    case EXCP_PREFETCH_ABORT:
790
        new_mode = ARM_CPU_MODE_ABT;
791
        addr = 0x0c;
792
        mask = CPSR_A | CPSR_I;
793
        offset = 4;
794
        break;
795
    case EXCP_DATA_ABORT:
796
        new_mode = ARM_CPU_MODE_ABT;
797
        addr = 0x10;
798
        mask = CPSR_A | CPSR_I;
799
        offset = 8;
800
        break;
801
    case EXCP_IRQ:
802
        new_mode = ARM_CPU_MODE_IRQ;
803
        addr = 0x18;
804
        /* Disable IRQ and imprecise data aborts.  */
805
        mask = CPSR_A | CPSR_I;
806
        offset = 4;
807
        break;
808
    case EXCP_FIQ:
809
        new_mode = ARM_CPU_MODE_FIQ;
810
        addr = 0x1c;
811
        /* Disable FIQ, IRQ and imprecise data aborts.  */
812
        mask = CPSR_A | CPSR_I | CPSR_F;
813
        offset = 4;
814
        break;
815
    default:
816
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
817
        return; /* Never happens.  Keep compiler happy.  */
818
    }
819
    /* High vectors.  */
820
    if (env->cp15.c1_sys & (1 << 13)) {
821
        addr += 0xffff0000;
822
    }
823
    switch_mode (env, new_mode);
824
    env->spsr = cpsr_read(env);
825
    /* Clear IT bits.  */
826
    env->condexec_bits = 0;
827
    /* Switch to the new mode, and switch to Arm mode.  */
828
    /* ??? Thumb interrupt handlers not implemented.  */
829
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
830
    env->uncached_cpsr |= mask;
831
    env->thumb = 0;
832
    env->regs[14] = env->regs[15] + offset;
833
    env->regs[15] = addr;
834
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
835
}
836

    
837
/* Check section/page access permissions.
838
   Returns the page protection flags, or zero if the access is not
839
   permitted.  */
840
static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
841
                           int is_user)
842
{
843
  int prot_ro;
844

    
845
  if (domain == 3)
846
    return PAGE_READ | PAGE_WRITE;
847

    
848
  if (access_type == 1)
849
      prot_ro = 0;
850
  else
851
      prot_ro = PAGE_READ;
852

    
853
  switch (ap) {
854
  case 0:
855
      if (access_type == 1)
856
          return 0;
857
      switch ((env->cp15.c1_sys >> 8) & 3) {
858
      case 1:
859
          return is_user ? 0 : PAGE_READ;
860
      case 2:
861
          return PAGE_READ;
862
      default:
863
          return 0;
864
      }
865
  case 1:
866
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
867
  case 2:
868
      if (is_user)
869
          return prot_ro;
870
      else
871
          return PAGE_READ | PAGE_WRITE;
872
  case 3:
873
      return PAGE_READ | PAGE_WRITE;
874
  case 4: /* Reserved.  */
875
      return 0;
876
  case 5:
877
      return is_user ? 0 : prot_ro;
878
  case 6:
879
      return prot_ro;
880
  case 7:
881
      if (!arm_feature (env, ARM_FEATURE_V7))
882
          return 0;
883
      return prot_ro;
884
  default:
885
      abort();
886
  }
887
}
888

    
889
static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
890
{
891
    uint32_t table;
892

    
893
    if (address & env->cp15.c2_mask)
894
        table = env->cp15.c2_base1 & 0xffffc000;
895
    else
896
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
897

    
898
    table |= (address >> 18) & 0x3ffc;
899
    return table;
900
}
901

    
902
static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
903
                            int is_user, uint32_t *phys_ptr, int *prot)
904
{
905
    int code;
906
    uint32_t table;
907
    uint32_t desc;
908
    int type;
909
    int ap;
910
    int domain;
911
    uint32_t phys_addr;
912

    
913
    /* Pagetable walk.  */
914
    /* Lookup l1 descriptor.  */
915
    table = get_level1_table_address(env, address);
916
    desc = ldl_phys(table);
917
    type = (desc & 3);
918
    domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
919
    if (type == 0) {
920
        /* Section translation fault.  */
921
        code = 5;
922
        goto do_fault;
923
    }
924
    if (domain == 0 || domain == 2) {
925
        if (type == 2)
926
            code = 9; /* Section domain fault.  */
927
        else
928
            code = 11; /* Page domain fault.  */
929
        goto do_fault;
930
    }
931
    if (type == 2) {
932
        /* 1Mb section.  */
933
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
934
        ap = (desc >> 10) & 3;
935
        code = 13;
936
    } else {
937
        /* Lookup l2 entry.  */
938
        if (type == 1) {
939
            /* Coarse pagetable.  */
940
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
941
        } else {
942
            /* Fine pagetable.  */
943
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
944
        }
945
        desc = ldl_phys(table);
946
        switch (desc & 3) {
947
        case 0: /* Page translation fault.  */
948
            code = 7;
949
            goto do_fault;
950
        case 1: /* 64k page.  */
951
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
952
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
953
            break;
954
        case 2: /* 4k page.  */
955
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
956
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
957
            break;
958
        case 3: /* 1k page.  */
959
            if (type == 1) {
960
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
961
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
962
                } else {
963
                    /* Page translation fault.  */
964
                    code = 7;
965
                    goto do_fault;
966
                }
967
            } else {
968
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
969
            }
970
            ap = (desc >> 4) & 3;
971
            break;
972
        default:
973
            /* Never happens, but compiler isn't smart enough to tell.  */
974
            abort();
975
        }
976
        code = 15;
977
    }
978
    *prot = check_ap(env, ap, domain, access_type, is_user);
979
    if (!*prot) {
980
        /* Access permission fault.  */
981
        goto do_fault;
982
    }
983
    *phys_ptr = phys_addr;
984
    return 0;
985
do_fault:
986
    return code | (domain << 4);
987
}
988

    
989
static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
990
                            int is_user, uint32_t *phys_ptr, int *prot)
991
{
992
    int code;
993
    uint32_t table;
994
    uint32_t desc;
995
    uint32_t xn;
996
    int type;
997
    int ap;
998
    int domain;
999
    uint32_t phys_addr;
1000

    
1001
    /* Pagetable walk.  */
1002
    /* Lookup l1 descriptor.  */
1003
    table = get_level1_table_address(env, address);
1004
    desc = ldl_phys(table);
1005
    type = (desc & 3);
1006
    if (type == 0) {
1007
        /* Section translation fault.  */
1008
        code = 5;
1009
        domain = 0;
1010
        goto do_fault;
1011
    } else if (type == 2 && (desc & (1 << 18))) {
1012
        /* Supersection.  */
1013
        domain = 0;
1014
    } else {
1015
        /* Section or page.  */
1016
        domain = (desc >> 4) & 0x1e;
1017
    }
1018
    domain = (env->cp15.c3 >> domain) & 3;
1019
    if (domain == 0 || domain == 2) {
1020
        if (type == 2)
1021
            code = 9; /* Section domain fault.  */
1022
        else
1023
            code = 11; /* Page domain fault.  */
1024
        goto do_fault;
1025
    }
1026
    if (type == 2) {
1027
        if (desc & (1 << 18)) {
1028
            /* Supersection.  */
1029
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1030
        } else {
1031
            /* Section.  */
1032
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1033
        }
1034
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1035
        xn = desc & (1 << 4);
1036
        code = 13;
1037
    } else {
1038
        /* Lookup l2 entry.  */
1039
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1040
        desc = ldl_phys(table);
1041
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1042
        switch (desc & 3) {
1043
        case 0: /* Page translation fault.  */
1044
            code = 7;
1045
            goto do_fault;
1046
        case 1: /* 64k page.  */
1047
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1048
            xn = desc & (1 << 15);
1049
            break;
1050
        case 2: case 3: /* 4k page.  */
1051
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1052
            xn = desc & 1;
1053
            break;
1054
        default:
1055
            /* Never happens, but compiler isn't smart enough to tell.  */
1056
            abort();
1057
        }
1058
        code = 15;
1059
    }
1060
    if (xn && access_type == 2)
1061
        goto do_fault;
1062

    
1063
    /* The simplified model uses AP[0] as an access control bit.  */
1064
    if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1065
        /* Access flag fault.  */
1066
        code = (code == 15) ? 6 : 3;
1067
        goto do_fault;
1068
    }
1069
    *prot = check_ap(env, ap, domain, access_type, is_user);
1070
    if (!*prot) {
1071
        /* Access permission fault.  */
1072
        goto do_fault;
1073
    }
1074
    *phys_ptr = phys_addr;
1075
    return 0;
1076
do_fault:
1077
    return code | (domain << 4);
1078
}
1079

    
1080
static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1081
                             int is_user, uint32_t *phys_ptr, int *prot)
1082
{
1083
    int n;
1084
    uint32_t mask;
1085
    uint32_t base;
1086

    
1087
    *phys_ptr = address;
1088
    for (n = 7; n >= 0; n--) {
1089
        base = env->cp15.c6_region[n];
1090
        if ((base & 1) == 0)
1091
            continue;
1092
        mask = 1 << ((base >> 1) & 0x1f);
1093
        /* Keep this shift separate from the above to avoid an
1094
           (undefined) << 32.  */
1095
        mask = (mask << 1) - 1;
1096
        if (((base ^ address) & ~mask) == 0)
1097
            break;
1098
    }
1099
    if (n < 0)
1100
        return 2;
1101

    
1102
    if (access_type == 2) {
1103
        mask = env->cp15.c5_insn;
1104
    } else {
1105
        mask = env->cp15.c5_data;
1106
    }
1107
    mask = (mask >> (n * 4)) & 0xf;
1108
    switch (mask) {
1109
    case 0:
1110
        return 1;
1111
    case 1:
1112
        if (is_user)
1113
          return 1;
1114
        *prot = PAGE_READ | PAGE_WRITE;
1115
        break;
1116
    case 2:
1117
        *prot = PAGE_READ;
1118
        if (!is_user)
1119
            *prot |= PAGE_WRITE;
1120
        break;
1121
    case 3:
1122
        *prot = PAGE_READ | PAGE_WRITE;
1123
        break;
1124
    case 5:
1125
        if (is_user)
1126
            return 1;
1127
        *prot = PAGE_READ;
1128
        break;
1129
    case 6:
1130
        *prot = PAGE_READ;
1131
        break;
1132
    default:
1133
        /* Bad permission.  */
1134
        return 1;
1135
    }
1136
    return 0;
1137
}
1138

    
1139
static inline int get_phys_addr(CPUState *env, uint32_t address,
1140
                                int access_type, int is_user,
1141
                                uint32_t *phys_ptr, int *prot)
1142
{
1143
    /* Fast Context Switch Extension.  */
1144
    if (address < 0x02000000)
1145
        address += env->cp15.c13_fcse;
1146

    
1147
    if ((env->cp15.c1_sys & 1) == 0) {
1148
        /* MMU/MPU disabled.  */
1149
        *phys_ptr = address;
1150
        *prot = PAGE_READ | PAGE_WRITE;
1151
        return 0;
1152
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1153
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1154
                                 prot);
1155
    } else if (env->cp15.c1_sys & (1 << 23)) {
1156
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1157
                                prot);
1158
    } else {
1159
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1160
                                prot);
1161
    }
1162
}
1163

    
1164
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1165
                              int access_type, int mmu_idx, int is_softmmu)
1166
{
1167
    uint32_t phys_addr;
1168
    int prot;
1169
    int ret, is_user;
1170

    
1171
    is_user = mmu_idx == MMU_USER_IDX;
1172
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1173
    if (ret == 0) {
1174
        /* Map a single [sub]page.  */
1175
        phys_addr &= ~(uint32_t)0x3ff;
1176
        address &= ~(uint32_t)0x3ff;
1177
        return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1178
                             is_softmmu);
1179
    }
1180

    
1181
    if (access_type == 2) {
1182
        env->cp15.c5_insn = ret;
1183
        env->cp15.c6_insn = address;
1184
        env->exception_index = EXCP_PREFETCH_ABORT;
1185
    } else {
1186
        env->cp15.c5_data = ret;
1187
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1188
            env->cp15.c5_data |= (1 << 11);
1189
        env->cp15.c6_data = address;
1190
        env->exception_index = EXCP_DATA_ABORT;
1191
    }
1192
    return 1;
1193
}
1194

    
1195
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1196
{
1197
    uint32_t phys_addr;
1198
    int prot;
1199
    int ret;
1200

    
1201
    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1202

    
1203
    if (ret != 0)
1204
        return -1;
1205

    
1206
    return phys_addr;
1207
}
1208

    
1209
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1210
{
1211
    int cp_num = (insn >> 8) & 0xf;
1212
    int cp_info = (insn >> 5) & 7;
1213
    int src = (insn >> 16) & 0xf;
1214
    int operand = insn & 0xf;
1215

    
1216
    if (env->cp[cp_num].cp_write)
1217
        env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1218
                                 cp_info, src, operand, val);
1219
}
1220

    
1221
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1222
{
1223
    int cp_num = (insn >> 8) & 0xf;
1224
    int cp_info = (insn >> 5) & 7;
1225
    int dest = (insn >> 16) & 0xf;
1226
    int operand = insn & 0xf;
1227

    
1228
    if (env->cp[cp_num].cp_read)
1229
        return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1230
                                       cp_info, dest, operand);
1231
    return 0;
1232
}
1233

    
1234
/* Return basic MPU access permission bits.  */
1235
static uint32_t simple_mpu_ap_bits(uint32_t val)
1236
{
1237
    uint32_t ret;
1238
    uint32_t mask;
1239
    int i;
1240
    ret = 0;
1241
    mask = 3;
1242
    for (i = 0; i < 16; i += 2) {
1243
        ret |= (val >> i) & mask;
1244
        mask <<= 2;
1245
    }
1246
    return ret;
1247
}
1248

    
1249
/* Pad basic MPU access permission bits to extended format.  */
1250
static uint32_t extended_mpu_ap_bits(uint32_t val)
1251
{
1252
    uint32_t ret;
1253
    uint32_t mask;
1254
    int i;
1255
    ret = 0;
1256
    mask = 3;
1257
    for (i = 0; i < 16; i += 2) {
1258
        ret |= (val & mask) << i;
1259
        mask <<= 2;
1260
    }
1261
    return ret;
1262
}
1263

    
1264
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1265
{
1266
    int op1;
1267
    int op2;
1268
    int crm;
1269

    
1270
    op1 = (insn >> 21) & 7;
1271
    op2 = (insn >> 5) & 7;
1272
    crm = insn & 0xf;
1273
    switch ((insn >> 16) & 0xf) {
1274
    case 0:
1275
        /* ID codes.  */
1276
        if (arm_feature(env, ARM_FEATURE_XSCALE))
1277
            break;
1278
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1279
            break;
1280
        if (arm_feature(env, ARM_FEATURE_V7)
1281
                && op1 == 2 && crm == 0 && op2 == 0) {
1282
            env->cp15.c0_cssel = val & 0xf;
1283
            break;
1284
        }
1285
        goto bad_reg;
1286
    case 1: /* System configuration.  */
1287
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1288
            op2 = 0;
1289
        switch (op2) {
1290
        case 0:
1291
            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1292
                env->cp15.c1_sys = val;
1293
            /* ??? Lots of these bits are not implemented.  */
1294
            /* This may enable/disable the MMU, so do a TLB flush.  */
1295
            tlb_flush(env, 1);
1296
            break;
1297
        case 1: /* Auxiliary cotrol register.  */
1298
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1299
                env->cp15.c1_xscaleauxcr = val;
1300
                break;
1301
            }
1302
            /* Not implemented.  */
1303
            break;
1304
        case 2:
1305
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1306
                goto bad_reg;
1307
            if (env->cp15.c1_coproc != val) {
1308
                env->cp15.c1_coproc = val;
1309
                /* ??? Is this safe when called from within a TB?  */
1310
                tb_flush(env);
1311
            }
1312
            break;
1313
        default:
1314
            goto bad_reg;
1315
        }
1316
        break;
1317
    case 2: /* MMU Page table control / MPU cache control.  */
1318
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1319
            switch (op2) {
1320
            case 0:
1321
                env->cp15.c2_data = val;
1322
                break;
1323
            case 1:
1324
                env->cp15.c2_insn = val;
1325
                break;
1326
            default:
1327
                goto bad_reg;
1328
            }
1329
        } else {
1330
            switch (op2) {
1331
            case 0:
1332
                env->cp15.c2_base0 = val;
1333
                break;
1334
            case 1:
1335
                env->cp15.c2_base1 = val;
1336
                break;
1337
            case 2:
1338
                val &= 7;
1339
                env->cp15.c2_control = val;
1340
                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1341
                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1342
                break;
1343
            default:
1344
                goto bad_reg;
1345
            }
1346
        }
1347
        break;
1348
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1349
        env->cp15.c3 = val;
1350
        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1351
        break;
1352
    case 4: /* Reserved.  */
1353
        goto bad_reg;
1354
    case 5: /* MMU Fault status / MPU access permission.  */
1355
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1356
            op2 = 0;
1357
        switch (op2) {
1358
        case 0:
1359
            if (arm_feature(env, ARM_FEATURE_MPU))
1360
                val = extended_mpu_ap_bits(val);
1361
            env->cp15.c5_data = val;
1362
            break;
1363
        case 1:
1364
            if (arm_feature(env, ARM_FEATURE_MPU))
1365
                val = extended_mpu_ap_bits(val);
1366
            env->cp15.c5_insn = val;
1367
            break;
1368
        case 2:
1369
            if (!arm_feature(env, ARM_FEATURE_MPU))
1370
                goto bad_reg;
1371
            env->cp15.c5_data = val;
1372
            break;
1373
        case 3:
1374
            if (!arm_feature(env, ARM_FEATURE_MPU))
1375
                goto bad_reg;
1376
            env->cp15.c5_insn = val;
1377
            break;
1378
        default:
1379
            goto bad_reg;
1380
        }
1381
        break;
1382
    case 6: /* MMU Fault address / MPU base/size.  */
1383
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1384
            if (crm >= 8)
1385
                goto bad_reg;
1386
            env->cp15.c6_region[crm] = val;
1387
        } else {
1388
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1389
                op2 = 0;
1390
            switch (op2) {
1391
            case 0:
1392
                env->cp15.c6_data = val;
1393
                break;
1394
            case 1: /* ??? This is WFAR on armv6 */
1395
            case 2:
1396
                env->cp15.c6_insn = val;
1397
                break;
1398
            default:
1399
                goto bad_reg;
1400
            }
1401
        }
1402
        break;
1403
    case 7: /* Cache control.  */
1404
        env->cp15.c15_i_max = 0x000;
1405
        env->cp15.c15_i_min = 0xff0;
1406
        /* No cache, so nothing to do.  */
1407
        /* ??? MPCore has VA to PA translation functions.  */
1408
        break;
1409
    case 8: /* MMU TLB control.  */
1410
        switch (op2) {
1411
        case 0: /* Invalidate all.  */
1412
            tlb_flush(env, 0);
1413
            break;
1414
        case 1: /* Invalidate single TLB entry.  */
1415
#if 0
1416
            /* ??? This is wrong for large pages and sections.  */
1417
            /* As an ugly hack to make linux work we always flush a 4K
1418
               pages.  */
1419
            val &= 0xfffff000;
1420
            tlb_flush_page(env, val);
1421
            tlb_flush_page(env, val + 0x400);
1422
            tlb_flush_page(env, val + 0x800);
1423
            tlb_flush_page(env, val + 0xc00);
1424
#else
1425
            tlb_flush(env, 1);
1426
#endif
1427
            break;
1428
        case 2: /* Invalidate on ASID.  */
1429
            tlb_flush(env, val == 0);
1430
            break;
1431
        case 3: /* Invalidate single entry on MVA.  */
1432
            /* ??? This is like case 1, but ignores ASID.  */
1433
            tlb_flush(env, 1);
1434
            break;
1435
        default:
1436
            goto bad_reg;
1437
        }
1438
        break;
1439
    case 9:
1440
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1441
            break;
1442
        switch (crm) {
1443
        case 0: /* Cache lockdown.  */
1444
            switch (op1) {
1445
            case 0: /* L1 cache.  */
1446
                switch (op2) {
1447
                case 0:
1448
                    env->cp15.c9_data = val;
1449
                    break;
1450
                case 1:
1451
                    env->cp15.c9_insn = val;
1452
                    break;
1453
                default:
1454
                    goto bad_reg;
1455
                }
1456
                break;
1457
            case 1: /* L2 cache.  */
1458
                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1459
                break;
1460
            default:
1461
                goto bad_reg;
1462
            }
1463
            break;
1464
        case 1: /* TCM memory region registers.  */
1465
            /* Not implemented.  */
1466
            goto bad_reg;
1467
        default:
1468
            goto bad_reg;
1469
        }
1470
        break;
1471
    case 10: /* MMU TLB lockdown.  */
1472
        /* ??? TLB lockdown not implemented.  */
1473
        break;
1474
    case 12: /* Reserved.  */
1475
        goto bad_reg;
1476
    case 13: /* Process ID.  */
1477
        switch (op2) {
1478
        case 0:
1479
            /* Unlike real hardware the qemu TLB uses virtual addresses,
1480
               not modified virtual addresses, so this causes a TLB flush.
1481
             */
1482
            if (env->cp15.c13_fcse != val)
1483
              tlb_flush(env, 1);
1484
            env->cp15.c13_fcse = val;
1485
            break;
1486
        case 1:
1487
            /* This changes the ASID, so do a TLB flush.  */
1488
            if (env->cp15.c13_context != val
1489
                && !arm_feature(env, ARM_FEATURE_MPU))
1490
              tlb_flush(env, 0);
1491
            env->cp15.c13_context = val;
1492
            break;
1493
        default:
1494
            goto bad_reg;
1495
        }
1496
        break;
1497
    case 14: /* Reserved.  */
1498
        goto bad_reg;
1499
    case 15: /* Implementation specific.  */
1500
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1501
            if (op2 == 0 && crm == 1) {
1502
                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1503
                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1504
                    tb_flush(env);
1505
                    env->cp15.c15_cpar = val & 0x3fff;
1506
                }
1507
                break;
1508
            }
1509
            goto bad_reg;
1510
        }
1511
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1512
            switch (crm) {
1513
            case 0:
1514
                break;
1515
            case 1: /* Set TI925T configuration.  */
1516
                env->cp15.c15_ticonfig = val & 0xe7;
1517
                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1518
                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1519
                break;
1520
            case 2: /* Set I_max.  */
1521
                env->cp15.c15_i_max = val;
1522
                break;
1523
            case 3: /* Set I_min.  */
1524
                env->cp15.c15_i_min = val;
1525
                break;
1526
            case 4: /* Set thread-ID.  */
1527
                env->cp15.c15_threadid = val & 0xffff;
1528
                break;
1529
            case 8: /* Wait-for-interrupt (deprecated).  */
1530
                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1531
                break;
1532
            default:
1533
                goto bad_reg;
1534
            }
1535
        }
1536
        break;
1537
    }
1538
    return;
1539
bad_reg:
1540
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1541
    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1542
              (insn >> 16) & 0xf, crm, op1, op2);
1543
}
1544

    
1545
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1546
{
1547
    int op1;
1548
    int op2;
1549
    int crm;
1550

    
1551
    op1 = (insn >> 21) & 7;
1552
    op2 = (insn >> 5) & 7;
1553
    crm = insn & 0xf;
1554
    switch ((insn >> 16) & 0xf) {
1555
    case 0: /* ID codes.  */
1556
        switch (op1) {
1557
        case 0:
1558
            switch (crm) {
1559
            case 0:
1560
                switch (op2) {
1561
                case 0: /* Device ID.  */
1562
                    return env->cp15.c0_cpuid;
1563
                case 1: /* Cache Type.  */
1564
                    return env->cp15.c0_cachetype;
1565
                case 2: /* TCM status.  */
1566
                    return 0;
1567
                case 3: /* TLB type register.  */
1568
                    return 0; /* No lockable TLB entries.  */
1569
                case 5: /* CPU ID */
1570
                    if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1571
                        return env->cpu_index | 0x80000900;
1572
                    } else {
1573
                        return env->cpu_index;
1574
                    }
1575
                default:
1576
                    goto bad_reg;
1577
                }
1578
            case 1:
1579
                if (!arm_feature(env, ARM_FEATURE_V6))
1580
                    goto bad_reg;
1581
                return env->cp15.c0_c1[op2];
1582
            case 2:
1583
                if (!arm_feature(env, ARM_FEATURE_V6))
1584
                    goto bad_reg;
1585
                return env->cp15.c0_c2[op2];
1586
            case 3: case 4: case 5: case 6: case 7:
1587
                return 0;
1588
            default:
1589
                goto bad_reg;
1590
            }
1591
        case 1:
1592
            /* These registers aren't documented on arm11 cores.  However
1593
               Linux looks at them anyway.  */
1594
            if (!arm_feature(env, ARM_FEATURE_V6))
1595
                goto bad_reg;
1596
            if (crm != 0)
1597
                goto bad_reg;
1598
            if (!arm_feature(env, ARM_FEATURE_V7))
1599
                return 0;
1600

    
1601
            switch (op2) {
1602
            case 0:
1603
                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1604
            case 1:
1605
                return env->cp15.c0_clid;
1606
            case 7:
1607
                return 0;
1608
            }
1609
            goto bad_reg;
1610
        case 2:
1611
            if (op2 != 0 || crm != 0)
1612
                goto bad_reg;
1613
            return env->cp15.c0_cssel;
1614
        default:
1615
            goto bad_reg;
1616
        }
1617
    case 1: /* System configuration.  */
1618
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1619
            op2 = 0;
1620
        switch (op2) {
1621
        case 0: /* Control register.  */
1622
            return env->cp15.c1_sys;
1623
        case 1: /* Auxiliary control register.  */
1624
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1625
                return env->cp15.c1_xscaleauxcr;
1626
            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1627
                goto bad_reg;
1628
            switch (ARM_CPUID(env)) {
1629
            case ARM_CPUID_ARM1026:
1630
                return 1;
1631
            case ARM_CPUID_ARM1136:
1632
            case ARM_CPUID_ARM1136_R2:
1633
                return 7;
1634
            case ARM_CPUID_ARM11MPCORE:
1635
                return 1;
1636
            case ARM_CPUID_CORTEXA8:
1637
                return 2;
1638
            case ARM_CPUID_CORTEXA9:
1639
                return 0;
1640
            default:
1641
                goto bad_reg;
1642
            }
1643
        case 2: /* Coprocessor access register.  */
1644
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1645
                goto bad_reg;
1646
            return env->cp15.c1_coproc;
1647
        default:
1648
            goto bad_reg;
1649
        }
1650
    case 2: /* MMU Page table control / MPU cache control.  */
1651
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1652
            switch (op2) {
1653
            case 0:
1654
                return env->cp15.c2_data;
1655
                break;
1656
            case 1:
1657
                return env->cp15.c2_insn;
1658
                break;
1659
            default:
1660
                goto bad_reg;
1661
            }
1662
        } else {
1663
            switch (op2) {
1664
            case 0:
1665
                return env->cp15.c2_base0;
1666
            case 1:
1667
                return env->cp15.c2_base1;
1668
            case 2:
1669
                return env->cp15.c2_control;
1670
            default:
1671
                goto bad_reg;
1672
            }
1673
        }
1674
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1675
        return env->cp15.c3;
1676
    case 4: /* Reserved.  */
1677
        goto bad_reg;
1678
    case 5: /* MMU Fault status / MPU access permission.  */
1679
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1680
            op2 = 0;
1681
        switch (op2) {
1682
        case 0:
1683
            if (arm_feature(env, ARM_FEATURE_MPU))
1684
                return simple_mpu_ap_bits(env->cp15.c5_data);
1685
            return env->cp15.c5_data;
1686
        case 1:
1687
            if (arm_feature(env, ARM_FEATURE_MPU))
1688
                return simple_mpu_ap_bits(env->cp15.c5_data);
1689
            return env->cp15.c5_insn;
1690
        case 2:
1691
            if (!arm_feature(env, ARM_FEATURE_MPU))
1692
                goto bad_reg;
1693
            return env->cp15.c5_data;
1694
        case 3:
1695
            if (!arm_feature(env, ARM_FEATURE_MPU))
1696
                goto bad_reg;
1697
            return env->cp15.c5_insn;
1698
        default:
1699
            goto bad_reg;
1700
        }
1701
    case 6: /* MMU Fault address.  */
1702
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1703
            if (crm >= 8)
1704
                goto bad_reg;
1705
            return env->cp15.c6_region[crm];
1706
        } else {
1707
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1708
                op2 = 0;
1709
            switch (op2) {
1710
            case 0:
1711
                return env->cp15.c6_data;
1712
            case 1:
1713
                if (arm_feature(env, ARM_FEATURE_V6)) {
1714
                    /* Watchpoint Fault Adrress.  */
1715
                    return 0; /* Not implemented.  */
1716
                } else {
1717
                    /* Instruction Fault Adrress.  */
1718
                    /* Arm9 doesn't have an IFAR, but implementing it anyway
1719
                       shouldn't do any harm.  */
1720
                    return env->cp15.c6_insn;
1721
                }
1722
            case 2:
1723
                if (arm_feature(env, ARM_FEATURE_V6)) {
1724
                    /* Instruction Fault Adrress.  */
1725
                    return env->cp15.c6_insn;
1726
                } else {
1727
                    goto bad_reg;
1728
                }
1729
            default:
1730
                goto bad_reg;
1731
            }
1732
        }
1733
    case 7: /* Cache control.  */
1734
        /* FIXME: Should only clear Z flag if destination is r15.  */
1735
        env->ZF = 0;
1736
        return 0;
1737
    case 8: /* MMU TLB control.  */
1738
        goto bad_reg;
1739
    case 9: /* Cache lockdown.  */
1740
        switch (op1) {
1741
        case 0: /* L1 cache.  */
1742
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1743
                return 0;
1744
            switch (op2) {
1745
            case 0:
1746
                return env->cp15.c9_data;
1747
            case 1:
1748
                return env->cp15.c9_insn;
1749
            default:
1750
                goto bad_reg;
1751
            }
1752
        case 1: /* L2 cache */
1753
            if (crm != 0)
1754
                goto bad_reg;
1755
            /* L2 Lockdown and Auxiliary control.  */
1756
            return 0;
1757
        default:
1758
            goto bad_reg;
1759
        }
1760
    case 10: /* MMU TLB lockdown.  */
1761
        /* ??? TLB lockdown not implemented.  */
1762
        return 0;
1763
    case 11: /* TCM DMA control.  */
1764
    case 12: /* Reserved.  */
1765
        goto bad_reg;
1766
    case 13: /* Process ID.  */
1767
        switch (op2) {
1768
        case 0:
1769
            return env->cp15.c13_fcse;
1770
        case 1:
1771
            return env->cp15.c13_context;
1772
        default:
1773
            goto bad_reg;
1774
        }
1775
    case 14: /* Reserved.  */
1776
        goto bad_reg;
1777
    case 15: /* Implementation specific.  */
1778
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1779
            if (op2 == 0 && crm == 1)
1780
                return env->cp15.c15_cpar;
1781

    
1782
            goto bad_reg;
1783
        }
1784
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1785
            switch (crm) {
1786
            case 0:
1787
                return 0;
1788
            case 1: /* Read TI925T configuration.  */
1789
                return env->cp15.c15_ticonfig;
1790
            case 2: /* Read I_max.  */
1791
                return env->cp15.c15_i_max;
1792
            case 3: /* Read I_min.  */
1793
                return env->cp15.c15_i_min;
1794
            case 4: /* Read thread-ID.  */
1795
                return env->cp15.c15_threadid;
1796
            case 8: /* TI925T_status */
1797
                return 0;
1798
            }
1799
            /* TODO: Peripheral port remap register:
1800
             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1801
             * controller base address at $rn & ~0xfff and map size of
1802
             * 0x200 << ($rn & 0xfff), when MMU is off.  */
1803
            goto bad_reg;
1804
        }
1805
        return 0;
1806
    }
1807
bad_reg:
1808
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1809
    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1810
              (insn >> 16) & 0xf, crm, op1, op2);
1811
    return 0;
1812
}
1813

    
1814
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1815
{
1816
    env->banked_r13[bank_number(mode)] = val;
1817
}
1818

    
1819
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1820
{
1821
    return env->banked_r13[bank_number(mode)];
1822
}
1823

    
1824
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1825
{
1826
    switch (reg) {
1827
    case 0: /* APSR */
1828
        return xpsr_read(env) & 0xf8000000;
1829
    case 1: /* IAPSR */
1830
        return xpsr_read(env) & 0xf80001ff;
1831
    case 2: /* EAPSR */
1832
        return xpsr_read(env) & 0xff00fc00;
1833
    case 3: /* xPSR */
1834
        return xpsr_read(env) & 0xff00fdff;
1835
    case 5: /* IPSR */
1836
        return xpsr_read(env) & 0x000001ff;
1837
    case 6: /* EPSR */
1838
        return xpsr_read(env) & 0x0700fc00;
1839
    case 7: /* IEPSR */
1840
        return xpsr_read(env) & 0x0700edff;
1841
    case 8: /* MSP */
1842
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1843
    case 9: /* PSP */
1844
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1845
    case 16: /* PRIMASK */
1846
        return (env->uncached_cpsr & CPSR_I) != 0;
1847
    case 17: /* FAULTMASK */
1848
        return (env->uncached_cpsr & CPSR_F) != 0;
1849
    case 18: /* BASEPRI */
1850
    case 19: /* BASEPRI_MAX */
1851
        return env->v7m.basepri;
1852
    case 20: /* CONTROL */
1853
        return env->v7m.control;
1854
    default:
1855
        /* ??? For debugging only.  */
1856
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1857
        return 0;
1858
    }
1859
}
1860

    
1861
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1862
{
1863
    switch (reg) {
1864
    case 0: /* APSR */
1865
        xpsr_write(env, val, 0xf8000000);
1866
        break;
1867
    case 1: /* IAPSR */
1868
        xpsr_write(env, val, 0xf8000000);
1869
        break;
1870
    case 2: /* EAPSR */
1871
        xpsr_write(env, val, 0xfe00fc00);
1872
        break;
1873
    case 3: /* xPSR */
1874
        xpsr_write(env, val, 0xfe00fc00);
1875
        break;
1876
    case 5: /* IPSR */
1877
        /* IPSR bits are readonly.  */
1878
        break;
1879
    case 6: /* EPSR */
1880
        xpsr_write(env, val, 0x0600fc00);
1881
        break;
1882
    case 7: /* IEPSR */
1883
        xpsr_write(env, val, 0x0600fc00);
1884
        break;
1885
    case 8: /* MSP */
1886
        if (env->v7m.current_sp)
1887
            env->v7m.other_sp = val;
1888
        else
1889
            env->regs[13] = val;
1890
        break;
1891
    case 9: /* PSP */
1892
        if (env->v7m.current_sp)
1893
            env->regs[13] = val;
1894
        else
1895
            env->v7m.other_sp = val;
1896
        break;
1897
    case 16: /* PRIMASK */
1898
        if (val & 1)
1899
            env->uncached_cpsr |= CPSR_I;
1900
        else
1901
            env->uncached_cpsr &= ~CPSR_I;
1902
        break;
1903
    case 17: /* FAULTMASK */
1904
        if (val & 1)
1905
            env->uncached_cpsr |= CPSR_F;
1906
        else
1907
            env->uncached_cpsr &= ~CPSR_F;
1908
        break;
1909
    case 18: /* BASEPRI */
1910
        env->v7m.basepri = val & 0xff;
1911
        break;
1912
    case 19: /* BASEPRI_MAX */
1913
        val &= 0xff;
1914
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1915
            env->v7m.basepri = val;
1916
        break;
1917
    case 20: /* CONTROL */
1918
        env->v7m.control = val & 3;
1919
        switch_v7m_sp(env, (val & 2) != 0);
1920
        break;
1921
    default:
1922
        /* ??? For debugging only.  */
1923
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1924
        return;
1925
    }
1926
}
1927

    
1928
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1929
                ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1930
                void *opaque)
1931
{
1932
    if (cpnum < 0 || cpnum > 14) {
1933
        cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1934
        return;
1935
    }
1936

    
1937
    env->cp[cpnum].cp_read = cp_read;
1938
    env->cp[cpnum].cp_write = cp_write;
1939
    env->cp[cpnum].opaque = opaque;
1940
}
1941

    
1942
#endif
1943

    
1944
/* Note that signed overflow is undefined in C.  The following routines are
1945
   careful to use unsigned types where modulo arithmetic is required.
1946
   Failure to do so _will_ break on newer gcc.  */
1947

    
1948
/* Signed saturating arithmetic.  */
1949

    
1950
/* Perform 16-bit signed saturating addition.  */
1951
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1952
{
1953
    uint16_t res;
1954

    
1955
    res = a + b;
1956
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1957
        if (a & 0x8000)
1958
            res = 0x8000;
1959
        else
1960
            res = 0x7fff;
1961
    }
1962
    return res;
1963
}
1964

    
1965
/* Perform 8-bit signed saturating addition.  */
1966
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1967
{
1968
    uint8_t res;
1969

    
1970
    res = a + b;
1971
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1972
        if (a & 0x80)
1973
            res = 0x80;
1974
        else
1975
            res = 0x7f;
1976
    }
1977
    return res;
1978
}
1979

    
1980
/* Perform 16-bit signed saturating subtraction.  */
1981
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1982
{
1983
    uint16_t res;
1984

    
1985
    res = a - b;
1986
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
1987
        if (a & 0x8000)
1988
            res = 0x8000;
1989
        else
1990
            res = 0x7fff;
1991
    }
1992
    return res;
1993
}
1994

    
1995
/* Perform 8-bit signed saturating subtraction.  */
1996
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
1997
{
1998
    uint8_t res;
1999

    
2000
    res = a - b;
2001
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2002
        if (a & 0x80)
2003
            res = 0x80;
2004
        else
2005
            res = 0x7f;
2006
    }
2007
    return res;
2008
}
2009

    
2010
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2011
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2012
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2013
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2014
#define PFX q
2015

    
2016
#include "op_addsub.h"
2017

    
2018
/* Unsigned saturating arithmetic.  */
2019
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2020
{
2021
    uint16_t res;
2022
    res = a + b;
2023
    if (res < a)
2024
        res = 0xffff;
2025
    return res;
2026
}
2027

    
2028
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2029
{
2030
    if (a < b)
2031
        return a - b;
2032
    else
2033
        return 0;
2034
}
2035

    
2036
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2037
{
2038
    uint8_t res;
2039
    res = a + b;
2040
    if (res < a)
2041
        res = 0xff;
2042
    return res;
2043
}
2044

    
2045
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2046
{
2047
    if (a < b)
2048
        return a - b;
2049
    else
2050
        return 0;
2051
}
2052

    
2053
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2054
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2055
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2056
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2057
#define PFX uq
2058

    
2059
#include "op_addsub.h"
2060

    
2061
/* Signed modulo arithmetic.  */
2062
#define SARITH16(a, b, n, op) do { \
2063
    int32_t sum; \
2064
    sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2065
    RESULT(sum, n, 16); \
2066
    if (sum >= 0) \
2067
        ge |= 3 << (n * 2); \
2068
    } while(0)
2069

    
2070
#define SARITH8(a, b, n, op) do { \
2071
    int32_t sum; \
2072
    sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2073
    RESULT(sum, n, 8); \
2074
    if (sum >= 0) \
2075
        ge |= 1 << n; \
2076
    } while(0)
2077

    
2078

    
2079
#define ADD16(a, b, n) SARITH16(a, b, n, +)
2080
#define SUB16(a, b, n) SARITH16(a, b, n, -)
2081
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2082
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2083
#define PFX s
2084
#define ARITH_GE
2085

    
2086
#include "op_addsub.h"
2087

    
2088
/* Unsigned modulo arithmetic.  */
2089
#define ADD16(a, b, n) do { \
2090
    uint32_t sum; \
2091
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2092
    RESULT(sum, n, 16); \
2093
    if ((sum >> 16) == 1) \
2094
        ge |= 3 << (n * 2); \
2095
    } while(0)
2096

    
2097
#define ADD8(a, b, n) do { \
2098
    uint32_t sum; \
2099
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2100
    RESULT(sum, n, 8); \
2101
    if ((sum >> 8) == 1) \
2102
        ge |= 1 << n; \
2103
    } while(0)
2104

    
2105
#define SUB16(a, b, n) do { \
2106
    uint32_t sum; \
2107
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2108
    RESULT(sum, n, 16); \
2109
    if ((sum >> 16) == 0) \
2110
        ge |= 3 << (n * 2); \
2111
    } while(0)
2112

    
2113
#define SUB8(a, b, n) do { \
2114
    uint32_t sum; \
2115
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2116
    RESULT(sum, n, 8); \
2117
    if ((sum >> 8) == 0) \
2118
        ge |= 1 << n; \
2119
    } while(0)
2120

    
2121
#define PFX u
2122
#define ARITH_GE
2123

    
2124
#include "op_addsub.h"
2125

    
2126
/* Halved signed arithmetic.  */
2127
#define ADD16(a, b, n) \
2128
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2129
#define SUB16(a, b, n) \
2130
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2131
#define ADD8(a, b, n) \
2132
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2133
#define SUB8(a, b, n) \
2134
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2135
#define PFX sh
2136

    
2137
#include "op_addsub.h"
2138

    
2139
/* Halved unsigned arithmetic.  */
2140
#define ADD16(a, b, n) \
2141
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2142
#define SUB16(a, b, n) \
2143
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2144
#define ADD8(a, b, n) \
2145
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2146
#define SUB8(a, b, n) \
2147
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2148
#define PFX uh
2149

    
2150
#include "op_addsub.h"
2151

    
2152
static inline uint8_t do_usad(uint8_t a, uint8_t b)
2153
{
2154
    if (a > b)
2155
        return a - b;
2156
    else
2157
        return b - a;
2158
}
2159

    
2160
/* Unsigned sum of absolute byte differences.  */
2161
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2162
{
2163
    uint32_t sum;
2164
    sum = do_usad(a, b);
2165
    sum += do_usad(a >> 8, b >> 8);
2166
    sum += do_usad(a >> 16, b >>16);
2167
    sum += do_usad(a >> 24, b >> 24);
2168
    return sum;
2169
}
2170

    
2171
/* For ARMv6 SEL instruction.  */
2172
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2173
{
2174
    uint32_t mask;
2175

    
2176
    mask = 0;
2177
    if (flags & 1)
2178
        mask |= 0xff;
2179
    if (flags & 2)
2180
        mask |= 0xff00;
2181
    if (flags & 4)
2182
        mask |= 0xff0000;
2183
    if (flags & 8)
2184
        mask |= 0xff000000;
2185
    return (a & mask) | (b & ~mask);
2186
}
2187

    
2188
uint32_t HELPER(logicq_cc)(uint64_t val)
2189
{
2190
    return (val >> 32) | (val != 0);
2191
}
2192

    
2193
/* VFP support.  We follow the convention used for VFP instrunctions:
2194
   Single precition routines have a "s" suffix, double precision a
2195
   "d" suffix.  */
2196

    
2197
/* Convert host exception flags to vfp form.  */
2198
static inline int vfp_exceptbits_from_host(int host_bits)
2199
{
2200
    int target_bits = 0;
2201

    
2202
    if (host_bits & float_flag_invalid)
2203
        target_bits |= 1;
2204
    if (host_bits & float_flag_divbyzero)
2205
        target_bits |= 2;
2206
    if (host_bits & float_flag_overflow)
2207
        target_bits |= 4;
2208
    if (host_bits & float_flag_underflow)
2209
        target_bits |= 8;
2210
    if (host_bits & float_flag_inexact)
2211
        target_bits |= 0x10;
2212
    return target_bits;
2213
}
2214

    
2215
uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2216
{
2217
    int i;
2218
    uint32_t fpscr;
2219

    
2220
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2221
            | (env->vfp.vec_len << 16)
2222
            | (env->vfp.vec_stride << 20);
2223
    i = get_float_exception_flags(&env->vfp.fp_status);
2224
    fpscr |= vfp_exceptbits_from_host(i);
2225
    return fpscr;
2226
}
2227

    
2228
/* Convert vfp exception flags to target form.  */
2229
static inline int vfp_exceptbits_to_host(int target_bits)
2230
{
2231
    int host_bits = 0;
2232

    
2233
    if (target_bits & 1)
2234
        host_bits |= float_flag_invalid;
2235
    if (target_bits & 2)
2236
        host_bits |= float_flag_divbyzero;
2237
    if (target_bits & 4)
2238
        host_bits |= float_flag_overflow;
2239
    if (target_bits & 8)
2240
        host_bits |= float_flag_underflow;
2241
    if (target_bits & 0x10)
2242
        host_bits |= float_flag_inexact;
2243
    return host_bits;
2244
}
2245

    
2246
void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2247
{
2248
    int i;
2249
    uint32_t changed;
2250

    
2251
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2252
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2253
    env->vfp.vec_len = (val >> 16) & 7;
2254
    env->vfp.vec_stride = (val >> 20) & 3;
2255

    
2256
    changed ^= val;
2257
    if (changed & (3 << 22)) {
2258
        i = (val >> 22) & 3;
2259
        switch (i) {
2260
        case 0:
2261
            i = float_round_nearest_even;
2262
            break;
2263
        case 1:
2264
            i = float_round_up;
2265
            break;
2266
        case 2:
2267
            i = float_round_down;
2268
            break;
2269
        case 3:
2270
            i = float_round_to_zero;
2271
            break;
2272
        }
2273
        set_float_rounding_mode(i, &env->vfp.fp_status);
2274
    }
2275
    if (changed & (1 << 24))
2276
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2277
    if (changed & (1 << 25))
2278
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2279

    
2280
    i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2281
    set_float_exception_flags(i, &env->vfp.fp_status);
2282
}
2283

    
2284
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2285

    
2286
#define VFP_BINOP(name) \
2287
float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2288
{ \
2289
    return float32_ ## name (a, b, &env->vfp.fp_status); \
2290
} \
2291
float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2292
{ \
2293
    return float64_ ## name (a, b, &env->vfp.fp_status); \
2294
}
2295
VFP_BINOP(add)
2296
VFP_BINOP(sub)
2297
VFP_BINOP(mul)
2298
VFP_BINOP(div)
2299
#undef VFP_BINOP
2300

    
2301
float32 VFP_HELPER(neg, s)(float32 a)
2302
{
2303
    return float32_chs(a);
2304
}
2305

    
2306
float64 VFP_HELPER(neg, d)(float64 a)
2307
{
2308
    return float64_chs(a);
2309
}
2310

    
2311
float32 VFP_HELPER(abs, s)(float32 a)
2312
{
2313
    return float32_abs(a);
2314
}
2315

    
2316
float64 VFP_HELPER(abs, d)(float64 a)
2317
{
2318
    return float64_abs(a);
2319
}
2320

    
2321
float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2322
{
2323
    return float32_sqrt(a, &env->vfp.fp_status);
2324
}
2325

    
2326
float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2327
{
2328
    return float64_sqrt(a, &env->vfp.fp_status);
2329
}
2330

    
2331
/* XXX: check quiet/signaling case */
2332
#define DO_VFP_cmp(p, type) \
2333
void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2334
{ \
2335
    uint32_t flags; \
2336
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2337
    case 0: flags = 0x6; break; \
2338
    case -1: flags = 0x8; break; \
2339
    case 1: flags = 0x2; break; \
2340
    default: case 2: flags = 0x3; break; \
2341
    } \
2342
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2343
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2344
} \
2345
void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2346
{ \
2347
    uint32_t flags; \
2348
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2349
    case 0: flags = 0x6; break; \
2350
    case -1: flags = 0x8; break; \
2351
    case 1: flags = 0x2; break; \
2352
    default: case 2: flags = 0x3; break; \
2353
    } \
2354
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2355
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2356
}
2357
DO_VFP_cmp(s, float32)
2358
DO_VFP_cmp(d, float64)
2359
#undef DO_VFP_cmp
2360

    
2361
/* Helper routines to perform bitwise copies between float and int.  */
2362
static inline float32 vfp_itos(uint32_t i)
2363
{
2364
    union {
2365
        uint32_t i;
2366
        float32 s;
2367
    } v;
2368

    
2369
    v.i = i;
2370
    return v.s;
2371
}
2372

    
2373
static inline uint32_t vfp_stoi(float32 s)
2374
{
2375
    union {
2376
        uint32_t i;
2377
        float32 s;
2378
    } v;
2379

    
2380
    v.s = s;
2381
    return v.i;
2382
}
2383

    
2384
static inline float64 vfp_itod(uint64_t i)
2385
{
2386
    union {
2387
        uint64_t i;
2388
        float64 d;
2389
    } v;
2390

    
2391
    v.i = i;
2392
    return v.d;
2393
}
2394

    
2395
static inline uint64_t vfp_dtoi(float64 d)
2396
{
2397
    union {
2398
        uint64_t i;
2399
        float64 d;
2400
    } v;
2401

    
2402
    v.d = d;
2403
    return v.i;
2404
}
2405

    
2406
/* Integer to float conversion.  */
2407
float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2408
{
2409
    return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2410
}
2411

    
2412
float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2413
{
2414
    return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2415
}
2416

    
2417
float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2418
{
2419
    return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2420
}
2421

    
2422
float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2423
{
2424
    return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2425
}
2426

    
2427
/* Float to integer conversion.  */
2428
float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2429
{
2430
    return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2431
}
2432

    
2433
float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2434
{
2435
    return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2436
}
2437

    
2438
float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2439
{
2440
    return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2441
}
2442

    
2443
float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2444
{
2445
    return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2446
}
2447

    
2448
float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2449
{
2450
    return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2451
}
2452

    
2453
float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2454
{
2455
    return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2456
}
2457

    
2458
float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2459
{
2460
    return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2461
}
2462

    
2463
float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2464
{
2465
    return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2466
}
2467

    
2468
/* floating point conversion */
2469
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2470
{
2471
    return float32_to_float64(x, &env->vfp.fp_status);
2472
}
2473

    
2474
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2475
{
2476
    return float64_to_float32(x, &env->vfp.fp_status);
2477
}
2478

    
2479
/* VFP3 fixed point conversion.  */
2480
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2481
ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2482
{ \
2483
    ftype tmp; \
2484
    tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2485
                                  &env->vfp.fp_status); \
2486
    return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2487
} \
2488
ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2489
{ \
2490
    ftype tmp; \
2491
    tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2492
    return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2493
        &env->vfp.fp_status)); \
2494
}
2495

    
2496
VFP_CONV_FIX(sh, d, float64, int16, )
2497
VFP_CONV_FIX(sl, d, float64, int32, )
2498
VFP_CONV_FIX(uh, d, float64, uint16, u)
2499
VFP_CONV_FIX(ul, d, float64, uint32, u)
2500
VFP_CONV_FIX(sh, s, float32, int16, )
2501
VFP_CONV_FIX(sl, s, float32, int32, )
2502
VFP_CONV_FIX(uh, s, float32, uint16, u)
2503
VFP_CONV_FIX(ul, s, float32, uint32, u)
2504
#undef VFP_CONV_FIX
2505

    
2506
/* Half precision conversions.  */
2507
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2508
{
2509
    float_status *s = &env->vfp.fp_status;
2510
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2511
    return float16_to_float32(a, ieee, s);
2512
}
2513

    
2514
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2515
{
2516
    float_status *s = &env->vfp.fp_status;
2517
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2518
    return float32_to_float16(a, ieee, s);
2519
}
2520

    
2521
float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2522
{
2523
    float_status *s = &env->vfp.fp_status;
2524
    float32 two = int32_to_float32(2, s);
2525
    return float32_sub(two, float32_mul(a, b, s), s);
2526
}
2527

    
2528
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2529
{
2530
    float_status *s = &env->vfp.fp_status;
2531
    float32 three = int32_to_float32(3, s);
2532
    return float32_sub(three, float32_mul(a, b, s), s);
2533
}
2534

    
2535
/* NEON helpers.  */
2536

    
2537
/* TODO: The architecture specifies the value that the estimate functions
2538
   should return.  We return the exact reciprocal/root instead.  */
2539
float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2540
{
2541
    float_status *s = &env->vfp.fp_status;
2542
    float32 one = int32_to_float32(1, s);
2543
    return float32_div(one, a, s);
2544
}
2545

    
2546
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2547
{
2548
    float_status *s = &env->vfp.fp_status;
2549
    float32 one = int32_to_float32(1, s);
2550
    return float32_div(one, float32_sqrt(a, s), s);
2551
}
2552

    
2553
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2554
{
2555
    float_status *s = &env->vfp.fp_status;
2556
    float32 tmp;
2557
    tmp = int32_to_float32(a, s);
2558
    tmp = float32_scalbn(tmp, -32, s);
2559
    tmp = helper_recpe_f32(tmp, env);
2560
    tmp = float32_scalbn(tmp, 31, s);
2561
    return float32_to_int32(tmp, s);
2562
}
2563

    
2564
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2565
{
2566
    float_status *s = &env->vfp.fp_status;
2567
    float32 tmp;
2568
    tmp = int32_to_float32(a, s);
2569
    tmp = float32_scalbn(tmp, -32, s);
2570
    tmp = helper_rsqrte_f32(tmp, env);
2571
    tmp = float32_scalbn(tmp, 31, s);
2572
    return float32_to_int32(tmp, s);
2573
}
2574

    
2575
void HELPER(set_teecr)(CPUState *env, uint32_t val)
2576
{
2577
    val &= 1;
2578
    if (env->teecr != val) {
2579
        env->teecr = val;
2580
        tb_flush(env);
2581
    }
2582
}