Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 408392b3

History | View | Annotate | Download (38.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "hw/apic.h"
29
#include "ioport.h"
30

    
31
#ifdef CONFIG_KVM_PARA
32
#include <linux/kvm_para.h>
33
#endif
34
//
35
//#define DEBUG_KVM
36

    
37
#ifdef DEBUG_KVM
38
#define DPRINTF(fmt, ...) \
39
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40
#else
41
#define DPRINTF(fmt, ...) \
42
    do { } while (0)
43
#endif
44

    
45
#define MSR_KVM_WALL_CLOCK  0x11
46
#define MSR_KVM_SYSTEM_TIME 0x12
47

    
48
#ifdef KVM_CAP_EXT_CPUID
49

    
50
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51
{
52
    struct kvm_cpuid2 *cpuid;
53
    int r, size;
54

    
55
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
56
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
57
    cpuid->nent = max;
58
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
59
    if (r == 0 && cpuid->nent >= max) {
60
        r = -E2BIG;
61
    }
62
    if (r < 0) {
63
        if (r == -E2BIG) {
64
            qemu_free(cpuid);
65
            return NULL;
66
        } else {
67
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
68
                    strerror(-r));
69
            exit(1);
70
        }
71
    }
72
    return cpuid;
73
}
74

    
75
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
76
                                      uint32_t index, int reg)
77
{
78
    struct kvm_cpuid2 *cpuid;
79
    int i, max;
80
    uint32_t ret = 0;
81
    uint32_t cpuid_1_edx;
82

    
83
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
84
        return -1U;
85
    }
86

    
87
    max = 1;
88
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
89
        max *= 2;
90
    }
91

    
92
    for (i = 0; i < cpuid->nent; ++i) {
93
        if (cpuid->entries[i].function == function &&
94
            cpuid->entries[i].index == index) {
95
            switch (reg) {
96
            case R_EAX:
97
                ret = cpuid->entries[i].eax;
98
                break;
99
            case R_EBX:
100
                ret = cpuid->entries[i].ebx;
101
                break;
102
            case R_ECX:
103
                ret = cpuid->entries[i].ecx;
104
                break;
105
            case R_EDX:
106
                ret = cpuid->entries[i].edx;
107
                switch (function) {
108
                case 1:
109
                    /* KVM before 2.6.30 misreports the following features */
110
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
111
                    break;
112
                case 0x80000001:
113
                    /* On Intel, kvm returns cpuid according to the Intel spec,
114
                     * so add missing bits according to the AMD spec:
115
                     */
116
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
117
                    ret |= cpuid_1_edx & 0x183f7ff;
118
                    break;
119
                }
120
                break;
121
            }
122
        }
123
    }
124

    
125
    qemu_free(cpuid);
126

    
127
    return ret;
128
}
129

    
130
#else
131

    
132
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
133
                                      uint32_t index, int reg)
134
{
135
    return -1U;
136
}
137

    
138
#endif
139

    
140
#ifdef CONFIG_KVM_PARA
141
struct kvm_para_features {
142
        int cap;
143
        int feature;
144
} para_features[] = {
145
#ifdef KVM_CAP_CLOCKSOURCE
146
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
147
#endif
148
#ifdef KVM_CAP_NOP_IO_DELAY
149
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
150
#endif
151
#ifdef KVM_CAP_PV_MMU
152
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
153
#endif
154
        { -1, -1 }
155
};
156

    
157
static int get_para_features(CPUState *env)
158
{
159
        int i, features = 0;
160

    
161
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
162
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
163
                        features |= (1 << para_features[i].feature);
164
        }
165

    
166
        return features;
167
}
168
#endif
169

    
170
int kvm_arch_init_vcpu(CPUState *env)
171
{
172
    struct {
173
        struct kvm_cpuid2 cpuid;
174
        struct kvm_cpuid_entry2 entries[100];
175
    } __attribute__((packed)) cpuid_data;
176
    uint32_t limit, i, j, cpuid_i;
177
    uint32_t unused;
178
    struct kvm_cpuid_entry2 *c;
179
#ifdef KVM_CPUID_SIGNATURE
180
    uint32_t signature[3];
181
#endif
182

    
183
    env->mp_state = KVM_MP_STATE_RUNNABLE;
184

    
185
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
186

    
187
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
188
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
189
    env->cpuid_ext_features |= i;
190

    
191
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
192
                                                             0, R_EDX);
193
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
194
                                                             0, R_ECX);
195

    
196
    cpuid_i = 0;
197

    
198
#ifdef CONFIG_KVM_PARA
199
    /* Paravirtualization CPUIDs */
200
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
201
    c = &cpuid_data.entries[cpuid_i++];
202
    memset(c, 0, sizeof(*c));
203
    c->function = KVM_CPUID_SIGNATURE;
204
    c->eax = 0;
205
    c->ebx = signature[0];
206
    c->ecx = signature[1];
207
    c->edx = signature[2];
208

    
209
    c = &cpuid_data.entries[cpuid_i++];
210
    memset(c, 0, sizeof(*c));
211
    c->function = KVM_CPUID_FEATURES;
212
    c->eax = env->cpuid_kvm_features & get_para_features(env);
213
#endif
214

    
215
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
216

    
217
    for (i = 0; i <= limit; i++) {
218
        c = &cpuid_data.entries[cpuid_i++];
219

    
220
        switch (i) {
221
        case 2: {
222
            /* Keep reading function 2 till all the input is received */
223
            int times;
224

    
225
            c->function = i;
226
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
227
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
228
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
229
            times = c->eax & 0xff;
230

    
231
            for (j = 1; j < times; ++j) {
232
                c = &cpuid_data.entries[cpuid_i++];
233
                c->function = i;
234
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
235
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
236
            }
237
            break;
238
        }
239
        case 4:
240
        case 0xb:
241
        case 0xd:
242
            for (j = 0; ; j++) {
243
                c->function = i;
244
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
245
                c->index = j;
246
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
247

    
248
                if (i == 4 && c->eax == 0)
249
                    break;
250
                if (i == 0xb && !(c->ecx & 0xff00))
251
                    break;
252
                if (i == 0xd && c->eax == 0)
253
                    break;
254

    
255
                c = &cpuid_data.entries[cpuid_i++];
256
            }
257
            break;
258
        default:
259
            c->function = i;
260
            c->flags = 0;
261
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
262
            break;
263
        }
264
    }
265
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
266

    
267
    for (i = 0x80000000; i <= limit; i++) {
268
        c = &cpuid_data.entries[cpuid_i++];
269

    
270
        c->function = i;
271
        c->flags = 0;
272
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
273
    }
274

    
275
    cpuid_data.cpuid.nent = cpuid_i;
276

    
277
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
278
}
279

    
280
void kvm_arch_reset_vcpu(CPUState *env)
281
{
282
    env->exception_injected = -1;
283
    env->interrupt_injected = -1;
284
    env->nmi_injected = 0;
285
    env->nmi_pending = 0;
286
    if (kvm_irqchip_in_kernel()) {
287
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
288
                                          KVM_MP_STATE_UNINITIALIZED;
289
    } else {
290
        env->mp_state = KVM_MP_STATE_RUNNABLE;
291
    }
292
}
293

    
294
static int kvm_has_msr_star(CPUState *env)
295
{
296
    static int has_msr_star;
297
    int ret;
298

    
299
    /* first time */
300
    if (has_msr_star == 0) {        
301
        struct kvm_msr_list msr_list, *kvm_msr_list;
302

    
303
        has_msr_star = -1;
304

    
305
        /* Obtain MSR list from KVM.  These are the MSRs that we must
306
         * save/restore */
307
        msr_list.nmsrs = 0;
308
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
309
        if (ret < 0 && ret != -E2BIG) {
310
            return 0;
311
        }
312
        /* Old kernel modules had a bug and could write beyond the provided
313
           memory. Allocate at least a safe amount of 1K. */
314
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
315
                                              msr_list.nmsrs *
316
                                              sizeof(msr_list.indices[0])));
317

    
318
        kvm_msr_list->nmsrs = msr_list.nmsrs;
319
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
320
        if (ret >= 0) {
321
            int i;
322

    
323
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
324
                if (kvm_msr_list->indices[i] == MSR_STAR) {
325
                    has_msr_star = 1;
326
                    break;
327
                }
328
            }
329
        }
330

    
331
        free(kvm_msr_list);
332
    }
333

    
334
    if (has_msr_star == 1)
335
        return 1;
336
    return 0;
337
}
338

    
339
static int kvm_init_identity_map_page(KVMState *s)
340
{
341
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
342
    int ret;
343
    uint64_t addr = 0xfffbc000;
344

    
345
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
346
        return 0;
347
    }
348

    
349
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
350
    if (ret < 0) {
351
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
352
        return ret;
353
    }
354
#endif
355
    return 0;
356
}
357

    
358
int kvm_arch_init(KVMState *s, int smp_cpus)
359
{
360
    int ret;
361

    
362
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
363
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
364
     * must be part of guest physical memory, we need to allocate it.  Older
365
     * versions of KVM just assumed that it would be at the end of physical
366
     * memory but that doesn't work with more than 4GB of memory.  We simply
367
     * refuse to work with those older versions of KVM. */
368
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
369
    if (ret <= 0) {
370
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
371
        return ret;
372
    }
373

    
374
    /* this address is 3 pages before the bios, and the bios should present
375
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
376
     * this?
377
     */
378
    /*
379
     * Tell fw_cfg to notify the BIOS to reserve the range.
380
     */
381
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
382
        perror("e820_add_entry() table is full");
383
        exit(1);
384
    }
385
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
386
    if (ret < 0) {
387
        return ret;
388
    }
389

    
390
    return kvm_init_identity_map_page(s);
391
}
392
                    
393
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
394
{
395
    lhs->selector = rhs->selector;
396
    lhs->base = rhs->base;
397
    lhs->limit = rhs->limit;
398
    lhs->type = 3;
399
    lhs->present = 1;
400
    lhs->dpl = 3;
401
    lhs->db = 0;
402
    lhs->s = 1;
403
    lhs->l = 0;
404
    lhs->g = 0;
405
    lhs->avl = 0;
406
    lhs->unusable = 0;
407
}
408

    
409
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
410
{
411
    unsigned flags = rhs->flags;
412
    lhs->selector = rhs->selector;
413
    lhs->base = rhs->base;
414
    lhs->limit = rhs->limit;
415
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
416
    lhs->present = (flags & DESC_P_MASK) != 0;
417
    lhs->dpl = rhs->selector & 3;
418
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
419
    lhs->s = (flags & DESC_S_MASK) != 0;
420
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
421
    lhs->g = (flags & DESC_G_MASK) != 0;
422
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
423
    lhs->unusable = 0;
424
}
425

    
426
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
427
{
428
    lhs->selector = rhs->selector;
429
    lhs->base = rhs->base;
430
    lhs->limit = rhs->limit;
431
    lhs->flags =
432
        (rhs->type << DESC_TYPE_SHIFT)
433
        | (rhs->present * DESC_P_MASK)
434
        | (rhs->dpl << DESC_DPL_SHIFT)
435
        | (rhs->db << DESC_B_SHIFT)
436
        | (rhs->s * DESC_S_MASK)
437
        | (rhs->l << DESC_L_SHIFT)
438
        | (rhs->g * DESC_G_MASK)
439
        | (rhs->avl * DESC_AVL_MASK);
440
}
441

    
442
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
443
{
444
    if (set)
445
        *kvm_reg = *qemu_reg;
446
    else
447
        *qemu_reg = *kvm_reg;
448
}
449

    
450
static int kvm_getput_regs(CPUState *env, int set)
451
{
452
    struct kvm_regs regs;
453
    int ret = 0;
454

    
455
    if (!set) {
456
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
457
        if (ret < 0)
458
            return ret;
459
    }
460

    
461
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
462
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
463
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
464
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
465
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
466
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
467
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
468
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
469
#ifdef TARGET_X86_64
470
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
471
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
472
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
473
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
474
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
475
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
476
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
477
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
478
#endif
479

    
480
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
481
    kvm_getput_reg(&regs.rip, &env->eip, set);
482

    
483
    if (set)
484
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
485

    
486
    return ret;
487
}
488

    
489
static int kvm_put_fpu(CPUState *env)
490
{
491
    struct kvm_fpu fpu;
492
    int i;
493

    
494
    memset(&fpu, 0, sizeof fpu);
495
    fpu.fsw = env->fpus & ~(7 << 11);
496
    fpu.fsw |= (env->fpstt & 7) << 11;
497
    fpu.fcw = env->fpuc;
498
    for (i = 0; i < 8; ++i)
499
        fpu.ftwx |= (!env->fptags[i]) << i;
500
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
501
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
502
    fpu.mxcsr = env->mxcsr;
503

    
504
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
505
}
506

    
507
#ifdef KVM_CAP_XSAVE
508
#define XSAVE_CWD_RIP     2
509
#define XSAVE_CWD_RDP     4
510
#define XSAVE_MXCSR       6
511
#define XSAVE_ST_SPACE    8
512
#define XSAVE_XMM_SPACE   40
513
#define XSAVE_XSTATE_BV   128
514
#define XSAVE_YMMH_SPACE  144
515
#endif
516

    
517
static int kvm_put_xsave(CPUState *env)
518
{
519
#ifdef KVM_CAP_XSAVE
520
    int i;
521
    struct kvm_xsave* xsave;
522
    uint16_t cwd, swd, twd, fop;
523

    
524
    if (!kvm_has_xsave())
525
        return kvm_put_fpu(env);
526

    
527
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
528
    memset(xsave, 0, sizeof(struct kvm_xsave));
529
    cwd = swd = twd = fop = 0;
530
    swd = env->fpus & ~(7 << 11);
531
    swd |= (env->fpstt & 7) << 11;
532
    cwd = env->fpuc;
533
    for (i = 0; i < 8; ++i)
534
        twd |= (!env->fptags[i]) << i;
535
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
536
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
537
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
538
            sizeof env->fpregs);
539
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
540
            sizeof env->xmm_regs);
541
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
542
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
543
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
544
            sizeof env->ymmh_regs);
545
    return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
546
#else
547
    return kvm_put_fpu(env);
548
#endif
549
}
550

    
551
static int kvm_put_xcrs(CPUState *env)
552
{
553
#ifdef KVM_CAP_XCRS
554
    struct kvm_xcrs xcrs;
555

    
556
    if (!kvm_has_xcrs())
557
        return 0;
558

    
559
    xcrs.nr_xcrs = 1;
560
    xcrs.flags = 0;
561
    xcrs.xcrs[0].xcr = 0;
562
    xcrs.xcrs[0].value = env->xcr0;
563
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
564
#else
565
    return 0;
566
#endif
567
}
568

    
569
static int kvm_put_sregs(CPUState *env)
570
{
571
    struct kvm_sregs sregs;
572

    
573
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
574
    if (env->interrupt_injected >= 0) {
575
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
576
                (uint64_t)1 << (env->interrupt_injected % 64);
577
    }
578

    
579
    if ((env->eflags & VM_MASK)) {
580
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
581
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
582
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
583
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
584
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
585
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
586
    } else {
587
            set_seg(&sregs.cs, &env->segs[R_CS]);
588
            set_seg(&sregs.ds, &env->segs[R_DS]);
589
            set_seg(&sregs.es, &env->segs[R_ES]);
590
            set_seg(&sregs.fs, &env->segs[R_FS]);
591
            set_seg(&sregs.gs, &env->segs[R_GS]);
592
            set_seg(&sregs.ss, &env->segs[R_SS]);
593

    
594
            if (env->cr[0] & CR0_PE_MASK) {
595
                /* force ss cpl to cs cpl */
596
                sregs.ss.selector = (sregs.ss.selector & ~3) |
597
                        (sregs.cs.selector & 3);
598
                sregs.ss.dpl = sregs.ss.selector & 3;
599
            }
600
    }
601

    
602
    set_seg(&sregs.tr, &env->tr);
603
    set_seg(&sregs.ldt, &env->ldt);
604

    
605
    sregs.idt.limit = env->idt.limit;
606
    sregs.idt.base = env->idt.base;
607
    sregs.gdt.limit = env->gdt.limit;
608
    sregs.gdt.base = env->gdt.base;
609

    
610
    sregs.cr0 = env->cr[0];
611
    sregs.cr2 = env->cr[2];
612
    sregs.cr3 = env->cr[3];
613
    sregs.cr4 = env->cr[4];
614

    
615
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
616
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
617

    
618
    sregs.efer = env->efer;
619

    
620
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
621
}
622

    
623
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
624
                              uint32_t index, uint64_t value)
625
{
626
    entry->index = index;
627
    entry->data = value;
628
}
629

    
630
static int kvm_put_msrs(CPUState *env, int level)
631
{
632
    struct {
633
        struct kvm_msrs info;
634
        struct kvm_msr_entry entries[100];
635
    } msr_data;
636
    struct kvm_msr_entry *msrs = msr_data.entries;
637
    int n = 0;
638

    
639
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
640
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
641
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
642
    if (kvm_has_msr_star(env))
643
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
644
#ifdef TARGET_X86_64
645
    /* FIXME if lm capable */
646
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
647
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
648
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
649
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
650
#endif
651
    if (level == KVM_PUT_FULL_STATE) {
652
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
653
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
654
                          env->system_time_msr);
655
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
656
    }
657

    
658
    msr_data.info.nmsrs = n;
659

    
660
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
661

    
662
}
663

    
664

    
665
static int kvm_get_fpu(CPUState *env)
666
{
667
    struct kvm_fpu fpu;
668
    int i, ret;
669

    
670
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
671
    if (ret < 0)
672
        return ret;
673

    
674
    env->fpstt = (fpu.fsw >> 11) & 7;
675
    env->fpus = fpu.fsw;
676
    env->fpuc = fpu.fcw;
677
    for (i = 0; i < 8; ++i)
678
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
679
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
680
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
681
    env->mxcsr = fpu.mxcsr;
682

    
683
    return 0;
684
}
685

    
686
static int kvm_get_xsave(CPUState *env)
687
{
688
#ifdef KVM_CAP_XSAVE
689
    struct kvm_xsave* xsave;
690
    int ret, i;
691
    uint16_t cwd, swd, twd, fop;
692

    
693
    if (!kvm_has_xsave())
694
        return kvm_get_fpu(env);
695

    
696
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
697
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
698
    if (ret < 0)
699
        return ret;
700

    
701
    cwd = (uint16_t)xsave->region[0];
702
    swd = (uint16_t)(xsave->region[0] >> 16);
703
    twd = (uint16_t)xsave->region[1];
704
    fop = (uint16_t)(xsave->region[1] >> 16);
705
    env->fpstt = (swd >> 11) & 7;
706
    env->fpus = swd;
707
    env->fpuc = cwd;
708
    for (i = 0; i < 8; ++i)
709
        env->fptags[i] = !((twd >> i) & 1);
710
    env->mxcsr = xsave->region[XSAVE_MXCSR];
711
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
712
            sizeof env->fpregs);
713
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
714
            sizeof env->xmm_regs);
715
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
716
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
717
            sizeof env->ymmh_regs);
718
    return 0;
719
#else
720
    return kvm_get_fpu(env);
721
#endif
722
}
723

    
724
static int kvm_get_xcrs(CPUState *env)
725
{
726
#ifdef KVM_CAP_XCRS
727
    int i, ret;
728
    struct kvm_xcrs xcrs;
729

    
730
    if (!kvm_has_xcrs())
731
        return 0;
732

    
733
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
734
    if (ret < 0)
735
        return ret;
736

    
737
    for (i = 0; i < xcrs.nr_xcrs; i++)
738
        /* Only support xcr0 now */
739
        if (xcrs.xcrs[0].xcr == 0) {
740
            env->xcr0 = xcrs.xcrs[0].value;
741
            break;
742
        }
743
    return 0;
744
#else
745
    return 0;
746
#endif
747
}
748

    
749
static int kvm_get_sregs(CPUState *env)
750
{
751
    struct kvm_sregs sregs;
752
    uint32_t hflags;
753
    int bit, i, ret;
754

    
755
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
756
    if (ret < 0)
757
        return ret;
758

    
759
    /* There can only be one pending IRQ set in the bitmap at a time, so try
760
       to find it and save its number instead (-1 for none). */
761
    env->interrupt_injected = -1;
762
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
763
        if (sregs.interrupt_bitmap[i]) {
764
            bit = ctz64(sregs.interrupt_bitmap[i]);
765
            env->interrupt_injected = i * 64 + bit;
766
            break;
767
        }
768
    }
769

    
770
    get_seg(&env->segs[R_CS], &sregs.cs);
771
    get_seg(&env->segs[R_DS], &sregs.ds);
772
    get_seg(&env->segs[R_ES], &sregs.es);
773
    get_seg(&env->segs[R_FS], &sregs.fs);
774
    get_seg(&env->segs[R_GS], &sregs.gs);
775
    get_seg(&env->segs[R_SS], &sregs.ss);
776

    
777
    get_seg(&env->tr, &sregs.tr);
778
    get_seg(&env->ldt, &sregs.ldt);
779

    
780
    env->idt.limit = sregs.idt.limit;
781
    env->idt.base = sregs.idt.base;
782
    env->gdt.limit = sregs.gdt.limit;
783
    env->gdt.base = sregs.gdt.base;
784

    
785
    env->cr[0] = sregs.cr0;
786
    env->cr[2] = sregs.cr2;
787
    env->cr[3] = sregs.cr3;
788
    env->cr[4] = sregs.cr4;
789

    
790
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
791

    
792
    env->efer = sregs.efer;
793
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
794

    
795
#define HFLAG_COPY_MASK ~( \
796
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
797
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
798
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
799
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
800

    
801

    
802

    
803
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
804
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
805
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
806
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
807
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
808
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
809
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
810

    
811
    if (env->efer & MSR_EFER_LMA) {
812
        hflags |= HF_LMA_MASK;
813
    }
814

    
815
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
816
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
817
    } else {
818
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
819
                (DESC_B_SHIFT - HF_CS32_SHIFT);
820
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
821
                (DESC_B_SHIFT - HF_SS32_SHIFT);
822
        if (!(env->cr[0] & CR0_PE_MASK) ||
823
                   (env->eflags & VM_MASK) ||
824
                   !(hflags & HF_CS32_MASK)) {
825
                hflags |= HF_ADDSEG_MASK;
826
            } else {
827
                hflags |= ((env->segs[R_DS].base |
828
                                env->segs[R_ES].base |
829
                                env->segs[R_SS].base) != 0) <<
830
                    HF_ADDSEG_SHIFT;
831
            }
832
    }
833
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
834

    
835
    return 0;
836
}
837

    
838
static int kvm_get_msrs(CPUState *env)
839
{
840
    struct {
841
        struct kvm_msrs info;
842
        struct kvm_msr_entry entries[100];
843
    } msr_data;
844
    struct kvm_msr_entry *msrs = msr_data.entries;
845
    int ret, i, n;
846

    
847
    n = 0;
848
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
849
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
850
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
851
    if (kvm_has_msr_star(env))
852
        msrs[n++].index = MSR_STAR;
853
    msrs[n++].index = MSR_IA32_TSC;
854
#ifdef TARGET_X86_64
855
    /* FIXME lm_capable_kernel */
856
    msrs[n++].index = MSR_CSTAR;
857
    msrs[n++].index = MSR_KERNELGSBASE;
858
    msrs[n++].index = MSR_FMASK;
859
    msrs[n++].index = MSR_LSTAR;
860
#endif
861
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
862
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
863

    
864
    msr_data.info.nmsrs = n;
865
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
866
    if (ret < 0)
867
        return ret;
868

    
869
    for (i = 0; i < ret; i++) {
870
        switch (msrs[i].index) {
871
        case MSR_IA32_SYSENTER_CS:
872
            env->sysenter_cs = msrs[i].data;
873
            break;
874
        case MSR_IA32_SYSENTER_ESP:
875
            env->sysenter_esp = msrs[i].data;
876
            break;
877
        case MSR_IA32_SYSENTER_EIP:
878
            env->sysenter_eip = msrs[i].data;
879
            break;
880
        case MSR_STAR:
881
            env->star = msrs[i].data;
882
            break;
883
#ifdef TARGET_X86_64
884
        case MSR_CSTAR:
885
            env->cstar = msrs[i].data;
886
            break;
887
        case MSR_KERNELGSBASE:
888
            env->kernelgsbase = msrs[i].data;
889
            break;
890
        case MSR_FMASK:
891
            env->fmask = msrs[i].data;
892
            break;
893
        case MSR_LSTAR:
894
            env->lstar = msrs[i].data;
895
            break;
896
#endif
897
        case MSR_IA32_TSC:
898
            env->tsc = msrs[i].data;
899
            break;
900
        case MSR_KVM_SYSTEM_TIME:
901
            env->system_time_msr = msrs[i].data;
902
            break;
903
        case MSR_KVM_WALL_CLOCK:
904
            env->wall_clock_msr = msrs[i].data;
905
            break;
906
        }
907
    }
908

    
909
    return 0;
910
}
911

    
912
static int kvm_put_mp_state(CPUState *env)
913
{
914
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
915

    
916
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
917
}
918

    
919
static int kvm_get_mp_state(CPUState *env)
920
{
921
    struct kvm_mp_state mp_state;
922
    int ret;
923

    
924
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
925
    if (ret < 0) {
926
        return ret;
927
    }
928
    env->mp_state = mp_state.mp_state;
929
    return 0;
930
}
931

    
932
static int kvm_put_vcpu_events(CPUState *env, int level)
933
{
934
#ifdef KVM_CAP_VCPU_EVENTS
935
    struct kvm_vcpu_events events;
936

    
937
    if (!kvm_has_vcpu_events()) {
938
        return 0;
939
    }
940

    
941
    events.exception.injected = (env->exception_injected >= 0);
942
    events.exception.nr = env->exception_injected;
943
    events.exception.has_error_code = env->has_error_code;
944
    events.exception.error_code = env->error_code;
945

    
946
    events.interrupt.injected = (env->interrupt_injected >= 0);
947
    events.interrupt.nr = env->interrupt_injected;
948
    events.interrupt.soft = env->soft_interrupt;
949

    
950
    events.nmi.injected = env->nmi_injected;
951
    events.nmi.pending = env->nmi_pending;
952
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
953

    
954
    events.sipi_vector = env->sipi_vector;
955

    
956
    events.flags = 0;
957
    if (level >= KVM_PUT_RESET_STATE) {
958
        events.flags |=
959
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
960
    }
961

    
962
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
963
#else
964
    return 0;
965
#endif
966
}
967

    
968
static int kvm_get_vcpu_events(CPUState *env)
969
{
970
#ifdef KVM_CAP_VCPU_EVENTS
971
    struct kvm_vcpu_events events;
972
    int ret;
973

    
974
    if (!kvm_has_vcpu_events()) {
975
        return 0;
976
    }
977

    
978
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
979
    if (ret < 0) {
980
       return ret;
981
    }
982
    env->exception_injected =
983
       events.exception.injected ? events.exception.nr : -1;
984
    env->has_error_code = events.exception.has_error_code;
985
    env->error_code = events.exception.error_code;
986

    
987
    env->interrupt_injected =
988
        events.interrupt.injected ? events.interrupt.nr : -1;
989
    env->soft_interrupt = events.interrupt.soft;
990

    
991
    env->nmi_injected = events.nmi.injected;
992
    env->nmi_pending = events.nmi.pending;
993
    if (events.nmi.masked) {
994
        env->hflags2 |= HF2_NMI_MASK;
995
    } else {
996
        env->hflags2 &= ~HF2_NMI_MASK;
997
    }
998

    
999
    env->sipi_vector = events.sipi_vector;
1000
#endif
1001

    
1002
    return 0;
1003
}
1004

    
1005
static int kvm_guest_debug_workarounds(CPUState *env)
1006
{
1007
    int ret = 0;
1008
#ifdef KVM_CAP_SET_GUEST_DEBUG
1009
    unsigned long reinject_trap = 0;
1010

    
1011
    if (!kvm_has_vcpu_events()) {
1012
        if (env->exception_injected == 1) {
1013
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1014
        } else if (env->exception_injected == 3) {
1015
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1016
        }
1017
        env->exception_injected = -1;
1018
    }
1019

    
1020
    /*
1021
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1022
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1023
     * by updating the debug state once again if single-stepping is on.
1024
     * Another reason to call kvm_update_guest_debug here is a pending debug
1025
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1026
     * reinject them via SET_GUEST_DEBUG.
1027
     */
1028
    if (reinject_trap ||
1029
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1030
        ret = kvm_update_guest_debug(env, reinject_trap);
1031
    }
1032
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1033
    return ret;
1034
}
1035

    
1036
static int kvm_put_debugregs(CPUState *env)
1037
{
1038
#ifdef KVM_CAP_DEBUGREGS
1039
    struct kvm_debugregs dbgregs;
1040
    int i;
1041

    
1042
    if (!kvm_has_debugregs()) {
1043
        return 0;
1044
    }
1045

    
1046
    for (i = 0; i < 4; i++) {
1047
        dbgregs.db[i] = env->dr[i];
1048
    }
1049
    dbgregs.dr6 = env->dr[6];
1050
    dbgregs.dr7 = env->dr[7];
1051
    dbgregs.flags = 0;
1052

    
1053
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1054
#else
1055
    return 0;
1056
#endif
1057
}
1058

    
1059
static int kvm_get_debugregs(CPUState *env)
1060
{
1061
#ifdef KVM_CAP_DEBUGREGS
1062
    struct kvm_debugregs dbgregs;
1063
    int i, ret;
1064

    
1065
    if (!kvm_has_debugregs()) {
1066
        return 0;
1067
    }
1068

    
1069
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1070
    if (ret < 0) {
1071
       return ret;
1072
    }
1073
    for (i = 0; i < 4; i++) {
1074
        env->dr[i] = dbgregs.db[i];
1075
    }
1076
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1077
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1078
#endif
1079

    
1080
    return 0;
1081
}
1082

    
1083
int kvm_arch_put_registers(CPUState *env, int level)
1084
{
1085
    int ret;
1086

    
1087
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1088

    
1089
    ret = kvm_getput_regs(env, 1);
1090
    if (ret < 0)
1091
        return ret;
1092

    
1093
    ret = kvm_put_xsave(env);
1094
    if (ret < 0)
1095
        return ret;
1096

    
1097
    ret = kvm_put_xcrs(env);
1098
    if (ret < 0)
1099
        return ret;
1100

    
1101
    ret = kvm_put_sregs(env);
1102
    if (ret < 0)
1103
        return ret;
1104

    
1105
    ret = kvm_put_msrs(env, level);
1106
    if (ret < 0)
1107
        return ret;
1108

    
1109
    if (level >= KVM_PUT_RESET_STATE) {
1110
        ret = kvm_put_mp_state(env);
1111
        if (ret < 0)
1112
            return ret;
1113
    }
1114

    
1115
    ret = kvm_put_vcpu_events(env, level);
1116
    if (ret < 0)
1117
        return ret;
1118

    
1119
    /* must be last */
1120
    ret = kvm_guest_debug_workarounds(env);
1121
    if (ret < 0)
1122
        return ret;
1123

    
1124
    ret = kvm_put_debugregs(env);
1125
    if (ret < 0)
1126
        return ret;
1127

    
1128
    return 0;
1129
}
1130

    
1131
int kvm_arch_get_registers(CPUState *env)
1132
{
1133
    int ret;
1134

    
1135
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1136

    
1137
    ret = kvm_getput_regs(env, 0);
1138
    if (ret < 0)
1139
        return ret;
1140

    
1141
    ret = kvm_get_xsave(env);
1142
    if (ret < 0)
1143
        return ret;
1144

    
1145
    ret = kvm_get_xcrs(env);
1146
    if (ret < 0)
1147
        return ret;
1148

    
1149
    ret = kvm_get_sregs(env);
1150
    if (ret < 0)
1151
        return ret;
1152

    
1153
    ret = kvm_get_msrs(env);
1154
    if (ret < 0)
1155
        return ret;
1156

    
1157
    ret = kvm_get_mp_state(env);
1158
    if (ret < 0)
1159
        return ret;
1160

    
1161
    ret = kvm_get_vcpu_events(env);
1162
    if (ret < 0)
1163
        return ret;
1164

    
1165
    ret = kvm_get_debugregs(env);
1166
    if (ret < 0)
1167
        return ret;
1168

    
1169
    return 0;
1170
}
1171

    
1172
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1173
{
1174
    /* Try to inject an interrupt if the guest can accept it */
1175
    if (run->ready_for_interrupt_injection &&
1176
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1177
        (env->eflags & IF_MASK)) {
1178
        int irq;
1179

    
1180
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1181
        irq = cpu_get_pic_interrupt(env);
1182
        if (irq >= 0) {
1183
            struct kvm_interrupt intr;
1184
            intr.irq = irq;
1185
            /* FIXME: errors */
1186
            DPRINTF("injected interrupt %d\n", irq);
1187
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1188
        }
1189
    }
1190

    
1191
    /* If we have an interrupt but the guest is not ready to receive an
1192
     * interrupt, request an interrupt window exit.  This will
1193
     * cause a return to userspace as soon as the guest is ready to
1194
     * receive interrupts. */
1195
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1196
        run->request_interrupt_window = 1;
1197
    else
1198
        run->request_interrupt_window = 0;
1199

    
1200
    DPRINTF("setting tpr\n");
1201
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1202

    
1203
    return 0;
1204
}
1205

    
1206
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1207
{
1208
    if (run->if_flag)
1209
        env->eflags |= IF_MASK;
1210
    else
1211
        env->eflags &= ~IF_MASK;
1212
    
1213
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1214
    cpu_set_apic_base(env->apic_state, run->apic_base);
1215

    
1216
    return 0;
1217
}
1218

    
1219
int kvm_arch_process_irqchip_events(CPUState *env)
1220
{
1221
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1222
        kvm_cpu_synchronize_state(env);
1223
        do_cpu_init(env);
1224
        env->exception_index = EXCP_HALTED;
1225
    }
1226

    
1227
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1228
        kvm_cpu_synchronize_state(env);
1229
        do_cpu_sipi(env);
1230
    }
1231

    
1232
    return env->halted;
1233
}
1234

    
1235
static int kvm_handle_halt(CPUState *env)
1236
{
1237
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1238
          (env->eflags & IF_MASK)) &&
1239
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1240
        env->halted = 1;
1241
        env->exception_index = EXCP_HLT;
1242
        return 0;
1243
    }
1244

    
1245
    return 1;
1246
}
1247

    
1248
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1249
{
1250
    int ret = 0;
1251

    
1252
    switch (run->exit_reason) {
1253
    case KVM_EXIT_HLT:
1254
        DPRINTF("handle_hlt\n");
1255
        ret = kvm_handle_halt(env);
1256
        break;
1257
    }
1258

    
1259
    return ret;
1260
}
1261

    
1262
#ifdef KVM_CAP_SET_GUEST_DEBUG
1263
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1264
{
1265
    static const uint8_t int3 = 0xcc;
1266

    
1267
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1268
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1269
        return -EINVAL;
1270
    return 0;
1271
}
1272

    
1273
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1274
{
1275
    uint8_t int3;
1276

    
1277
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1278
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1279
        return -EINVAL;
1280
    return 0;
1281
}
1282

    
1283
static struct {
1284
    target_ulong addr;
1285
    int len;
1286
    int type;
1287
} hw_breakpoint[4];
1288

    
1289
static int nb_hw_breakpoint;
1290

    
1291
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1292
{
1293
    int n;
1294

    
1295
    for (n = 0; n < nb_hw_breakpoint; n++)
1296
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1297
            (hw_breakpoint[n].len == len || len == -1))
1298
            return n;
1299
    return -1;
1300
}
1301

    
1302
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1303
                                  target_ulong len, int type)
1304
{
1305
    switch (type) {
1306
    case GDB_BREAKPOINT_HW:
1307
        len = 1;
1308
        break;
1309
    case GDB_WATCHPOINT_WRITE:
1310
    case GDB_WATCHPOINT_ACCESS:
1311
        switch (len) {
1312
        case 1:
1313
            break;
1314
        case 2:
1315
        case 4:
1316
        case 8:
1317
            if (addr & (len - 1))
1318
                return -EINVAL;
1319
            break;
1320
        default:
1321
            return -EINVAL;
1322
        }
1323
        break;
1324
    default:
1325
        return -ENOSYS;
1326
    }
1327

    
1328
    if (nb_hw_breakpoint == 4)
1329
        return -ENOBUFS;
1330

    
1331
    if (find_hw_breakpoint(addr, len, type) >= 0)
1332
        return -EEXIST;
1333

    
1334
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1335
    hw_breakpoint[nb_hw_breakpoint].len = len;
1336
    hw_breakpoint[nb_hw_breakpoint].type = type;
1337
    nb_hw_breakpoint++;
1338

    
1339
    return 0;
1340
}
1341

    
1342
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1343
                                  target_ulong len, int type)
1344
{
1345
    int n;
1346

    
1347
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1348
    if (n < 0)
1349
        return -ENOENT;
1350

    
1351
    nb_hw_breakpoint--;
1352
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1353

    
1354
    return 0;
1355
}
1356

    
1357
void kvm_arch_remove_all_hw_breakpoints(void)
1358
{
1359
    nb_hw_breakpoint = 0;
1360
}
1361

    
1362
static CPUWatchpoint hw_watchpoint;
1363

    
1364
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1365
{
1366
    int handle = 0;
1367
    int n;
1368

    
1369
    if (arch_info->exception == 1) {
1370
        if (arch_info->dr6 & (1 << 14)) {
1371
            if (cpu_single_env->singlestep_enabled)
1372
                handle = 1;
1373
        } else {
1374
            for (n = 0; n < 4; n++)
1375
                if (arch_info->dr6 & (1 << n))
1376
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1377
                    case 0x0:
1378
                        handle = 1;
1379
                        break;
1380
                    case 0x1:
1381
                        handle = 1;
1382
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1383
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1384
                        hw_watchpoint.flags = BP_MEM_WRITE;
1385
                        break;
1386
                    case 0x3:
1387
                        handle = 1;
1388
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1389
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1390
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1391
                        break;
1392
                    }
1393
        }
1394
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1395
        handle = 1;
1396

    
1397
    if (!handle) {
1398
        cpu_synchronize_state(cpu_single_env);
1399
        assert(cpu_single_env->exception_injected == -1);
1400

    
1401
        cpu_single_env->exception_injected = arch_info->exception;
1402
        cpu_single_env->has_error_code = 0;
1403
    }
1404

    
1405
    return handle;
1406
}
1407

    
1408
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1409
{
1410
    const uint8_t type_code[] = {
1411
        [GDB_BREAKPOINT_HW] = 0x0,
1412
        [GDB_WATCHPOINT_WRITE] = 0x1,
1413
        [GDB_WATCHPOINT_ACCESS] = 0x3
1414
    };
1415
    const uint8_t len_code[] = {
1416
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1417
    };
1418
    int n;
1419

    
1420
    if (kvm_sw_breakpoints_active(env))
1421
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1422

    
1423
    if (nb_hw_breakpoint > 0) {
1424
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1425
        dbg->arch.debugreg[7] = 0x0600;
1426
        for (n = 0; n < nb_hw_breakpoint; n++) {
1427
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1428
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1429
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1430
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1431
        }
1432
    }
1433
    /* Legal xcr0 for loading */
1434
    env->xcr0 = 1;
1435
}
1436
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1437

    
1438
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1439
{
1440
      return !(env->cr[0] & CR0_PE_MASK) ||
1441
              ((env->segs[R_CS].selector  & 3) != 3);
1442
}
1443