Statistics
| Branch: | Revision:

root / hw / hpet.c @ 40ac17cd

History | View | Annotate | Download (22.7 kB)

1
/*
2
 *  High Precisition Event Timer emulation
3
 *
4
 *  Copyright (c) 2007 Alexander Graf
5
 *  Copyright (c) 2008 IBM Corporation
6
 *
7
 *  Authors: Beth Kon <bkon@us.ibm.com>
8
 *
9
 * This library is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2 of the License, or (at your option) any later version.
13
 *
14
 * This library is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21
 *
22
 * *****************************************************************
23
 *
24
 * This driver attempts to emulate an HPET device in software.
25
 */
26

    
27
#include "hw.h"
28
#include "pc.h"
29
#include "console.h"
30
#include "qemu-timer.h"
31
#include "hpet_emul.h"
32
#include "sysbus.h"
33
#include "mc146818rtc.h"
34

    
35
//#define HPET_DEBUG
36
#ifdef HPET_DEBUG
37
#define DPRINTF printf
38
#else
39
#define DPRINTF(...)
40
#endif
41

    
42
#define HPET_MSI_SUPPORT        0
43

    
44
struct HPETState;
45
typedef struct HPETTimer {  /* timers */
46
    uint8_t tn;             /*timer number*/
47
    QEMUTimer *qemu_timer;
48
    struct HPETState *state;
49
    /* Memory-mapped, software visible timer registers */
50
    uint64_t config;        /* configuration/cap */
51
    uint64_t cmp;           /* comparator */
52
    uint64_t fsb;           /* FSB route */
53
    /* Hidden register state */
54
    uint64_t period;        /* Last value written to comparator */
55
    uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
56
                             * mode. Next pop will be actual timer expiration.
57
                             */
58
} HPETTimer;
59

    
60
typedef struct HPETState {
61
    SysBusDevice busdev;
62
    uint64_t hpet_offset;
63
    qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
64
    uint32_t flags;
65
    uint8_t rtc_irq_level;
66
    uint8_t num_timers;
67
    HPETTimer timer[HPET_MAX_TIMERS];
68

    
69
    /* Memory-mapped, software visible registers */
70
    uint64_t capability;        /* capabilities */
71
    uint64_t config;            /* configuration */
72
    uint64_t isr;               /* interrupt status reg */
73
    uint64_t hpet_counter;      /* main counter */
74
    uint8_t  hpet_id;           /* instance id */
75
} HPETState;
76

    
77
struct hpet_fw_config hpet_cfg = {.count = ~0};
78

    
79
static uint32_t hpet_in_legacy_mode(HPETState *s)
80
{
81
    return s->config & HPET_CFG_LEGACY;
82
}
83

    
84
static uint32_t timer_int_route(struct HPETTimer *timer)
85
{
86
    return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
87
}
88

    
89
static uint32_t timer_fsb_route(HPETTimer *t)
90
{
91
    return t->config & HPET_TN_FSB_ENABLE;
92
}
93

    
94
static uint32_t hpet_enabled(HPETState *s)
95
{
96
    return s->config & HPET_CFG_ENABLE;
97
}
98

    
99
static uint32_t timer_is_periodic(HPETTimer *t)
100
{
101
    return t->config & HPET_TN_PERIODIC;
102
}
103

    
104
static uint32_t timer_enabled(HPETTimer *t)
105
{
106
    return t->config & HPET_TN_ENABLE;
107
}
108

    
109
static uint32_t hpet_time_after(uint64_t a, uint64_t b)
110
{
111
    return ((int32_t)(b) - (int32_t)(a) < 0);
112
}
113

    
114
static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
115
{
116
    return ((int64_t)(b) - (int64_t)(a) < 0);
117
}
118

    
119
static uint64_t ticks_to_ns(uint64_t value)
120
{
121
    return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
122
}
123

    
124
static uint64_t ns_to_ticks(uint64_t value)
125
{
126
    return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
127
}
128

    
129
static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
130
{
131
    new &= mask;
132
    new |= old & ~mask;
133
    return new;
134
}
135

    
136
static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
137
{
138
    return (!(old & mask) && (new & mask));
139
}
140

    
141
static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
142
{
143
    return ((old & mask) && !(new & mask));
144
}
145

    
146
static uint64_t hpet_get_ticks(HPETState *s)
147
{
148
    return ns_to_ticks(qemu_get_clock(vm_clock) + s->hpet_offset);
149
}
150

    
151
/*
152
 * calculate diff between comparator value and current ticks
153
 */
154
static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
155
{
156

    
157
    if (t->config & HPET_TN_32BIT) {
158
        uint32_t diff, cmp;
159

    
160
        cmp = (uint32_t)t->cmp;
161
        diff = cmp - (uint32_t)current;
162
        diff = (int32_t)diff > 0 ? diff : (uint32_t)0;
163
        return (uint64_t)diff;
164
    } else {
165
        uint64_t diff, cmp;
166

    
167
        cmp = t->cmp;
168
        diff = cmp - current;
169
        diff = (int64_t)diff > 0 ? diff : (uint64_t)0;
170
        return diff;
171
    }
172
}
173

    
174
static void update_irq(struct HPETTimer *timer, int set)
175
{
176
    uint64_t mask;
177
    HPETState *s;
178
    int route;
179

    
180
    if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
181
        /* if LegacyReplacementRoute bit is set, HPET specification requires
182
         * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
183
         * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
184
         */
185
        route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
186
    } else {
187
        route = timer_int_route(timer);
188
    }
189
    s = timer->state;
190
    mask = 1 << timer->tn;
191
    if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
192
        s->isr &= ~mask;
193
        if (!timer_fsb_route(timer)) {
194
            qemu_irq_lower(s->irqs[route]);
195
        }
196
    } else if (timer_fsb_route(timer)) {
197
        stl_phys(timer->fsb >> 32, timer->fsb & 0xffffffff);
198
    } else if (timer->config & HPET_TN_TYPE_LEVEL) {
199
        s->isr |= mask;
200
        qemu_irq_raise(s->irqs[route]);
201
    } else {
202
        s->isr &= ~mask;
203
        qemu_irq_pulse(s->irqs[route]);
204
    }
205
}
206

    
207
static void hpet_pre_save(void *opaque)
208
{
209
    HPETState *s = opaque;
210

    
211
    /* save current counter value */
212
    s->hpet_counter = hpet_get_ticks(s);
213
}
214

    
215
static int hpet_pre_load(void *opaque)
216
{
217
    HPETState *s = opaque;
218

    
219
    /* version 1 only supports 3, later versions will load the actual value */
220
    s->num_timers = HPET_MIN_TIMERS;
221
    return 0;
222
}
223

    
224
static int hpet_post_load(void *opaque, int version_id)
225
{
226
    HPETState *s = opaque;
227

    
228
    /* Recalculate the offset between the main counter and guest time */
229
    s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_get_clock(vm_clock);
230

    
231
    /* Push number of timers into capability returned via HPET_ID */
232
    s->capability &= ~HPET_ID_NUM_TIM_MASK;
233
    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
234
    hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
235

    
236
    /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
237
    s->flags &= ~(1 << HPET_MSI_SUPPORT);
238
    if (s->timer[0].config & HPET_TN_FSB_CAP) {
239
        s->flags |= 1 << HPET_MSI_SUPPORT;
240
    }
241
    return 0;
242
}
243

    
244
static const VMStateDescription vmstate_hpet_timer = {
245
    .name = "hpet_timer",
246
    .version_id = 1,
247
    .minimum_version_id = 1,
248
    .minimum_version_id_old = 1,
249
    .fields      = (VMStateField []) {
250
        VMSTATE_UINT8(tn, HPETTimer),
251
        VMSTATE_UINT64(config, HPETTimer),
252
        VMSTATE_UINT64(cmp, HPETTimer),
253
        VMSTATE_UINT64(fsb, HPETTimer),
254
        VMSTATE_UINT64(period, HPETTimer),
255
        VMSTATE_UINT8(wrap_flag, HPETTimer),
256
        VMSTATE_TIMER(qemu_timer, HPETTimer),
257
        VMSTATE_END_OF_LIST()
258
    }
259
};
260

    
261
static const VMStateDescription vmstate_hpet = {
262
    .name = "hpet",
263
    .version_id = 2,
264
    .minimum_version_id = 1,
265
    .minimum_version_id_old = 1,
266
    .pre_save = hpet_pre_save,
267
    .pre_load = hpet_pre_load,
268
    .post_load = hpet_post_load,
269
    .fields      = (VMStateField []) {
270
        VMSTATE_UINT64(config, HPETState),
271
        VMSTATE_UINT64(isr, HPETState),
272
        VMSTATE_UINT64(hpet_counter, HPETState),
273
        VMSTATE_UINT8_V(num_timers, HPETState, 2),
274
        VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
275
                                    vmstate_hpet_timer, HPETTimer),
276
        VMSTATE_END_OF_LIST()
277
    }
278
};
279

    
280
/*
281
 * timer expiration callback
282
 */
283
static void hpet_timer(void *opaque)
284
{
285
    HPETTimer *t = opaque;
286
    uint64_t diff;
287

    
288
    uint64_t period = t->period;
289
    uint64_t cur_tick = hpet_get_ticks(t->state);
290

    
291
    if (timer_is_periodic(t) && period != 0) {
292
        if (t->config & HPET_TN_32BIT) {
293
            while (hpet_time_after(cur_tick, t->cmp)) {
294
                t->cmp = (uint32_t)(t->cmp + t->period);
295
            }
296
        } else {
297
            while (hpet_time_after64(cur_tick, t->cmp)) {
298
                t->cmp += period;
299
            }
300
        }
301
        diff = hpet_calculate_diff(t, cur_tick);
302
        qemu_mod_timer(t->qemu_timer,
303
                       qemu_get_clock(vm_clock) + (int64_t)ticks_to_ns(diff));
304
    } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
305
        if (t->wrap_flag) {
306
            diff = hpet_calculate_diff(t, cur_tick);
307
            qemu_mod_timer(t->qemu_timer, qemu_get_clock(vm_clock) +
308
                           (int64_t)ticks_to_ns(diff));
309
            t->wrap_flag = 0;
310
        }
311
    }
312
    update_irq(t, 1);
313
}
314

    
315
static void hpet_set_timer(HPETTimer *t)
316
{
317
    uint64_t diff;
318
    uint32_t wrap_diff;  /* how many ticks until we wrap? */
319
    uint64_t cur_tick = hpet_get_ticks(t->state);
320

    
321
    /* whenever new timer is being set up, make sure wrap_flag is 0 */
322
    t->wrap_flag = 0;
323
    diff = hpet_calculate_diff(t, cur_tick);
324

    
325
    /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
326
     * counter wraps in addition to an interrupt with comparator match.
327
     */
328
    if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
329
        wrap_diff = 0xffffffff - (uint32_t)cur_tick;
330
        if (wrap_diff < (uint32_t)diff) {
331
            diff = wrap_diff;
332
            t->wrap_flag = 1;
333
        }
334
    }
335
    qemu_mod_timer(t->qemu_timer,
336
                   qemu_get_clock(vm_clock) + (int64_t)ticks_to_ns(diff));
337
}
338

    
339
static void hpet_del_timer(HPETTimer *t)
340
{
341
    qemu_del_timer(t->qemu_timer);
342
    update_irq(t, 0);
343
}
344

    
345
#ifdef HPET_DEBUG
346
static uint32_t hpet_ram_readb(void *opaque, target_phys_addr_t addr)
347
{
348
    printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
349
    return 0;
350
}
351

    
352
static uint32_t hpet_ram_readw(void *opaque, target_phys_addr_t addr)
353
{
354
    printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
355
    return 0;
356
}
357
#endif
358

    
359
static uint32_t hpet_ram_readl(void *opaque, target_phys_addr_t addr)
360
{
361
    HPETState *s = opaque;
362
    uint64_t cur_tick, index;
363

    
364
    DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
365
    index = addr;
366
    /*address range of all TN regs*/
367
    if (index >= 0x100 && index <= 0x3ff) {
368
        uint8_t timer_id = (addr - 0x100) / 0x20;
369
        HPETTimer *timer = &s->timer[timer_id];
370

    
371
        if (timer_id > s->num_timers) {
372
            DPRINTF("qemu: timer id out of range\n");
373
            return 0;
374
        }
375

    
376
        switch ((addr - 0x100) % 0x20) {
377
        case HPET_TN_CFG:
378
            return timer->config;
379
        case HPET_TN_CFG + 4: // Interrupt capabilities
380
            return timer->config >> 32;
381
        case HPET_TN_CMP: // comparator register
382
            return timer->cmp;
383
        case HPET_TN_CMP + 4:
384
            return timer->cmp >> 32;
385
        case HPET_TN_ROUTE:
386
            return timer->fsb;
387
        case HPET_TN_ROUTE + 4:
388
            return timer->fsb >> 32;
389
        default:
390
            DPRINTF("qemu: invalid hpet_ram_readl\n");
391
            break;
392
        }
393
    } else {
394
        switch (index) {
395
        case HPET_ID:
396
            return s->capability;
397
        case HPET_PERIOD:
398
            return s->capability >> 32;
399
        case HPET_CFG:
400
            return s->config;
401
        case HPET_CFG + 4:
402
            DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl \n");
403
            return 0;
404
        case HPET_COUNTER:
405
            if (hpet_enabled(s)) {
406
                cur_tick = hpet_get_ticks(s);
407
            } else {
408
                cur_tick = s->hpet_counter;
409
            }
410
            DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
411
            return cur_tick;
412
        case HPET_COUNTER + 4:
413
            if (hpet_enabled(s)) {
414
                cur_tick = hpet_get_ticks(s);
415
            } else {
416
                cur_tick = s->hpet_counter;
417
            }
418
            DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
419
            return cur_tick >> 32;
420
        case HPET_STATUS:
421
            return s->isr;
422
        default:
423
            DPRINTF("qemu: invalid hpet_ram_readl\n");
424
            break;
425
        }
426
    }
427
    return 0;
428
}
429

    
430
#ifdef HPET_DEBUG
431
static void hpet_ram_writeb(void *opaque, target_phys_addr_t addr,
432
                            uint32_t value)
433
{
434
    printf("qemu: invalid hpet_write b at %" PRIx64 " = %#x\n",
435
           addr, value);
436
}
437

    
438
static void hpet_ram_writew(void *opaque, target_phys_addr_t addr,
439
                            uint32_t value)
440
{
441
    printf("qemu: invalid hpet_write w at %" PRIx64 " = %#x\n",
442
           addr, value);
443
}
444
#endif
445

    
446
static void hpet_ram_writel(void *opaque, target_phys_addr_t addr,
447
                            uint32_t value)
448
{
449
    int i;
450
    HPETState *s = opaque;
451
    uint64_t old_val, new_val, val, index;
452

    
453
    DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
454
    index = addr;
455
    old_val = hpet_ram_readl(opaque, addr);
456
    new_val = value;
457

    
458
    /*address range of all TN regs*/
459
    if (index >= 0x100 && index <= 0x3ff) {
460
        uint8_t timer_id = (addr - 0x100) / 0x20;
461
        HPETTimer *timer = &s->timer[timer_id];
462

    
463
        DPRINTF("qemu: hpet_ram_writel timer_id = %#x \n", timer_id);
464
        if (timer_id > s->num_timers) {
465
            DPRINTF("qemu: timer id out of range\n");
466
            return;
467
        }
468
        switch ((addr - 0x100) % 0x20) {
469
        case HPET_TN_CFG:
470
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
471
            if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
472
                update_irq(timer, 0);
473
            }
474
            val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
475
            timer->config = (timer->config & 0xffffffff00000000ULL) | val;
476
            if (new_val & HPET_TN_32BIT) {
477
                timer->cmp = (uint32_t)timer->cmp;
478
                timer->period = (uint32_t)timer->period;
479
            }
480
            if (activating_bit(old_val, new_val, HPET_TN_ENABLE)) {
481
                hpet_set_timer(timer);
482
            } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
483
                hpet_del_timer(timer);
484
            }
485
            break;
486
        case HPET_TN_CFG + 4: // Interrupt capabilities
487
            DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
488
            break;
489
        case HPET_TN_CMP: // comparator register
490
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP \n");
491
            if (timer->config & HPET_TN_32BIT) {
492
                new_val = (uint32_t)new_val;
493
            }
494
            if (!timer_is_periodic(timer)
495
                || (timer->config & HPET_TN_SETVAL)) {
496
                timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
497
            }
498
            if (timer_is_periodic(timer)) {
499
                /*
500
                 * FIXME: Clamp period to reasonable min value?
501
                 * Clamp period to reasonable max value
502
                 */
503
                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
504
                timer->period =
505
                    (timer->period & 0xffffffff00000000ULL) | new_val;
506
            }
507
            timer->config &= ~HPET_TN_SETVAL;
508
            if (hpet_enabled(s)) {
509
                hpet_set_timer(timer);
510
            }
511
            break;
512
        case HPET_TN_CMP + 4: // comparator register high order
513
            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
514
            if (!timer_is_periodic(timer)
515
                || (timer->config & HPET_TN_SETVAL)) {
516
                timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
517
            } else {
518
                /*
519
                 * FIXME: Clamp period to reasonable min value?
520
                 * Clamp period to reasonable max value
521
                 */
522
                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
523
                timer->period =
524
                    (timer->period & 0xffffffffULL) | new_val << 32;
525
                }
526
                timer->config &= ~HPET_TN_SETVAL;
527
                if (hpet_enabled(s)) {
528
                    hpet_set_timer(timer);
529
                }
530
                break;
531
        case HPET_TN_ROUTE:
532
            timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
533
            break;
534
        case HPET_TN_ROUTE + 4:
535
            timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
536
            break;
537
        default:
538
            DPRINTF("qemu: invalid hpet_ram_writel\n");
539
            break;
540
        }
541
        return;
542
    } else {
543
        switch (index) {
544
        case HPET_ID:
545
            return;
546
        case HPET_CFG:
547
            val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
548
            s->config = (s->config & 0xffffffff00000000ULL) | val;
549
            if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
550
                /* Enable main counter and interrupt generation. */
551
                s->hpet_offset =
552
                    ticks_to_ns(s->hpet_counter) - qemu_get_clock(vm_clock);
553
                for (i = 0; i < s->num_timers; i++) {
554
                    if ((&s->timer[i])->cmp != ~0ULL) {
555
                        hpet_set_timer(&s->timer[i]);
556
                    }
557
                }
558
            } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
559
                /* Halt main counter and disable interrupt generation. */
560
                s->hpet_counter = hpet_get_ticks(s);
561
                for (i = 0; i < s->num_timers; i++) {
562
                    hpet_del_timer(&s->timer[i]);
563
                }
564
            }
565
            /* i8254 and RTC are disabled when HPET is in legacy mode */
566
            if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
567
                hpet_pit_disable();
568
                qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
569
            } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
570
                hpet_pit_enable();
571
                qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
572
            }
573
            break;
574
        case HPET_CFG + 4:
575
            DPRINTF("qemu: invalid HPET_CFG+4 write \n");
576
            break;
577
        case HPET_STATUS:
578
            val = new_val & s->isr;
579
            for (i = 0; i < s->num_timers; i++) {
580
                if (val & (1 << i)) {
581
                    update_irq(&s->timer[i], 0);
582
                }
583
            }
584
            break;
585
        case HPET_COUNTER:
586
            if (hpet_enabled(s)) {
587
                DPRINTF("qemu: Writing counter while HPET enabled!\n");
588
            }
589
            s->hpet_counter =
590
                (s->hpet_counter & 0xffffffff00000000ULL) | value;
591
            DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
592
                    value, s->hpet_counter);
593
            break;
594
        case HPET_COUNTER + 4:
595
            if (hpet_enabled(s)) {
596
                DPRINTF("qemu: Writing counter while HPET enabled!\n");
597
            }
598
            s->hpet_counter =
599
                (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
600
            DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
601
                    value, s->hpet_counter);
602
            break;
603
        default:
604
            DPRINTF("qemu: invalid hpet_ram_writel\n");
605
            break;
606
        }
607
    }
608
}
609

    
610
static CPUReadMemoryFunc * const hpet_ram_read[] = {
611
#ifdef HPET_DEBUG
612
    hpet_ram_readb,
613
    hpet_ram_readw,
614
#else
615
    NULL,
616
    NULL,
617
#endif
618
    hpet_ram_readl,
619
};
620

    
621
static CPUWriteMemoryFunc * const hpet_ram_write[] = {
622
#ifdef HPET_DEBUG
623
    hpet_ram_writeb,
624
    hpet_ram_writew,
625
#else
626
    NULL,
627
    NULL,
628
#endif
629
    hpet_ram_writel,
630
};
631

    
632
static void hpet_reset(DeviceState *d)
633
{
634
    HPETState *s = FROM_SYSBUS(HPETState, sysbus_from_qdev(d));
635
    int i;
636
    static int count = 0;
637

    
638
    for (i = 0; i < s->num_timers; i++) {
639
        HPETTimer *timer = &s->timer[i];
640

    
641
        hpet_del_timer(timer);
642
        timer->cmp = ~0ULL;
643
        timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
644
        if (s->flags & (1 << HPET_MSI_SUPPORT)) {
645
            timer->config |= HPET_TN_FSB_CAP;
646
        }
647
        /* advertise availability of ioapic inti2 */
648
        timer->config |=  0x00000004ULL << 32;
649
        timer->period = 0ULL;
650
        timer->wrap_flag = 0;
651
    }
652

    
653
    s->hpet_counter = 0ULL;
654
    s->hpet_offset = 0ULL;
655
    s->config = 0ULL;
656
    if (count > 0) {
657
        /* we don't enable pit when hpet_reset is first called (by hpet_init)
658
         * because hpet is taking over for pit here. On subsequent invocations,
659
         * hpet_reset is called due to system reset. At this point control must
660
         * be returned to pit until SW reenables hpet.
661
         */
662
        hpet_pit_enable();
663
    }
664
    hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
665
    hpet_cfg.hpet[s->hpet_id].address = sysbus_from_qdev(d)->mmio[0].addr;
666
    count = 1;
667
}
668

    
669
static void hpet_handle_rtc_irq(void *opaque, int n, int level)
670
{
671
    HPETState *s = FROM_SYSBUS(HPETState, opaque);
672

    
673
    s->rtc_irq_level = level;
674
    if (!hpet_in_legacy_mode(s)) {
675
        qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
676
    }
677
}
678

    
679
static int hpet_init(SysBusDevice *dev)
680
{
681
    HPETState *s = FROM_SYSBUS(HPETState, dev);
682
    int i, iomemtype;
683
    HPETTimer *timer;
684

    
685
    if (hpet_cfg.count == ~0) /* first instance */
686
        hpet_cfg.count = 0;
687

    
688
    if (hpet_cfg.count == 8) {
689
        fprintf(stderr, "Only 8 instances of HPET is allowed\n");
690
        return -1;
691
    }
692

    
693
    s->hpet_id = hpet_cfg.count++;
694

    
695
    for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
696
        sysbus_init_irq(dev, &s->irqs[i]);
697
    }
698

    
699
    if (s->num_timers < HPET_MIN_TIMERS) {
700
        s->num_timers = HPET_MIN_TIMERS;
701
    } else if (s->num_timers > HPET_MAX_TIMERS) {
702
        s->num_timers = HPET_MAX_TIMERS;
703
    }
704
    for (i = 0; i < HPET_MAX_TIMERS; i++) {
705
        timer = &s->timer[i];
706
        timer->qemu_timer = qemu_new_timer(vm_clock, hpet_timer, timer);
707
        timer->tn = i;
708
        timer->state = s;
709
    }
710

    
711
    /* 64-bit main counter; LegacyReplacementRoute. */
712
    s->capability = 0x8086a001ULL;
713
    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
714
    s->capability |= ((HPET_CLK_PERIOD) << 32);
715

    
716
    isa_reserve_irq(RTC_ISA_IRQ);
717
    qdev_init_gpio_in(&dev->qdev, hpet_handle_rtc_irq, 1);
718

    
719
    /* HPET Area */
720
    iomemtype = cpu_register_io_memory(hpet_ram_read,
721
                                       hpet_ram_write, s);
722
    sysbus_init_mmio(dev, 0x400, iomemtype);
723
    return 0;
724
}
725

    
726
static SysBusDeviceInfo hpet_device_info = {
727
    .qdev.name    = "hpet",
728
    .qdev.size    = sizeof(HPETState),
729
    .qdev.no_user = 1,
730
    .qdev.vmsd    = &vmstate_hpet,
731
    .qdev.reset   = hpet_reset,
732
    .init         = hpet_init,
733
    .qdev.props = (Property[]) {
734
        DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
735
        DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
736
        DEFINE_PROP_END_OF_LIST(),
737
    },
738
};
739

    
740
static void hpet_register_device(void)
741
{
742
    sysbus_register_withprop(&hpet_device_info);
743
}
744

    
745
device_init(hpet_register_device)