Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 419fb20a

History | View | Annotate | Download (53 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58
    KVM_CAP_INFO(SET_TSS_ADDR),
59
    KVM_CAP_INFO(EXT_CPUID),
60
    KVM_CAP_INFO(MP_STATE),
61
    KVM_CAP_LAST_INFO
62
};
63

    
64
static bool has_msr_star;
65
static bool has_msr_hsave_pa;
66
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67
static bool has_msr_async_pf_en;
68
#endif
69
static int lm_capable_kernel;
70

    
71
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72
{
73
    struct kvm_cpuid2 *cpuid;
74
    int r, size;
75

    
76
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78
    cpuid->nent = max;
79
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80
    if (r == 0 && cpuid->nent >= max) {
81
        r = -E2BIG;
82
    }
83
    if (r < 0) {
84
        if (r == -E2BIG) {
85
            qemu_free(cpuid);
86
            return NULL;
87
        } else {
88
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89
                    strerror(-r));
90
            exit(1);
91
        }
92
    }
93
    return cpuid;
94
}
95

    
96
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97
                                      uint32_t index, int reg)
98
{
99
    struct kvm_cpuid2 *cpuid;
100
    int i, max;
101
    uint32_t ret = 0;
102
    uint32_t cpuid_1_edx;
103

    
104
    max = 1;
105
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106
        max *= 2;
107
    }
108

    
109
    for (i = 0; i < cpuid->nent; ++i) {
110
        if (cpuid->entries[i].function == function &&
111
            cpuid->entries[i].index == index) {
112
            switch (reg) {
113
            case R_EAX:
114
                ret = cpuid->entries[i].eax;
115
                break;
116
            case R_EBX:
117
                ret = cpuid->entries[i].ebx;
118
                break;
119
            case R_ECX:
120
                ret = cpuid->entries[i].ecx;
121
                break;
122
            case R_EDX:
123
                ret = cpuid->entries[i].edx;
124
                switch (function) {
125
                case 1:
126
                    /* KVM before 2.6.30 misreports the following features */
127
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128
                    break;
129
                case 0x80000001:
130
                    /* On Intel, kvm returns cpuid according to the Intel spec,
131
                     * so add missing bits according to the AMD spec:
132
                     */
133
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134
                    ret |= cpuid_1_edx & 0x183f7ff;
135
                    break;
136
                }
137
                break;
138
            }
139
        }
140
    }
141

    
142
    qemu_free(cpuid);
143

    
144
    return ret;
145
}
146

    
147
#ifdef CONFIG_KVM_PARA
148
struct kvm_para_features {
149
    int cap;
150
    int feature;
151
} para_features[] = {
152
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155
#ifdef KVM_CAP_ASYNC_PF
156
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157
#endif
158
    { -1, -1 }
159
};
160

    
161
static int get_para_features(CPUState *env)
162
{
163
    int i, features = 0;
164

    
165
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167
            features |= (1 << para_features[i].feature);
168
        }
169
    }
170
#ifdef KVM_CAP_ASYNC_PF
171
    has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
172
#endif
173
    return features;
174
}
175
#endif /* CONFIG_KVM_PARA */
176

    
177
#ifdef KVM_CAP_MCE
178
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179
                                     int *max_banks)
180
{
181
    int r;
182

    
183
    r = kvm_check_extension(s, KVM_CAP_MCE);
184
    if (r > 0) {
185
        *max_banks = r;
186
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
187
    }
188
    return -ENOSYS;
189
}
190

    
191
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
192
{
193
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
194
}
195

    
196
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
197
{
198
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
199
}
200

    
201
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
202
{
203
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204
    int r;
205

    
206
    kmsrs->nmsrs = n;
207
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210
    free(kmsrs);
211
    return r;
212
}
213

    
214
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215
static int kvm_mce_in_progress(CPUState *env)
216
{
217
    struct kvm_msr_entry msr_mcg_status = {
218
        .index = MSR_MCG_STATUS,
219
    };
220
    int r;
221

    
222
    r = kvm_get_msr(env, &msr_mcg_status, 1);
223
    if (r == -1 || r == 0) {
224
        fprintf(stderr, "Failed to get MCE status\n");
225
        return 0;
226
    }
227
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228
}
229

    
230
struct kvm_x86_mce_data
231
{
232
    CPUState *env;
233
    struct kvm_x86_mce *mce;
234
    int abort_on_error;
235
};
236

    
237
static void kvm_do_inject_x86_mce(void *_data)
238
{
239
    struct kvm_x86_mce_data *data = _data;
240
    int r;
241

    
242
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
243
    if ((data->env->mcg_cap & MCG_SER_P) &&
244
        !(data->mce->status & MCI_STATUS_AR)) {
245
        if (kvm_mce_in_progress(data->env)) {
246
            return;
247
        }
248
    }
249

    
250
    r = kvm_set_mce(data->env, data->mce);
251
    if (r < 0) {
252
        perror("kvm_set_mce FAILED");
253
        if (data->abort_on_error) {
254
            abort();
255
        }
256
    }
257
}
258

    
259
static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260
                                  int flag)
261
{
262
    struct kvm_x86_mce_data data = {
263
        .env = env,
264
        .mce = mce,
265
        .abort_on_error = (flag & ABORT_ON_ERROR),
266
    };
267

    
268
    if (!env->mcg_cap) {
269
        fprintf(stderr, "MCE support is not enabled!\n");
270
        return;
271
    }
272

    
273
    run_on_cpu(env, kvm_do_inject_x86_mce, &data);
274
}
275

    
276
static void kvm_mce_broadcast_rest(CPUState *env)
277
{
278
    struct kvm_x86_mce mce = {
279
        .bank = 1,
280
        .status = MCI_STATUS_VAL | MCI_STATUS_UC,
281
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
282
        .addr = 0,
283
        .misc = 0,
284
    };
285
    CPUState *cenv;
286

    
287
    /* Broadcast MCA signal for processor version 06H_EH and above */
288
    if (cpu_x86_support_mca_broadcast(env)) {
289
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
290
            if (cenv == env) {
291
                continue;
292
            }
293
            kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
294
        }
295
    }
296
}
297

    
298
static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
299
{
300
    struct kvm_x86_mce mce = {
301
        .bank = 9,
302
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
303
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
304
                  | MCI_STATUS_AR | 0x134,
305
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
306
        .addr = paddr,
307
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
308
    };
309
    int r;
310

    
311
    r = kvm_set_mce(env, &mce);
312
    if (r < 0) {
313
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
314
        abort();
315
    }
316
    kvm_mce_broadcast_rest(env);
317
}
318

    
319
static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
320
{
321
    struct kvm_x86_mce mce = {
322
        .bank = 9,
323
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
324
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
325
                  | 0xc0,
326
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
327
        .addr = paddr,
328
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
329
    };
330
    int r;
331

    
332
    r = kvm_set_mce(env, &mce);
333
    if (r < 0) {
334
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
335
        abort();
336
    }
337
    kvm_mce_broadcast_rest(env);
338
}
339

    
340
static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
341
{
342
    struct kvm_x86_mce mce = {
343
        .bank = 9,
344
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
345
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
346
                  | 0xc0,
347
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
348
        .addr = paddr,
349
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
350
    };
351

    
352
    kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
353
    kvm_mce_broadcast_rest(env);
354
}
355
#endif /* KVM_CAP_MCE */
356

    
357
static void hardware_memory_error(void)
358
{
359
    fprintf(stderr, "Hardware memory error!\n");
360
    exit(1);
361
}
362

    
363
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
364
{
365
#ifdef KVM_CAP_MCE
366
    void *vaddr;
367
    ram_addr_t ram_addr;
368
    target_phys_addr_t paddr;
369

    
370
    if ((env->mcg_cap & MCG_SER_P) && addr
371
        && (code == BUS_MCEERR_AR
372
            || code == BUS_MCEERR_AO)) {
373
        vaddr = (void *)addr;
374
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
375
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
376
            fprintf(stderr, "Hardware memory error for memory used by "
377
                    "QEMU itself instead of guest system!\n");
378
            /* Hope we are lucky for AO MCE */
379
            if (code == BUS_MCEERR_AO) {
380
                return 0;
381
            } else {
382
                hardware_memory_error();
383
            }
384
        }
385

    
386
        if (code == BUS_MCEERR_AR) {
387
            /* Fake an Intel architectural Data Load SRAR UCR */
388
            kvm_mce_inj_srar_dataload(env, paddr);
389
        } else {
390
            /*
391
             * If there is an MCE excpetion being processed, ignore
392
             * this SRAO MCE
393
             */
394
            if (!kvm_mce_in_progress(env)) {
395
                /* Fake an Intel architectural Memory scrubbing UCR */
396
                kvm_mce_inj_srao_memscrub(env, paddr);
397
            }
398
        }
399
    } else
400
#endif /* KVM_CAP_MCE */
401
    {
402
        if (code == BUS_MCEERR_AO) {
403
            return 0;
404
        } else if (code == BUS_MCEERR_AR) {
405
            hardware_memory_error();
406
        } else {
407
            return 1;
408
        }
409
    }
410
    return 0;
411
}
412

    
413
int kvm_arch_on_sigbus(int code, void *addr)
414
{
415
#ifdef KVM_CAP_MCE
416
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
417
        void *vaddr;
418
        ram_addr_t ram_addr;
419
        target_phys_addr_t paddr;
420

    
421
        /* Hope we are lucky for AO MCE */
422
        vaddr = addr;
423
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
424
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
425
                                               &paddr)) {
426
            fprintf(stderr, "Hardware memory error for memory used by "
427
                    "QEMU itself instead of guest system!: %p\n", addr);
428
            return 0;
429
        }
430
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
431
    } else
432
#endif /* KVM_CAP_MCE */
433
    {
434
        if (code == BUS_MCEERR_AO) {
435
            return 0;
436
        } else if (code == BUS_MCEERR_AR) {
437
            hardware_memory_error();
438
        } else {
439
            return 1;
440
        }
441
    }
442
    return 0;
443
}
444

    
445
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
446
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
447
                        int flag)
448
{
449
#ifdef KVM_CAP_MCE
450
    struct kvm_x86_mce mce = {
451
        .bank = bank,
452
        .status = status,
453
        .mcg_status = mcg_status,
454
        .addr = addr,
455
        .misc = misc,
456
    };
457

    
458
    if (flag & MCE_BROADCAST) {
459
        kvm_mce_broadcast_rest(cenv);
460
    }
461

    
462
    kvm_inject_x86_mce_on(cenv, &mce, flag);
463
#else /* !KVM_CAP_MCE*/
464
    if (flag & ABORT_ON_ERROR) {
465
        abort();
466
    }
467
#endif /* !KVM_CAP_MCE*/
468
}
469

    
470
static void cpu_update_state(void *opaque, int running, int reason)
471
{
472
    CPUState *env = opaque;
473

    
474
    if (running) {
475
        env->tsc_valid = false;
476
    }
477
}
478

    
479
int kvm_arch_init_vcpu(CPUState *env)
480
{
481
    struct {
482
        struct kvm_cpuid2 cpuid;
483
        struct kvm_cpuid_entry2 entries[100];
484
    } __attribute__((packed)) cpuid_data;
485
    uint32_t limit, i, j, cpuid_i;
486
    uint32_t unused;
487
    struct kvm_cpuid_entry2 *c;
488
#ifdef CONFIG_KVM_PARA
489
    uint32_t signature[3];
490
#endif
491

    
492
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
493

    
494
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
495
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
496
    env->cpuid_ext_features |= i;
497

    
498
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
499
                                                             0, R_EDX);
500
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
501
                                                             0, R_ECX);
502
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
503
                                                             0, R_EDX);
504

    
505

    
506
    cpuid_i = 0;
507

    
508
#ifdef CONFIG_KVM_PARA
509
    /* Paravirtualization CPUIDs */
510
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
511
    c = &cpuid_data.entries[cpuid_i++];
512
    memset(c, 0, sizeof(*c));
513
    c->function = KVM_CPUID_SIGNATURE;
514
    c->eax = 0;
515
    c->ebx = signature[0];
516
    c->ecx = signature[1];
517
    c->edx = signature[2];
518

    
519
    c = &cpuid_data.entries[cpuid_i++];
520
    memset(c, 0, sizeof(*c));
521
    c->function = KVM_CPUID_FEATURES;
522
    c->eax = env->cpuid_kvm_features & get_para_features(env);
523
#endif
524

    
525
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
526

    
527
    for (i = 0; i <= limit; i++) {
528
        c = &cpuid_data.entries[cpuid_i++];
529

    
530
        switch (i) {
531
        case 2: {
532
            /* Keep reading function 2 till all the input is received */
533
            int times;
534

    
535
            c->function = i;
536
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
537
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
538
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
539
            times = c->eax & 0xff;
540

    
541
            for (j = 1; j < times; ++j) {
542
                c = &cpuid_data.entries[cpuid_i++];
543
                c->function = i;
544
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
545
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
546
            }
547
            break;
548
        }
549
        case 4:
550
        case 0xb:
551
        case 0xd:
552
            for (j = 0; ; j++) {
553
                c->function = i;
554
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
555
                c->index = j;
556
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
557

    
558
                if (i == 4 && c->eax == 0) {
559
                    break;
560
                }
561
                if (i == 0xb && !(c->ecx & 0xff00)) {
562
                    break;
563
                }
564
                if (i == 0xd && c->eax == 0) {
565
                    break;
566
                }
567
                c = &cpuid_data.entries[cpuid_i++];
568
            }
569
            break;
570
        default:
571
            c->function = i;
572
            c->flags = 0;
573
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
574
            break;
575
        }
576
    }
577
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
578

    
579
    for (i = 0x80000000; i <= limit; i++) {
580
        c = &cpuid_data.entries[cpuid_i++];
581

    
582
        c->function = i;
583
        c->flags = 0;
584
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
585
    }
586

    
587
    cpuid_data.cpuid.nent = cpuid_i;
588

    
589
#ifdef KVM_CAP_MCE
590
    if (((env->cpuid_version >> 8)&0xF) >= 6
591
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
592
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
593
        uint64_t mcg_cap;
594
        int banks;
595

    
596
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
597
            perror("kvm_get_mce_cap_supported FAILED");
598
        } else {
599
            if (banks > MCE_BANKS_DEF)
600
                banks = MCE_BANKS_DEF;
601
            mcg_cap &= MCE_CAP_DEF;
602
            mcg_cap |= banks;
603
            if (kvm_setup_mce(env, &mcg_cap)) {
604
                perror("kvm_setup_mce FAILED");
605
            } else {
606
                env->mcg_cap = mcg_cap;
607
            }
608
        }
609
    }
610
#endif
611

    
612
    qemu_add_vm_change_state_handler(cpu_update_state, env);
613

    
614
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
615
}
616

    
617
void kvm_arch_reset_vcpu(CPUState *env)
618
{
619
    env->exception_injected = -1;
620
    env->interrupt_injected = -1;
621
    env->xcr0 = 1;
622
    if (kvm_irqchip_in_kernel()) {
623
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
624
                                          KVM_MP_STATE_UNINITIALIZED;
625
    } else {
626
        env->mp_state = KVM_MP_STATE_RUNNABLE;
627
    }
628
}
629

    
630
static int kvm_get_supported_msrs(KVMState *s)
631
{
632
    static int kvm_supported_msrs;
633
    int ret = 0;
634

    
635
    /* first time */
636
    if (kvm_supported_msrs == 0) {
637
        struct kvm_msr_list msr_list, *kvm_msr_list;
638

    
639
        kvm_supported_msrs = -1;
640

    
641
        /* Obtain MSR list from KVM.  These are the MSRs that we must
642
         * save/restore */
643
        msr_list.nmsrs = 0;
644
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
645
        if (ret < 0 && ret != -E2BIG) {
646
            return ret;
647
        }
648
        /* Old kernel modules had a bug and could write beyond the provided
649
           memory. Allocate at least a safe amount of 1K. */
650
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
651
                                              msr_list.nmsrs *
652
                                              sizeof(msr_list.indices[0])));
653

    
654
        kvm_msr_list->nmsrs = msr_list.nmsrs;
655
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
656
        if (ret >= 0) {
657
            int i;
658

    
659
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
660
                if (kvm_msr_list->indices[i] == MSR_STAR) {
661
                    has_msr_star = true;
662
                    continue;
663
                }
664
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
665
                    has_msr_hsave_pa = true;
666
                    continue;
667
                }
668
            }
669
        }
670

    
671
        free(kvm_msr_list);
672
    }
673

    
674
    return ret;
675
}
676

    
677
int kvm_arch_init(KVMState *s)
678
{
679
    uint64_t identity_base = 0xfffbc000;
680
    int ret;
681
    struct utsname utsname;
682

    
683
    ret = kvm_get_supported_msrs(s);
684
    if (ret < 0) {
685
        return ret;
686
    }
687

    
688
    uname(&utsname);
689
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
690

    
691
    /*
692
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
693
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
694
     * Since these must be part of guest physical memory, we need to allocate
695
     * them, both by setting their start addresses in the kernel and by
696
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
697
     *
698
     * Older KVM versions may not support setting the identity map base. In
699
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
700
     * size.
701
     */
702
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
703
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
704
        /* Allows up to 16M BIOSes. */
705
        identity_base = 0xfeffc000;
706

    
707
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
708
        if (ret < 0) {
709
            return ret;
710
        }
711
    }
712
#endif
713
    /* Set TSS base one page after EPT identity map. */
714
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
715
    if (ret < 0) {
716
        return ret;
717
    }
718

    
719
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
720
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
721
    if (ret < 0) {
722
        fprintf(stderr, "e820_add_entry() table is full\n");
723
        return ret;
724
    }
725

    
726
    return 0;
727
}
728

    
729
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
730
{
731
    lhs->selector = rhs->selector;
732
    lhs->base = rhs->base;
733
    lhs->limit = rhs->limit;
734
    lhs->type = 3;
735
    lhs->present = 1;
736
    lhs->dpl = 3;
737
    lhs->db = 0;
738
    lhs->s = 1;
739
    lhs->l = 0;
740
    lhs->g = 0;
741
    lhs->avl = 0;
742
    lhs->unusable = 0;
743
}
744

    
745
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
746
{
747
    unsigned flags = rhs->flags;
748
    lhs->selector = rhs->selector;
749
    lhs->base = rhs->base;
750
    lhs->limit = rhs->limit;
751
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
752
    lhs->present = (flags & DESC_P_MASK) != 0;
753
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
754
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
755
    lhs->s = (flags & DESC_S_MASK) != 0;
756
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
757
    lhs->g = (flags & DESC_G_MASK) != 0;
758
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
759
    lhs->unusable = 0;
760
}
761

    
762
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
763
{
764
    lhs->selector = rhs->selector;
765
    lhs->base = rhs->base;
766
    lhs->limit = rhs->limit;
767
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
768
                 (rhs->present * DESC_P_MASK) |
769
                 (rhs->dpl << DESC_DPL_SHIFT) |
770
                 (rhs->db << DESC_B_SHIFT) |
771
                 (rhs->s * DESC_S_MASK) |
772
                 (rhs->l << DESC_L_SHIFT) |
773
                 (rhs->g * DESC_G_MASK) |
774
                 (rhs->avl * DESC_AVL_MASK);
775
}
776

    
777
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
778
{
779
    if (set) {
780
        *kvm_reg = *qemu_reg;
781
    } else {
782
        *qemu_reg = *kvm_reg;
783
    }
784
}
785

    
786
static int kvm_getput_regs(CPUState *env, int set)
787
{
788
    struct kvm_regs regs;
789
    int ret = 0;
790

    
791
    if (!set) {
792
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
793
        if (ret < 0) {
794
            return ret;
795
        }
796
    }
797

    
798
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
799
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
800
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
801
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
802
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
803
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
804
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
805
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
806
#ifdef TARGET_X86_64
807
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
808
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
809
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
810
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
811
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
812
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
813
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
814
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
815
#endif
816

    
817
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
818
    kvm_getput_reg(&regs.rip, &env->eip, set);
819

    
820
    if (set) {
821
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
822
    }
823

    
824
    return ret;
825
}
826

    
827
static int kvm_put_fpu(CPUState *env)
828
{
829
    struct kvm_fpu fpu;
830
    int i;
831

    
832
    memset(&fpu, 0, sizeof fpu);
833
    fpu.fsw = env->fpus & ~(7 << 11);
834
    fpu.fsw |= (env->fpstt & 7) << 11;
835
    fpu.fcw = env->fpuc;
836
    for (i = 0; i < 8; ++i) {
837
        fpu.ftwx |= (!env->fptags[i]) << i;
838
    }
839
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
840
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
841
    fpu.mxcsr = env->mxcsr;
842

    
843
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
844
}
845

    
846
#ifdef KVM_CAP_XSAVE
847
#define XSAVE_CWD_RIP     2
848
#define XSAVE_CWD_RDP     4
849
#define XSAVE_MXCSR       6
850
#define XSAVE_ST_SPACE    8
851
#define XSAVE_XMM_SPACE   40
852
#define XSAVE_XSTATE_BV   128
853
#define XSAVE_YMMH_SPACE  144
854
#endif
855

    
856
static int kvm_put_xsave(CPUState *env)
857
{
858
#ifdef KVM_CAP_XSAVE
859
    int i, r;
860
    struct kvm_xsave* xsave;
861
    uint16_t cwd, swd, twd, fop;
862

    
863
    if (!kvm_has_xsave()) {
864
        return kvm_put_fpu(env);
865
    }
866

    
867
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
868
    memset(xsave, 0, sizeof(struct kvm_xsave));
869
    cwd = swd = twd = fop = 0;
870
    swd = env->fpus & ~(7 << 11);
871
    swd |= (env->fpstt & 7) << 11;
872
    cwd = env->fpuc;
873
    for (i = 0; i < 8; ++i) {
874
        twd |= (!env->fptags[i]) << i;
875
    }
876
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
877
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
878
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
879
            sizeof env->fpregs);
880
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
881
            sizeof env->xmm_regs);
882
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
883
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
884
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
885
            sizeof env->ymmh_regs);
886
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
887
    qemu_free(xsave);
888
    return r;
889
#else
890
    return kvm_put_fpu(env);
891
#endif
892
}
893

    
894
static int kvm_put_xcrs(CPUState *env)
895
{
896
#ifdef KVM_CAP_XCRS
897
    struct kvm_xcrs xcrs;
898

    
899
    if (!kvm_has_xcrs()) {
900
        return 0;
901
    }
902

    
903
    xcrs.nr_xcrs = 1;
904
    xcrs.flags = 0;
905
    xcrs.xcrs[0].xcr = 0;
906
    xcrs.xcrs[0].value = env->xcr0;
907
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
908
#else
909
    return 0;
910
#endif
911
}
912

    
913
static int kvm_put_sregs(CPUState *env)
914
{
915
    struct kvm_sregs sregs;
916

    
917
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
918
    if (env->interrupt_injected >= 0) {
919
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
920
                (uint64_t)1 << (env->interrupt_injected % 64);
921
    }
922

    
923
    if ((env->eflags & VM_MASK)) {
924
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
925
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
926
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
927
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
928
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
929
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
930
    } else {
931
        set_seg(&sregs.cs, &env->segs[R_CS]);
932
        set_seg(&sregs.ds, &env->segs[R_DS]);
933
        set_seg(&sregs.es, &env->segs[R_ES]);
934
        set_seg(&sregs.fs, &env->segs[R_FS]);
935
        set_seg(&sregs.gs, &env->segs[R_GS]);
936
        set_seg(&sregs.ss, &env->segs[R_SS]);
937
    }
938

    
939
    set_seg(&sregs.tr, &env->tr);
940
    set_seg(&sregs.ldt, &env->ldt);
941

    
942
    sregs.idt.limit = env->idt.limit;
943
    sregs.idt.base = env->idt.base;
944
    sregs.gdt.limit = env->gdt.limit;
945
    sregs.gdt.base = env->gdt.base;
946

    
947
    sregs.cr0 = env->cr[0];
948
    sregs.cr2 = env->cr[2];
949
    sregs.cr3 = env->cr[3];
950
    sregs.cr4 = env->cr[4];
951

    
952
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
953
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
954

    
955
    sregs.efer = env->efer;
956

    
957
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
958
}
959

    
960
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
961
                              uint32_t index, uint64_t value)
962
{
963
    entry->index = index;
964
    entry->data = value;
965
}
966

    
967
static int kvm_put_msrs(CPUState *env, int level)
968
{
969
    struct {
970
        struct kvm_msrs info;
971
        struct kvm_msr_entry entries[100];
972
    } msr_data;
973
    struct kvm_msr_entry *msrs = msr_data.entries;
974
    int n = 0;
975

    
976
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
977
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
978
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
979
    if (has_msr_star) {
980
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
981
    }
982
    if (has_msr_hsave_pa) {
983
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
984
    }
985
#ifdef TARGET_X86_64
986
    if (lm_capable_kernel) {
987
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
988
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
989
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
990
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
991
    }
992
#endif
993
    if (level == KVM_PUT_FULL_STATE) {
994
        /*
995
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
996
         * writeback. Until this is fixed, we only write the offset to SMP
997
         * guests after migration, desynchronizing the VCPUs, but avoiding
998
         * huge jump-backs that would occur without any writeback at all.
999
         */
1000
        if (smp_cpus == 1 || env->tsc != 0) {
1001
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1002
        }
1003
    }
1004
    /*
1005
     * The following paravirtual MSRs have side effects on the guest or are
1006
     * too heavy for normal writeback. Limit them to reset or full state
1007
     * updates.
1008
     */
1009
    if (level >= KVM_PUT_RESET_STATE) {
1010
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1011
                          env->system_time_msr);
1012
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1013
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1014
        if (has_msr_async_pf_en) {
1015
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1016
                              env->async_pf_en_msr);
1017
        }
1018
#endif
1019
    }
1020
#ifdef KVM_CAP_MCE
1021
    if (env->mcg_cap) {
1022
        int i;
1023

    
1024
        if (level == KVM_PUT_RESET_STATE) {
1025
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1026
        } else if (level == KVM_PUT_FULL_STATE) {
1027
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1028
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1029
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1030
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1031
            }
1032
        }
1033
    }
1034
#endif
1035

    
1036
    msr_data.info.nmsrs = n;
1037

    
1038
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1039

    
1040
}
1041

    
1042

    
1043
static int kvm_get_fpu(CPUState *env)
1044
{
1045
    struct kvm_fpu fpu;
1046
    int i, ret;
1047

    
1048
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1049
    if (ret < 0) {
1050
        return ret;
1051
    }
1052

    
1053
    env->fpstt = (fpu.fsw >> 11) & 7;
1054
    env->fpus = fpu.fsw;
1055
    env->fpuc = fpu.fcw;
1056
    for (i = 0; i < 8; ++i) {
1057
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1058
    }
1059
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1060
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1061
    env->mxcsr = fpu.mxcsr;
1062

    
1063
    return 0;
1064
}
1065

    
1066
static int kvm_get_xsave(CPUState *env)
1067
{
1068
#ifdef KVM_CAP_XSAVE
1069
    struct kvm_xsave* xsave;
1070
    int ret, i;
1071
    uint16_t cwd, swd, twd, fop;
1072

    
1073
    if (!kvm_has_xsave()) {
1074
        return kvm_get_fpu(env);
1075
    }
1076

    
1077
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
1078
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1079
    if (ret < 0) {
1080
        qemu_free(xsave);
1081
        return ret;
1082
    }
1083

    
1084
    cwd = (uint16_t)xsave->region[0];
1085
    swd = (uint16_t)(xsave->region[0] >> 16);
1086
    twd = (uint16_t)xsave->region[1];
1087
    fop = (uint16_t)(xsave->region[1] >> 16);
1088
    env->fpstt = (swd >> 11) & 7;
1089
    env->fpus = swd;
1090
    env->fpuc = cwd;
1091
    for (i = 0; i < 8; ++i) {
1092
        env->fptags[i] = !((twd >> i) & 1);
1093
    }
1094
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1095
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1096
            sizeof env->fpregs);
1097
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1098
            sizeof env->xmm_regs);
1099
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1100
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1101
            sizeof env->ymmh_regs);
1102
    qemu_free(xsave);
1103
    return 0;
1104
#else
1105
    return kvm_get_fpu(env);
1106
#endif
1107
}
1108

    
1109
static int kvm_get_xcrs(CPUState *env)
1110
{
1111
#ifdef KVM_CAP_XCRS
1112
    int i, ret;
1113
    struct kvm_xcrs xcrs;
1114

    
1115
    if (!kvm_has_xcrs()) {
1116
        return 0;
1117
    }
1118

    
1119
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1120
    if (ret < 0) {
1121
        return ret;
1122
    }
1123

    
1124
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1125
        /* Only support xcr0 now */
1126
        if (xcrs.xcrs[0].xcr == 0) {
1127
            env->xcr0 = xcrs.xcrs[0].value;
1128
            break;
1129
        }
1130
    }
1131
    return 0;
1132
#else
1133
    return 0;
1134
#endif
1135
}
1136

    
1137
static int kvm_get_sregs(CPUState *env)
1138
{
1139
    struct kvm_sregs sregs;
1140
    uint32_t hflags;
1141
    int bit, i, ret;
1142

    
1143
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1144
    if (ret < 0) {
1145
        return ret;
1146
    }
1147

    
1148
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1149
       to find it and save its number instead (-1 for none). */
1150
    env->interrupt_injected = -1;
1151
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1152
        if (sregs.interrupt_bitmap[i]) {
1153
            bit = ctz64(sregs.interrupt_bitmap[i]);
1154
            env->interrupt_injected = i * 64 + bit;
1155
            break;
1156
        }
1157
    }
1158

    
1159
    get_seg(&env->segs[R_CS], &sregs.cs);
1160
    get_seg(&env->segs[R_DS], &sregs.ds);
1161
    get_seg(&env->segs[R_ES], &sregs.es);
1162
    get_seg(&env->segs[R_FS], &sregs.fs);
1163
    get_seg(&env->segs[R_GS], &sregs.gs);
1164
    get_seg(&env->segs[R_SS], &sregs.ss);
1165

    
1166
    get_seg(&env->tr, &sregs.tr);
1167
    get_seg(&env->ldt, &sregs.ldt);
1168

    
1169
    env->idt.limit = sregs.idt.limit;
1170
    env->idt.base = sregs.idt.base;
1171
    env->gdt.limit = sregs.gdt.limit;
1172
    env->gdt.base = sregs.gdt.base;
1173

    
1174
    env->cr[0] = sregs.cr0;
1175
    env->cr[2] = sregs.cr2;
1176
    env->cr[3] = sregs.cr3;
1177
    env->cr[4] = sregs.cr4;
1178

    
1179
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1180

    
1181
    env->efer = sregs.efer;
1182
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1183

    
1184
#define HFLAG_COPY_MASK \
1185
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1186
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1187
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1188
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1189

    
1190
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1191
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1192
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1193
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1194
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1195
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1196
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1197

    
1198
    if (env->efer & MSR_EFER_LMA) {
1199
        hflags |= HF_LMA_MASK;
1200
    }
1201

    
1202
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1203
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1204
    } else {
1205
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1206
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1207
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1208
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1209
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1210
            !(hflags & HF_CS32_MASK)) {
1211
            hflags |= HF_ADDSEG_MASK;
1212
        } else {
1213
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1214
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1215
        }
1216
    }
1217
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1218

    
1219
    return 0;
1220
}
1221

    
1222
static int kvm_get_msrs(CPUState *env)
1223
{
1224
    struct {
1225
        struct kvm_msrs info;
1226
        struct kvm_msr_entry entries[100];
1227
    } msr_data;
1228
    struct kvm_msr_entry *msrs = msr_data.entries;
1229
    int ret, i, n;
1230

    
1231
    n = 0;
1232
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1233
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1234
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1235
    if (has_msr_star) {
1236
        msrs[n++].index = MSR_STAR;
1237
    }
1238
    if (has_msr_hsave_pa) {
1239
        msrs[n++].index = MSR_VM_HSAVE_PA;
1240
    }
1241

    
1242
    if (!env->tsc_valid) {
1243
        msrs[n++].index = MSR_IA32_TSC;
1244
        env->tsc_valid = !vm_running;
1245
    }
1246

    
1247
#ifdef TARGET_X86_64
1248
    if (lm_capable_kernel) {
1249
        msrs[n++].index = MSR_CSTAR;
1250
        msrs[n++].index = MSR_KERNELGSBASE;
1251
        msrs[n++].index = MSR_FMASK;
1252
        msrs[n++].index = MSR_LSTAR;
1253
    }
1254
#endif
1255
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1256
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1257
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1258
    if (has_msr_async_pf_en) {
1259
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1260
    }
1261
#endif
1262

    
1263
#ifdef KVM_CAP_MCE
1264
    if (env->mcg_cap) {
1265
        msrs[n++].index = MSR_MCG_STATUS;
1266
        msrs[n++].index = MSR_MCG_CTL;
1267
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1268
            msrs[n++].index = MSR_MC0_CTL + i;
1269
        }
1270
    }
1271
#endif
1272

    
1273
    msr_data.info.nmsrs = n;
1274
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1275
    if (ret < 0) {
1276
        return ret;
1277
    }
1278

    
1279
    for (i = 0; i < ret; i++) {
1280
        switch (msrs[i].index) {
1281
        case MSR_IA32_SYSENTER_CS:
1282
            env->sysenter_cs = msrs[i].data;
1283
            break;
1284
        case MSR_IA32_SYSENTER_ESP:
1285
            env->sysenter_esp = msrs[i].data;
1286
            break;
1287
        case MSR_IA32_SYSENTER_EIP:
1288
            env->sysenter_eip = msrs[i].data;
1289
            break;
1290
        case MSR_STAR:
1291
            env->star = msrs[i].data;
1292
            break;
1293
#ifdef TARGET_X86_64
1294
        case MSR_CSTAR:
1295
            env->cstar = msrs[i].data;
1296
            break;
1297
        case MSR_KERNELGSBASE:
1298
            env->kernelgsbase = msrs[i].data;
1299
            break;
1300
        case MSR_FMASK:
1301
            env->fmask = msrs[i].data;
1302
            break;
1303
        case MSR_LSTAR:
1304
            env->lstar = msrs[i].data;
1305
            break;
1306
#endif
1307
        case MSR_IA32_TSC:
1308
            env->tsc = msrs[i].data;
1309
            break;
1310
        case MSR_VM_HSAVE_PA:
1311
            env->vm_hsave = msrs[i].data;
1312
            break;
1313
        case MSR_KVM_SYSTEM_TIME:
1314
            env->system_time_msr = msrs[i].data;
1315
            break;
1316
        case MSR_KVM_WALL_CLOCK:
1317
            env->wall_clock_msr = msrs[i].data;
1318
            break;
1319
#ifdef KVM_CAP_MCE
1320
        case MSR_MCG_STATUS:
1321
            env->mcg_status = msrs[i].data;
1322
            break;
1323
        case MSR_MCG_CTL:
1324
            env->mcg_ctl = msrs[i].data;
1325
            break;
1326
#endif
1327
        default:
1328
#ifdef KVM_CAP_MCE
1329
            if (msrs[i].index >= MSR_MC0_CTL &&
1330
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1331
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1332
            }
1333
#endif
1334
            break;
1335
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1336
        case MSR_KVM_ASYNC_PF_EN:
1337
            env->async_pf_en_msr = msrs[i].data;
1338
            break;
1339
#endif
1340
        }
1341
    }
1342

    
1343
    return 0;
1344
}
1345

    
1346
static int kvm_put_mp_state(CPUState *env)
1347
{
1348
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1349

    
1350
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1351
}
1352

    
1353
static int kvm_get_mp_state(CPUState *env)
1354
{
1355
    struct kvm_mp_state mp_state;
1356
    int ret;
1357

    
1358
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1359
    if (ret < 0) {
1360
        return ret;
1361
    }
1362
    env->mp_state = mp_state.mp_state;
1363
    if (kvm_irqchip_in_kernel()) {
1364
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1365
    }
1366
    return 0;
1367
}
1368

    
1369
static int kvm_put_vcpu_events(CPUState *env, int level)
1370
{
1371
#ifdef KVM_CAP_VCPU_EVENTS
1372
    struct kvm_vcpu_events events;
1373

    
1374
    if (!kvm_has_vcpu_events()) {
1375
        return 0;
1376
    }
1377

    
1378
    events.exception.injected = (env->exception_injected >= 0);
1379
    events.exception.nr = env->exception_injected;
1380
    events.exception.has_error_code = env->has_error_code;
1381
    events.exception.error_code = env->error_code;
1382

    
1383
    events.interrupt.injected = (env->interrupt_injected >= 0);
1384
    events.interrupt.nr = env->interrupt_injected;
1385
    events.interrupt.soft = env->soft_interrupt;
1386

    
1387
    events.nmi.injected = env->nmi_injected;
1388
    events.nmi.pending = env->nmi_pending;
1389
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1390

    
1391
    events.sipi_vector = env->sipi_vector;
1392

    
1393
    events.flags = 0;
1394
    if (level >= KVM_PUT_RESET_STATE) {
1395
        events.flags |=
1396
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1397
    }
1398

    
1399
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1400
#else
1401
    return 0;
1402
#endif
1403
}
1404

    
1405
static int kvm_get_vcpu_events(CPUState *env)
1406
{
1407
#ifdef KVM_CAP_VCPU_EVENTS
1408
    struct kvm_vcpu_events events;
1409
    int ret;
1410

    
1411
    if (!kvm_has_vcpu_events()) {
1412
        return 0;
1413
    }
1414

    
1415
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1416
    if (ret < 0) {
1417
       return ret;
1418
    }
1419
    env->exception_injected =
1420
       events.exception.injected ? events.exception.nr : -1;
1421
    env->has_error_code = events.exception.has_error_code;
1422
    env->error_code = events.exception.error_code;
1423

    
1424
    env->interrupt_injected =
1425
        events.interrupt.injected ? events.interrupt.nr : -1;
1426
    env->soft_interrupt = events.interrupt.soft;
1427

    
1428
    env->nmi_injected = events.nmi.injected;
1429
    env->nmi_pending = events.nmi.pending;
1430
    if (events.nmi.masked) {
1431
        env->hflags2 |= HF2_NMI_MASK;
1432
    } else {
1433
        env->hflags2 &= ~HF2_NMI_MASK;
1434
    }
1435

    
1436
    env->sipi_vector = events.sipi_vector;
1437
#endif
1438

    
1439
    return 0;
1440
}
1441

    
1442
static int kvm_guest_debug_workarounds(CPUState *env)
1443
{
1444
    int ret = 0;
1445
#ifdef KVM_CAP_SET_GUEST_DEBUG
1446
    unsigned long reinject_trap = 0;
1447

    
1448
    if (!kvm_has_vcpu_events()) {
1449
        if (env->exception_injected == 1) {
1450
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1451
        } else if (env->exception_injected == 3) {
1452
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1453
        }
1454
        env->exception_injected = -1;
1455
    }
1456

    
1457
    /*
1458
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1459
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1460
     * by updating the debug state once again if single-stepping is on.
1461
     * Another reason to call kvm_update_guest_debug here is a pending debug
1462
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1463
     * reinject them via SET_GUEST_DEBUG.
1464
     */
1465
    if (reinject_trap ||
1466
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1467
        ret = kvm_update_guest_debug(env, reinject_trap);
1468
    }
1469
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1470
    return ret;
1471
}
1472

    
1473
static int kvm_put_debugregs(CPUState *env)
1474
{
1475
#ifdef KVM_CAP_DEBUGREGS
1476
    struct kvm_debugregs dbgregs;
1477
    int i;
1478

    
1479
    if (!kvm_has_debugregs()) {
1480
        return 0;
1481
    }
1482

    
1483
    for (i = 0; i < 4; i++) {
1484
        dbgregs.db[i] = env->dr[i];
1485
    }
1486
    dbgregs.dr6 = env->dr[6];
1487
    dbgregs.dr7 = env->dr[7];
1488
    dbgregs.flags = 0;
1489

    
1490
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1491
#else
1492
    return 0;
1493
#endif
1494
}
1495

    
1496
static int kvm_get_debugregs(CPUState *env)
1497
{
1498
#ifdef KVM_CAP_DEBUGREGS
1499
    struct kvm_debugregs dbgregs;
1500
    int i, ret;
1501

    
1502
    if (!kvm_has_debugregs()) {
1503
        return 0;
1504
    }
1505

    
1506
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1507
    if (ret < 0) {
1508
        return ret;
1509
    }
1510
    for (i = 0; i < 4; i++) {
1511
        env->dr[i] = dbgregs.db[i];
1512
    }
1513
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1514
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1515
#endif
1516

    
1517
    return 0;
1518
}
1519

    
1520
int kvm_arch_put_registers(CPUState *env, int level)
1521
{
1522
    int ret;
1523

    
1524
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1525

    
1526
    ret = kvm_getput_regs(env, 1);
1527
    if (ret < 0) {
1528
        return ret;
1529
    }
1530
    ret = kvm_put_xsave(env);
1531
    if (ret < 0) {
1532
        return ret;
1533
    }
1534
    ret = kvm_put_xcrs(env);
1535
    if (ret < 0) {
1536
        return ret;
1537
    }
1538
    ret = kvm_put_sregs(env);
1539
    if (ret < 0) {
1540
        return ret;
1541
    }
1542
    ret = kvm_put_msrs(env, level);
1543
    if (ret < 0) {
1544
        return ret;
1545
    }
1546
    if (level >= KVM_PUT_RESET_STATE) {
1547
        ret = kvm_put_mp_state(env);
1548
        if (ret < 0) {
1549
            return ret;
1550
        }
1551
    }
1552
    ret = kvm_put_vcpu_events(env, level);
1553
    if (ret < 0) {
1554
        return ret;
1555
    }
1556
    ret = kvm_put_debugregs(env);
1557
    if (ret < 0) {
1558
        return ret;
1559
    }
1560
    /* must be last */
1561
    ret = kvm_guest_debug_workarounds(env);
1562
    if (ret < 0) {
1563
        return ret;
1564
    }
1565
    return 0;
1566
}
1567

    
1568
int kvm_arch_get_registers(CPUState *env)
1569
{
1570
    int ret;
1571

    
1572
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1573

    
1574
    ret = kvm_getput_regs(env, 0);
1575
    if (ret < 0) {
1576
        return ret;
1577
    }
1578
    ret = kvm_get_xsave(env);
1579
    if (ret < 0) {
1580
        return ret;
1581
    }
1582
    ret = kvm_get_xcrs(env);
1583
    if (ret < 0) {
1584
        return ret;
1585
    }
1586
    ret = kvm_get_sregs(env);
1587
    if (ret < 0) {
1588
        return ret;
1589
    }
1590
    ret = kvm_get_msrs(env);
1591
    if (ret < 0) {
1592
        return ret;
1593
    }
1594
    ret = kvm_get_mp_state(env);
1595
    if (ret < 0) {
1596
        return ret;
1597
    }
1598
    ret = kvm_get_vcpu_events(env);
1599
    if (ret < 0) {
1600
        return ret;
1601
    }
1602
    ret = kvm_get_debugregs(env);
1603
    if (ret < 0) {
1604
        return ret;
1605
    }
1606
    return 0;
1607
}
1608

    
1609
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1610
{
1611
    int ret;
1612

    
1613
    /* Inject NMI */
1614
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1615
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1616
        DPRINTF("injected NMI\n");
1617
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1618
        if (ret < 0) {
1619
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1620
                    strerror(-ret));
1621
        }
1622
    }
1623

    
1624
    if (!kvm_irqchip_in_kernel()) {
1625
        /* Force the VCPU out of its inner loop to process the INIT request */
1626
        if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1627
            env->exit_request = 1;
1628
        }
1629

    
1630
        /* Try to inject an interrupt if the guest can accept it */
1631
        if (run->ready_for_interrupt_injection &&
1632
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1633
            (env->eflags & IF_MASK)) {
1634
            int irq;
1635

    
1636
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1637
            irq = cpu_get_pic_interrupt(env);
1638
            if (irq >= 0) {
1639
                struct kvm_interrupt intr;
1640

    
1641
                intr.irq = irq;
1642
                DPRINTF("injected interrupt %d\n", irq);
1643
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1644
                if (ret < 0) {
1645
                    fprintf(stderr,
1646
                            "KVM: injection failed, interrupt lost (%s)\n",
1647
                            strerror(-ret));
1648
                }
1649
            }
1650
        }
1651

    
1652
        /* If we have an interrupt but the guest is not ready to receive an
1653
         * interrupt, request an interrupt window exit.  This will
1654
         * cause a return to userspace as soon as the guest is ready to
1655
         * receive interrupts. */
1656
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1657
            run->request_interrupt_window = 1;
1658
        } else {
1659
            run->request_interrupt_window = 0;
1660
        }
1661

    
1662
        DPRINTF("setting tpr\n");
1663
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1664
    }
1665
}
1666

    
1667
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1668
{
1669
    if (run->if_flag) {
1670
        env->eflags |= IF_MASK;
1671
    } else {
1672
        env->eflags &= ~IF_MASK;
1673
    }
1674
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1675
    cpu_set_apic_base(env->apic_state, run->apic_base);
1676
}
1677

    
1678
int kvm_arch_process_irqchip_events(CPUState *env)
1679
{
1680
    if (kvm_irqchip_in_kernel()) {
1681
        return 0;
1682
    }
1683

    
1684
    if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1685
        env->halted = 0;
1686
    }
1687
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1688
        kvm_cpu_synchronize_state(env);
1689
        do_cpu_init(env);
1690
    }
1691
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1692
        kvm_cpu_synchronize_state(env);
1693
        do_cpu_sipi(env);
1694
    }
1695

    
1696
    return env->halted;
1697
}
1698

    
1699
static int kvm_handle_halt(CPUState *env)
1700
{
1701
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1702
          (env->eflags & IF_MASK)) &&
1703
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1704
        env->halted = 1;
1705
        return 0;
1706
    }
1707

    
1708
    return 1;
1709
}
1710

    
1711
static bool host_supports_vmx(void)
1712
{
1713
    uint32_t ecx, unused;
1714

    
1715
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1716
    return ecx & CPUID_EXT_VMX;
1717
}
1718

    
1719
#define VMX_INVALID_GUEST_STATE 0x80000021
1720

    
1721
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1722
{
1723
    uint64_t code;
1724
    int ret = 0;
1725

    
1726
    switch (run->exit_reason) {
1727
    case KVM_EXIT_HLT:
1728
        DPRINTF("handle_hlt\n");
1729
        ret = kvm_handle_halt(env);
1730
        break;
1731
    case KVM_EXIT_SET_TPR:
1732
        ret = 1;
1733
        break;
1734
    case KVM_EXIT_FAIL_ENTRY:
1735
        code = run->fail_entry.hardware_entry_failure_reason;
1736
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1737
                code);
1738
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1739
            fprintf(stderr,
1740
                    "\nIf you're runnning a guest on an Intel machine without "
1741
                        "unrestricted mode\n"
1742
                    "support, the failure can be most likely due to the guest "
1743
                        "entering an invalid\n"
1744
                    "state for Intel VT. For example, the guest maybe running "
1745
                        "in big real mode\n"
1746
                    "which is not supported on less recent Intel processors."
1747
                        "\n\n");
1748
        }
1749
        ret = -1;
1750
        break;
1751
    case KVM_EXIT_EXCEPTION:
1752
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1753
                run->ex.exception, run->ex.error_code);
1754
        ret = -1;
1755
        break;
1756
    default:
1757
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1758
        ret = -1;
1759
        break;
1760
    }
1761

    
1762
    return ret;
1763
}
1764

    
1765
#ifdef KVM_CAP_SET_GUEST_DEBUG
1766
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1767
{
1768
    static const uint8_t int3 = 0xcc;
1769

    
1770
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1771
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1772
        return -EINVAL;
1773
    }
1774
    return 0;
1775
}
1776

    
1777
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1778
{
1779
    uint8_t int3;
1780

    
1781
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1782
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1783
        return -EINVAL;
1784
    }
1785
    return 0;
1786
}
1787

    
1788
static struct {
1789
    target_ulong addr;
1790
    int len;
1791
    int type;
1792
} hw_breakpoint[4];
1793

    
1794
static int nb_hw_breakpoint;
1795

    
1796
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1797
{
1798
    int n;
1799

    
1800
    for (n = 0; n < nb_hw_breakpoint; n++) {
1801
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1802
            (hw_breakpoint[n].len == len || len == -1)) {
1803
            return n;
1804
        }
1805
    }
1806
    return -1;
1807
}
1808

    
1809
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1810
                                  target_ulong len, int type)
1811
{
1812
    switch (type) {
1813
    case GDB_BREAKPOINT_HW:
1814
        len = 1;
1815
        break;
1816
    case GDB_WATCHPOINT_WRITE:
1817
    case GDB_WATCHPOINT_ACCESS:
1818
        switch (len) {
1819
        case 1:
1820
            break;
1821
        case 2:
1822
        case 4:
1823
        case 8:
1824
            if (addr & (len - 1)) {
1825
                return -EINVAL;
1826
            }
1827
            break;
1828
        default:
1829
            return -EINVAL;
1830
        }
1831
        break;
1832
    default:
1833
        return -ENOSYS;
1834
    }
1835

    
1836
    if (nb_hw_breakpoint == 4) {
1837
        return -ENOBUFS;
1838
    }
1839
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1840
        return -EEXIST;
1841
    }
1842
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1843
    hw_breakpoint[nb_hw_breakpoint].len = len;
1844
    hw_breakpoint[nb_hw_breakpoint].type = type;
1845
    nb_hw_breakpoint++;
1846

    
1847
    return 0;
1848
}
1849

    
1850
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1851
                                  target_ulong len, int type)
1852
{
1853
    int n;
1854

    
1855
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1856
    if (n < 0) {
1857
        return -ENOENT;
1858
    }
1859
    nb_hw_breakpoint--;
1860
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1861

    
1862
    return 0;
1863
}
1864

    
1865
void kvm_arch_remove_all_hw_breakpoints(void)
1866
{
1867
    nb_hw_breakpoint = 0;
1868
}
1869

    
1870
static CPUWatchpoint hw_watchpoint;
1871

    
1872
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1873
{
1874
    int handle = 0;
1875
    int n;
1876

    
1877
    if (arch_info->exception == 1) {
1878
        if (arch_info->dr6 & (1 << 14)) {
1879
            if (cpu_single_env->singlestep_enabled) {
1880
                handle = 1;
1881
            }
1882
        } else {
1883
            for (n = 0; n < 4; n++) {
1884
                if (arch_info->dr6 & (1 << n)) {
1885
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1886
                    case 0x0:
1887
                        handle = 1;
1888
                        break;
1889
                    case 0x1:
1890
                        handle = 1;
1891
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1892
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1893
                        hw_watchpoint.flags = BP_MEM_WRITE;
1894
                        break;
1895
                    case 0x3:
1896
                        handle = 1;
1897
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1898
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1899
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1900
                        break;
1901
                    }
1902
                }
1903
            }
1904
        }
1905
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1906
        handle = 1;
1907
    }
1908
    if (!handle) {
1909
        cpu_synchronize_state(cpu_single_env);
1910
        assert(cpu_single_env->exception_injected == -1);
1911

    
1912
        cpu_single_env->exception_injected = arch_info->exception;
1913
        cpu_single_env->has_error_code = 0;
1914
    }
1915

    
1916
    return handle;
1917
}
1918

    
1919
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1920
{
1921
    const uint8_t type_code[] = {
1922
        [GDB_BREAKPOINT_HW] = 0x0,
1923
        [GDB_WATCHPOINT_WRITE] = 0x1,
1924
        [GDB_WATCHPOINT_ACCESS] = 0x3
1925
    };
1926
    const uint8_t len_code[] = {
1927
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1928
    };
1929
    int n;
1930

    
1931
    if (kvm_sw_breakpoints_active(env)) {
1932
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1933
    }
1934
    if (nb_hw_breakpoint > 0) {
1935
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1936
        dbg->arch.debugreg[7] = 0x0600;
1937
        for (n = 0; n < nb_hw_breakpoint; n++) {
1938
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1939
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1940
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1941
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1942
        }
1943
    }
1944
}
1945
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1946

    
1947
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1948
{
1949
    return !(env->cr[0] & CR0_PE_MASK) ||
1950
           ((env->segs[R_CS].selector  & 3) != 3);
1951
}