Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 42fc73a1

History | View | Annotate | Download (19.1 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "qemu-timer.h"
26
#include "sysemu.h"
27
#include "pc.h"
28
#include "isa.h"
29
#include "hpet_emul.h"
30

    
31
//#define DEBUG_CMOS
32

    
33
#define RTC_SECONDS             0
34
#define RTC_SECONDS_ALARM       1
35
#define RTC_MINUTES             2
36
#define RTC_MINUTES_ALARM       3
37
#define RTC_HOURS               4
38
#define RTC_HOURS_ALARM         5
39
#define RTC_ALARM_DONT_CARE    0xC0
40

    
41
#define RTC_DAY_OF_WEEK         6
42
#define RTC_DAY_OF_MONTH        7
43
#define RTC_MONTH               8
44
#define RTC_YEAR                9
45

    
46
#define RTC_REG_A               10
47
#define RTC_REG_B               11
48
#define RTC_REG_C               12
49
#define RTC_REG_D               13
50

    
51
#define REG_A_UIP 0x80
52

    
53
#define REG_B_SET 0x80
54
#define REG_B_PIE 0x40
55
#define REG_B_AIE 0x20
56
#define REG_B_UIE 0x10
57
#define REG_B_DM  0x04
58

    
59
struct RTCState {
60
    uint8_t cmos_data[128];
61
    uint8_t cmos_index;
62
    struct tm current_tm;
63
    int base_year;
64
    qemu_irq irq;
65
    int it_shift;
66
    /* periodic timer */
67
    QEMUTimer *periodic_timer;
68
    int64_t next_periodic_time;
69
    /* second update */
70
    int64_t next_second_time;
71
#ifdef TARGET_I386
72
    uint32_t irq_coalesced;
73
    uint32_t period;
74
#endif
75
    QEMUTimer *second_timer;
76
    QEMUTimer *second_timer2;
77
};
78

    
79
static void rtc_irq_raise(qemu_irq irq) {
80
    /* When HPET is operating in legacy mode, RTC interrupts are disabled
81
     * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
82
     * mode is established while interrupt is raised. We want it to
83
     * be lowered in any case
84
     */
85
#if defined TARGET_I386 || defined TARGET_X86_64
86
    if (!hpet_in_legacy_mode())
87
#endif
88
        qemu_irq_raise(irq);
89
}
90

    
91
static void rtc_set_time(RTCState *s);
92
static void rtc_copy_date(RTCState *s);
93

    
94
static void rtc_timer_update(RTCState *s, int64_t current_time)
95
{
96
    int period_code, period;
97
    int64_t cur_clock, next_irq_clock;
98

    
99
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
100
#if defined TARGET_I386 || defined TARGET_X86_64
101
    /* disable periodic timer if hpet is in legacy mode, since interrupts are
102
     * disabled anyway.
103
     */
104
    if (period_code != 0 && (s->cmos_data[RTC_REG_B] & REG_B_PIE) && !hpet_in_legacy_mode()) {
105
#else
106
    if (period_code != 0 && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
107
#endif
108
        if (period_code <= 2)
109
            period_code += 7;
110
        /* period in 32 Khz cycles */
111
        period = 1 << (period_code - 1);
112
#ifdef TARGET_I386
113
        if(period != s->period)
114
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
115
        s->period = period;
116
#endif
117
        /* compute 32 khz clock */
118
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
119
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
120
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
121
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
122
    } else {
123
#ifdef TARGET_I386
124
        s->irq_coalesced = 0;
125
#endif
126
        qemu_del_timer(s->periodic_timer);
127
    }
128
}
129

    
130
static void rtc_periodic_timer(void *opaque)
131
{
132
    RTCState *s = opaque;
133

    
134
    rtc_timer_update(s, s->next_periodic_time);
135
#ifdef TARGET_I386
136
    if ((s->cmos_data[RTC_REG_C] & 0xc0) && rtc_td_hack) {
137
        s->irq_coalesced++;
138
        return;
139
    }
140
#endif
141
    s->cmos_data[RTC_REG_C] |= 0xc0;
142
    rtc_irq_raise(s->irq);
143
}
144

    
145
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
146
{
147
    RTCState *s = opaque;
148

    
149
    if ((addr & 1) == 0) {
150
        s->cmos_index = data & 0x7f;
151
    } else {
152
#ifdef DEBUG_CMOS
153
        printf("cmos: write index=0x%02x val=0x%02x\n",
154
               s->cmos_index, data);
155
#endif
156
        switch(s->cmos_index) {
157
        case RTC_SECONDS_ALARM:
158
        case RTC_MINUTES_ALARM:
159
        case RTC_HOURS_ALARM:
160
            /* XXX: not supported */
161
            s->cmos_data[s->cmos_index] = data;
162
            break;
163
        case RTC_SECONDS:
164
        case RTC_MINUTES:
165
        case RTC_HOURS:
166
        case RTC_DAY_OF_WEEK:
167
        case RTC_DAY_OF_MONTH:
168
        case RTC_MONTH:
169
        case RTC_YEAR:
170
            s->cmos_data[s->cmos_index] = data;
171
            /* if in set mode, do not update the time */
172
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
173
                rtc_set_time(s);
174
            }
175
            break;
176
        case RTC_REG_A:
177
            /* UIP bit is read only */
178
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
179
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
180
            rtc_timer_update(s, qemu_get_clock(vm_clock));
181
            break;
182
        case RTC_REG_B:
183
            if (data & REG_B_SET) {
184
                /* set mode: reset UIP mode */
185
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
186
                data &= ~REG_B_UIE;
187
            } else {
188
                /* if disabling set mode, update the time */
189
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
190
                    rtc_set_time(s);
191
                }
192
            }
193
            s->cmos_data[RTC_REG_B] = data;
194
            rtc_timer_update(s, qemu_get_clock(vm_clock));
195
            break;
196
        case RTC_REG_C:
197
        case RTC_REG_D:
198
            /* cannot write to them */
199
            break;
200
        default:
201
            s->cmos_data[s->cmos_index] = data;
202
            break;
203
        }
204
    }
205
}
206

    
207
static inline int to_bcd(RTCState *s, int a)
208
{
209
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
210
        return a;
211
    } else {
212
        return ((a / 10) << 4) | (a % 10);
213
    }
214
}
215

    
216
static inline int from_bcd(RTCState *s, int a)
217
{
218
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
219
        return a;
220
    } else {
221
        return ((a >> 4) * 10) + (a & 0x0f);
222
    }
223
}
224

    
225
static void rtc_set_time(RTCState *s)
226
{
227
    struct tm *tm = &s->current_tm;
228

    
229
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
230
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
231
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
232
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
233
        (s->cmos_data[RTC_HOURS] & 0x80)) {
234
        tm->tm_hour += 12;
235
    }
236
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
237
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
238
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
239
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
240
}
241

    
242
static void rtc_copy_date(RTCState *s)
243
{
244
    const struct tm *tm = &s->current_tm;
245
    int year;
246

    
247
    s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
248
    s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
249
    if (s->cmos_data[RTC_REG_B] & 0x02) {
250
        /* 24 hour format */
251
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
252
    } else {
253
        /* 12 hour format */
254
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
255
        if (tm->tm_hour >= 12)
256
            s->cmos_data[RTC_HOURS] |= 0x80;
257
    }
258
    s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
259
    s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
260
    s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
261
    year = (tm->tm_year - s->base_year) % 100;
262
    if (year < 0)
263
        year += 100;
264
    s->cmos_data[RTC_YEAR] = to_bcd(s, year);
265
}
266

    
267
/* month is between 0 and 11. */
268
static int get_days_in_month(int month, int year)
269
{
270
    static const int days_tab[12] = {
271
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
272
    };
273
    int d;
274
    if ((unsigned )month >= 12)
275
        return 31;
276
    d = days_tab[month];
277
    if (month == 1) {
278
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
279
            d++;
280
    }
281
    return d;
282
}
283

    
284
/* update 'tm' to the next second */
285
static void rtc_next_second(struct tm *tm)
286
{
287
    int days_in_month;
288

    
289
    tm->tm_sec++;
290
    if ((unsigned)tm->tm_sec >= 60) {
291
        tm->tm_sec = 0;
292
        tm->tm_min++;
293
        if ((unsigned)tm->tm_min >= 60) {
294
            tm->tm_min = 0;
295
            tm->tm_hour++;
296
            if ((unsigned)tm->tm_hour >= 24) {
297
                tm->tm_hour = 0;
298
                /* next day */
299
                tm->tm_wday++;
300
                if ((unsigned)tm->tm_wday >= 7)
301
                    tm->tm_wday = 0;
302
                days_in_month = get_days_in_month(tm->tm_mon,
303
                                                  tm->tm_year + 1900);
304
                tm->tm_mday++;
305
                if (tm->tm_mday < 1) {
306
                    tm->tm_mday = 1;
307
                } else if (tm->tm_mday > days_in_month) {
308
                    tm->tm_mday = 1;
309
                    tm->tm_mon++;
310
                    if (tm->tm_mon >= 12) {
311
                        tm->tm_mon = 0;
312
                        tm->tm_year++;
313
                    }
314
                }
315
            }
316
        }
317
    }
318
}
319

    
320

    
321
static void rtc_update_second(void *opaque)
322
{
323
    RTCState *s = opaque;
324
    int64_t delay;
325

    
326
    /* if the oscillator is not in normal operation, we do not update */
327
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
328
        s->next_second_time += ticks_per_sec;
329
        qemu_mod_timer(s->second_timer, s->next_second_time);
330
    } else {
331
        rtc_next_second(&s->current_tm);
332

    
333
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
334
            /* update in progress bit */
335
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
336
        }
337
        /* should be 244 us = 8 / 32768 seconds, but currently the
338
           timers do not have the necessary resolution. */
339
        delay = (ticks_per_sec * 1) / 100;
340
        if (delay < 1)
341
            delay = 1;
342
        qemu_mod_timer(s->second_timer2,
343
                       s->next_second_time + delay);
344
    }
345
}
346

    
347
static void rtc_update_second2(void *opaque)
348
{
349
    RTCState *s = opaque;
350

    
351
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
352
        rtc_copy_date(s);
353
    }
354

    
355
    /* check alarm */
356
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
357
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
358
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
359
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
360
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
361
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
362
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
363

    
364
            s->cmos_data[RTC_REG_C] |= 0xa0;
365
            rtc_irq_raise(s->irq);
366
        }
367
    }
368

    
369
    /* update ended interrupt */
370
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
371
        s->cmos_data[RTC_REG_C] |= 0x90;
372
        rtc_irq_raise(s->irq);
373
    }
374

    
375
    /* clear update in progress bit */
376
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
377

    
378
    s->next_second_time += ticks_per_sec;
379
    qemu_mod_timer(s->second_timer, s->next_second_time);
380
}
381

    
382
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
383
{
384
    RTCState *s = opaque;
385
    int ret;
386
    if ((addr & 1) == 0) {
387
        return 0xff;
388
    } else {
389
        switch(s->cmos_index) {
390
        case RTC_SECONDS:
391
        case RTC_MINUTES:
392
        case RTC_HOURS:
393
        case RTC_DAY_OF_WEEK:
394
        case RTC_DAY_OF_MONTH:
395
        case RTC_MONTH:
396
        case RTC_YEAR:
397
            ret = s->cmos_data[s->cmos_index];
398
            break;
399
        case RTC_REG_A:
400
            ret = s->cmos_data[s->cmos_index];
401
            break;
402
        case RTC_REG_C:
403
            ret = s->cmos_data[s->cmos_index];
404
            qemu_irq_lower(s->irq);
405
#ifdef TARGET_I386
406
            if(s->irq_coalesced) {
407
                apic_reset_irq_delivered();
408
                qemu_irq_raise(s->irq);
409
                if (apic_get_irq_delivered())
410
                    s->irq_coalesced--;
411
                break;
412
            }
413
#endif
414
            s->cmos_data[RTC_REG_C] = 0x00;
415
            break;
416
        default:
417
            ret = s->cmos_data[s->cmos_index];
418
            break;
419
        }
420
#ifdef DEBUG_CMOS
421
        printf("cmos: read index=0x%02x val=0x%02x\n",
422
               s->cmos_index, ret);
423
#endif
424
        return ret;
425
    }
426
}
427

    
428
void rtc_set_memory(RTCState *s, int addr, int val)
429
{
430
    if (addr >= 0 && addr <= 127)
431
        s->cmos_data[addr] = val;
432
}
433

    
434
void rtc_set_date(RTCState *s, const struct tm *tm)
435
{
436
    s->current_tm = *tm;
437
    rtc_copy_date(s);
438
}
439

    
440
/* PC cmos mappings */
441
#define REG_IBM_CENTURY_BYTE        0x32
442
#define REG_IBM_PS2_CENTURY_BYTE    0x37
443

    
444
static void rtc_set_date_from_host(RTCState *s)
445
{
446
    struct tm tm;
447
    int val;
448

    
449
    /* set the CMOS date */
450
    qemu_get_timedate(&tm, 0);
451
    rtc_set_date(s, &tm);
452

    
453
    val = to_bcd(s, (tm.tm_year / 100) + 19);
454
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
455
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
456
}
457

    
458
static void rtc_save(QEMUFile *f, void *opaque)
459
{
460
    RTCState *s = opaque;
461

    
462
    qemu_put_buffer(f, s->cmos_data, 128);
463
    qemu_put_8s(f, &s->cmos_index);
464

    
465
    qemu_put_be32(f, s->current_tm.tm_sec);
466
    qemu_put_be32(f, s->current_tm.tm_min);
467
    qemu_put_be32(f, s->current_tm.tm_hour);
468
    qemu_put_be32(f, s->current_tm.tm_wday);
469
    qemu_put_be32(f, s->current_tm.tm_mday);
470
    qemu_put_be32(f, s->current_tm.tm_mon);
471
    qemu_put_be32(f, s->current_tm.tm_year);
472

    
473
    qemu_put_timer(f, s->periodic_timer);
474
    qemu_put_be64(f, s->next_periodic_time);
475

    
476
    qemu_put_be64(f, s->next_second_time);
477
    qemu_put_timer(f, s->second_timer);
478
    qemu_put_timer(f, s->second_timer2);
479
}
480

    
481
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
482
{
483
    RTCState *s = opaque;
484

    
485
    if (version_id != 1)
486
        return -EINVAL;
487

    
488
    qemu_get_buffer(f, s->cmos_data, 128);
489
    qemu_get_8s(f, &s->cmos_index);
490

    
491
    s->current_tm.tm_sec=qemu_get_be32(f);
492
    s->current_tm.tm_min=qemu_get_be32(f);
493
    s->current_tm.tm_hour=qemu_get_be32(f);
494
    s->current_tm.tm_wday=qemu_get_be32(f);
495
    s->current_tm.tm_mday=qemu_get_be32(f);
496
    s->current_tm.tm_mon=qemu_get_be32(f);
497
    s->current_tm.tm_year=qemu_get_be32(f);
498

    
499
    qemu_get_timer(f, s->periodic_timer);
500
    s->next_periodic_time=qemu_get_be64(f);
501

    
502
    s->next_second_time=qemu_get_be64(f);
503
    qemu_get_timer(f, s->second_timer);
504
    qemu_get_timer(f, s->second_timer2);
505
    return 0;
506
}
507

    
508
#ifdef TARGET_I386
509
static void rtc_save_td(QEMUFile *f, void *opaque)
510
{
511
    RTCState *s = opaque;
512

    
513
    qemu_put_be32(f, s->irq_coalesced);
514
    qemu_put_be32(f, s->period);
515
}
516

    
517
static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
518
{
519
    RTCState *s = opaque;
520

    
521
    if (version_id != 1)
522
        return -EINVAL;
523

    
524
    s->irq_coalesced = qemu_get_be32(f);
525
    s->period = qemu_get_be32(f);
526
    return 0;
527
}
528
#endif
529

    
530
RTCState *rtc_init(int base, qemu_irq irq, int base_year)
531
{
532
    RTCState *s;
533

    
534
    s = qemu_mallocz(sizeof(RTCState));
535
    if (!s)
536
        return NULL;
537

    
538
    s->irq = irq;
539
    s->cmos_data[RTC_REG_A] = 0x26;
540
    s->cmos_data[RTC_REG_B] = 0x02;
541
    s->cmos_data[RTC_REG_C] = 0x00;
542
    s->cmos_data[RTC_REG_D] = 0x80;
543

    
544
    s->base_year = base_year;
545
    rtc_set_date_from_host(s);
546

    
547
    s->periodic_timer = qemu_new_timer(vm_clock,
548
                                       rtc_periodic_timer, s);
549
    s->second_timer = qemu_new_timer(vm_clock,
550
                                     rtc_update_second, s);
551
    s->second_timer2 = qemu_new_timer(vm_clock,
552
                                      rtc_update_second2, s);
553

    
554
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
555
    qemu_mod_timer(s->second_timer2, s->next_second_time);
556

    
557
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
558
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
559

    
560
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
561
#ifdef TARGET_I386
562
    if (rtc_td_hack)
563
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
564
#endif
565
    return s;
566
}
567

    
568
/* Memory mapped interface */
569
static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
570
{
571
    RTCState *s = opaque;
572

    
573
    return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
574
}
575

    
576
static void cmos_mm_writeb (void *opaque,
577
                            target_phys_addr_t addr, uint32_t value)
578
{
579
    RTCState *s = opaque;
580

    
581
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
582
}
583

    
584
static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
585
{
586
    RTCState *s = opaque;
587
    uint32_t val;
588

    
589
    val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
590
#ifdef TARGET_WORDS_BIGENDIAN
591
    val = bswap16(val);
592
#endif
593
    return val;
594
}
595

    
596
static void cmos_mm_writew (void *opaque,
597
                            target_phys_addr_t addr, uint32_t value)
598
{
599
    RTCState *s = opaque;
600
#ifdef TARGET_WORDS_BIGENDIAN
601
    value = bswap16(value);
602
#endif
603
    cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
604
}
605

    
606
static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
607
{
608
    RTCState *s = opaque;
609
    uint32_t val;
610

    
611
    val = cmos_ioport_read(s, addr >> s->it_shift);
612
#ifdef TARGET_WORDS_BIGENDIAN
613
    val = bswap32(val);
614
#endif
615
    return val;
616
}
617

    
618
static void cmos_mm_writel (void *opaque,
619
                            target_phys_addr_t addr, uint32_t value)
620
{
621
    RTCState *s = opaque;
622
#ifdef TARGET_WORDS_BIGENDIAN
623
    value = bswap32(value);
624
#endif
625
    cmos_ioport_write(s, addr >> s->it_shift, value);
626
}
627

    
628
static CPUReadMemoryFunc *rtc_mm_read[] = {
629
    &cmos_mm_readb,
630
    &cmos_mm_readw,
631
    &cmos_mm_readl,
632
};
633

    
634
static CPUWriteMemoryFunc *rtc_mm_write[] = {
635
    &cmos_mm_writeb,
636
    &cmos_mm_writew,
637
    &cmos_mm_writel,
638
};
639

    
640
RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
641
                      int base_year)
642
{
643
    RTCState *s;
644
    int io_memory;
645

    
646
    s = qemu_mallocz(sizeof(RTCState));
647
    if (!s)
648
        return NULL;
649

    
650
    s->irq = irq;
651
    s->cmos_data[RTC_REG_A] = 0x26;
652
    s->cmos_data[RTC_REG_B] = 0x02;
653
    s->cmos_data[RTC_REG_C] = 0x00;
654
    s->cmos_data[RTC_REG_D] = 0x80;
655

    
656
    s->base_year = base_year;
657
    rtc_set_date_from_host(s);
658

    
659
    s->periodic_timer = qemu_new_timer(vm_clock,
660
                                       rtc_periodic_timer, s);
661
    s->second_timer = qemu_new_timer(vm_clock,
662
                                     rtc_update_second, s);
663
    s->second_timer2 = qemu_new_timer(vm_clock,
664
                                      rtc_update_second2, s);
665

    
666
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
667
    qemu_mod_timer(s->second_timer2, s->next_second_time);
668

    
669
    io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
670
    cpu_register_physical_memory(base, 2 << it_shift, io_memory);
671

    
672
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
673
#ifdef TARGET_I386
674
    if (rtc_td_hack)
675
        register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
676
#endif
677
    return s;
678
}