Statistics
| Branch: | Revision:

root / target-sh4 / op_helper.c @ 43dc2a64

History | View | Annotate | Download (12.1 kB)

1
/*
2
 *  SH4 emulation
3
 *
4
 *  Copyright (c) 2005 Samuel Tardieu
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#include <assert.h>
20
#include <stdlib.h>
21
#include "exec.h"
22
#include "helper.h"
23

    
24
#ifndef CONFIG_USER_ONLY
25

    
26
#define MMUSUFFIX _mmu
27

    
28
#define SHIFT 0
29
#include "softmmu_template.h"
30

    
31
#define SHIFT 1
32
#include "softmmu_template.h"
33

    
34
#define SHIFT 2
35
#include "softmmu_template.h"
36

    
37
#define SHIFT 3
38
#include "softmmu_template.h"
39

    
40
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
41
{
42
    TranslationBlock *tb;
43
    CPUState *saved_env;
44
    unsigned long pc;
45
    int ret;
46

    
47
    /* XXX: hack to restore env in all cases, even if not called from
48
       generated code */
49
    saved_env = env;
50
    env = cpu_single_env;
51
    ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
52
    if (ret) {
53
        if (retaddr) {
54
            /* now we have a real cpu fault */
55
            pc = (unsigned long) retaddr;
56
            tb = tb_find_pc(pc);
57
            if (tb) {
58
                /* the PC is inside the translated code. It means that we have
59
                   a virtual CPU fault */
60
                cpu_restore_state(tb, env, pc, NULL);
61
            }
62
        }
63
        cpu_loop_exit();
64
    }
65
    env = saved_env;
66
}
67

    
68
#endif
69

    
70
void helper_ldtlb(void)
71
{
72
#ifdef CONFIG_USER_ONLY
73
    /* XXXXX */
74
    cpu_abort(env, "Unhandled ldtlb");
75
#else
76
    cpu_load_tlb(env);
77
#endif
78
}
79

    
80
void helper_raise_illegal_instruction(void)
81
{
82
    env->exception_index = 0x180;
83
    cpu_loop_exit();
84
}
85

    
86
void helper_raise_slot_illegal_instruction(void)
87
{
88
    env->exception_index = 0x1a0;
89
    cpu_loop_exit();
90
}
91

    
92
void helper_raise_fpu_disable(void)
93
{
94
  env->exception_index = 0x800;
95
  cpu_loop_exit();
96
}
97

    
98
void helper_raise_slot_fpu_disable(void)
99
{
100
  env->exception_index = 0x820;
101
  cpu_loop_exit();
102
}
103

    
104
void helper_debug(void)
105
{
106
    env->exception_index = EXCP_DEBUG;
107
    cpu_loop_exit();
108
}
109

    
110
void helper_sleep(uint32_t next_pc)
111
{
112
    env->halted = 1;
113
    env->exception_index = EXCP_HLT;
114
    env->pc = next_pc;
115
    cpu_loop_exit();
116
}
117

    
118
void helper_trapa(uint32_t tra)
119
{
120
    env->tra = tra << 2;
121
    env->exception_index = 0x160;
122
    cpu_loop_exit();
123
}
124

    
125
void helper_movcal(uint32_t address, uint32_t value)
126
{
127
    if (cpu_sh4_is_cached (env, address))
128
    {
129
        memory_content *r = malloc (sizeof(memory_content));
130
        r->address = address;
131
        r->value = value;
132
        r->next = NULL;
133

    
134
        *(env->movcal_backup_tail) = r;
135
        env->movcal_backup_tail = &(r->next);
136
    }
137
}
138

    
139
void helper_discard_movcal_backup(void)
140
{
141
    memory_content *current = env->movcal_backup;
142

    
143
    while(current)
144
    {
145
        memory_content *next = current->next;
146
        free (current);
147
        env->movcal_backup = current = next;
148
        if (current == NULL)
149
            env->movcal_backup_tail = &(env->movcal_backup);
150
    } 
151
}
152

    
153
void helper_ocbi(uint32_t address)
154
{
155
    memory_content **current = &(env->movcal_backup);
156
    while (*current)
157
    {
158
        uint32_t a = (*current)->address;
159
        if ((a & ~0x1F) == (address & ~0x1F))
160
        {
161
            memory_content *next = (*current)->next;
162
            stl(a, (*current)->value);
163
            
164
            if (next == NULL)
165
            {
166
                env->movcal_backup_tail = current;
167
            }
168

    
169
            free (*current);
170
            *current = next;
171
            break;
172
        }
173
    }
174
}
175

    
176
uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
177
{
178
    uint32_t tmp0, tmp1;
179

    
180
    tmp1 = arg0 + arg1;
181
    tmp0 = arg1;
182
    arg1 = tmp1 + (env->sr & 1);
183
    if (tmp0 > tmp1)
184
        env->sr |= SR_T;
185
    else
186
        env->sr &= ~SR_T;
187
    if (tmp1 > arg1)
188
        env->sr |= SR_T;
189
    return arg1;
190
}
191

    
192
uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
193
{
194
    uint32_t dest, src, ans;
195

    
196
    if ((int32_t) arg1 >= 0)
197
        dest = 0;
198
    else
199
        dest = 1;
200
    if ((int32_t) arg0 >= 0)
201
        src = 0;
202
    else
203
        src = 1;
204
    src += dest;
205
    arg1 += arg0;
206
    if ((int32_t) arg1 >= 0)
207
        ans = 0;
208
    else
209
        ans = 1;
210
    ans += dest;
211
    if (src == 0 || src == 2) {
212
        if (ans == 1)
213
            env->sr |= SR_T;
214
        else
215
            env->sr &= ~SR_T;
216
    } else
217
        env->sr &= ~SR_T;
218
    return arg1;
219
}
220

    
221
#define T (env->sr & SR_T)
222
#define Q (env->sr & SR_Q ? 1 : 0)
223
#define M (env->sr & SR_M ? 1 : 0)
224
#define SETT env->sr |= SR_T
225
#define CLRT env->sr &= ~SR_T
226
#define SETQ env->sr |= SR_Q
227
#define CLRQ env->sr &= ~SR_Q
228
#define SETM env->sr |= SR_M
229
#define CLRM env->sr &= ~SR_M
230

    
231
uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
232
{
233
    uint32_t tmp0, tmp2;
234
    uint8_t old_q, tmp1 = 0xff;
235

    
236
    //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
237
    old_q = Q;
238
    if ((0x80000000 & arg1) != 0)
239
        SETQ;
240
    else
241
        CLRQ;
242
    tmp2 = arg0;
243
    arg1 <<= 1;
244
    arg1 |= T;
245
    switch (old_q) {
246
    case 0:
247
        switch (M) {
248
        case 0:
249
            tmp0 = arg1;
250
            arg1 -= tmp2;
251
            tmp1 = arg1 > tmp0;
252
            switch (Q) {
253
            case 0:
254
                if (tmp1)
255
                    SETQ;
256
                else
257
                    CLRQ;
258
                break;
259
            case 1:
260
                if (tmp1 == 0)
261
                    SETQ;
262
                else
263
                    CLRQ;
264
                break;
265
            }
266
            break;
267
        case 1:
268
            tmp0 = arg1;
269
            arg1 += tmp2;
270
            tmp1 = arg1 < tmp0;
271
            switch (Q) {
272
            case 0:
273
                if (tmp1 == 0)
274
                    SETQ;
275
                else
276
                    CLRQ;
277
                break;
278
            case 1:
279
                if (tmp1)
280
                    SETQ;
281
                else
282
                    CLRQ;
283
                break;
284
            }
285
            break;
286
        }
287
        break;
288
    case 1:
289
        switch (M) {
290
        case 0:
291
            tmp0 = arg1;
292
            arg1 += tmp2;
293
            tmp1 = arg1 < tmp0;
294
            switch (Q) {
295
            case 0:
296
                if (tmp1)
297
                    SETQ;
298
                else
299
                    CLRQ;
300
                break;
301
            case 1:
302
                if (tmp1 == 0)
303
                    SETQ;
304
                else
305
                    CLRQ;
306
                break;
307
            }
308
            break;
309
        case 1:
310
            tmp0 = arg1;
311
            arg1 -= tmp2;
312
            tmp1 = arg1 > tmp0;
313
            switch (Q) {
314
            case 0:
315
                if (tmp1 == 0)
316
                    SETQ;
317
                else
318
                    CLRQ;
319
                break;
320
            case 1:
321
                if (tmp1)
322
                    SETQ;
323
                else
324
                    CLRQ;
325
                break;
326
            }
327
            break;
328
        }
329
        break;
330
    }
331
    if (Q == M)
332
        SETT;
333
    else
334
        CLRT;
335
    //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
336
    return arg1;
337
}
338

    
339
void helper_macl(uint32_t arg0, uint32_t arg1)
340
{
341
    int64_t res;
342

    
343
    res = ((uint64_t) env->mach << 32) | env->macl;
344
    res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
345
    env->mach = (res >> 32) & 0xffffffff;
346
    env->macl = res & 0xffffffff;
347
    if (env->sr & SR_S) {
348
        if (res < 0)
349
            env->mach |= 0xffff0000;
350
        else
351
            env->mach &= 0x00007fff;
352
    }
353
}
354

    
355
void helper_macw(uint32_t arg0, uint32_t arg1)
356
{
357
    int64_t res;
358

    
359
    res = ((uint64_t) env->mach << 32) | env->macl;
360
    res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
361
    env->mach = (res >> 32) & 0xffffffff;
362
    env->macl = res & 0xffffffff;
363
    if (env->sr & SR_S) {
364
        if (res < -0x80000000) {
365
            env->mach = 1;
366
            env->macl = 0x80000000;
367
        } else if (res > 0x000000007fffffff) {
368
            env->mach = 1;
369
            env->macl = 0x7fffffff;
370
        }
371
    }
372
}
373

    
374
uint32_t helper_negc(uint32_t arg)
375
{
376
    uint32_t temp;
377

    
378
    temp = -arg;
379
    arg = temp - (env->sr & SR_T);
380
    if (0 < temp)
381
        env->sr |= SR_T;
382
    else
383
        env->sr &= ~SR_T;
384
    if (temp < arg)
385
        env->sr |= SR_T;
386
    return arg;
387
}
388

    
389
uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
390
{
391
    uint32_t tmp0, tmp1;
392

    
393
    tmp1 = arg1 - arg0;
394
    tmp0 = arg1;
395
    arg1 = tmp1 - (env->sr & SR_T);
396
    if (tmp0 < tmp1)
397
        env->sr |= SR_T;
398
    else
399
        env->sr &= ~SR_T;
400
    if (tmp1 < arg1)
401
        env->sr |= SR_T;
402
    return arg1;
403
}
404

    
405
uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
406
{
407
    int32_t dest, src, ans;
408

    
409
    if ((int32_t) arg1 >= 0)
410
        dest = 0;
411
    else
412
        dest = 1;
413
    if ((int32_t) arg0 >= 0)
414
        src = 0;
415
    else
416
        src = 1;
417
    src += dest;
418
    arg1 -= arg0;
419
    if ((int32_t) arg1 >= 0)
420
        ans = 0;
421
    else
422
        ans = 1;
423
    ans += dest;
424
    if (src == 1) {
425
        if (ans == 1)
426
            env->sr |= SR_T;
427
        else
428
            env->sr &= ~SR_T;
429
    } else
430
        env->sr &= ~SR_T;
431
    return arg1;
432
}
433

    
434
static inline void set_t(void)
435
{
436
    env->sr |= SR_T;
437
}
438

    
439
static inline void clr_t(void)
440
{
441
    env->sr &= ~SR_T;
442
}
443

    
444
void helper_ld_fpscr(uint32_t val)
445
{
446
    env->fpscr = val & 0x003fffff;
447
    if (val & 0x01)
448
        set_float_rounding_mode(float_round_to_zero, &env->fp_status);
449
    else
450
        set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
451
}
452

    
453
uint32_t helper_fabs_FT(uint32_t t0)
454
{
455
    CPU_FloatU f;
456
    f.l = t0;
457
    f.f = float32_abs(f.f);
458
    return f.l;
459
}
460

    
461
uint64_t helper_fabs_DT(uint64_t t0)
462
{
463
    CPU_DoubleU d;
464
    d.ll = t0;
465
    d.d = float64_abs(d.d);
466
    return d.ll;
467
}
468

    
469
uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
470
{
471
    CPU_FloatU f0, f1;
472
    f0.l = t0;
473
    f1.l = t1;
474
    f0.f = float32_add(f0.f, f1.f, &env->fp_status);
475
    return f0.l;
476
}
477

    
478
uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
479
{
480
    CPU_DoubleU d0, d1;
481
    d0.ll = t0;
482
    d1.ll = t1;
483
    d0.d = float64_add(d0.d, d1.d, &env->fp_status);
484
    return d0.ll;
485
}
486

    
487
void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
488
{
489
    CPU_FloatU f0, f1;
490
    f0.l = t0;
491
    f1.l = t1;
492

    
493
    if (float32_compare(f0.f, f1.f, &env->fp_status) == 0)
494
        set_t();
495
    else
496
        clr_t();
497
}
498

    
499
void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
500
{
501
    CPU_DoubleU d0, d1;
502
    d0.ll = t0;
503
    d1.ll = t1;
504

    
505
    if (float64_compare(d0.d, d1.d, &env->fp_status) == 0)
506
        set_t();
507
    else
508
        clr_t();
509
}
510

    
511
void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
512
{
513
    CPU_FloatU f0, f1;
514
    f0.l = t0;
515
    f1.l = t1;
516

    
517
    if (float32_compare(f0.f, f1.f, &env->fp_status) == 1)
518
        set_t();
519
    else
520
        clr_t();
521
}
522

    
523
void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
524
{
525
    CPU_DoubleU d0, d1;
526
    d0.ll = t0;
527
    d1.ll = t1;
528

    
529
    if (float64_compare(d0.d, d1.d, &env->fp_status) == 1)
530
        set_t();
531
    else
532
        clr_t();
533
}
534

    
535
uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
536
{
537
    CPU_DoubleU d;
538
    CPU_FloatU f;
539
    f.l = t0;
540
    d.d = float32_to_float64(f.f, &env->fp_status);
541
    return d.ll;
542
}
543

    
544
uint32_t helper_fcnvds_DT_FT(uint64_t t0)
545
{
546
    CPU_DoubleU d;
547
    CPU_FloatU f;
548
    d.ll = t0;
549
    f.f = float64_to_float32(d.d, &env->fp_status);
550
    return f.l;
551
}
552

    
553
uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
554
{
555
    CPU_FloatU f0, f1;
556
    f0.l = t0;
557
    f1.l = t1;
558
    f0.f = float32_div(f0.f, f1.f, &env->fp_status);
559
    return f0.l;
560
}
561

    
562
uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
563
{
564
    CPU_DoubleU d0, d1;
565
    d0.ll = t0;
566
    d1.ll = t1;
567
    d0.d = float64_div(d0.d, d1.d, &env->fp_status);
568
    return d0.ll;
569
}
570

    
571
uint32_t helper_float_FT(uint32_t t0)
572
{
573
    CPU_FloatU f;
574
    f.f = int32_to_float32(t0, &env->fp_status);
575
    return f.l;
576
}
577

    
578
uint64_t helper_float_DT(uint32_t t0)
579
{
580
    CPU_DoubleU d;
581
    d.d = int32_to_float64(t0, &env->fp_status);
582
    return d.ll;
583
}
584

    
585
uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
586
{
587
    CPU_FloatU f0, f1, f2;
588
    f0.l = t0;
589
    f1.l = t1;
590
    f2.l = t2;
591
    f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
592
    f0.f = float32_add(f0.f, f2.f, &env->fp_status);
593
    return f0.l;
594
}
595

    
596
uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
597
{
598
    CPU_FloatU f0, f1;
599
    f0.l = t0;
600
    f1.l = t1;
601
    f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
602
    return f0.l;
603
}
604

    
605
uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
606
{
607
    CPU_DoubleU d0, d1;
608
    d0.ll = t0;
609
    d1.ll = t1;
610
    d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
611
    return d0.ll;
612
}
613

    
614
uint32_t helper_fneg_T(uint32_t t0)
615
{
616
    CPU_FloatU f;
617
    f.l = t0;
618
    f.f = float32_chs(f.f);
619
    return f.l;
620
}
621

    
622
uint32_t helper_fsqrt_FT(uint32_t t0)
623
{
624
    CPU_FloatU f;
625
    f.l = t0;
626
    f.f = float32_sqrt(f.f, &env->fp_status);
627
    return f.l;
628
}
629

    
630
uint64_t helper_fsqrt_DT(uint64_t t0)
631
{
632
    CPU_DoubleU d;
633
    d.ll = t0;
634
    d.d = float64_sqrt(d.d, &env->fp_status);
635
    return d.ll;
636
}
637

    
638
uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
639
{
640
    CPU_FloatU f0, f1;
641
    f0.l = t0;
642
    f1.l = t1;
643
    f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
644
    return f0.l;
645
}
646

    
647
uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
648
{
649
    CPU_DoubleU d0, d1;
650
    d0.ll = t0;
651
    d1.ll = t1;
652
    d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
653
    return d0.ll;
654
}
655

    
656
uint32_t helper_ftrc_FT(uint32_t t0)
657
{
658
    CPU_FloatU f;
659
    f.l = t0;
660
    return float32_to_int32_round_to_zero(f.f, &env->fp_status);
661
}
662

    
663
uint32_t helper_ftrc_DT(uint64_t t0)
664
{
665
    CPU_DoubleU d;
666
    d.ll = t0;
667
    return float64_to_int32_round_to_zero(d.d, &env->fp_status);
668
}