Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 43e9e742

History | View | Annotate | Download (76.7 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3
#include "helper.h"
4
#if !defined(CONFIG_USER_ONLY)
5
#include "softmmu_exec.h"
6
#endif /* !defined(CONFIG_USER_ONLY) */
7

    
8
//#define DEBUG_MMU
9
//#define DEBUG_MXCC
10
//#define DEBUG_UNALIGNED
11
//#define DEBUG_UNASSIGNED
12
//#define DEBUG_ASI
13

    
14
#ifdef DEBUG_MMU
15
#define DPRINTF_MMU(fmt, args...) \
16
do { printf("MMU: " fmt , ##args); } while (0)
17
#else
18
#define DPRINTF_MMU(fmt, args...) do {} while (0)
19
#endif
20

    
21
#ifdef DEBUG_MXCC
22
#define DPRINTF_MXCC(fmt, args...) \
23
do { printf("MXCC: " fmt , ##args); } while (0)
24
#else
25
#define DPRINTF_MXCC(fmt, args...) do {} while (0)
26
#endif
27

    
28
#ifdef DEBUG_ASI
29
#define DPRINTF_ASI(fmt, args...) \
30
do { printf("ASI: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF_ASI(fmt, args...) do {} while (0)
33
#endif
34

    
35
#ifdef TARGET_SPARC64
36
#ifndef TARGET_ABI32
37
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
38
#else
39
#define AM_CHECK(env1) (1)
40
#endif
41
#endif
42

    
43
static inline void address_mask(CPUState *env1, target_ulong *addr)
44
{
45
#ifdef TARGET_SPARC64
46
    if (AM_CHECK(env1))
47
        *addr &= 0xffffffffULL;
48
#endif
49
}
50

    
51
void raise_exception(int tt)
52
{
53
    env->exception_index = tt;
54
    cpu_loop_exit();
55
}
56

    
57
void helper_trap(target_ulong nb_trap)
58
{
59
    env->exception_index = TT_TRAP + (nb_trap & 0x7f);
60
    cpu_loop_exit();
61
}
62

    
63
void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
64
{
65
    if (do_trap) {
66
        env->exception_index = TT_TRAP + (nb_trap & 0x7f);
67
        cpu_loop_exit();
68
    }
69
}
70

    
71
void helper_check_align(target_ulong addr, uint32_t align)
72
{
73
    if (addr & align) {
74
#ifdef DEBUG_UNALIGNED
75
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
76
           "\n", addr, env->pc);
77
#endif
78
        raise_exception(TT_UNALIGNED);
79
    }
80
}
81

    
82
#define F_HELPER(name, p) void helper_f##name##p(void)
83

    
84
#define F_BINOP(name)                                           \
85
    F_HELPER(name, s)                                           \
86
    {                                                           \
87
        FT0 = float32_ ## name (FT0, FT1, &env->fp_status);     \
88
    }                                                           \
89
    F_HELPER(name, d)                                           \
90
    {                                                           \
91
        DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
92
    }                                                           \
93
    F_HELPER(name, q)                                           \
94
    {                                                           \
95
        QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
96
    }
97

    
98
F_BINOP(add);
99
F_BINOP(sub);
100
F_BINOP(mul);
101
F_BINOP(div);
102
#undef F_BINOP
103

    
104
void helper_fsmuld(void)
105
{
106
    DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
107
                      float32_to_float64(FT1, &env->fp_status),
108
                      &env->fp_status);
109
}
110

    
111
void helper_fdmulq(void)
112
{
113
    QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
114
                       float64_to_float128(DT1, &env->fp_status),
115
                       &env->fp_status);
116
}
117

    
118
F_HELPER(neg, s)
119
{
120
    FT0 = float32_chs(FT1);
121
}
122

    
123
#ifdef TARGET_SPARC64
124
F_HELPER(neg, d)
125
{
126
    DT0 = float64_chs(DT1);
127
}
128

    
129
F_HELPER(neg, q)
130
{
131
    QT0 = float128_chs(QT1);
132
}
133
#endif
134

    
135
/* Integer to float conversion.  */
136
F_HELPER(ito, s)
137
{
138
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
139
}
140

    
141
F_HELPER(ito, d)
142
{
143
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
144
}
145

    
146
F_HELPER(ito, q)
147
{
148
    QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
149
}
150

    
151
#ifdef TARGET_SPARC64
152
F_HELPER(xto, s)
153
{
154
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
155
}
156

    
157
F_HELPER(xto, d)
158
{
159
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
160
}
161

    
162
F_HELPER(xto, q)
163
{
164
    QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
165
}
166
#endif
167
#undef F_HELPER
168

    
169
/* floating point conversion */
170
void helper_fdtos(void)
171
{
172
    FT0 = float64_to_float32(DT1, &env->fp_status);
173
}
174

    
175
void helper_fstod(void)
176
{
177
    DT0 = float32_to_float64(FT1, &env->fp_status);
178
}
179

    
180
void helper_fqtos(void)
181
{
182
    FT0 = float128_to_float32(QT1, &env->fp_status);
183
}
184

    
185
void helper_fstoq(void)
186
{
187
    QT0 = float32_to_float128(FT1, &env->fp_status);
188
}
189

    
190
void helper_fqtod(void)
191
{
192
    DT0 = float128_to_float64(QT1, &env->fp_status);
193
}
194

    
195
void helper_fdtoq(void)
196
{
197
    QT0 = float64_to_float128(DT1, &env->fp_status);
198
}
199

    
200
/* Float to integer conversion.  */
201
void helper_fstoi(void)
202
{
203
    *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
204
}
205

    
206
void helper_fdtoi(void)
207
{
208
    *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
209
}
210

    
211
void helper_fqtoi(void)
212
{
213
    *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
214
}
215

    
216
#ifdef TARGET_SPARC64
217
void helper_fstox(void)
218
{
219
    *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
220
}
221

    
222
void helper_fdtox(void)
223
{
224
    *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
225
}
226

    
227
void helper_fqtox(void)
228
{
229
    *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
230
}
231

    
232
void helper_faligndata(void)
233
{
234
    uint64_t tmp;
235

    
236
    tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
237
    tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
238
    *((uint64_t *)&DT0) = tmp;
239
}
240

    
241
void helper_movl_FT0_0(void)
242
{
243
    *((uint32_t *)&FT0) = 0;
244
}
245

    
246
void helper_movl_DT0_0(void)
247
{
248
    *((uint64_t *)&DT0) = 0;
249
}
250

    
251
void helper_movl_FT0_1(void)
252
{
253
    *((uint32_t *)&FT0) = 0xffffffff;
254
}
255

    
256
void helper_movl_DT0_1(void)
257
{
258
    *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
259
}
260

    
261
void helper_fnot(void)
262
{
263
    *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
264
}
265

    
266
void helper_fnots(void)
267
{
268
    *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
269
}
270

    
271
void helper_fnor(void)
272
{
273
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
274
}
275

    
276
void helper_fnors(void)
277
{
278
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
279
}
280

    
281
void helper_for(void)
282
{
283
    *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
284
}
285

    
286
void helper_fors(void)
287
{
288
    *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
289
}
290

    
291
void helper_fxor(void)
292
{
293
    *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
294
}
295

    
296
void helper_fxors(void)
297
{
298
    *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
299
}
300

    
301
void helper_fand(void)
302
{
303
    *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
304
}
305

    
306
void helper_fands(void)
307
{
308
    *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
309
}
310

    
311
void helper_fornot(void)
312
{
313
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
314
}
315

    
316
void helper_fornots(void)
317
{
318
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
319
}
320

    
321
void helper_fandnot(void)
322
{
323
    *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
324
}
325

    
326
void helper_fandnots(void)
327
{
328
    *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
329
}
330

    
331
void helper_fnand(void)
332
{
333
    *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
334
}
335

    
336
void helper_fnands(void)
337
{
338
    *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
339
}
340

    
341
void helper_fxnor(void)
342
{
343
    *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
344
}
345

    
346
void helper_fxnors(void)
347
{
348
    *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
349
}
350

    
351
#ifdef WORDS_BIGENDIAN
352
#define VIS_B64(n) b[7 - (n)]
353
#define VIS_W64(n) w[3 - (n)]
354
#define VIS_SW64(n) sw[3 - (n)]
355
#define VIS_L64(n) l[1 - (n)]
356
#define VIS_B32(n) b[3 - (n)]
357
#define VIS_W32(n) w[1 - (n)]
358
#else
359
#define VIS_B64(n) b[n]
360
#define VIS_W64(n) w[n]
361
#define VIS_SW64(n) sw[n]
362
#define VIS_L64(n) l[n]
363
#define VIS_B32(n) b[n]
364
#define VIS_W32(n) w[n]
365
#endif
366

    
367
typedef union {
368
    uint8_t b[8];
369
    uint16_t w[4];
370
    int16_t sw[4];
371
    uint32_t l[2];
372
    float64 d;
373
} vis64;
374

    
375
typedef union {
376
    uint8_t b[4];
377
    uint16_t w[2];
378
    uint32_t l;
379
    float32 f;
380
} vis32;
381

    
382
void helper_fpmerge(void)
383
{
384
    vis64 s, d;
385

    
386
    s.d = DT0;
387
    d.d = DT1;
388

    
389
    // Reverse calculation order to handle overlap
390
    d.VIS_B64(7) = s.VIS_B64(3);
391
    d.VIS_B64(6) = d.VIS_B64(3);
392
    d.VIS_B64(5) = s.VIS_B64(2);
393
    d.VIS_B64(4) = d.VIS_B64(2);
394
    d.VIS_B64(3) = s.VIS_B64(1);
395
    d.VIS_B64(2) = d.VIS_B64(1);
396
    d.VIS_B64(1) = s.VIS_B64(0);
397
    //d.VIS_B64(0) = d.VIS_B64(0);
398

    
399
    DT0 = d.d;
400
}
401

    
402
void helper_fmul8x16(void)
403
{
404
    vis64 s, d;
405
    uint32_t tmp;
406

    
407
    s.d = DT0;
408
    d.d = DT1;
409

    
410
#define PMUL(r)                                                 \
411
    tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
412
    if ((tmp & 0xff) > 0x7f)                                    \
413
        tmp += 0x100;                                           \
414
    d.VIS_W64(r) = tmp >> 8;
415

    
416
    PMUL(0);
417
    PMUL(1);
418
    PMUL(2);
419
    PMUL(3);
420
#undef PMUL
421

    
422
    DT0 = d.d;
423
}
424

    
425
void helper_fmul8x16al(void)
426
{
427
    vis64 s, d;
428
    uint32_t tmp;
429

    
430
    s.d = DT0;
431
    d.d = DT1;
432

    
433
#define PMUL(r)                                                 \
434
    tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
435
    if ((tmp & 0xff) > 0x7f)                                    \
436
        tmp += 0x100;                                           \
437
    d.VIS_W64(r) = tmp >> 8;
438

    
439
    PMUL(0);
440
    PMUL(1);
441
    PMUL(2);
442
    PMUL(3);
443
#undef PMUL
444

    
445
    DT0 = d.d;
446
}
447

    
448
void helper_fmul8x16au(void)
449
{
450
    vis64 s, d;
451
    uint32_t tmp;
452

    
453
    s.d = DT0;
454
    d.d = DT1;
455

    
456
#define PMUL(r)                                                 \
457
    tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
458
    if ((tmp & 0xff) > 0x7f)                                    \
459
        tmp += 0x100;                                           \
460
    d.VIS_W64(r) = tmp >> 8;
461

    
462
    PMUL(0);
463
    PMUL(1);
464
    PMUL(2);
465
    PMUL(3);
466
#undef PMUL
467

    
468
    DT0 = d.d;
469
}
470

    
471
void helper_fmul8sux16(void)
472
{
473
    vis64 s, d;
474
    uint32_t tmp;
475

    
476
    s.d = DT0;
477
    d.d = DT1;
478

    
479
#define PMUL(r)                                                         \
480
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
481
    if ((tmp & 0xff) > 0x7f)                                            \
482
        tmp += 0x100;                                                   \
483
    d.VIS_W64(r) = tmp >> 8;
484

    
485
    PMUL(0);
486
    PMUL(1);
487
    PMUL(2);
488
    PMUL(3);
489
#undef PMUL
490

    
491
    DT0 = d.d;
492
}
493

    
494
void helper_fmul8ulx16(void)
495
{
496
    vis64 s, d;
497
    uint32_t tmp;
498

    
499
    s.d = DT0;
500
    d.d = DT1;
501

    
502
#define PMUL(r)                                                         \
503
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
504
    if ((tmp & 0xff) > 0x7f)                                            \
505
        tmp += 0x100;                                                   \
506
    d.VIS_W64(r) = tmp >> 8;
507

    
508
    PMUL(0);
509
    PMUL(1);
510
    PMUL(2);
511
    PMUL(3);
512
#undef PMUL
513

    
514
    DT0 = d.d;
515
}
516

    
517
void helper_fmuld8sux16(void)
518
{
519
    vis64 s, d;
520
    uint32_t tmp;
521

    
522
    s.d = DT0;
523
    d.d = DT1;
524

    
525
#define PMUL(r)                                                         \
526
    tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
527
    if ((tmp & 0xff) > 0x7f)                                            \
528
        tmp += 0x100;                                                   \
529
    d.VIS_L64(r) = tmp;
530

    
531
    // Reverse calculation order to handle overlap
532
    PMUL(1);
533
    PMUL(0);
534
#undef PMUL
535

    
536
    DT0 = d.d;
537
}
538

    
539
void helper_fmuld8ulx16(void)
540
{
541
    vis64 s, d;
542
    uint32_t tmp;
543

    
544
    s.d = DT0;
545
    d.d = DT1;
546

    
547
#define PMUL(r)                                                         \
548
    tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
549
    if ((tmp & 0xff) > 0x7f)                                            \
550
        tmp += 0x100;                                                   \
551
    d.VIS_L64(r) = tmp;
552

    
553
    // Reverse calculation order to handle overlap
554
    PMUL(1);
555
    PMUL(0);
556
#undef PMUL
557

    
558
    DT0 = d.d;
559
}
560

    
561
void helper_fexpand(void)
562
{
563
    vis32 s;
564
    vis64 d;
565

    
566
    s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
567
    d.d = DT1;
568
    d.VIS_L64(0) = s.VIS_W32(0) << 4;
569
    d.VIS_L64(1) = s.VIS_W32(1) << 4;
570
    d.VIS_L64(2) = s.VIS_W32(2) << 4;
571
    d.VIS_L64(3) = s.VIS_W32(3) << 4;
572

    
573
    DT0 = d.d;
574
}
575

    
576
#define VIS_HELPER(name, F)                             \
577
    void name##16(void)                                 \
578
    {                                                   \
579
        vis64 s, d;                                     \
580
                                                        \
581
        s.d = DT0;                                      \
582
        d.d = DT1;                                      \
583
                                                        \
584
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
585
        d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
586
        d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
587
        d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
588
                                                        \
589
        DT0 = d.d;                                      \
590
    }                                                   \
591
                                                        \
592
    void name##16s(void)                                \
593
    {                                                   \
594
        vis32 s, d;                                     \
595
                                                        \
596
        s.f = FT0;                                      \
597
        d.f = FT1;                                      \
598
                                                        \
599
        d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
600
        d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
601
                                                        \
602
        FT0 = d.f;                                      \
603
    }                                                   \
604
                                                        \
605
    void name##32(void)                                 \
606
    {                                                   \
607
        vis64 s, d;                                     \
608
                                                        \
609
        s.d = DT0;                                      \
610
        d.d = DT1;                                      \
611
                                                        \
612
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
613
        d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
614
                                                        \
615
        DT0 = d.d;                                      \
616
    }                                                   \
617
                                                        \
618
    void name##32s(void)                                \
619
    {                                                   \
620
        vis32 s, d;                                     \
621
                                                        \
622
        s.f = FT0;                                      \
623
        d.f = FT1;                                      \
624
                                                        \
625
        d.l = F(d.l, s.l);                              \
626
                                                        \
627
        FT0 = d.f;                                      \
628
    }
629

    
630
#define FADD(a, b) ((a) + (b))
631
#define FSUB(a, b) ((a) - (b))
632
VIS_HELPER(helper_fpadd, FADD)
633
VIS_HELPER(helper_fpsub, FSUB)
634

    
635
#define VIS_CMPHELPER(name, F)                                        \
636
    void name##16(void)                                           \
637
    {                                                             \
638
        vis64 s, d;                                               \
639
                                                                  \
640
        s.d = DT0;                                                \
641
        d.d = DT1;                                                \
642
                                                                  \
643
        d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
644
        d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
645
        d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
646
        d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
647
                                                                  \
648
        DT0 = d.d;                                                \
649
    }                                                             \
650
                                                                  \
651
    void name##32(void)                                           \
652
    {                                                             \
653
        vis64 s, d;                                               \
654
                                                                  \
655
        s.d = DT0;                                                \
656
        d.d = DT1;                                                \
657
                                                                  \
658
        d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
659
        d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
660
                                                                  \
661
        DT0 = d.d;                                                \
662
    }
663

    
664
#define FCMPGT(a, b) ((a) > (b))
665
#define FCMPEQ(a, b) ((a) == (b))
666
#define FCMPLE(a, b) ((a) <= (b))
667
#define FCMPNE(a, b) ((a) != (b))
668

    
669
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
670
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
671
VIS_CMPHELPER(helper_fcmple, FCMPLE)
672
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
673
#endif
674

    
675
void helper_check_ieee_exceptions(void)
676
{
677
    target_ulong status;
678

    
679
    status = get_float_exception_flags(&env->fp_status);
680
    if (status) {
681
        /* Copy IEEE 754 flags into FSR */
682
        if (status & float_flag_invalid)
683
            env->fsr |= FSR_NVC;
684
        if (status & float_flag_overflow)
685
            env->fsr |= FSR_OFC;
686
        if (status & float_flag_underflow)
687
            env->fsr |= FSR_UFC;
688
        if (status & float_flag_divbyzero)
689
            env->fsr |= FSR_DZC;
690
        if (status & float_flag_inexact)
691
            env->fsr |= FSR_NXC;
692

    
693
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
694
            /* Unmasked exception, generate a trap */
695
            env->fsr |= FSR_FTT_IEEE_EXCP;
696
            raise_exception(TT_FP_EXCP);
697
        } else {
698
            /* Accumulate exceptions */
699
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
700
        }
701
    }
702
}
703

    
704
void helper_clear_float_exceptions(void)
705
{
706
    set_float_exception_flags(0, &env->fp_status);
707
}
708

    
709
void helper_fabss(void)
710
{
711
    FT0 = float32_abs(FT1);
712
}
713

    
714
#ifdef TARGET_SPARC64
715
void helper_fabsd(void)
716
{
717
    DT0 = float64_abs(DT1);
718
}
719

    
720
void helper_fabsq(void)
721
{
722
    QT0 = float128_abs(QT1);
723
}
724
#endif
725

    
726
void helper_fsqrts(void)
727
{
728
    FT0 = float32_sqrt(FT1, &env->fp_status);
729
}
730

    
731
void helper_fsqrtd(void)
732
{
733
    DT0 = float64_sqrt(DT1, &env->fp_status);
734
}
735

    
736
void helper_fsqrtq(void)
737
{
738
    QT0 = float128_sqrt(QT1, &env->fp_status);
739
}
740

    
741
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
742
    void glue(helper_, name) (void)                                     \
743
    {                                                                   \
744
        target_ulong new_fsr;                                           \
745
                                                                        \
746
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
747
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
748
        case float_relation_unordered:                                  \
749
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
750
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
751
                env->fsr |= new_fsr;                                    \
752
                env->fsr |= FSR_NVC;                                    \
753
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
754
                raise_exception(TT_FP_EXCP);                            \
755
            } else {                                                    \
756
                env->fsr |= FSR_NVA;                                    \
757
            }                                                           \
758
            break;                                                      \
759
        case float_relation_less:                                       \
760
            new_fsr = FSR_FCC0 << FS;                                   \
761
            break;                                                      \
762
        case float_relation_greater:                                    \
763
            new_fsr = FSR_FCC1 << FS;                                   \
764
            break;                                                      \
765
        default:                                                        \
766
            new_fsr = 0;                                                \
767
            break;                                                      \
768
        }                                                               \
769
        env->fsr |= new_fsr;                                            \
770
    }
771

    
772
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
773
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
774

    
775
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
776
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
777

    
778
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
779
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
780

    
781
#ifdef TARGET_SPARC64
782
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
783
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
784
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
785

    
786
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
787
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
788
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
789

    
790
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
791
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
792
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
793

    
794
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
795
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
796
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
797

    
798
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
799
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
800
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
801

    
802
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
803
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
804
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
805
#endif
806

    
807
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
808
    defined(DEBUG_MXCC)
809
static void dump_mxcc(CPUState *env)
810
{
811
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
812
           env->mxccdata[0], env->mxccdata[1],
813
           env->mxccdata[2], env->mxccdata[3]);
814
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
815
           "          %016llx %016llx %016llx %016llx\n",
816
           env->mxccregs[0], env->mxccregs[1],
817
           env->mxccregs[2], env->mxccregs[3],
818
           env->mxccregs[4], env->mxccregs[5],
819
           env->mxccregs[6], env->mxccregs[7]);
820
}
821
#endif
822

    
823
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
824
    && defined(DEBUG_ASI)
825
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
826
                     uint64_t r1)
827
{
828
    switch (size)
829
    {
830
    case 1:
831
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
832
                    addr, asi, r1 & 0xff);
833
        break;
834
    case 2:
835
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
836
                    addr, asi, r1 & 0xffff);
837
        break;
838
    case 4:
839
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
840
                    addr, asi, r1 & 0xffffffff);
841
        break;
842
    case 8:
843
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
844
                    addr, asi, r1);
845
        break;
846
    }
847
}
848
#endif
849

    
850
#ifndef TARGET_SPARC64
851
#ifndef CONFIG_USER_ONLY
852
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
853
{
854
    uint64_t ret = 0;
855
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
856
    uint32_t last_addr = addr;
857
#endif
858

    
859
    helper_check_align(addr, size - 1);
860
    switch (asi) {
861
    case 2: /* SuperSparc MXCC registers */
862
        switch (addr) {
863
        case 0x01c00a00: /* MXCC control register */
864
            if (size == 8)
865
                ret = env->mxccregs[3];
866
            else
867
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
868
                             size);
869
            break;
870
        case 0x01c00a04: /* MXCC control register */
871
            if (size == 4)
872
                ret = env->mxccregs[3];
873
            else
874
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
875
                             size);
876
            break;
877
        case 0x01c00c00: /* Module reset register */
878
            if (size == 8) {
879
                ret = env->mxccregs[5];
880
                // should we do something here?
881
            } else
882
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
883
                             size);
884
            break;
885
        case 0x01c00f00: /* MBus port address register */
886
            if (size == 8)
887
                ret = env->mxccregs[7];
888
            else
889
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
890
                             size);
891
            break;
892
        default:
893
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
894
                         size);
895
            break;
896
        }
897
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
898
                     "addr = %08x -> ret = %08x,"
899
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
900
#ifdef DEBUG_MXCC
901
        dump_mxcc(env);
902
#endif
903
        break;
904
    case 3: /* MMU probe */
905
        {
906
            int mmulev;
907

    
908
            mmulev = (addr >> 8) & 15;
909
            if (mmulev > 4)
910
                ret = 0;
911
            else
912
                ret = mmu_probe(env, addr, mmulev);
913
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
914
                        addr, mmulev, ret);
915
        }
916
        break;
917
    case 4: /* read MMU regs */
918
        {
919
            int reg = (addr >> 8) & 0x1f;
920

    
921
            ret = env->mmuregs[reg];
922
            if (reg == 3) /* Fault status cleared on read */
923
                env->mmuregs[3] = 0;
924
            else if (reg == 0x13) /* Fault status read */
925
                ret = env->mmuregs[3];
926
            else if (reg == 0x14) /* Fault address read */
927
                ret = env->mmuregs[4];
928
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
929
        }
930
        break;
931
    case 5: // Turbosparc ITLB Diagnostic
932
    case 6: // Turbosparc DTLB Diagnostic
933
    case 7: // Turbosparc IOTLB Diagnostic
934
        break;
935
    case 9: /* Supervisor code access */
936
        switch(size) {
937
        case 1:
938
            ret = ldub_code(addr);
939
            break;
940
        case 2:
941
            ret = lduw_code(addr);
942
            break;
943
        default:
944
        case 4:
945
            ret = ldl_code(addr);
946
            break;
947
        case 8:
948
            ret = ldq_code(addr);
949
            break;
950
        }
951
        break;
952
    case 0xa: /* User data access */
953
        switch(size) {
954
        case 1:
955
            ret = ldub_user(addr);
956
            break;
957
        case 2:
958
            ret = lduw_user(addr);
959
            break;
960
        default:
961
        case 4:
962
            ret = ldl_user(addr);
963
            break;
964
        case 8:
965
            ret = ldq_user(addr);
966
            break;
967
        }
968
        break;
969
    case 0xb: /* Supervisor data access */
970
        switch(size) {
971
        case 1:
972
            ret = ldub_kernel(addr);
973
            break;
974
        case 2:
975
            ret = lduw_kernel(addr);
976
            break;
977
        default:
978
        case 4:
979
            ret = ldl_kernel(addr);
980
            break;
981
        case 8:
982
            ret = ldq_kernel(addr);
983
            break;
984
        }
985
        break;
986
    case 0xc: /* I-cache tag */
987
    case 0xd: /* I-cache data */
988
    case 0xe: /* D-cache tag */
989
    case 0xf: /* D-cache data */
990
        break;
991
    case 0x20: /* MMU passthrough */
992
        switch(size) {
993
        case 1:
994
            ret = ldub_phys(addr);
995
            break;
996
        case 2:
997
            ret = lduw_phys(addr);
998
            break;
999
        default:
1000
        case 4:
1001
            ret = ldl_phys(addr);
1002
            break;
1003
        case 8:
1004
            ret = ldq_phys(addr);
1005
            break;
1006
        }
1007
        break;
1008
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1009
        switch(size) {
1010
        case 1:
1011
            ret = ldub_phys((target_phys_addr_t)addr
1012
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1013
            break;
1014
        case 2:
1015
            ret = lduw_phys((target_phys_addr_t)addr
1016
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
1017
            break;
1018
        default:
1019
        case 4:
1020
            ret = ldl_phys((target_phys_addr_t)addr
1021
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1022
            break;
1023
        case 8:
1024
            ret = ldq_phys((target_phys_addr_t)addr
1025
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
1026
            break;
1027
        }
1028
        break;
1029
    case 0x30: // Turbosparc secondary cache diagnostic
1030
    case 0x31: // Turbosparc RAM snoop
1031
    case 0x32: // Turbosparc page table descriptor diagnostic
1032
    case 0x39: /* data cache diagnostic register */
1033
        ret = 0;
1034
        break;
1035
    case 8: /* User code access, XXX */
1036
    default:
1037
        do_unassigned_access(addr, 0, 0, asi);
1038
        ret = 0;
1039
        break;
1040
    }
1041
    if (sign) {
1042
        switch(size) {
1043
        case 1:
1044
            ret = (int8_t) ret;
1045
            break;
1046
        case 2:
1047
            ret = (int16_t) ret;
1048
            break;
1049
        case 4:
1050
            ret = (int32_t) ret;
1051
            break;
1052
        default:
1053
            break;
1054
        }
1055
    }
1056
#ifdef DEBUG_ASI
1057
    dump_asi("read ", last_addr, asi, size, ret);
1058
#endif
1059
    return ret;
1060
}
1061

    
1062
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1063
{
1064
    helper_check_align(addr, size - 1);
1065
    switch(asi) {
1066
    case 2: /* SuperSparc MXCC registers */
1067
        switch (addr) {
1068
        case 0x01c00000: /* MXCC stream data register 0 */
1069
            if (size == 8)
1070
                env->mxccdata[0] = val;
1071
            else
1072
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1073
                             size);
1074
            break;
1075
        case 0x01c00008: /* MXCC stream data register 1 */
1076
            if (size == 8)
1077
                env->mxccdata[1] = val;
1078
            else
1079
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1080
                             size);
1081
            break;
1082
        case 0x01c00010: /* MXCC stream data register 2 */
1083
            if (size == 8)
1084
                env->mxccdata[2] = val;
1085
            else
1086
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1087
                             size);
1088
            break;
1089
        case 0x01c00018: /* MXCC stream data register 3 */
1090
            if (size == 8)
1091
                env->mxccdata[3] = val;
1092
            else
1093
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1094
                             size);
1095
            break;
1096
        case 0x01c00100: /* MXCC stream source */
1097
            if (size == 8)
1098
                env->mxccregs[0] = val;
1099
            else
1100
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1101
                             size);
1102
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1103
                                        0);
1104
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1105
                                        8);
1106
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1107
                                        16);
1108
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1109
                                        24);
1110
            break;
1111
        case 0x01c00200: /* MXCC stream destination */
1112
            if (size == 8)
1113
                env->mxccregs[1] = val;
1114
            else
1115
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1116
                             size);
1117
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0,
1118
                     env->mxccdata[0]);
1119
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8,
1120
                     env->mxccdata[1]);
1121
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1122
                     env->mxccdata[2]);
1123
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1124
                     env->mxccdata[3]);
1125
            break;
1126
        case 0x01c00a00: /* MXCC control register */
1127
            if (size == 8)
1128
                env->mxccregs[3] = val;
1129
            else
1130
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1131
                             size);
1132
            break;
1133
        case 0x01c00a04: /* MXCC control register */
1134
            if (size == 4)
1135
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1136
                    | val;
1137
            else
1138
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1139
                             size);
1140
            break;
1141
        case 0x01c00e00: /* MXCC error register  */
1142
            // writing a 1 bit clears the error
1143
            if (size == 8)
1144
                env->mxccregs[6] &= ~val;
1145
            else
1146
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1147
                             size);
1148
            break;
1149
        case 0x01c00f00: /* MBus port address register */
1150
            if (size == 8)
1151
                env->mxccregs[7] = val;
1152
            else
1153
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1154
                             size);
1155
            break;
1156
        default:
1157
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1158
                         size);
1159
            break;
1160
        }
1161
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1162
                     size, addr, val);
1163
#ifdef DEBUG_MXCC
1164
        dump_mxcc(env);
1165
#endif
1166
        break;
1167
    case 3: /* MMU flush */
1168
        {
1169
            int mmulev;
1170

    
1171
            mmulev = (addr >> 8) & 15;
1172
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
1173
            switch (mmulev) {
1174
            case 0: // flush page
1175
                tlb_flush_page(env, addr & 0xfffff000);
1176
                break;
1177
            case 1: // flush segment (256k)
1178
            case 2: // flush region (16M)
1179
            case 3: // flush context (4G)
1180
            case 4: // flush entire
1181
                tlb_flush(env, 1);
1182
                break;
1183
            default:
1184
                break;
1185
            }
1186
#ifdef DEBUG_MMU
1187
            dump_mmu(env);
1188
#endif
1189
        }
1190
        break;
1191
    case 4: /* write MMU regs */
1192
        {
1193
            int reg = (addr >> 8) & 0x1f;
1194
            uint32_t oldreg;
1195

    
1196
            oldreg = env->mmuregs[reg];
1197
            switch(reg) {
1198
            case 0: // Control Register
1199
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1200
                                    (val & 0x00ffffff);
1201
                // Mappings generated during no-fault mode or MMU
1202
                // disabled mode are invalid in normal mode
1203
                if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
1204
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
1205
                    tlb_flush(env, 1);
1206
                break;
1207
            case 1: // Context Table Pointer Register
1208
                env->mmuregs[reg] = val & env->mmu_ctpr_mask;
1209
                break;
1210
            case 2: // Context Register
1211
                env->mmuregs[reg] = val & env->mmu_cxr_mask;
1212
                if (oldreg != env->mmuregs[reg]) {
1213
                    /* we flush when the MMU context changes because
1214
                       QEMU has no MMU context support */
1215
                    tlb_flush(env, 1);
1216
                }
1217
                break;
1218
            case 3: // Synchronous Fault Status Register with Clear
1219
            case 4: // Synchronous Fault Address Register
1220
                break;
1221
            case 0x10: // TLB Replacement Control Register
1222
                env->mmuregs[reg] = val & env->mmu_trcr_mask;
1223
                break;
1224
            case 0x13: // Synchronous Fault Status Register with Read and Clear
1225
                env->mmuregs[3] = val & env->mmu_sfsr_mask;
1226
                break;
1227
            case 0x14: // Synchronous Fault Address Register
1228
                env->mmuregs[4] = val;
1229
                break;
1230
            default:
1231
                env->mmuregs[reg] = val;
1232
                break;
1233
            }
1234
            if (oldreg != env->mmuregs[reg]) {
1235
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1236
                            reg, oldreg, env->mmuregs[reg]);
1237
            }
1238
#ifdef DEBUG_MMU
1239
            dump_mmu(env);
1240
#endif
1241
        }
1242
        break;
1243
    case 5: // Turbosparc ITLB Diagnostic
1244
    case 6: // Turbosparc DTLB Diagnostic
1245
    case 7: // Turbosparc IOTLB Diagnostic
1246
        break;
1247
    case 0xa: /* User data access */
1248
        switch(size) {
1249
        case 1:
1250
            stb_user(addr, val);
1251
            break;
1252
        case 2:
1253
            stw_user(addr, val);
1254
            break;
1255
        default:
1256
        case 4:
1257
            stl_user(addr, val);
1258
            break;
1259
        case 8:
1260
            stq_user(addr, val);
1261
            break;
1262
        }
1263
        break;
1264
    case 0xb: /* Supervisor data access */
1265
        switch(size) {
1266
        case 1:
1267
            stb_kernel(addr, val);
1268
            break;
1269
        case 2:
1270
            stw_kernel(addr, val);
1271
            break;
1272
        default:
1273
        case 4:
1274
            stl_kernel(addr, val);
1275
            break;
1276
        case 8:
1277
            stq_kernel(addr, val);
1278
            break;
1279
        }
1280
        break;
1281
    case 0xc: /* I-cache tag */
1282
    case 0xd: /* I-cache data */
1283
    case 0xe: /* D-cache tag */
1284
    case 0xf: /* D-cache data */
1285
    case 0x10: /* I/D-cache flush page */
1286
    case 0x11: /* I/D-cache flush segment */
1287
    case 0x12: /* I/D-cache flush region */
1288
    case 0x13: /* I/D-cache flush context */
1289
    case 0x14: /* I/D-cache flush user */
1290
        break;
1291
    case 0x17: /* Block copy, sta access */
1292
        {
1293
            // val = src
1294
            // addr = dst
1295
            // copy 32 bytes
1296
            unsigned int i;
1297
            uint32_t src = val & ~3, dst = addr & ~3, temp;
1298

    
1299
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1300
                temp = ldl_kernel(src);
1301
                stl_kernel(dst, temp);
1302
            }
1303
        }
1304
        break;
1305
    case 0x1f: /* Block fill, stda access */
1306
        {
1307
            // addr = dst
1308
            // fill 32 bytes with val
1309
            unsigned int i;
1310
            uint32_t dst = addr & 7;
1311

    
1312
            for (i = 0; i < 32; i += 8, dst += 8)
1313
                stq_kernel(dst, val);
1314
        }
1315
        break;
1316
    case 0x20: /* MMU passthrough */
1317
        {
1318
            switch(size) {
1319
            case 1:
1320
                stb_phys(addr, val);
1321
                break;
1322
            case 2:
1323
                stw_phys(addr, val);
1324
                break;
1325
            case 4:
1326
            default:
1327
                stl_phys(addr, val);
1328
                break;
1329
            case 8:
1330
                stq_phys(addr, val);
1331
                break;
1332
            }
1333
        }
1334
        break;
1335
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1336
        {
1337
            switch(size) {
1338
            case 1:
1339
                stb_phys((target_phys_addr_t)addr
1340
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1341
                break;
1342
            case 2:
1343
                stw_phys((target_phys_addr_t)addr
1344
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1345
                break;
1346
            case 4:
1347
            default:
1348
                stl_phys((target_phys_addr_t)addr
1349
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1350
                break;
1351
            case 8:
1352
                stq_phys((target_phys_addr_t)addr
1353
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1354
                break;
1355
            }
1356
        }
1357
        break;
1358
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1359
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
1360
               // Turbosparc snoop RAM
1361
    case 0x32: // store buffer control or Turbosparc page table
1362
               // descriptor diagnostic
1363
    case 0x36: /* I-cache flash clear */
1364
    case 0x37: /* D-cache flash clear */
1365
    case 0x38: /* breakpoint diagnostics */
1366
    case 0x4c: /* breakpoint action */
1367
        break;
1368
    case 8: /* User code access, XXX */
1369
    case 9: /* Supervisor code access, XXX */
1370
    default:
1371
        do_unassigned_access(addr, 1, 0, asi);
1372
        break;
1373
    }
1374
#ifdef DEBUG_ASI
1375
    dump_asi("write", addr, asi, size, val);
1376
#endif
1377
}
1378

    
1379
#endif /* CONFIG_USER_ONLY */
1380
#else /* TARGET_SPARC64 */
1381

    
1382
#ifdef CONFIG_USER_ONLY
1383
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1384
{
1385
    uint64_t ret = 0;
1386
#if defined(DEBUG_ASI)
1387
    target_ulong last_addr = addr;
1388
#endif
1389

    
1390
    if (asi < 0x80)
1391
        raise_exception(TT_PRIV_ACT);
1392

    
1393
    helper_check_align(addr, size - 1);
1394
    address_mask(env, &addr);
1395

    
1396
    switch (asi) {
1397
    case 0x80: // Primary
1398
    case 0x82: // Primary no-fault
1399
    case 0x88: // Primary LE
1400
    case 0x8a: // Primary no-fault LE
1401
        {
1402
            switch(size) {
1403
            case 1:
1404
                ret = ldub_raw(addr);
1405
                break;
1406
            case 2:
1407
                ret = lduw_raw(addr);
1408
                break;
1409
            case 4:
1410
                ret = ldl_raw(addr);
1411
                break;
1412
            default:
1413
            case 8:
1414
                ret = ldq_raw(addr);
1415
                break;
1416
            }
1417
        }
1418
        break;
1419
    case 0x81: // Secondary
1420
    case 0x83: // Secondary no-fault
1421
    case 0x89: // Secondary LE
1422
    case 0x8b: // Secondary no-fault LE
1423
        // XXX
1424
        break;
1425
    default:
1426
        break;
1427
    }
1428

    
1429
    /* Convert from little endian */
1430
    switch (asi) {
1431
    case 0x88: // Primary LE
1432
    case 0x89: // Secondary LE
1433
    case 0x8a: // Primary no-fault LE
1434
    case 0x8b: // Secondary no-fault LE
1435
        switch(size) {
1436
        case 2:
1437
            ret = bswap16(ret);
1438
            break;
1439
        case 4:
1440
            ret = bswap32(ret);
1441
            break;
1442
        case 8:
1443
            ret = bswap64(ret);
1444
            break;
1445
        default:
1446
            break;
1447
        }
1448
    default:
1449
        break;
1450
    }
1451

    
1452
    /* Convert to signed number */
1453
    if (sign) {
1454
        switch(size) {
1455
        case 1:
1456
            ret = (int8_t) ret;
1457
            break;
1458
        case 2:
1459
            ret = (int16_t) ret;
1460
            break;
1461
        case 4:
1462
            ret = (int32_t) ret;
1463
            break;
1464
        default:
1465
            break;
1466
        }
1467
    }
1468
#ifdef DEBUG_ASI
1469
    dump_asi("read ", last_addr, asi, size, ret);
1470
#endif
1471
    return ret;
1472
}
1473

    
1474
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1475
{
1476
#ifdef DEBUG_ASI
1477
    dump_asi("write", addr, asi, size, val);
1478
#endif
1479
    if (asi < 0x80)
1480
        raise_exception(TT_PRIV_ACT);
1481

    
1482
    helper_check_align(addr, size - 1);
1483
    address_mask(env, &addr);
1484

    
1485
    /* Convert to little endian */
1486
    switch (asi) {
1487
    case 0x88: // Primary LE
1488
    case 0x89: // Secondary LE
1489
        switch(size) {
1490
        case 2:
1491
            addr = bswap16(addr);
1492
            break;
1493
        case 4:
1494
            addr = bswap32(addr);
1495
            break;
1496
        case 8:
1497
            addr = bswap64(addr);
1498
            break;
1499
        default:
1500
            break;
1501
        }
1502
    default:
1503
        break;
1504
    }
1505

    
1506
    switch(asi) {
1507
    case 0x80: // Primary
1508
    case 0x88: // Primary LE
1509
        {
1510
            switch(size) {
1511
            case 1:
1512
                stb_raw(addr, val);
1513
                break;
1514
            case 2:
1515
                stw_raw(addr, val);
1516
                break;
1517
            case 4:
1518
                stl_raw(addr, val);
1519
                break;
1520
            case 8:
1521
            default:
1522
                stq_raw(addr, val);
1523
                break;
1524
            }
1525
        }
1526
        break;
1527
    case 0x81: // Secondary
1528
    case 0x89: // Secondary LE
1529
        // XXX
1530
        return;
1531

    
1532
    case 0x82: // Primary no-fault, RO
1533
    case 0x83: // Secondary no-fault, RO
1534
    case 0x8a: // Primary no-fault LE, RO
1535
    case 0x8b: // Secondary no-fault LE, RO
1536
    default:
1537
        do_unassigned_access(addr, 1, 0, 1);
1538
        return;
1539
    }
1540
}
1541

    
1542
#else /* CONFIG_USER_ONLY */
1543

    
1544
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1545
{
1546
    uint64_t ret = 0;
1547
#if defined(DEBUG_ASI)
1548
    target_ulong last_addr = addr;
1549
#endif
1550

    
1551
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1552
        || ((env->features & CPU_FEATURE_HYPV) && asi >= 0x30 && asi < 0x80
1553
            && !(env->hpstate & HS_PRIV)))
1554
        raise_exception(TT_PRIV_ACT);
1555

    
1556
    helper_check_align(addr, size - 1);
1557
    switch (asi) {
1558
    case 0x10: // As if user primary
1559
    case 0x18: // As if user primary LE
1560
    case 0x80: // Primary
1561
    case 0x82: // Primary no-fault
1562
    case 0x88: // Primary LE
1563
    case 0x8a: // Primary no-fault LE
1564
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1565
            if ((env->features & CPU_FEATURE_HYPV) && env->hpstate & HS_PRIV) {
1566
                switch(size) {
1567
                case 1:
1568
                    ret = ldub_hypv(addr);
1569
                    break;
1570
                case 2:
1571
                    ret = lduw_hypv(addr);
1572
                    break;
1573
                case 4:
1574
                    ret = ldl_hypv(addr);
1575
                    break;
1576
                default:
1577
                case 8:
1578
                    ret = ldq_hypv(addr);
1579
                    break;
1580
                }
1581
            } else {
1582
                switch(size) {
1583
                case 1:
1584
                    ret = ldub_kernel(addr);
1585
                    break;
1586
                case 2:
1587
                    ret = lduw_kernel(addr);
1588
                    break;
1589
                case 4:
1590
                    ret = ldl_kernel(addr);
1591
                    break;
1592
                default:
1593
                case 8:
1594
                    ret = ldq_kernel(addr);
1595
                    break;
1596
                }
1597
            }
1598
        } else {
1599
            switch(size) {
1600
            case 1:
1601
                ret = ldub_user(addr);
1602
                break;
1603
            case 2:
1604
                ret = lduw_user(addr);
1605
                break;
1606
            case 4:
1607
                ret = ldl_user(addr);
1608
                break;
1609
            default:
1610
            case 8:
1611
                ret = ldq_user(addr);
1612
                break;
1613
            }
1614
        }
1615
        break;
1616
    case 0x14: // Bypass
1617
    case 0x15: // Bypass, non-cacheable
1618
    case 0x1c: // Bypass LE
1619
    case 0x1d: // Bypass, non-cacheable LE
1620
        {
1621
            switch(size) {
1622
            case 1:
1623
                ret = ldub_phys(addr);
1624
                break;
1625
            case 2:
1626
                ret = lduw_phys(addr);
1627
                break;
1628
            case 4:
1629
                ret = ldl_phys(addr);
1630
                break;
1631
            default:
1632
            case 8:
1633
                ret = ldq_phys(addr);
1634
                break;
1635
            }
1636
            break;
1637
        }
1638
    case 0x24: // Nucleus quad LDD 128 bit atomic
1639
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1640
        //  Only ldda allowed
1641
        raise_exception(TT_ILL_INSN);
1642
        return 0;
1643
    case 0x04: // Nucleus
1644
    case 0x0c: // Nucleus Little Endian (LE)
1645
    case 0x11: // As if user secondary
1646
    case 0x19: // As if user secondary LE
1647
    case 0x4a: // UPA config
1648
    case 0x81: // Secondary
1649
    case 0x83: // Secondary no-fault
1650
    case 0x89: // Secondary LE
1651
    case 0x8b: // Secondary no-fault LE
1652
        // XXX
1653
        break;
1654
    case 0x45: // LSU
1655
        ret = env->lsu;
1656
        break;
1657
    case 0x50: // I-MMU regs
1658
        {
1659
            int reg = (addr >> 3) & 0xf;
1660

    
1661
            ret = env->immuregs[reg];
1662
            break;
1663
        }
1664
    case 0x51: // I-MMU 8k TSB pointer
1665
    case 0x52: // I-MMU 64k TSB pointer
1666
        // XXX
1667
        break;
1668
    case 0x55: // I-MMU data access
1669
        {
1670
            int reg = (addr >> 3) & 0x3f;
1671

    
1672
            ret = env->itlb_tte[reg];
1673
            break;
1674
        }
1675
    case 0x56: // I-MMU tag read
1676
        {
1677
            int reg = (addr >> 3) & 0x3f;
1678

    
1679
            ret = env->itlb_tag[reg];
1680
            break;
1681
        }
1682
    case 0x58: // D-MMU regs
1683
        {
1684
            int reg = (addr >> 3) & 0xf;
1685

    
1686
            ret = env->dmmuregs[reg];
1687
            break;
1688
        }
1689
    case 0x5d: // D-MMU data access
1690
        {
1691
            int reg = (addr >> 3) & 0x3f;
1692

    
1693
            ret = env->dtlb_tte[reg];
1694
            break;
1695
        }
1696
    case 0x5e: // D-MMU tag read
1697
        {
1698
            int reg = (addr >> 3) & 0x3f;
1699

    
1700
            ret = env->dtlb_tag[reg];
1701
            break;
1702
        }
1703
    case 0x46: // D-cache data
1704
    case 0x47: // D-cache tag access
1705
    case 0x4b: // E-cache error enable
1706
    case 0x4c: // E-cache asynchronous fault status
1707
    case 0x4d: // E-cache asynchronous fault address
1708
    case 0x4e: // E-cache tag data
1709
    case 0x66: // I-cache instruction access
1710
    case 0x67: // I-cache tag access
1711
    case 0x6e: // I-cache predecode
1712
    case 0x6f: // I-cache LRU etc.
1713
    case 0x76: // E-cache tag
1714
    case 0x7e: // E-cache tag
1715
        break;
1716
    case 0x59: // D-MMU 8k TSB pointer
1717
    case 0x5a: // D-MMU 64k TSB pointer
1718
    case 0x5b: // D-MMU data pointer
1719
    case 0x48: // Interrupt dispatch, RO
1720
    case 0x49: // Interrupt data receive
1721
    case 0x7f: // Incoming interrupt vector, RO
1722
        // XXX
1723
        break;
1724
    case 0x54: // I-MMU data in, WO
1725
    case 0x57: // I-MMU demap, WO
1726
    case 0x5c: // D-MMU data in, WO
1727
    case 0x5f: // D-MMU demap, WO
1728
    case 0x77: // Interrupt vector, WO
1729
    default:
1730
        do_unassigned_access(addr, 0, 0, 1);
1731
        ret = 0;
1732
        break;
1733
    }
1734

    
1735
    /* Convert from little endian */
1736
    switch (asi) {
1737
    case 0x0c: // Nucleus Little Endian (LE)
1738
    case 0x18: // As if user primary LE
1739
    case 0x19: // As if user secondary LE
1740
    case 0x1c: // Bypass LE
1741
    case 0x1d: // Bypass, non-cacheable LE
1742
    case 0x88: // Primary LE
1743
    case 0x89: // Secondary LE
1744
    case 0x8a: // Primary no-fault LE
1745
    case 0x8b: // Secondary no-fault LE
1746
        switch(size) {
1747
        case 2:
1748
            ret = bswap16(ret);
1749
            break;
1750
        case 4:
1751
            ret = bswap32(ret);
1752
            break;
1753
        case 8:
1754
            ret = bswap64(ret);
1755
            break;
1756
        default:
1757
            break;
1758
        }
1759
    default:
1760
        break;
1761
    }
1762

    
1763
    /* Convert to signed number */
1764
    if (sign) {
1765
        switch(size) {
1766
        case 1:
1767
            ret = (int8_t) ret;
1768
            break;
1769
        case 2:
1770
            ret = (int16_t) ret;
1771
            break;
1772
        case 4:
1773
            ret = (int32_t) ret;
1774
            break;
1775
        default:
1776
            break;
1777
        }
1778
    }
1779
#ifdef DEBUG_ASI
1780
    dump_asi("read ", last_addr, asi, size, ret);
1781
#endif
1782
    return ret;
1783
}
1784

    
1785
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1786
{
1787
#ifdef DEBUG_ASI
1788
    dump_asi("write", addr, asi, size, val);
1789
#endif
1790
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1791
        || ((env->features & CPU_FEATURE_HYPV) && asi >= 0x30 && asi < 0x80
1792
            && !(env->hpstate & HS_PRIV)))
1793
        raise_exception(TT_PRIV_ACT);
1794

    
1795
    helper_check_align(addr, size - 1);
1796
    /* Convert to little endian */
1797
    switch (asi) {
1798
    case 0x0c: // Nucleus Little Endian (LE)
1799
    case 0x18: // As if user primary LE
1800
    case 0x19: // As if user secondary LE
1801
    case 0x1c: // Bypass LE
1802
    case 0x1d: // Bypass, non-cacheable LE
1803
    case 0x88: // Primary LE
1804
    case 0x89: // Secondary LE
1805
        switch(size) {
1806
        case 2:
1807
            addr = bswap16(addr);
1808
            break;
1809
        case 4:
1810
            addr = bswap32(addr);
1811
            break;
1812
        case 8:
1813
            addr = bswap64(addr);
1814
            break;
1815
        default:
1816
            break;
1817
        }
1818
    default:
1819
        break;
1820
    }
1821

    
1822
    switch(asi) {
1823
    case 0x10: // As if user primary
1824
    case 0x18: // As if user primary LE
1825
    case 0x80: // Primary
1826
    case 0x88: // Primary LE
1827
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1828
            if ((env->features & CPU_FEATURE_HYPV) && env->hpstate & HS_PRIV) {
1829
                switch(size) {
1830
                case 1:
1831
                    stb_hypv(addr, val);
1832
                    break;
1833
                case 2:
1834
                    stw_hypv(addr, val);
1835
                    break;
1836
                case 4:
1837
                    stl_hypv(addr, val);
1838
                    break;
1839
                case 8:
1840
                default:
1841
                    stq_hypv(addr, val);
1842
                    break;
1843
                }
1844
            } else {
1845
                switch(size) {
1846
                case 1:
1847
                    stb_kernel(addr, val);
1848
                    break;
1849
                case 2:
1850
                    stw_kernel(addr, val);
1851
                    break;
1852
                case 4:
1853
                    stl_kernel(addr, val);
1854
                    break;
1855
                case 8:
1856
                default:
1857
                    stq_kernel(addr, val);
1858
                    break;
1859
                }
1860
            }
1861
        } else {
1862
            switch(size) {
1863
            case 1:
1864
                stb_user(addr, val);
1865
                break;
1866
            case 2:
1867
                stw_user(addr, val);
1868
                break;
1869
            case 4:
1870
                stl_user(addr, val);
1871
                break;
1872
            case 8:
1873
            default:
1874
                stq_user(addr, val);
1875
                break;
1876
            }
1877
        }
1878
        break;
1879
    case 0x14: // Bypass
1880
    case 0x15: // Bypass, non-cacheable
1881
    case 0x1c: // Bypass LE
1882
    case 0x1d: // Bypass, non-cacheable LE
1883
        {
1884
            switch(size) {
1885
            case 1:
1886
                stb_phys(addr, val);
1887
                break;
1888
            case 2:
1889
                stw_phys(addr, val);
1890
                break;
1891
            case 4:
1892
                stl_phys(addr, val);
1893
                break;
1894
            case 8:
1895
            default:
1896
                stq_phys(addr, val);
1897
                break;
1898
            }
1899
        }
1900
        return;
1901
    case 0x24: // Nucleus quad LDD 128 bit atomic
1902
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1903
        //  Only ldda allowed
1904
        raise_exception(TT_ILL_INSN);
1905
        return;
1906
    case 0x04: // Nucleus
1907
    case 0x0c: // Nucleus Little Endian (LE)
1908
    case 0x11: // As if user secondary
1909
    case 0x19: // As if user secondary LE
1910
    case 0x4a: // UPA config
1911
    case 0x81: // Secondary
1912
    case 0x89: // Secondary LE
1913
        // XXX
1914
        return;
1915
    case 0x45: // LSU
1916
        {
1917
            uint64_t oldreg;
1918

    
1919
            oldreg = env->lsu;
1920
            env->lsu = val & (DMMU_E | IMMU_E);
1921
            // Mappings generated during D/I MMU disabled mode are
1922
            // invalid in normal mode
1923
            if (oldreg != env->lsu) {
1924
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1925
                            oldreg, env->lsu);
1926
#ifdef DEBUG_MMU
1927
                dump_mmu(env);
1928
#endif
1929
                tlb_flush(env, 1);
1930
            }
1931
            return;
1932
        }
1933
    case 0x50: // I-MMU regs
1934
        {
1935
            int reg = (addr >> 3) & 0xf;
1936
            uint64_t oldreg;
1937

    
1938
            oldreg = env->immuregs[reg];
1939
            switch(reg) {
1940
            case 0: // RO
1941
            case 4:
1942
                return;
1943
            case 1: // Not in I-MMU
1944
            case 2:
1945
            case 7:
1946
            case 8:
1947
                return;
1948
            case 3: // SFSR
1949
                if ((val & 1) == 0)
1950
                    val = 0; // Clear SFSR
1951
                break;
1952
            case 5: // TSB access
1953
            case 6: // Tag access
1954
            default:
1955
                break;
1956
            }
1957
            env->immuregs[reg] = val;
1958
            if (oldreg != env->immuregs[reg]) {
1959
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1960
                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1961
            }
1962
#ifdef DEBUG_MMU
1963
            dump_mmu(env);
1964
#endif
1965
            return;
1966
        }
1967
    case 0x54: // I-MMU data in
1968
        {
1969
            unsigned int i;
1970

    
1971
            // Try finding an invalid entry
1972
            for (i = 0; i < 64; i++) {
1973
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1974
                    env->itlb_tag[i] = env->immuregs[6];
1975
                    env->itlb_tte[i] = val;
1976
                    return;
1977
                }
1978
            }
1979
            // Try finding an unlocked entry
1980
            for (i = 0; i < 64; i++) {
1981
                if ((env->itlb_tte[i] & 0x40) == 0) {
1982
                    env->itlb_tag[i] = env->immuregs[6];
1983
                    env->itlb_tte[i] = val;
1984
                    return;
1985
                }
1986
            }
1987
            // error state?
1988
            return;
1989
        }
1990
    case 0x55: // I-MMU data access
1991
        {
1992
            unsigned int i = (addr >> 3) & 0x3f;
1993

    
1994
            env->itlb_tag[i] = env->immuregs[6];
1995
            env->itlb_tte[i] = val;
1996
            return;
1997
        }
1998
    case 0x57: // I-MMU demap
1999
        // XXX
2000
        return;
2001
    case 0x58: // D-MMU regs
2002
        {
2003
            int reg = (addr >> 3) & 0xf;
2004
            uint64_t oldreg;
2005

    
2006
            oldreg = env->dmmuregs[reg];
2007
            switch(reg) {
2008
            case 0: // RO
2009
            case 4:
2010
                return;
2011
            case 3: // SFSR
2012
                if ((val & 1) == 0) {
2013
                    val = 0; // Clear SFSR, Fault address
2014
                    env->dmmuregs[4] = 0;
2015
                }
2016
                env->dmmuregs[reg] = val;
2017
                break;
2018
            case 1: // Primary context
2019
            case 2: // Secondary context
2020
            case 5: // TSB access
2021
            case 6: // Tag access
2022
            case 7: // Virtual Watchpoint
2023
            case 8: // Physical Watchpoint
2024
            default:
2025
                break;
2026
            }
2027
            env->dmmuregs[reg] = val;
2028
            if (oldreg != env->dmmuregs[reg]) {
2029
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2030
                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2031
            }
2032
#ifdef DEBUG_MMU
2033
            dump_mmu(env);
2034
#endif
2035
            return;
2036
        }
2037
    case 0x5c: // D-MMU data in
2038
        {
2039
            unsigned int i;
2040

    
2041
            // Try finding an invalid entry
2042
            for (i = 0; i < 64; i++) {
2043
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2044
                    env->dtlb_tag[i] = env->dmmuregs[6];
2045
                    env->dtlb_tte[i] = val;
2046
                    return;
2047
                }
2048
            }
2049
            // Try finding an unlocked entry
2050
            for (i = 0; i < 64; i++) {
2051
                if ((env->dtlb_tte[i] & 0x40) == 0) {
2052
                    env->dtlb_tag[i] = env->dmmuregs[6];
2053
                    env->dtlb_tte[i] = val;
2054
                    return;
2055
                }
2056
            }
2057
            // error state?
2058
            return;
2059
        }
2060
    case 0x5d: // D-MMU data access
2061
        {
2062
            unsigned int i = (addr >> 3) & 0x3f;
2063

    
2064
            env->dtlb_tag[i] = env->dmmuregs[6];
2065
            env->dtlb_tte[i] = val;
2066
            return;
2067
        }
2068
    case 0x5f: // D-MMU demap
2069
    case 0x49: // Interrupt data receive
2070
        // XXX
2071
        return;
2072
    case 0x46: // D-cache data
2073
    case 0x47: // D-cache tag access
2074
    case 0x4b: // E-cache error enable
2075
    case 0x4c: // E-cache asynchronous fault status
2076
    case 0x4d: // E-cache asynchronous fault address
2077
    case 0x4e: // E-cache tag data
2078
    case 0x66: // I-cache instruction access
2079
    case 0x67: // I-cache tag access
2080
    case 0x6e: // I-cache predecode
2081
    case 0x6f: // I-cache LRU etc.
2082
    case 0x76: // E-cache tag
2083
    case 0x7e: // E-cache tag
2084
        return;
2085
    case 0x51: // I-MMU 8k TSB pointer, RO
2086
    case 0x52: // I-MMU 64k TSB pointer, RO
2087
    case 0x56: // I-MMU tag read, RO
2088
    case 0x59: // D-MMU 8k TSB pointer, RO
2089
    case 0x5a: // D-MMU 64k TSB pointer, RO
2090
    case 0x5b: // D-MMU data pointer, RO
2091
    case 0x5e: // D-MMU tag read, RO
2092
    case 0x48: // Interrupt dispatch, RO
2093
    case 0x7f: // Incoming interrupt vector, RO
2094
    case 0x82: // Primary no-fault, RO
2095
    case 0x83: // Secondary no-fault, RO
2096
    case 0x8a: // Primary no-fault LE, RO
2097
    case 0x8b: // Secondary no-fault LE, RO
2098
    default:
2099
        do_unassigned_access(addr, 1, 0, 1);
2100
        return;
2101
    }
2102
}
2103
#endif /* CONFIG_USER_ONLY */
2104

    
2105
void helper_ldda_asi(target_ulong addr, int asi, int rd)
2106
{
2107
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2108
        || ((env->features & CPU_FEATURE_HYPV) && asi >= 0x30 && asi < 0x80
2109
            && !(env->hpstate & HS_PRIV)))
2110
        raise_exception(TT_PRIV_ACT);
2111

    
2112
    switch (asi) {
2113
    case 0x24: // Nucleus quad LDD 128 bit atomic
2114
    case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2115
        helper_check_align(addr, 0xf);
2116
        if (rd == 0) {
2117
            env->gregs[1] = ldq_kernel(addr + 8);
2118
            if (asi == 0x2c)
2119
                bswap64s(&env->gregs[1]);
2120
        } else if (rd < 8) {
2121
            env->gregs[rd] = ldq_kernel(addr);
2122
            env->gregs[rd + 1] = ldq_kernel(addr + 8);
2123
            if (asi == 0x2c) {
2124
                bswap64s(&env->gregs[rd]);
2125
                bswap64s(&env->gregs[rd + 1]);
2126
            }
2127
        } else {
2128
            env->regwptr[rd] = ldq_kernel(addr);
2129
            env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2130
            if (asi == 0x2c) {
2131
                bswap64s(&env->regwptr[rd]);
2132
                bswap64s(&env->regwptr[rd + 1]);
2133
            }
2134
        }
2135
        break;
2136
    default:
2137
        helper_check_align(addr, 0x3);
2138
        if (rd == 0)
2139
            env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2140
        else if (rd < 8) {
2141
            env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2142
            env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2143
        } else {
2144
            env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2145
            env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2146
        }
2147
        break;
2148
    }
2149
}
2150

    
2151
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2152
{
2153
    unsigned int i;
2154
    target_ulong val;
2155

    
2156
    helper_check_align(addr, 3);
2157
    switch (asi) {
2158
    case 0xf0: // Block load primary
2159
    case 0xf1: // Block load secondary
2160
    case 0xf8: // Block load primary LE
2161
    case 0xf9: // Block load secondary LE
2162
        if (rd & 7) {
2163
            raise_exception(TT_ILL_INSN);
2164
            return;
2165
        }
2166
        helper_check_align(addr, 0x3f);
2167
        for (i = 0; i < 16; i++) {
2168
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2169
                                                         0);
2170
            addr += 4;
2171
        }
2172

    
2173
        return;
2174
    default:
2175
        break;
2176
    }
2177

    
2178
    val = helper_ld_asi(addr, asi, size, 0);
2179
    switch(size) {
2180
    default:
2181
    case 4:
2182
        *((uint32_t *)&FT0) = val;
2183
        break;
2184
    case 8:
2185
        *((int64_t *)&DT0) = val;
2186
        break;
2187
    case 16:
2188
        // XXX
2189
        break;
2190
    }
2191
}
2192

    
2193
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2194
{
2195
    unsigned int i;
2196
    target_ulong val = 0;
2197

    
2198
    helper_check_align(addr, 3);
2199
    switch (asi) {
2200
    case 0xf0: // Block store primary
2201
    case 0xf1: // Block store secondary
2202
    case 0xf8: // Block store primary LE
2203
    case 0xf9: // Block store secondary LE
2204
        if (rd & 7) {
2205
            raise_exception(TT_ILL_INSN);
2206
            return;
2207
        }
2208
        helper_check_align(addr, 0x3f);
2209
        for (i = 0; i < 16; i++) {
2210
            val = *(uint32_t *)&env->fpr[rd++];
2211
            helper_st_asi(addr, val, asi & 0x8f, 4);
2212
            addr += 4;
2213
        }
2214

    
2215
        return;
2216
    default:
2217
        break;
2218
    }
2219

    
2220
    switch(size) {
2221
    default:
2222
    case 4:
2223
        val = *((uint32_t *)&FT0);
2224
        break;
2225
    case 8:
2226
        val = *((int64_t *)&DT0);
2227
        break;
2228
    case 16:
2229
        // XXX
2230
        break;
2231
    }
2232
    helper_st_asi(addr, val, asi, size);
2233
}
2234

    
2235
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2236
                            target_ulong val2, uint32_t asi)
2237
{
2238
    target_ulong ret;
2239

    
2240
    val1 &= 0xffffffffUL;
2241
    ret = helper_ld_asi(addr, asi, 4, 0);
2242
    ret &= 0xffffffffUL;
2243
    if (val1 == ret)
2244
        helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2245
    return ret;
2246
}
2247

    
2248
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2249
                             target_ulong val2, uint32_t asi)
2250
{
2251
    target_ulong ret;
2252

    
2253
    ret = helper_ld_asi(addr, asi, 8, 0);
2254
    if (val1 == ret)
2255
        helper_st_asi(addr, val2, asi, 8);
2256
    return ret;
2257
}
2258
#endif /* TARGET_SPARC64 */
2259

    
2260
#ifndef TARGET_SPARC64
2261
void helper_rett(void)
2262
{
2263
    unsigned int cwp;
2264

    
2265
    if (env->psret == 1)
2266
        raise_exception(TT_ILL_INSN);
2267

    
2268
    env->psret = 1;
2269
    cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2270
    if (env->wim & (1 << cwp)) {
2271
        raise_exception(TT_WIN_UNF);
2272
    }
2273
    set_cwp(cwp);
2274
    env->psrs = env->psrps;
2275
}
2276
#endif
2277

    
2278
target_ulong helper_udiv(target_ulong a, target_ulong b)
2279
{
2280
    uint64_t x0;
2281
    uint32_t x1;
2282

    
2283
    x0 = a | ((uint64_t) (env->y) << 32);
2284
    x1 = b;
2285

    
2286
    if (x1 == 0) {
2287
        raise_exception(TT_DIV_ZERO);
2288
    }
2289

    
2290
    x0 = x0 / x1;
2291
    if (x0 > 0xffffffff) {
2292
        env->cc_src2 = 1;
2293
        return 0xffffffff;
2294
    } else {
2295
        env->cc_src2 = 0;
2296
        return x0;
2297
    }
2298
}
2299

    
2300
target_ulong helper_sdiv(target_ulong a, target_ulong b)
2301
{
2302
    int64_t x0;
2303
    int32_t x1;
2304

    
2305
    x0 = a | ((int64_t) (env->y) << 32);
2306
    x1 = b;
2307

    
2308
    if (x1 == 0) {
2309
        raise_exception(TT_DIV_ZERO);
2310
    }
2311

    
2312
    x0 = x0 / x1;
2313
    if ((int32_t) x0 != x0) {
2314
        env->cc_src2 = 1;
2315
        return x0 < 0? 0x80000000: 0x7fffffff;
2316
    } else {
2317
        env->cc_src2 = 0;
2318
        return x0;
2319
    }
2320
}
2321

    
2322
uint64_t helper_pack64(target_ulong high, target_ulong low)
2323
{
2324
    return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2325
}
2326

    
2327
void helper_stdf(target_ulong addr, int mem_idx)
2328
{
2329
    helper_check_align(addr, 7);
2330
#if !defined(CONFIG_USER_ONLY)
2331
    switch (mem_idx) {
2332
    case 0:
2333
        stfq_user(addr, DT0);
2334
        break;
2335
    case 1:
2336
        stfq_kernel(addr, DT0);
2337
        break;
2338
#ifdef TARGET_SPARC64
2339
    case 2:
2340
        stfq_hypv(addr, DT0);
2341
        break;
2342
#endif
2343
    default:
2344
        break;
2345
    }
2346
#else
2347
    address_mask(env, &addr);
2348
    stfq_raw(addr, DT0);
2349
#endif
2350
}
2351

    
2352
void helper_lddf(target_ulong addr, int mem_idx)
2353
{
2354
    helper_check_align(addr, 7);
2355
#if !defined(CONFIG_USER_ONLY)
2356
    switch (mem_idx) {
2357
    case 0:
2358
        DT0 = ldfq_user(addr);
2359
        break;
2360
    case 1:
2361
        DT0 = ldfq_kernel(addr);
2362
        break;
2363
#ifdef TARGET_SPARC64
2364
    case 2:
2365
        DT0 = ldfq_hypv(addr);
2366
        break;
2367
#endif
2368
    default:
2369
        break;
2370
    }
2371
#else
2372
    address_mask(env, &addr);
2373
    DT0 = ldfq_raw(addr);
2374
#endif
2375
}
2376

    
2377
void helper_ldqf(target_ulong addr, int mem_idx)
2378
{
2379
    // XXX add 128 bit load
2380
    CPU_QuadU u;
2381

    
2382
    helper_check_align(addr, 7);
2383
#if !defined(CONFIG_USER_ONLY)
2384
    switch (mem_idx) {
2385
    case 0:
2386
        u.ll.upper = ldq_user(addr);
2387
        u.ll.lower = ldq_user(addr + 8);
2388
        QT0 = u.q;
2389
        break;
2390
    case 1:
2391
        u.ll.upper = ldq_kernel(addr);
2392
        u.ll.lower = ldq_kernel(addr + 8);
2393
        QT0 = u.q;
2394
        break;
2395
#ifdef TARGET_SPARC64
2396
    case 2:
2397
        u.ll.upper = ldq_hypv(addr);
2398
        u.ll.lower = ldq_hypv(addr + 8);
2399
        QT0 = u.q;
2400
        break;
2401
#endif
2402
    default:
2403
        break;
2404
    }
2405
#else
2406
    address_mask(env, &addr);
2407
    u.ll.upper = ldq_raw(addr);
2408
    u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2409
    QT0 = u.q;
2410
#endif
2411
}
2412

    
2413
void helper_stqf(target_ulong addr, int mem_idx)
2414
{
2415
    // XXX add 128 bit store
2416
    CPU_QuadU u;
2417

    
2418
    helper_check_align(addr, 7);
2419
#if !defined(CONFIG_USER_ONLY)
2420
    switch (mem_idx) {
2421
    case 0:
2422
        u.q = QT0;
2423
        stq_user(addr, u.ll.upper);
2424
        stq_user(addr + 8, u.ll.lower);
2425
        break;
2426
    case 1:
2427
        u.q = QT0;
2428
        stq_kernel(addr, u.ll.upper);
2429
        stq_kernel(addr + 8, u.ll.lower);
2430
        break;
2431
#ifdef TARGET_SPARC64
2432
    case 2:
2433
        u.q = QT0;
2434
        stq_hypv(addr, u.ll.upper);
2435
        stq_hypv(addr + 8, u.ll.lower);
2436
        break;
2437
#endif
2438
    default:
2439
        break;
2440
    }
2441
#else
2442
    u.q = QT0;
2443
    address_mask(env, &addr);
2444
    stq_raw(addr, u.ll.upper);
2445
    stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2446
#endif
2447
}
2448

    
2449
void helper_ldfsr(void)
2450
{
2451
    int rnd_mode;
2452

    
2453
    PUT_FSR32(env, *((uint32_t *) &FT0));
2454
    switch (env->fsr & FSR_RD_MASK) {
2455
    case FSR_RD_NEAREST:
2456
        rnd_mode = float_round_nearest_even;
2457
        break;
2458
    default:
2459
    case FSR_RD_ZERO:
2460
        rnd_mode = float_round_to_zero;
2461
        break;
2462
    case FSR_RD_POS:
2463
        rnd_mode = float_round_up;
2464
        break;
2465
    case FSR_RD_NEG:
2466
        rnd_mode = float_round_down;
2467
        break;
2468
    }
2469
    set_float_rounding_mode(rnd_mode, &env->fp_status);
2470
}
2471

    
2472
void helper_stfsr(void)
2473
{
2474
    *((uint32_t *) &FT0) = GET_FSR32(env);
2475
}
2476

    
2477
void helper_debug(void)
2478
{
2479
    env->exception_index = EXCP_DEBUG;
2480
    cpu_loop_exit();
2481
}
2482

    
2483
#ifndef TARGET_SPARC64
2484
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2485
   handling ? */
2486
void helper_save(void)
2487
{
2488
    uint32_t cwp;
2489

    
2490
    cwp = cpu_cwp_dec(env, env->cwp - 1);
2491
    if (env->wim & (1 << cwp)) {
2492
        raise_exception(TT_WIN_OVF);
2493
    }
2494
    set_cwp(cwp);
2495
}
2496

    
2497
void helper_restore(void)
2498
{
2499
    uint32_t cwp;
2500

    
2501
    cwp = cpu_cwp_inc(env, env->cwp + 1);
2502
    if (env->wim & (1 << cwp)) {
2503
        raise_exception(TT_WIN_UNF);
2504
    }
2505
    set_cwp(cwp);
2506
}
2507

    
2508
void helper_wrpsr(target_ulong new_psr)
2509
{
2510
    if ((new_psr & PSR_CWP) >= env->nwindows)
2511
        raise_exception(TT_ILL_INSN);
2512
    else
2513
        PUT_PSR(env, new_psr);
2514
}
2515

    
2516
target_ulong helper_rdpsr(void)
2517
{
2518
    return GET_PSR(env);
2519
}
2520

    
2521
#else
2522
/* XXX: use another pointer for %iN registers to avoid slow wrapping
2523
   handling ? */
2524
void helper_save(void)
2525
{
2526
    uint32_t cwp;
2527

    
2528
    cwp = cpu_cwp_dec(env, env->cwp - 1);
2529
    if (env->cansave == 0) {
2530
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2531
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2532
                                    ((env->wstate & 0x7) << 2)));
2533
    } else {
2534
        if (env->cleanwin - env->canrestore == 0) {
2535
            // XXX Clean windows without trap
2536
            raise_exception(TT_CLRWIN);
2537
        } else {
2538
            env->cansave--;
2539
            env->canrestore++;
2540
            set_cwp(cwp);
2541
        }
2542
    }
2543
}
2544

    
2545
void helper_restore(void)
2546
{
2547
    uint32_t cwp;
2548

    
2549
    cwp = cpu_cwp_inc(env, env->cwp + 1);
2550
    if (env->canrestore == 0) {
2551
        raise_exception(TT_FILL | (env->otherwin != 0 ?
2552
                                   (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2553
                                   ((env->wstate & 0x7) << 2)));
2554
    } else {
2555
        env->cansave++;
2556
        env->canrestore--;
2557
        set_cwp(cwp);
2558
    }
2559
}
2560

    
2561
void helper_flushw(void)
2562
{
2563
    if (env->cansave != env->nwindows - 2) {
2564
        raise_exception(TT_SPILL | (env->otherwin != 0 ?
2565
                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2566
                                    ((env->wstate & 0x7) << 2)));
2567
    }
2568
}
2569

    
2570
void helper_saved(void)
2571
{
2572
    env->cansave++;
2573
    if (env->otherwin == 0)
2574
        env->canrestore--;
2575
    else
2576
        env->otherwin--;
2577
}
2578

    
2579
void helper_restored(void)
2580
{
2581
    env->canrestore++;
2582
    if (env->cleanwin < env->nwindows - 1)
2583
        env->cleanwin++;
2584
    if (env->otherwin == 0)
2585
        env->cansave--;
2586
    else
2587
        env->otherwin--;
2588
}
2589

    
2590
target_ulong helper_rdccr(void)
2591
{
2592
    return GET_CCR(env);
2593
}
2594

    
2595
void helper_wrccr(target_ulong new_ccr)
2596
{
2597
    PUT_CCR(env, new_ccr);
2598
}
2599

    
2600
// CWP handling is reversed in V9, but we still use the V8 register
2601
// order.
2602
target_ulong helper_rdcwp(void)
2603
{
2604
    return GET_CWP64(env);
2605
}
2606

    
2607
void helper_wrcwp(target_ulong new_cwp)
2608
{
2609
    PUT_CWP64(env, new_cwp);
2610
}
2611

    
2612
// This function uses non-native bit order
2613
#define GET_FIELD(X, FROM, TO)                                  \
2614
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2615

    
2616
// This function uses the order in the manuals, i.e. bit 0 is 2^0
2617
#define GET_FIELD_SP(X, FROM, TO)               \
2618
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
2619

    
2620
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2621
{
2622
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2623
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2624
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2625
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2626
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2627
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2628
        (((pixel_addr >> 55) & 1) << 4) |
2629
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2630
        GET_FIELD_SP(pixel_addr, 11, 12);
2631
}
2632

    
2633
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2634
{
2635
    uint64_t tmp;
2636

    
2637
    tmp = addr + offset;
2638
    env->gsr &= ~7ULL;
2639
    env->gsr |= tmp & 7ULL;
2640
    return tmp & ~7ULL;
2641
}
2642

    
2643
target_ulong helper_popc(target_ulong val)
2644
{
2645
    return ctpop64(val);
2646
}
2647

    
2648
static inline uint64_t *get_gregset(uint64_t pstate)
2649
{
2650
    switch (pstate) {
2651
    default:
2652
    case 0:
2653
        return env->bgregs;
2654
    case PS_AG:
2655
        return env->agregs;
2656
    case PS_MG:
2657
        return env->mgregs;
2658
    case PS_IG:
2659
        return env->igregs;
2660
    }
2661
}
2662

    
2663
void change_pstate(uint64_t new_pstate)
2664
{
2665
    uint64_t pstate_regs, new_pstate_regs;
2666
    uint64_t *src, *dst;
2667

    
2668
    pstate_regs = env->pstate & 0xc01;
2669
    new_pstate_regs = new_pstate & 0xc01;
2670
    if (new_pstate_regs != pstate_regs) {
2671
        // Switch global register bank
2672
        src = get_gregset(new_pstate_regs);
2673
        dst = get_gregset(pstate_regs);
2674
        memcpy32(dst, env->gregs);
2675
        memcpy32(env->gregs, src);
2676
    }
2677
    env->pstate = new_pstate;
2678
}
2679

    
2680
void helper_wrpstate(target_ulong new_state)
2681
{
2682
    if (!(env->features & CPU_FEATURE_GL))
2683
        change_pstate(new_state & 0xf3f);
2684
}
2685

    
2686
void helper_done(void)
2687
{
2688
    env->pc = env->tsptr->tpc;
2689
    env->npc = env->tsptr->tnpc + 4;
2690
    PUT_CCR(env, env->tsptr->tstate >> 32);
2691
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2692
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2693
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2694
    env->tl--;
2695
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2696
}
2697

    
2698
void helper_retry(void)
2699
{
2700
    env->pc = env->tsptr->tpc;
2701
    env->npc = env->tsptr->tnpc;
2702
    PUT_CCR(env, env->tsptr->tstate >> 32);
2703
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
2704
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2705
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
2706
    env->tl--;
2707
    env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2708
}
2709
#endif
2710

    
2711
void cpu_set_cwp(CPUState *env1, int new_cwp)
2712
{
2713
    /* put the modified wrap registers at their proper location */
2714
    if (env1->cwp == env1->nwindows - 1)
2715
        memcpy32(env1->regbase, env1->regbase + env1->nwindows * 16);
2716
    env1->cwp = new_cwp;
2717
    /* put the wrap registers at their temporary location */
2718
    if (new_cwp == env1->nwindows - 1)
2719
        memcpy32(env1->regbase + env1->nwindows * 16, env1->regbase);
2720
    env1->regwptr = env1->regbase + (new_cwp * 16);
2721
}
2722

    
2723
void set_cwp(int new_cwp)
2724
{
2725
    cpu_set_cwp(env, new_cwp);
2726
}
2727

    
2728
void helper_flush(target_ulong addr)
2729
{
2730
    addr &= ~7;
2731
    tb_invalidate_page_range(addr, addr + 8);
2732
}
2733

    
2734
#if !defined(CONFIG_USER_ONLY)
2735

    
2736
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2737
                                void *retaddr);
2738

    
2739
#define MMUSUFFIX _mmu
2740
#define ALIGNED_ONLY
2741

    
2742
#define SHIFT 0
2743
#include "softmmu_template.h"
2744

    
2745
#define SHIFT 1
2746
#include "softmmu_template.h"
2747

    
2748
#define SHIFT 2
2749
#include "softmmu_template.h"
2750

    
2751
#define SHIFT 3
2752
#include "softmmu_template.h"
2753

    
2754
/* XXX: make it generic ? */
2755
static void cpu_restore_state2(void *retaddr)
2756
{
2757
    TranslationBlock *tb;
2758
    unsigned long pc;
2759

    
2760
    if (retaddr) {
2761
        /* now we have a real cpu fault */
2762
        pc = (unsigned long)retaddr;
2763
        tb = tb_find_pc(pc);
2764
        if (tb) {
2765
            /* the PC is inside the translated code. It means that we have
2766
               a virtual CPU fault */
2767
            cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2768
        }
2769
    }
2770
}
2771

    
2772
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2773
                                void *retaddr)
2774
{
2775
#ifdef DEBUG_UNALIGNED
2776
    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2777
           "\n", addr, env->pc);
2778
#endif
2779
    cpu_restore_state2(retaddr);
2780
    raise_exception(TT_UNALIGNED);
2781
}
2782

    
2783
/* try to fill the TLB and return an exception if error. If retaddr is
2784
   NULL, it means that the function was called in C code (i.e. not
2785
   from generated code or from helper.c) */
2786
/* XXX: fix it to restore all registers */
2787
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2788
{
2789
    int ret;
2790
    CPUState *saved_env;
2791

    
2792
    /* XXX: hack to restore env in all cases, even if not called from
2793
       generated code */
2794
    saved_env = env;
2795
    env = cpu_single_env;
2796

    
2797
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2798
    if (ret) {
2799
        cpu_restore_state2(retaddr);
2800
        cpu_loop_exit();
2801
    }
2802
    env = saved_env;
2803
}
2804

    
2805
#endif
2806

    
2807
#ifndef TARGET_SPARC64
2808
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2809
                          int is_asi)
2810
{
2811
    CPUState *saved_env;
2812

    
2813
    /* XXX: hack to restore env in all cases, even if not called from
2814
       generated code */
2815
    saved_env = env;
2816
    env = cpu_single_env;
2817
#ifdef DEBUG_UNASSIGNED
2818
    if (is_asi)
2819
        printf("Unassigned mem %s access to " TARGET_FMT_plx
2820
               " asi 0x%02x from " TARGET_FMT_lx "\n",
2821
               is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
2822
               env->pc);
2823
    else
2824
        printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
2825
               TARGET_FMT_lx "\n",
2826
               is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
2827
#endif
2828
    if (env->mmuregs[3]) /* Fault status register */
2829
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
2830
    if (is_asi)
2831
        env->mmuregs[3] |= 1 << 16;
2832
    if (env->psrs)
2833
        env->mmuregs[3] |= 1 << 5;
2834
    if (is_exec)
2835
        env->mmuregs[3] |= 1 << 6;
2836
    if (is_write)
2837
        env->mmuregs[3] |= 1 << 7;
2838
    env->mmuregs[3] |= (5 << 2) | 2;
2839
    env->mmuregs[4] = addr; /* Fault address register */
2840
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2841
        if (is_exec)
2842
            raise_exception(TT_CODE_ACCESS);
2843
        else
2844
            raise_exception(TT_DATA_ACCESS);
2845
    }
2846
    env = saved_env;
2847
}
2848
#else
2849
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2850
                          int is_asi)
2851
{
2852
#ifdef DEBUG_UNASSIGNED
2853
    CPUState *saved_env;
2854

    
2855
    /* XXX: hack to restore env in all cases, even if not called from
2856
       generated code */
2857
    saved_env = env;
2858
    env = cpu_single_env;
2859
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2860
           "\n", addr, env->pc);
2861
    env = saved_env;
2862
#endif
2863
    if (is_exec)
2864
        raise_exception(TT_CODE_ACCESS);
2865
    else
2866
        raise_exception(TT_DATA_ACCESS);
2867
}
2868
#endif
2869