Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 444dd39b

History | View | Annotate | Download (62.7 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include <assert.h>
14

    
15
#include "hw.h"
16
#include "pci.h"
17
#include "scsi.h"
18
#include "block_int.h"
19

    
20
//#define DEBUG_LSI
21
//#define DEBUG_LSI_REG
22

    
23
#ifdef DEBUG_LSI
24
#define DPRINTF(fmt, ...) \
25
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26
#define BADF(fmt, ...) \
27
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28
#else
29
#define DPRINTF(fmt, ...) do {} while(0)
30
#define BADF(fmt, ...) \
31
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32
#endif
33

    
34
#define LSI_MAX_DEVS 7
35

    
36
#define LSI_SCNTL0_TRG    0x01
37
#define LSI_SCNTL0_AAP    0x02
38
#define LSI_SCNTL0_EPC    0x08
39
#define LSI_SCNTL0_WATN   0x10
40
#define LSI_SCNTL0_START  0x20
41

    
42
#define LSI_SCNTL1_SST    0x01
43
#define LSI_SCNTL1_IARB   0x02
44
#define LSI_SCNTL1_AESP   0x04
45
#define LSI_SCNTL1_RST    0x08
46
#define LSI_SCNTL1_CON    0x10
47
#define LSI_SCNTL1_DHP    0x20
48
#define LSI_SCNTL1_ADB    0x40
49
#define LSI_SCNTL1_EXC    0x80
50

    
51
#define LSI_SCNTL2_WSR    0x01
52
#define LSI_SCNTL2_VUE0   0x02
53
#define LSI_SCNTL2_VUE1   0x04
54
#define LSI_SCNTL2_WSS    0x08
55
#define LSI_SCNTL2_SLPHBEN 0x10
56
#define LSI_SCNTL2_SLPMD  0x20
57
#define LSI_SCNTL2_CHM    0x40
58
#define LSI_SCNTL2_SDU    0x80
59

    
60
#define LSI_ISTAT0_DIP    0x01
61
#define LSI_ISTAT0_SIP    0x02
62
#define LSI_ISTAT0_INTF   0x04
63
#define LSI_ISTAT0_CON    0x08
64
#define LSI_ISTAT0_SEM    0x10
65
#define LSI_ISTAT0_SIGP   0x20
66
#define LSI_ISTAT0_SRST   0x40
67
#define LSI_ISTAT0_ABRT   0x80
68

    
69
#define LSI_ISTAT1_SI     0x01
70
#define LSI_ISTAT1_SRUN   0x02
71
#define LSI_ISTAT1_FLSH   0x04
72

    
73
#define LSI_SSTAT0_SDP0   0x01
74
#define LSI_SSTAT0_RST    0x02
75
#define LSI_SSTAT0_WOA    0x04
76
#define LSI_SSTAT0_LOA    0x08
77
#define LSI_SSTAT0_AIP    0x10
78
#define LSI_SSTAT0_OLF    0x20
79
#define LSI_SSTAT0_ORF    0x40
80
#define LSI_SSTAT0_ILF    0x80
81

    
82
#define LSI_SIST0_PAR     0x01
83
#define LSI_SIST0_RST     0x02
84
#define LSI_SIST0_UDC     0x04
85
#define LSI_SIST0_SGE     0x08
86
#define LSI_SIST0_RSL     0x10
87
#define LSI_SIST0_SEL     0x20
88
#define LSI_SIST0_CMP     0x40
89
#define LSI_SIST0_MA      0x80
90

    
91
#define LSI_SIST1_HTH     0x01
92
#define LSI_SIST1_GEN     0x02
93
#define LSI_SIST1_STO     0x04
94
#define LSI_SIST1_SBMC    0x10
95

    
96
#define LSI_SOCL_IO       0x01
97
#define LSI_SOCL_CD       0x02
98
#define LSI_SOCL_MSG      0x04
99
#define LSI_SOCL_ATN      0x08
100
#define LSI_SOCL_SEL      0x10
101
#define LSI_SOCL_BSY      0x20
102
#define LSI_SOCL_ACK      0x40
103
#define LSI_SOCL_REQ      0x80
104

    
105
#define LSI_DSTAT_IID     0x01
106
#define LSI_DSTAT_SIR     0x04
107
#define LSI_DSTAT_SSI     0x08
108
#define LSI_DSTAT_ABRT    0x10
109
#define LSI_DSTAT_BF      0x20
110
#define LSI_DSTAT_MDPE    0x40
111
#define LSI_DSTAT_DFE     0x80
112

    
113
#define LSI_DCNTL_COM     0x01
114
#define LSI_DCNTL_IRQD    0x02
115
#define LSI_DCNTL_STD     0x04
116
#define LSI_DCNTL_IRQM    0x08
117
#define LSI_DCNTL_SSM     0x10
118
#define LSI_DCNTL_PFEN    0x20
119
#define LSI_DCNTL_PFF     0x40
120
#define LSI_DCNTL_CLSE    0x80
121

    
122
#define LSI_DMODE_MAN     0x01
123
#define LSI_DMODE_BOF     0x02
124
#define LSI_DMODE_ERMP    0x04
125
#define LSI_DMODE_ERL     0x08
126
#define LSI_DMODE_DIOM    0x10
127
#define LSI_DMODE_SIOM    0x20
128

    
129
#define LSI_CTEST2_DACK   0x01
130
#define LSI_CTEST2_DREQ   0x02
131
#define LSI_CTEST2_TEOP   0x04
132
#define LSI_CTEST2_PCICIE 0x08
133
#define LSI_CTEST2_CM     0x10
134
#define LSI_CTEST2_CIO    0x20
135
#define LSI_CTEST2_SIGP   0x40
136
#define LSI_CTEST2_DDIR   0x80
137

    
138
#define LSI_CTEST5_BL2    0x04
139
#define LSI_CTEST5_DDIR   0x08
140
#define LSI_CTEST5_MASR   0x10
141
#define LSI_CTEST5_DFSN   0x20
142
#define LSI_CTEST5_BBCK   0x40
143
#define LSI_CTEST5_ADCK   0x80
144

    
145
#define LSI_CCNTL0_DILS   0x01
146
#define LSI_CCNTL0_DISFC  0x10
147
#define LSI_CCNTL0_ENNDJ  0x20
148
#define LSI_CCNTL0_PMJCTL 0x40
149
#define LSI_CCNTL0_ENPMJ  0x80
150

    
151
#define LSI_CCNTL1_EN64DBMV  0x01
152
#define LSI_CCNTL1_EN64TIBMV 0x02
153
#define LSI_CCNTL1_64TIMOD   0x04
154
#define LSI_CCNTL1_DDAC      0x08
155
#define LSI_CCNTL1_ZMOD      0x80
156

    
157
/* Enable Response to Reselection */
158
#define LSI_SCID_RRE      0x60
159

    
160
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161

    
162
#define PHASE_DO          0
163
#define PHASE_DI          1
164
#define PHASE_CMD         2
165
#define PHASE_ST          3
166
#define PHASE_MO          6
167
#define PHASE_MI          7
168
#define PHASE_MASK        7
169

    
170
/* Maximum length of MSG IN data.  */
171
#define LSI_MAX_MSGIN_LEN 8
172

    
173
/* Flag set if this is a tagged command.  */
174
#define LSI_TAG_VALID     (1 << 16)
175

    
176
typedef struct lsi_request {
177
    uint32_t tag;
178
    uint32_t dma_len;
179
    uint8_t *dma_buf;
180
    uint32_t pending;
181
    int out;
182
    QTAILQ_ENTRY(lsi_request) next;
183
} lsi_request;
184

    
185
typedef struct {
186
    PCIDevice dev;
187
    int mmio_io_addr;
188
    int ram_io_addr;
189
    uint32_t script_ram_base;
190

    
191
    int carry; /* ??? Should this be an a visible register somewhere?  */
192
    int sense;
193
    /* Action to take at the end of a MSG IN phase.
194
       0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN.  */
195
    int msg_action;
196
    int msg_len;
197
    uint8_t msg[LSI_MAX_MSGIN_LEN];
198
    /* 0 if SCRIPTS are running or stopped.
199
     * 1 if a Wait Reselect instruction has been issued.
200
     * 2 if processing DMA from lsi_execute_script.
201
     * 3 if a DMA operation is in progress.  */
202
    int waiting;
203
    SCSIBus bus;
204
    int current_lun;
205
    /* The tag is a combination of the device ID and the SCSI tag.  */
206
    uint32_t select_tag;
207
    int command_complete;
208
    QTAILQ_HEAD(, lsi_request) queue;
209
    lsi_request *current;
210

    
211
    uint32_t dsa;
212
    uint32_t temp;
213
    uint32_t dnad;
214
    uint32_t dbc;
215
    uint8_t istat0;
216
    uint8_t istat1;
217
    uint8_t dcmd;
218
    uint8_t dstat;
219
    uint8_t dien;
220
    uint8_t sist0;
221
    uint8_t sist1;
222
    uint8_t sien0;
223
    uint8_t sien1;
224
    uint8_t mbox0;
225
    uint8_t mbox1;
226
    uint8_t dfifo;
227
    uint8_t ctest2;
228
    uint8_t ctest3;
229
    uint8_t ctest4;
230
    uint8_t ctest5;
231
    uint8_t ccntl0;
232
    uint8_t ccntl1;
233
    uint32_t dsp;
234
    uint32_t dsps;
235
    uint8_t dmode;
236
    uint8_t dcntl;
237
    uint8_t scntl0;
238
    uint8_t scntl1;
239
    uint8_t scntl2;
240
    uint8_t scntl3;
241
    uint8_t sstat0;
242
    uint8_t sstat1;
243
    uint8_t scid;
244
    uint8_t sxfer;
245
    uint8_t socl;
246
    uint8_t sdid;
247
    uint8_t ssid;
248
    uint8_t sfbr;
249
    uint8_t stest1;
250
    uint8_t stest2;
251
    uint8_t stest3;
252
    uint8_t sidl;
253
    uint8_t stime0;
254
    uint8_t respid0;
255
    uint8_t respid1;
256
    uint32_t mmrs;
257
    uint32_t mmws;
258
    uint32_t sfs;
259
    uint32_t drs;
260
    uint32_t sbms;
261
    uint32_t dbms;
262
    uint32_t dnad64;
263
    uint32_t pmjad1;
264
    uint32_t pmjad2;
265
    uint32_t rbc;
266
    uint32_t ua;
267
    uint32_t ia;
268
    uint32_t sbc;
269
    uint32_t csbc;
270
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
271
    uint8_t sbr;
272

    
273
    /* Script ram is stored as 32-bit words in host byteorder.  */
274
    uint32_t script_ram[2048];
275
} LSIState;
276

    
277
static inline int lsi_irq_on_rsl(LSIState *s)
278
{
279
    return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
280
}
281

    
282
static void lsi_soft_reset(LSIState *s)
283
{
284
    lsi_request *p;
285

    
286
    DPRINTF("Reset\n");
287
    s->carry = 0;
288

    
289
    s->msg_action = 0;
290
    s->msg_len = 0;
291
    s->waiting = 0;
292
    s->dsa = 0;
293
    s->dnad = 0;
294
    s->dbc = 0;
295
    s->temp = 0;
296
    memset(s->scratch, 0, sizeof(s->scratch));
297
    s->istat0 = 0;
298
    s->istat1 = 0;
299
    s->dcmd = 0x40;
300
    s->dstat = LSI_DSTAT_DFE;
301
    s->dien = 0;
302
    s->sist0 = 0;
303
    s->sist1 = 0;
304
    s->sien0 = 0;
305
    s->sien1 = 0;
306
    s->mbox0 = 0;
307
    s->mbox1 = 0;
308
    s->dfifo = 0;
309
    s->ctest2 = LSI_CTEST2_DACK;
310
    s->ctest3 = 0;
311
    s->ctest4 = 0;
312
    s->ctest5 = 0;
313
    s->ccntl0 = 0;
314
    s->ccntl1 = 0;
315
    s->dsp = 0;
316
    s->dsps = 0;
317
    s->dmode = 0;
318
    s->dcntl = 0;
319
    s->scntl0 = 0xc0;
320
    s->scntl1 = 0;
321
    s->scntl2 = 0;
322
    s->scntl3 = 0;
323
    s->sstat0 = 0;
324
    s->sstat1 = 0;
325
    s->scid = 7;
326
    s->sxfer = 0;
327
    s->socl = 0;
328
    s->sdid = 0;
329
    s->ssid = 0;
330
    s->stest1 = 0;
331
    s->stest2 = 0;
332
    s->stest3 = 0;
333
    s->sidl = 0;
334
    s->stime0 = 0;
335
    s->respid0 = 0x80;
336
    s->respid1 = 0;
337
    s->mmrs = 0;
338
    s->mmws = 0;
339
    s->sfs = 0;
340
    s->drs = 0;
341
    s->sbms = 0;
342
    s->dbms = 0;
343
    s->dnad64 = 0;
344
    s->pmjad1 = 0;
345
    s->pmjad2 = 0;
346
    s->rbc = 0;
347
    s->ua = 0;
348
    s->ia = 0;
349
    s->sbc = 0;
350
    s->csbc = 0;
351
    s->sbr = 0;
352
    while (!QTAILQ_EMPTY(&s->queue)) {
353
        p = QTAILQ_FIRST(&s->queue);
354
        QTAILQ_REMOVE(&s->queue, p, next);
355
        qemu_free(p);
356
    }
357
    if (s->current) {
358
        qemu_free(s->current);
359
        s->current = NULL;
360
    }
361
}
362

    
363
static int lsi_dma_40bit(LSIState *s)
364
{
365
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
366
        return 1;
367
    return 0;
368
}
369

    
370
static int lsi_dma_ti64bit(LSIState *s)
371
{
372
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
373
        return 1;
374
    return 0;
375
}
376

    
377
static int lsi_dma_64bit(LSIState *s)
378
{
379
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
380
        return 1;
381
    return 0;
382
}
383

    
384
static uint8_t lsi_reg_readb(LSIState *s, int offset);
385
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
386
static void lsi_execute_script(LSIState *s);
387
static void lsi_reselect(LSIState *s, lsi_request *p);
388

    
389
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
390
{
391
    uint32_t buf;
392

    
393
    /* Optimize reading from SCRIPTS RAM.  */
394
    if ((addr & 0xffffe000) == s->script_ram_base) {
395
        return s->script_ram[(addr & 0x1fff) >> 2];
396
    }
397
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
398
    return cpu_to_le32(buf);
399
}
400

    
401
static void lsi_stop_script(LSIState *s)
402
{
403
    s->istat1 &= ~LSI_ISTAT1_SRUN;
404
}
405

    
406
static void lsi_update_irq(LSIState *s)
407
{
408
    int level;
409
    static int last_level;
410
    lsi_request *p;
411

    
412
    /* It's unclear whether the DIP/SIP bits should be cleared when the
413
       Interrupt Status Registers are cleared or when istat0 is read.
414
       We currently do the formwer, which seems to work.  */
415
    level = 0;
416
    if (s->dstat) {
417
        if (s->dstat & s->dien)
418
            level = 1;
419
        s->istat0 |= LSI_ISTAT0_DIP;
420
    } else {
421
        s->istat0 &= ~LSI_ISTAT0_DIP;
422
    }
423

    
424
    if (s->sist0 || s->sist1) {
425
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
426
            level = 1;
427
        s->istat0 |= LSI_ISTAT0_SIP;
428
    } else {
429
        s->istat0 &= ~LSI_ISTAT0_SIP;
430
    }
431
    if (s->istat0 & LSI_ISTAT0_INTF)
432
        level = 1;
433

    
434
    if (level != last_level) {
435
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
436
                level, s->dstat, s->sist1, s->sist0);
437
        last_level = level;
438
    }
439
    qemu_set_irq(s->dev.irq[0], level);
440

    
441
    if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
442
        DPRINTF("Handled IRQs & disconnected, looking for pending "
443
                "processes\n");
444
        QTAILQ_FOREACH(p, &s->queue, next) {
445
            if (p->pending) {
446
                lsi_reselect(s, p);
447
                break;
448
            }
449
        }
450
    }
451
}
452

    
453
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
454
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
455
{
456
    uint32_t mask0;
457
    uint32_t mask1;
458

    
459
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
460
            stat1, stat0, s->sist1, s->sist0);
461
    s->sist0 |= stat0;
462
    s->sist1 |= stat1;
463
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
464
       we don't stop processing when raising STO.  Instead continue
465
       execution and stop at the next insn that accesses the SCSI bus.  */
466
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
467
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
468
    mask1 &= ~LSI_SIST1_STO;
469
    if (s->sist0 & mask0 || s->sist1 & mask1) {
470
        lsi_stop_script(s);
471
    }
472
    lsi_update_irq(s);
473
}
474

    
475
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
476
static void lsi_script_dma_interrupt(LSIState *s, int stat)
477
{
478
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
479
    s->dstat |= stat;
480
    lsi_update_irq(s);
481
    lsi_stop_script(s);
482
}
483

    
484
static inline void lsi_set_phase(LSIState *s, int phase)
485
{
486
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
487
}
488

    
489
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
490
{
491
    /* Trigger a phase mismatch.  */
492
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
493
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
494
            s->dsp = out ? s->pmjad1 : s->pmjad2;
495
        } else {
496
            s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
497
        }
498
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
499
    } else {
500
        DPRINTF("Phase mismatch interrupt\n");
501
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
502
        lsi_stop_script(s);
503
    }
504
    lsi_set_phase(s, new_phase);
505
}
506

    
507

    
508
/* Resume SCRIPTS execution after a DMA operation.  */
509
static void lsi_resume_script(LSIState *s)
510
{
511
    if (s->waiting != 2) {
512
        s->waiting = 0;
513
        lsi_execute_script(s);
514
    } else {
515
        s->waiting = 0;
516
    }
517
}
518

    
519
static void lsi_disconnect(LSIState *s)
520
{
521
    s->scntl1 &= ~LSI_SCNTL1_CON;
522
    s->sstat1 &= ~PHASE_MASK;
523
}
524

    
525
static void lsi_bad_selection(LSIState *s, uint32_t id)
526
{
527
    DPRINTF("Selected absent target %d\n", id);
528
    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
529
    lsi_disconnect(s);
530
}
531

    
532
/* Initiate a SCSI layer data transfer.  */
533
static void lsi_do_dma(LSIState *s, int out)
534
{
535
    uint32_t count, id;
536
    target_phys_addr_t addr;
537
    SCSIDevice *dev;
538

    
539
    assert(s->current);
540
    if (!s->current->dma_len) {
541
        /* Wait until data is available.  */
542
        DPRINTF("DMA no data available\n");
543
        return;
544
    }
545

    
546
    id = (s->current->tag >> 8) & 0xf;
547
    dev = s->bus.devs[id];
548
    if (!dev) {
549
        lsi_bad_selection(s, id);
550
        return;
551
    }
552

    
553
    count = s->dbc;
554
    if (count > s->current->dma_len)
555
        count = s->current->dma_len;
556

    
557
    addr = s->dnad;
558
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
559
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
560
        addr |= ((uint64_t)s->dnad64 << 32);
561
    else if (s->dbms)
562
        addr |= ((uint64_t)s->dbms << 32);
563
    else if (s->sbms)
564
        addr |= ((uint64_t)s->sbms << 32);
565

    
566
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
567
    s->csbc += count;
568
    s->dnad += count;
569
    s->dbc -= count;
570

    
571
    if (s->current->dma_buf == NULL) {
572
        s->current->dma_buf = dev->info->get_buf(dev, s->current->tag);
573
    }
574

    
575
    /* ??? Set SFBR to first data byte.  */
576
    if (out) {
577
        cpu_physical_memory_read(addr, s->current->dma_buf, count);
578
    } else {
579
        cpu_physical_memory_write(addr, s->current->dma_buf, count);
580
    }
581
    s->current->dma_len -= count;
582
    if (s->current->dma_len == 0) {
583
        s->current->dma_buf = NULL;
584
        if (out) {
585
            /* Write the data.  */
586
            dev->info->write_data(dev, s->current->tag);
587
        } else {
588
            /* Request any remaining data.  */
589
            dev->info->read_data(dev, s->current->tag);
590
        }
591
    } else {
592
        s->current->dma_buf += count;
593
        lsi_resume_script(s);
594
    }
595
}
596

    
597

    
598
/* Add a command to the queue.  */
599
static void lsi_queue_command(LSIState *s)
600
{
601
    lsi_request *p = s->current;
602

    
603
    DPRINTF("Queueing tag=0x%x\n", p->tag);
604
    assert(s->current != NULL);
605
    assert(s->current->dma_len == 0);
606
    QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
607
    s->current = NULL;
608

    
609
    p->pending = 0;
610
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
611
}
612

    
613
/* Queue a byte for a MSG IN phase.  */
614
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
615
{
616
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
617
        BADF("MSG IN data too long\n");
618
    } else {
619
        DPRINTF("MSG IN 0x%02x\n", data);
620
        s->msg[s->msg_len++] = data;
621
    }
622
}
623

    
624
/* Perform reselection to continue a command.  */
625
static void lsi_reselect(LSIState *s, lsi_request *p)
626
{
627
    int id;
628

    
629
    assert(s->current == NULL);
630
    QTAILQ_REMOVE(&s->queue, p, next);
631
    s->current = p;
632

    
633
    id = (p->tag >> 8) & 0xf;
634
    s->ssid = id | 0x80;
635
    /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
636
    if (!(s->dcntl & LSI_DCNTL_COM)) {
637
        s->sfbr = 1 << (id & 0x7);
638
    }
639
    DPRINTF("Reselected target %d\n", id);
640
    s->scntl1 |= LSI_SCNTL1_CON;
641
    lsi_set_phase(s, PHASE_MI);
642
    s->msg_action = p->out ? 2 : 3;
643
    s->current->dma_len = p->pending;
644
    lsi_add_msg_byte(s, 0x80);
645
    if (s->current->tag & LSI_TAG_VALID) {
646
        lsi_add_msg_byte(s, 0x20);
647
        lsi_add_msg_byte(s, p->tag & 0xff);
648
    }
649

    
650
    if (lsi_irq_on_rsl(s)) {
651
        lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
652
    }
653
}
654

    
655
/* Record that data is available for a queued command.  Returns zero if
656
   the device was reselected, nonzero if the IO is deferred.  */
657
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
658
{
659
    lsi_request *p;
660

    
661
    QTAILQ_FOREACH(p, &s->queue, next) {
662
        if (p->tag == tag) {
663
            if (p->pending) {
664
                BADF("Multiple IO pending for tag %d\n", tag);
665
            }
666
            p->pending = arg;
667
            /* Reselect if waiting for it, or if reselection triggers an IRQ
668
               and the bus is free.
669
               Since no interrupt stacking is implemented in the emulation, it
670
               is also required that there are no pending interrupts waiting
671
               for service from the device driver. */
672
            if (s->waiting == 1 ||
673
                (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
674
                 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
675
                /* Reselect device.  */
676
                lsi_reselect(s, p);
677
                return 0;
678
            } else {
679
                DPRINTF("Queueing IO tag=0x%x\n", tag);
680
                p->pending = arg;
681
                return 1;
682
            }
683
        }
684
    }
685
    BADF("IO with unknown tag %d\n", tag);
686
    return 1;
687
}
688

    
689
/* Callback to indicate that the SCSI layer has completed a transfer.  */
690
static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
691
                                 uint32_t arg)
692
{
693
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
694
    int out;
695

    
696
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
697
    if (reason == SCSI_REASON_DONE) {
698
        DPRINTF("Command complete sense=%d\n", (int)arg);
699
        s->sense = arg;
700
        s->command_complete = 2;
701
        if (s->waiting && s->dbc != 0) {
702
            /* Raise phase mismatch for short transfers.  */
703
            lsi_bad_phase(s, out, PHASE_ST);
704
        } else {
705
            lsi_set_phase(s, PHASE_ST);
706
        }
707

    
708
        qemu_free(s->current);
709
        s->current = NULL;
710

    
711
        lsi_resume_script(s);
712
        return;
713
    }
714

    
715
    if (s->waiting == 1 || !s->current || tag != s->current->tag ||
716
        (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
717
        if (lsi_queue_tag(s, tag, arg))
718
            return;
719
    }
720

    
721
    /* host adapter (re)connected */
722
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
723
    s->current->dma_len = arg;
724
    s->command_complete = 1;
725
    if (!s->waiting)
726
        return;
727
    if (s->waiting == 1 || s->dbc == 0) {
728
        lsi_resume_script(s);
729
    } else {
730
        lsi_do_dma(s, out);
731
    }
732
}
733

    
734
static void lsi_do_command(LSIState *s)
735
{
736
    SCSIDevice *dev;
737
    uint8_t buf[16];
738
    uint32_t id;
739
    int n;
740

    
741
    DPRINTF("Send command len=%d\n", s->dbc);
742
    if (s->dbc > 16)
743
        s->dbc = 16;
744
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
745
    s->sfbr = buf[0];
746
    s->command_complete = 0;
747

    
748
    id = (s->select_tag >> 8) & 0xf;
749
    dev = s->bus.devs[id];
750
    if (!dev) {
751
        lsi_bad_selection(s, id);
752
        return;
753
    }
754

    
755
    assert(s->current == NULL);
756
    s->current = qemu_mallocz(sizeof(lsi_request));
757
    s->current->tag = s->select_tag;
758

    
759
    n = dev->info->send_command(dev, s->current->tag, buf, s->current_lun);
760
    if (n > 0) {
761
        lsi_set_phase(s, PHASE_DI);
762
        dev->info->read_data(dev, s->current->tag);
763
    } else if (n < 0) {
764
        lsi_set_phase(s, PHASE_DO);
765
        dev->info->write_data(dev, s->current->tag);
766
    }
767

    
768
    if (!s->command_complete) {
769
        if (n) {
770
            /* Command did not complete immediately so disconnect.  */
771
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
772
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
773
            /* wait data */
774
            lsi_set_phase(s, PHASE_MI);
775
            s->msg_action = 1;
776
            lsi_queue_command(s);
777
        } else {
778
            /* wait command complete */
779
            lsi_set_phase(s, PHASE_DI);
780
        }
781
    }
782
}
783

    
784
static void lsi_do_status(LSIState *s)
785
{
786
    uint8_t sense;
787
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
788
    if (s->dbc != 1)
789
        BADF("Bad Status move\n");
790
    s->dbc = 1;
791
    sense = s->sense;
792
    s->sfbr = sense;
793
    cpu_physical_memory_write(s->dnad, &sense, 1);
794
    lsi_set_phase(s, PHASE_MI);
795
    s->msg_action = 1;
796
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
797
}
798

    
799
static void lsi_do_msgin(LSIState *s)
800
{
801
    int len;
802
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
803
    s->sfbr = s->msg[0];
804
    len = s->msg_len;
805
    if (len > s->dbc)
806
        len = s->dbc;
807
    cpu_physical_memory_write(s->dnad, s->msg, len);
808
    /* Linux drivers rely on the last byte being in the SIDL.  */
809
    s->sidl = s->msg[len - 1];
810
    s->msg_len -= len;
811
    if (s->msg_len) {
812
        memmove(s->msg, s->msg + len, s->msg_len);
813
    } else {
814
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
815
           switch to PHASE_MO.  */
816
        switch (s->msg_action) {
817
        case 0:
818
            lsi_set_phase(s, PHASE_CMD);
819
            break;
820
        case 1:
821
            lsi_disconnect(s);
822
            break;
823
        case 2:
824
            lsi_set_phase(s, PHASE_DO);
825
            break;
826
        case 3:
827
            lsi_set_phase(s, PHASE_DI);
828
            break;
829
        default:
830
            abort();
831
        }
832
    }
833
}
834

    
835
/* Read the next byte during a MSGOUT phase.  */
836
static uint8_t lsi_get_msgbyte(LSIState *s)
837
{
838
    uint8_t data;
839
    cpu_physical_memory_read(s->dnad, &data, 1);
840
    s->dnad++;
841
    s->dbc--;
842
    return data;
843
}
844

    
845
/* Skip the next n bytes during a MSGOUT phase. */
846
static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
847
{
848
    s->dnad += n;
849
    s->dbc  -= n;
850
}
851

    
852
static void lsi_do_msgout(LSIState *s)
853
{
854
    uint8_t msg;
855
    int len;
856

    
857
    DPRINTF("MSG out len=%d\n", s->dbc);
858
    while (s->dbc) {
859
        msg = lsi_get_msgbyte(s);
860
        s->sfbr = msg;
861

    
862
        switch (msg) {
863
        case 0x04:
864
            DPRINTF("MSG: Disconnect\n");
865
            lsi_disconnect(s);
866
            break;
867
        case 0x08:
868
            DPRINTF("MSG: No Operation\n");
869
            lsi_set_phase(s, PHASE_CMD);
870
            break;
871
        case 0x01:
872
            len = lsi_get_msgbyte(s);
873
            msg = lsi_get_msgbyte(s);
874
            (void)len; /* avoid a warning about unused variable*/
875
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
876
            switch (msg) {
877
            case 1:
878
                DPRINTF("SDTR (ignored)\n");
879
                lsi_skip_msgbytes(s, 2);
880
                break;
881
            case 3:
882
                DPRINTF("WDTR (ignored)\n");
883
                lsi_skip_msgbytes(s, 1);
884
                break;
885
            default:
886
                goto bad;
887
            }
888
            break;
889
        case 0x20: /* SIMPLE queue */
890
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
891
            DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
892
            break;
893
        case 0x21: /* HEAD of queue */
894
            BADF("HEAD queue not implemented\n");
895
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
896
            break;
897
        case 0x22: /* ORDERED queue */
898
            BADF("ORDERED queue not implemented\n");
899
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
900
            break;
901
        default:
902
            if ((msg & 0x80) == 0) {
903
                goto bad;
904
            }
905
            s->current_lun = msg & 7;
906
            DPRINTF("Select LUN %d\n", s->current_lun);
907
            lsi_set_phase(s, PHASE_CMD);
908
            break;
909
        }
910
    }
911
    return;
912
bad:
913
    BADF("Unimplemented message 0x%02x\n", msg);
914
    lsi_set_phase(s, PHASE_MI);
915
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
916
    s->msg_action = 0;
917
}
918

    
919
/* Sign extend a 24-bit value.  */
920
static inline int32_t sxt24(int32_t n)
921
{
922
    return (n << 8) >> 8;
923
}
924

    
925
#define LSI_BUF_SIZE 4096
926
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
927
{
928
    int n;
929
    uint8_t buf[LSI_BUF_SIZE];
930

    
931
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
932
    while (count) {
933
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
934
        cpu_physical_memory_read(src, buf, n);
935
        cpu_physical_memory_write(dest, buf, n);
936
        src += n;
937
        dest += n;
938
        count -= n;
939
    }
940
}
941

    
942
static void lsi_wait_reselect(LSIState *s)
943
{
944
    lsi_request *p;
945

    
946
    DPRINTF("Wait Reselect\n");
947

    
948
    QTAILQ_FOREACH(p, &s->queue, next) {
949
        if (p->pending) {
950
            lsi_reselect(s, p);
951
            break;
952
        }
953
    }
954
    if (s->current == NULL) {
955
        s->waiting = 1;
956
    }
957
}
958

    
959
static void lsi_execute_script(LSIState *s)
960
{
961
    uint32_t insn;
962
    uint32_t addr, addr_high;
963
    int opcode;
964
    int insn_processed = 0;
965

    
966
    s->istat1 |= LSI_ISTAT1_SRUN;
967
again:
968
    insn_processed++;
969
    insn = read_dword(s, s->dsp);
970
    if (!insn) {
971
        /* If we receive an empty opcode increment the DSP by 4 bytes
972
           instead of 8 and execute the next opcode at that location */
973
        s->dsp += 4;
974
        goto again;
975
    }
976
    addr = read_dword(s, s->dsp + 4);
977
    addr_high = 0;
978
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
979
    s->dsps = addr;
980
    s->dcmd = insn >> 24;
981
    s->dsp += 8;
982
    switch (insn >> 30) {
983
    case 0: /* Block move.  */
984
        if (s->sist1 & LSI_SIST1_STO) {
985
            DPRINTF("Delayed select timeout\n");
986
            lsi_stop_script(s);
987
            break;
988
        }
989
        s->dbc = insn & 0xffffff;
990
        s->rbc = s->dbc;
991
        /* ??? Set ESA.  */
992
        s->ia = s->dsp - 8;
993
        if (insn & (1 << 29)) {
994
            /* Indirect addressing.  */
995
            addr = read_dword(s, addr);
996
        } else if (insn & (1 << 28)) {
997
            uint32_t buf[2];
998
            int32_t offset;
999
            /* Table indirect addressing.  */
1000

    
1001
            /* 32-bit Table indirect */
1002
            offset = sxt24(addr);
1003
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
1004
            /* byte count is stored in bits 0:23 only */
1005
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
1006
            s->rbc = s->dbc;
1007
            addr = cpu_to_le32(buf[1]);
1008

    
1009
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1010
             * table, bits [31:24] */
1011
            if (lsi_dma_40bit(s))
1012
                addr_high = cpu_to_le32(buf[0]) >> 24;
1013
            else if (lsi_dma_ti64bit(s)) {
1014
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1015
                switch (selector) {
1016
                case 0 ... 0x0f:
1017
                    /* offset index into scratch registers since
1018
                     * TI64 mode can use registers C to R */
1019
                    addr_high = s->scratch[2 + selector];
1020
                    break;
1021
                case 0x10:
1022
                    addr_high = s->mmrs;
1023
                    break;
1024
                case 0x11:
1025
                    addr_high = s->mmws;
1026
                    break;
1027
                case 0x12:
1028
                    addr_high = s->sfs;
1029
                    break;
1030
                case 0x13:
1031
                    addr_high = s->drs;
1032
                    break;
1033
                case 0x14:
1034
                    addr_high = s->sbms;
1035
                    break;
1036
                case 0x15:
1037
                    addr_high = s->dbms;
1038
                    break;
1039
                default:
1040
                    BADF("Illegal selector specified (0x%x > 0x15)"
1041
                         " for 64-bit DMA block move", selector);
1042
                    break;
1043
                }
1044
            }
1045
        } else if (lsi_dma_64bit(s)) {
1046
            /* fetch a 3rd dword if 64-bit direct move is enabled and
1047
               only if we're not doing table indirect or indirect addressing */
1048
            s->dbms = read_dword(s, s->dsp);
1049
            s->dsp += 4;
1050
            s->ia = s->dsp - 12;
1051
        }
1052
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1053
            DPRINTF("Wrong phase got %d expected %d\n",
1054
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1055
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1056
            break;
1057
        }
1058
        s->dnad = addr;
1059
        s->dnad64 = addr_high;
1060
        switch (s->sstat1 & 0x7) {
1061
        case PHASE_DO:
1062
            s->waiting = 2;
1063
            lsi_do_dma(s, 1);
1064
            if (s->waiting)
1065
                s->waiting = 3;
1066
            break;
1067
        case PHASE_DI:
1068
            s->waiting = 2;
1069
            lsi_do_dma(s, 0);
1070
            if (s->waiting)
1071
                s->waiting = 3;
1072
            break;
1073
        case PHASE_CMD:
1074
            lsi_do_command(s);
1075
            break;
1076
        case PHASE_ST:
1077
            lsi_do_status(s);
1078
            break;
1079
        case PHASE_MO:
1080
            lsi_do_msgout(s);
1081
            break;
1082
        case PHASE_MI:
1083
            lsi_do_msgin(s);
1084
            break;
1085
        default:
1086
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1087
            exit(1);
1088
        }
1089
        s->dfifo = s->dbc & 0xff;
1090
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1091
        s->sbc = s->dbc;
1092
        s->rbc -= s->dbc;
1093
        s->ua = addr + s->dbc;
1094
        break;
1095

    
1096
    case 1: /* IO or Read/Write instruction.  */
1097
        opcode = (insn >> 27) & 7;
1098
        if (opcode < 5) {
1099
            uint32_t id;
1100

    
1101
            if (insn & (1 << 25)) {
1102
                id = read_dword(s, s->dsa + sxt24(insn));
1103
            } else {
1104
                id = insn;
1105
            }
1106
            id = (id >> 16) & 0xf;
1107
            if (insn & (1 << 26)) {
1108
                addr = s->dsp + sxt24(addr);
1109
            }
1110
            s->dnad = addr;
1111
            switch (opcode) {
1112
            case 0: /* Select */
1113
                s->sdid = id;
1114
                if (s->scntl1 & LSI_SCNTL1_CON) {
1115
                    DPRINTF("Already reselected, jumping to alternative address\n");
1116
                    s->dsp = s->dnad;
1117
                    break;
1118
                }
1119
                s->sstat0 |= LSI_SSTAT0_WOA;
1120
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1121
                if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1122
                    lsi_bad_selection(s, id);
1123
                    break;
1124
                }
1125
                DPRINTF("Selected target %d%s\n",
1126
                        id, insn & (1 << 3) ? " ATN" : "");
1127
                /* ??? Linux drivers compain when this is set.  Maybe
1128
                   it only applies in low-level mode (unimplemented).
1129
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1130
                s->select_tag = id << 8;
1131
                s->scntl1 |= LSI_SCNTL1_CON;
1132
                if (insn & (1 << 3)) {
1133
                    s->socl |= LSI_SOCL_ATN;
1134
                }
1135
                lsi_set_phase(s, PHASE_MO);
1136
                break;
1137
            case 1: /* Disconnect */
1138
                DPRINTF("Wait Disconnect\n");
1139
                s->scntl1 &= ~LSI_SCNTL1_CON;
1140
                break;
1141
            case 2: /* Wait Reselect */
1142
                if (!lsi_irq_on_rsl(s)) {
1143
                    lsi_wait_reselect(s);
1144
                }
1145
                break;
1146
            case 3: /* Set */
1147
                DPRINTF("Set%s%s%s%s\n",
1148
                        insn & (1 << 3) ? " ATN" : "",
1149
                        insn & (1 << 6) ? " ACK" : "",
1150
                        insn & (1 << 9) ? " TM" : "",
1151
                        insn & (1 << 10) ? " CC" : "");
1152
                if (insn & (1 << 3)) {
1153
                    s->socl |= LSI_SOCL_ATN;
1154
                    lsi_set_phase(s, PHASE_MO);
1155
                }
1156
                if (insn & (1 << 9)) {
1157
                    BADF("Target mode not implemented\n");
1158
                    exit(1);
1159
                }
1160
                if (insn & (1 << 10))
1161
                    s->carry = 1;
1162
                break;
1163
            case 4: /* Clear */
1164
                DPRINTF("Clear%s%s%s%s\n",
1165
                        insn & (1 << 3) ? " ATN" : "",
1166
                        insn & (1 << 6) ? " ACK" : "",
1167
                        insn & (1 << 9) ? " TM" : "",
1168
                        insn & (1 << 10) ? " CC" : "");
1169
                if (insn & (1 << 3)) {
1170
                    s->socl &= ~LSI_SOCL_ATN;
1171
                }
1172
                if (insn & (1 << 10))
1173
                    s->carry = 0;
1174
                break;
1175
            }
1176
        } else {
1177
            uint8_t op0;
1178
            uint8_t op1;
1179
            uint8_t data8;
1180
            int reg;
1181
            int operator;
1182
#ifdef DEBUG_LSI
1183
            static const char *opcode_names[3] =
1184
                {"Write", "Read", "Read-Modify-Write"};
1185
            static const char *operator_names[8] =
1186
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1187
#endif
1188

    
1189
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1190
            data8 = (insn >> 8) & 0xff;
1191
            opcode = (insn >> 27) & 7;
1192
            operator = (insn >> 24) & 7;
1193
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1194
                    opcode_names[opcode - 5], reg,
1195
                    operator_names[operator], data8, s->sfbr,
1196
                    (insn & (1 << 23)) ? " SFBR" : "");
1197
            op0 = op1 = 0;
1198
            switch (opcode) {
1199
            case 5: /* From SFBR */
1200
                op0 = s->sfbr;
1201
                op1 = data8;
1202
                break;
1203
            case 6: /* To SFBR */
1204
                if (operator)
1205
                    op0 = lsi_reg_readb(s, reg);
1206
                op1 = data8;
1207
                break;
1208
            case 7: /* Read-modify-write */
1209
                if (operator)
1210
                    op0 = lsi_reg_readb(s, reg);
1211
                if (insn & (1 << 23)) {
1212
                    op1 = s->sfbr;
1213
                } else {
1214
                    op1 = data8;
1215
                }
1216
                break;
1217
            }
1218

    
1219
            switch (operator) {
1220
            case 0: /* move */
1221
                op0 = op1;
1222
                break;
1223
            case 1: /* Shift left */
1224
                op1 = op0 >> 7;
1225
                op0 = (op0 << 1) | s->carry;
1226
                s->carry = op1;
1227
                break;
1228
            case 2: /* OR */
1229
                op0 |= op1;
1230
                break;
1231
            case 3: /* XOR */
1232
                op0 ^= op1;
1233
                break;
1234
            case 4: /* AND */
1235
                op0 &= op1;
1236
                break;
1237
            case 5: /* SHR */
1238
                op1 = op0 & 1;
1239
                op0 = (op0 >> 1) | (s->carry << 7);
1240
                s->carry = op1;
1241
                break;
1242
            case 6: /* ADD */
1243
                op0 += op1;
1244
                s->carry = op0 < op1;
1245
                break;
1246
            case 7: /* ADC */
1247
                op0 += op1 + s->carry;
1248
                if (s->carry)
1249
                    s->carry = op0 <= op1;
1250
                else
1251
                    s->carry = op0 < op1;
1252
                break;
1253
            }
1254

    
1255
            switch (opcode) {
1256
            case 5: /* From SFBR */
1257
            case 7: /* Read-modify-write */
1258
                lsi_reg_writeb(s, reg, op0);
1259
                break;
1260
            case 6: /* To SFBR */
1261
                s->sfbr = op0;
1262
                break;
1263
            }
1264
        }
1265
        break;
1266

    
1267
    case 2: /* Transfer Control.  */
1268
        {
1269
            int cond;
1270
            int jmp;
1271

    
1272
            if ((insn & 0x002e0000) == 0) {
1273
                DPRINTF("NOP\n");
1274
                break;
1275
            }
1276
            if (s->sist1 & LSI_SIST1_STO) {
1277
                DPRINTF("Delayed select timeout\n");
1278
                lsi_stop_script(s);
1279
                break;
1280
            }
1281
            cond = jmp = (insn & (1 << 19)) != 0;
1282
            if (cond == jmp && (insn & (1 << 21))) {
1283
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1284
                cond = s->carry != 0;
1285
            }
1286
            if (cond == jmp && (insn & (1 << 17))) {
1287
                DPRINTF("Compare phase %d %c= %d\n",
1288
                        (s->sstat1 & PHASE_MASK),
1289
                        jmp ? '=' : '!',
1290
                        ((insn >> 24) & 7));
1291
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1292
            }
1293
            if (cond == jmp && (insn & (1 << 18))) {
1294
                uint8_t mask;
1295

    
1296
                mask = (~insn >> 8) & 0xff;
1297
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1298
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1299
                cond = (s->sfbr & mask) == (insn & mask);
1300
            }
1301
            if (cond == jmp) {
1302
                if (insn & (1 << 23)) {
1303
                    /* Relative address.  */
1304
                    addr = s->dsp + sxt24(addr);
1305
                }
1306
                switch ((insn >> 27) & 7) {
1307
                case 0: /* Jump */
1308
                    DPRINTF("Jump to 0x%08x\n", addr);
1309
                    s->dsp = addr;
1310
                    break;
1311
                case 1: /* Call */
1312
                    DPRINTF("Call 0x%08x\n", addr);
1313
                    s->temp = s->dsp;
1314
                    s->dsp = addr;
1315
                    break;
1316
                case 2: /* Return */
1317
                    DPRINTF("Return to 0x%08x\n", s->temp);
1318
                    s->dsp = s->temp;
1319
                    break;
1320
                case 3: /* Interrupt */
1321
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1322
                    if ((insn & (1 << 20)) != 0) {
1323
                        s->istat0 |= LSI_ISTAT0_INTF;
1324
                        lsi_update_irq(s);
1325
                    } else {
1326
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1327
                    }
1328
                    break;
1329
                default:
1330
                    DPRINTF("Illegal transfer control\n");
1331
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1332
                    break;
1333
                }
1334
            } else {
1335
                DPRINTF("Control condition failed\n");
1336
            }
1337
        }
1338
        break;
1339

    
1340
    case 3:
1341
        if ((insn & (1 << 29)) == 0) {
1342
            /* Memory move.  */
1343
            uint32_t dest;
1344
            /* ??? The docs imply the destination address is loaded into
1345
               the TEMP register.  However the Linux drivers rely on
1346
               the value being presrved.  */
1347
            dest = read_dword(s, s->dsp);
1348
            s->dsp += 4;
1349
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1350
        } else {
1351
            uint8_t data[7];
1352
            int reg;
1353
            int n;
1354
            int i;
1355

    
1356
            if (insn & (1 << 28)) {
1357
                addr = s->dsa + sxt24(addr);
1358
            }
1359
            n = (insn & 7);
1360
            reg = (insn >> 16) & 0xff;
1361
            if (insn & (1 << 24)) {
1362
                cpu_physical_memory_read(addr, data, n);
1363
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1364
                        addr, *(int *)data);
1365
                for (i = 0; i < n; i++) {
1366
                    lsi_reg_writeb(s, reg + i, data[i]);
1367
                }
1368
            } else {
1369
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1370
                for (i = 0; i < n; i++) {
1371
                    data[i] = lsi_reg_readb(s, reg + i);
1372
                }
1373
                cpu_physical_memory_write(addr, data, n);
1374
            }
1375
        }
1376
    }
1377
    if (insn_processed > 10000 && !s->waiting) {
1378
        /* Some windows drivers make the device spin waiting for a memory
1379
           location to change.  If we have been executed a lot of code then
1380
           assume this is the case and force an unexpected device disconnect.
1381
           This is apparently sufficient to beat the drivers into submission.
1382
         */
1383
        if (!(s->sien0 & LSI_SIST0_UDC))
1384
            fprintf(stderr, "inf. loop with UDC masked\n");
1385
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1386
        lsi_disconnect(s);
1387
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1388
        if (s->dcntl & LSI_DCNTL_SSM) {
1389
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1390
        } else {
1391
            goto again;
1392
        }
1393
    }
1394
    DPRINTF("SCRIPTS execution stopped\n");
1395
}
1396

    
1397
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1398
{
1399
    uint8_t tmp;
1400
#define CASE_GET_REG24(name, addr) \
1401
    case addr: return s->name & 0xff; \
1402
    case addr + 1: return (s->name >> 8) & 0xff; \
1403
    case addr + 2: return (s->name >> 16) & 0xff;
1404

    
1405
#define CASE_GET_REG32(name, addr) \
1406
    case addr: return s->name & 0xff; \
1407
    case addr + 1: return (s->name >> 8) & 0xff; \
1408
    case addr + 2: return (s->name >> 16) & 0xff; \
1409
    case addr + 3: return (s->name >> 24) & 0xff;
1410

    
1411
#ifdef DEBUG_LSI_REG
1412
    DPRINTF("Read reg %x\n", offset);
1413
#endif
1414
    switch (offset) {
1415
    case 0x00: /* SCNTL0 */
1416
        return s->scntl0;
1417
    case 0x01: /* SCNTL1 */
1418
        return s->scntl1;
1419
    case 0x02: /* SCNTL2 */
1420
        return s->scntl2;
1421
    case 0x03: /* SCNTL3 */
1422
        return s->scntl3;
1423
    case 0x04: /* SCID */
1424
        return s->scid;
1425
    case 0x05: /* SXFER */
1426
        return s->sxfer;
1427
    case 0x06: /* SDID */
1428
        return s->sdid;
1429
    case 0x07: /* GPREG0 */
1430
        return 0x7f;
1431
    case 0x08: /* Revision ID */
1432
        return 0x00;
1433
    case 0xa: /* SSID */
1434
        return s->ssid;
1435
    case 0xb: /* SBCL */
1436
        /* ??? This is not correct. However it's (hopefully) only
1437
           used for diagnostics, so should be ok.  */
1438
        return 0;
1439
    case 0xc: /* DSTAT */
1440
        tmp = s->dstat | 0x80;
1441
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1442
            s->dstat = 0;
1443
        lsi_update_irq(s);
1444
        return tmp;
1445
    case 0x0d: /* SSTAT0 */
1446
        return s->sstat0;
1447
    case 0x0e: /* SSTAT1 */
1448
        return s->sstat1;
1449
    case 0x0f: /* SSTAT2 */
1450
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1451
    CASE_GET_REG32(dsa, 0x10)
1452
    case 0x14: /* ISTAT0 */
1453
        return s->istat0;
1454
    case 0x15: /* ISTAT1 */
1455
        return s->istat1;
1456
    case 0x16: /* MBOX0 */
1457
        return s->mbox0;
1458
    case 0x17: /* MBOX1 */
1459
        return s->mbox1;
1460
    case 0x18: /* CTEST0 */
1461
        return 0xff;
1462
    case 0x19: /* CTEST1 */
1463
        return 0;
1464
    case 0x1a: /* CTEST2 */
1465
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1466
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1467
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1468
            tmp |= LSI_CTEST2_SIGP;
1469
        }
1470
        return tmp;
1471
    case 0x1b: /* CTEST3 */
1472
        return s->ctest3;
1473
    CASE_GET_REG32(temp, 0x1c)
1474
    case 0x20: /* DFIFO */
1475
        return 0;
1476
    case 0x21: /* CTEST4 */
1477
        return s->ctest4;
1478
    case 0x22: /* CTEST5 */
1479
        return s->ctest5;
1480
    case 0x23: /* CTEST6 */
1481
         return 0;
1482
    CASE_GET_REG24(dbc, 0x24)
1483
    case 0x27: /* DCMD */
1484
        return s->dcmd;
1485
    CASE_GET_REG32(dnad, 0x28)
1486
    CASE_GET_REG32(dsp, 0x2c)
1487
    CASE_GET_REG32(dsps, 0x30)
1488
    CASE_GET_REG32(scratch[0], 0x34)
1489
    case 0x38: /* DMODE */
1490
        return s->dmode;
1491
    case 0x39: /* DIEN */
1492
        return s->dien;
1493
    case 0x3a: /* SBR */
1494
        return s->sbr;
1495
    case 0x3b: /* DCNTL */
1496
        return s->dcntl;
1497
    case 0x40: /* SIEN0 */
1498
        return s->sien0;
1499
    case 0x41: /* SIEN1 */
1500
        return s->sien1;
1501
    case 0x42: /* SIST0 */
1502
        tmp = s->sist0;
1503
        s->sist0 = 0;
1504
        lsi_update_irq(s);
1505
        return tmp;
1506
    case 0x43: /* SIST1 */
1507
        tmp = s->sist1;
1508
        s->sist1 = 0;
1509
        lsi_update_irq(s);
1510
        return tmp;
1511
    case 0x46: /* MACNTL */
1512
        return 0x0f;
1513
    case 0x47: /* GPCNTL0 */
1514
        return 0x0f;
1515
    case 0x48: /* STIME0 */
1516
        return s->stime0;
1517
    case 0x4a: /* RESPID0 */
1518
        return s->respid0;
1519
    case 0x4b: /* RESPID1 */
1520
        return s->respid1;
1521
    case 0x4d: /* STEST1 */
1522
        return s->stest1;
1523
    case 0x4e: /* STEST2 */
1524
        return s->stest2;
1525
    case 0x4f: /* STEST3 */
1526
        return s->stest3;
1527
    case 0x50: /* SIDL */
1528
        /* This is needed by the linux drivers.  We currently only update it
1529
           during the MSG IN phase.  */
1530
        return s->sidl;
1531
    case 0x52: /* STEST4 */
1532
        return 0xe0;
1533
    case 0x56: /* CCNTL0 */
1534
        return s->ccntl0;
1535
    case 0x57: /* CCNTL1 */
1536
        return s->ccntl1;
1537
    case 0x58: /* SBDL */
1538
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1539
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1540
            return s->msg[0];
1541
        return 0;
1542
    case 0x59: /* SBDL high */
1543
        return 0;
1544
    CASE_GET_REG32(mmrs, 0xa0)
1545
    CASE_GET_REG32(mmws, 0xa4)
1546
    CASE_GET_REG32(sfs, 0xa8)
1547
    CASE_GET_REG32(drs, 0xac)
1548
    CASE_GET_REG32(sbms, 0xb0)
1549
    CASE_GET_REG32(dbms, 0xb4)
1550
    CASE_GET_REG32(dnad64, 0xb8)
1551
    CASE_GET_REG32(pmjad1, 0xc0)
1552
    CASE_GET_REG32(pmjad2, 0xc4)
1553
    CASE_GET_REG32(rbc, 0xc8)
1554
    CASE_GET_REG32(ua, 0xcc)
1555
    CASE_GET_REG32(ia, 0xd4)
1556
    CASE_GET_REG32(sbc, 0xd8)
1557
    CASE_GET_REG32(csbc, 0xdc)
1558
    }
1559
    if (offset >= 0x5c && offset < 0xa0) {
1560
        int n;
1561
        int shift;
1562
        n = (offset - 0x58) >> 2;
1563
        shift = (offset & 3) * 8;
1564
        return (s->scratch[n] >> shift) & 0xff;
1565
    }
1566
    BADF("readb 0x%x\n", offset);
1567
    exit(1);
1568
#undef CASE_GET_REG24
1569
#undef CASE_GET_REG32
1570
}
1571

    
1572
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1573
{
1574
#define CASE_SET_REG24(name, addr) \
1575
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1576
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1577
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1578

    
1579
#define CASE_SET_REG32(name, addr) \
1580
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1581
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1582
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1583
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1584

    
1585
#ifdef DEBUG_LSI_REG
1586
    DPRINTF("Write reg %x = %02x\n", offset, val);
1587
#endif
1588
    switch (offset) {
1589
    case 0x00: /* SCNTL0 */
1590
        s->scntl0 = val;
1591
        if (val & LSI_SCNTL0_START) {
1592
            BADF("Start sequence not implemented\n");
1593
        }
1594
        break;
1595
    case 0x01: /* SCNTL1 */
1596
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1597
        if (val & LSI_SCNTL1_IARB) {
1598
            BADF("Immediate Arbritration not implemented\n");
1599
        }
1600
        if (val & LSI_SCNTL1_RST) {
1601
            if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1602
                DeviceState *dev;
1603
                int id;
1604

    
1605
                for (id = 0; id < s->bus.ndev; id++) {
1606
                    if (s->bus.devs[id]) {
1607
                        dev = &s->bus.devs[id]->qdev;
1608
                        dev->info->reset(dev);
1609
                    }
1610
                }
1611
                s->sstat0 |= LSI_SSTAT0_RST;
1612
                lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1613
            }
1614
        } else {
1615
            s->sstat0 &= ~LSI_SSTAT0_RST;
1616
        }
1617
        break;
1618
    case 0x02: /* SCNTL2 */
1619
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1620
        s->scntl2 = val;
1621
        break;
1622
    case 0x03: /* SCNTL3 */
1623
        s->scntl3 = val;
1624
        break;
1625
    case 0x04: /* SCID */
1626
        s->scid = val;
1627
        break;
1628
    case 0x05: /* SXFER */
1629
        s->sxfer = val;
1630
        break;
1631
    case 0x06: /* SDID */
1632
        if ((val & 0xf) != (s->ssid & 0xf))
1633
            BADF("Destination ID does not match SSID\n");
1634
        s->sdid = val & 0xf;
1635
        break;
1636
    case 0x07: /* GPREG0 */
1637
        break;
1638
    case 0x08: /* SFBR */
1639
        /* The CPU is not allowed to write to this register.  However the
1640
           SCRIPTS register move instructions are.  */
1641
        s->sfbr = val;
1642
        break;
1643
    case 0x0a: case 0x0b:
1644
        /* Openserver writes to these readonly registers on startup */
1645
        return;
1646
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1647
        /* Linux writes to these readonly registers on startup.  */
1648
        return;
1649
    CASE_SET_REG32(dsa, 0x10)
1650
    case 0x14: /* ISTAT0 */
1651
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1652
        if (val & LSI_ISTAT0_ABRT) {
1653
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1654
        }
1655
        if (val & LSI_ISTAT0_INTF) {
1656
            s->istat0 &= ~LSI_ISTAT0_INTF;
1657
            lsi_update_irq(s);
1658
        }
1659
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1660
            DPRINTF("Woken by SIGP\n");
1661
            s->waiting = 0;
1662
            s->dsp = s->dnad;
1663
            lsi_execute_script(s);
1664
        }
1665
        if (val & LSI_ISTAT0_SRST) {
1666
            lsi_soft_reset(s);
1667
        }
1668
        break;
1669
    case 0x16: /* MBOX0 */
1670
        s->mbox0 = val;
1671
        break;
1672
    case 0x17: /* MBOX1 */
1673
        s->mbox1 = val;
1674
        break;
1675
    case 0x1a: /* CTEST2 */
1676
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1677
        break;
1678
    case 0x1b: /* CTEST3 */
1679
        s->ctest3 = val & 0x0f;
1680
        break;
1681
    CASE_SET_REG32(temp, 0x1c)
1682
    case 0x21: /* CTEST4 */
1683
        if (val & 7) {
1684
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1685
        }
1686
        s->ctest4 = val;
1687
        break;
1688
    case 0x22: /* CTEST5 */
1689
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1690
            BADF("CTEST5 DMA increment not implemented\n");
1691
        }
1692
        s->ctest5 = val;
1693
        break;
1694
    CASE_SET_REG24(dbc, 0x24)
1695
    CASE_SET_REG32(dnad, 0x28)
1696
    case 0x2c: /* DSP[0:7] */
1697
        s->dsp &= 0xffffff00;
1698
        s->dsp |= val;
1699
        break;
1700
    case 0x2d: /* DSP[8:15] */
1701
        s->dsp &= 0xffff00ff;
1702
        s->dsp |= val << 8;
1703
        break;
1704
    case 0x2e: /* DSP[16:23] */
1705
        s->dsp &= 0xff00ffff;
1706
        s->dsp |= val << 16;
1707
        break;
1708
    case 0x2f: /* DSP[24:31] */
1709
        s->dsp &= 0x00ffffff;
1710
        s->dsp |= val << 24;
1711
        if ((s->dmode & LSI_DMODE_MAN) == 0
1712
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1713
            lsi_execute_script(s);
1714
        break;
1715
    CASE_SET_REG32(dsps, 0x30)
1716
    CASE_SET_REG32(scratch[0], 0x34)
1717
    case 0x38: /* DMODE */
1718
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1719
            BADF("IO mappings not implemented\n");
1720
        }
1721
        s->dmode = val;
1722
        break;
1723
    case 0x39: /* DIEN */
1724
        s->dien = val;
1725
        lsi_update_irq(s);
1726
        break;
1727
    case 0x3a: /* SBR */
1728
        s->sbr = val;
1729
        break;
1730
    case 0x3b: /* DCNTL */
1731
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1732
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1733
            lsi_execute_script(s);
1734
        break;
1735
    case 0x40: /* SIEN0 */
1736
        s->sien0 = val;
1737
        lsi_update_irq(s);
1738
        break;
1739
    case 0x41: /* SIEN1 */
1740
        s->sien1 = val;
1741
        lsi_update_irq(s);
1742
        break;
1743
    case 0x47: /* GPCNTL0 */
1744
        break;
1745
    case 0x48: /* STIME0 */
1746
        s->stime0 = val;
1747
        break;
1748
    case 0x49: /* STIME1 */
1749
        if (val & 0xf) {
1750
            DPRINTF("General purpose timer not implemented\n");
1751
            /* ??? Raising the interrupt immediately seems to be sufficient
1752
               to keep the FreeBSD driver happy.  */
1753
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1754
        }
1755
        break;
1756
    case 0x4a: /* RESPID0 */
1757
        s->respid0 = val;
1758
        break;
1759
    case 0x4b: /* RESPID1 */
1760
        s->respid1 = val;
1761
        break;
1762
    case 0x4d: /* STEST1 */
1763
        s->stest1 = val;
1764
        break;
1765
    case 0x4e: /* STEST2 */
1766
        if (val & 1) {
1767
            BADF("Low level mode not implemented\n");
1768
        }
1769
        s->stest2 = val;
1770
        break;
1771
    case 0x4f: /* STEST3 */
1772
        if (val & 0x41) {
1773
            BADF("SCSI FIFO test mode not implemented\n");
1774
        }
1775
        s->stest3 = val;
1776
        break;
1777
    case 0x56: /* CCNTL0 */
1778
        s->ccntl0 = val;
1779
        break;
1780
    case 0x57: /* CCNTL1 */
1781
        s->ccntl1 = val;
1782
        break;
1783
    CASE_SET_REG32(mmrs, 0xa0)
1784
    CASE_SET_REG32(mmws, 0xa4)
1785
    CASE_SET_REG32(sfs, 0xa8)
1786
    CASE_SET_REG32(drs, 0xac)
1787
    CASE_SET_REG32(sbms, 0xb0)
1788
    CASE_SET_REG32(dbms, 0xb4)
1789
    CASE_SET_REG32(dnad64, 0xb8)
1790
    CASE_SET_REG32(pmjad1, 0xc0)
1791
    CASE_SET_REG32(pmjad2, 0xc4)
1792
    CASE_SET_REG32(rbc, 0xc8)
1793
    CASE_SET_REG32(ua, 0xcc)
1794
    CASE_SET_REG32(ia, 0xd4)
1795
    CASE_SET_REG32(sbc, 0xd8)
1796
    CASE_SET_REG32(csbc, 0xdc)
1797
    default:
1798
        if (offset >= 0x5c && offset < 0xa0) {
1799
            int n;
1800
            int shift;
1801
            n = (offset - 0x58) >> 2;
1802
            shift = (offset & 3) * 8;
1803
            s->scratch[n] &= ~(0xff << shift);
1804
            s->scratch[n] |= (val & 0xff) << shift;
1805
        } else {
1806
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1807
        }
1808
    }
1809
#undef CASE_SET_REG24
1810
#undef CASE_SET_REG32
1811
}
1812

    
1813
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1814
{
1815
    LSIState *s = opaque;
1816

    
1817
    lsi_reg_writeb(s, addr & 0xff, val);
1818
}
1819

    
1820
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1821
{
1822
    LSIState *s = opaque;
1823

    
1824
    addr &= 0xff;
1825
    lsi_reg_writeb(s, addr, val & 0xff);
1826
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1827
}
1828

    
1829
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1830
{
1831
    LSIState *s = opaque;
1832

    
1833
    addr &= 0xff;
1834
    lsi_reg_writeb(s, addr, val & 0xff);
1835
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1836
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1837
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1838
}
1839

    
1840
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1841
{
1842
    LSIState *s = opaque;
1843

    
1844
    return lsi_reg_readb(s, addr & 0xff);
1845
}
1846

    
1847
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1848
{
1849
    LSIState *s = opaque;
1850
    uint32_t val;
1851

    
1852
    addr &= 0xff;
1853
    val = lsi_reg_readb(s, addr);
1854
    val |= lsi_reg_readb(s, addr + 1) << 8;
1855
    return val;
1856
}
1857

    
1858
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1859
{
1860
    LSIState *s = opaque;
1861
    uint32_t val;
1862
    addr &= 0xff;
1863
    val = lsi_reg_readb(s, addr);
1864
    val |= lsi_reg_readb(s, addr + 1) << 8;
1865
    val |= lsi_reg_readb(s, addr + 2) << 16;
1866
    val |= lsi_reg_readb(s, addr + 3) << 24;
1867
    return val;
1868
}
1869

    
1870
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1871
    lsi_mmio_readb,
1872
    lsi_mmio_readw,
1873
    lsi_mmio_readl,
1874
};
1875

    
1876
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1877
    lsi_mmio_writeb,
1878
    lsi_mmio_writew,
1879
    lsi_mmio_writel,
1880
};
1881

    
1882
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1883
{
1884
    LSIState *s = opaque;
1885
    uint32_t newval;
1886
    int shift;
1887

    
1888
    addr &= 0x1fff;
1889
    newval = s->script_ram[addr >> 2];
1890
    shift = (addr & 3) * 8;
1891
    newval &= ~(0xff << shift);
1892
    newval |= val << shift;
1893
    s->script_ram[addr >> 2] = newval;
1894
}
1895

    
1896
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1897
{
1898
    LSIState *s = opaque;
1899
    uint32_t newval;
1900

    
1901
    addr &= 0x1fff;
1902
    newval = s->script_ram[addr >> 2];
1903
    if (addr & 2) {
1904
        newval = (newval & 0xffff) | (val << 16);
1905
    } else {
1906
        newval = (newval & 0xffff0000) | val;
1907
    }
1908
    s->script_ram[addr >> 2] = newval;
1909
}
1910

    
1911

    
1912
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1913
{
1914
    LSIState *s = opaque;
1915

    
1916
    addr &= 0x1fff;
1917
    s->script_ram[addr >> 2] = val;
1918
}
1919

    
1920
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1921
{
1922
    LSIState *s = opaque;
1923
    uint32_t val;
1924

    
1925
    addr &= 0x1fff;
1926
    val = s->script_ram[addr >> 2];
1927
    val >>= (addr & 3) * 8;
1928
    return val & 0xff;
1929
}
1930

    
1931
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1932
{
1933
    LSIState *s = opaque;
1934
    uint32_t val;
1935

    
1936
    addr &= 0x1fff;
1937
    val = s->script_ram[addr >> 2];
1938
    if (addr & 2)
1939
        val >>= 16;
1940
    return val;
1941
}
1942

    
1943
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1944
{
1945
    LSIState *s = opaque;
1946

    
1947
    addr &= 0x1fff;
1948
    return s->script_ram[addr >> 2];
1949
}
1950

    
1951
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1952
    lsi_ram_readb,
1953
    lsi_ram_readw,
1954
    lsi_ram_readl,
1955
};
1956

    
1957
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1958
    lsi_ram_writeb,
1959
    lsi_ram_writew,
1960
    lsi_ram_writel,
1961
};
1962

    
1963
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1964
{
1965
    LSIState *s = opaque;
1966
    return lsi_reg_readb(s, addr & 0xff);
1967
}
1968

    
1969
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1970
{
1971
    LSIState *s = opaque;
1972
    uint32_t val;
1973
    addr &= 0xff;
1974
    val = lsi_reg_readb(s, addr);
1975
    val |= lsi_reg_readb(s, addr + 1) << 8;
1976
    return val;
1977
}
1978

    
1979
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1980
{
1981
    LSIState *s = opaque;
1982
    uint32_t val;
1983
    addr &= 0xff;
1984
    val = lsi_reg_readb(s, addr);
1985
    val |= lsi_reg_readb(s, addr + 1) << 8;
1986
    val |= lsi_reg_readb(s, addr + 2) << 16;
1987
    val |= lsi_reg_readb(s, addr + 3) << 24;
1988
    return val;
1989
}
1990

    
1991
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1992
{
1993
    LSIState *s = opaque;
1994
    lsi_reg_writeb(s, addr & 0xff, val);
1995
}
1996

    
1997
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1998
{
1999
    LSIState *s = opaque;
2000
    addr &= 0xff;
2001
    lsi_reg_writeb(s, addr, val & 0xff);
2002
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2003
}
2004

    
2005
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
2006
{
2007
    LSIState *s = opaque;
2008
    addr &= 0xff;
2009
    lsi_reg_writeb(s, addr, val & 0xff);
2010
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2011
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
2012
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
2013
}
2014

    
2015
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
2016
                           pcibus_t addr, pcibus_t size, int type)
2017
{
2018
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2019

    
2020
    DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
2021

    
2022
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
2023
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
2024
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
2025
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
2026
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
2027
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
2028
}
2029

    
2030
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
2031
                            pcibus_t addr, pcibus_t size, int type)
2032
{
2033
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2034

    
2035
    DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2036
    s->script_ram_base = addr;
2037
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2038
}
2039

    
2040
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
2041
                             pcibus_t addr, pcibus_t size, int type)
2042
{
2043
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2044

    
2045
    DPRINTF("Mapping registers at %08"FMT_PCIBUS"\n", addr);
2046
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
2047
}
2048

    
2049
static void lsi_scsi_reset(DeviceState *dev)
2050
{
2051
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2052

    
2053
    lsi_soft_reset(s);
2054
}
2055

    
2056
static void lsi_pre_save(void *opaque)
2057
{
2058
    LSIState *s = opaque;
2059

    
2060
    if (s->current) {
2061
        assert(s->current->dma_buf == NULL);
2062
        assert(s->current->dma_len == 0);
2063
    }
2064
    assert(QTAILQ_EMPTY(&s->queue));
2065
}
2066

    
2067
static const VMStateDescription vmstate_lsi_scsi = {
2068
    .name = "lsiscsi",
2069
    .version_id = 0,
2070
    .minimum_version_id = 0,
2071
    .minimum_version_id_old = 0,
2072
    .pre_save = lsi_pre_save,
2073
    .fields      = (VMStateField []) {
2074
        VMSTATE_PCI_DEVICE(dev, LSIState),
2075

    
2076
        VMSTATE_INT32(carry, LSIState),
2077
        VMSTATE_INT32(sense, LSIState),
2078
        VMSTATE_INT32(msg_action, LSIState),
2079
        VMSTATE_INT32(msg_len, LSIState),
2080
        VMSTATE_BUFFER(msg, LSIState),
2081
        VMSTATE_INT32(waiting, LSIState),
2082

    
2083
        VMSTATE_UINT32(dsa, LSIState),
2084
        VMSTATE_UINT32(temp, LSIState),
2085
        VMSTATE_UINT32(dnad, LSIState),
2086
        VMSTATE_UINT32(dbc, LSIState),
2087
        VMSTATE_UINT8(istat0, LSIState),
2088
        VMSTATE_UINT8(istat1, LSIState),
2089
        VMSTATE_UINT8(dcmd, LSIState),
2090
        VMSTATE_UINT8(dstat, LSIState),
2091
        VMSTATE_UINT8(dien, LSIState),
2092
        VMSTATE_UINT8(sist0, LSIState),
2093
        VMSTATE_UINT8(sist1, LSIState),
2094
        VMSTATE_UINT8(sien0, LSIState),
2095
        VMSTATE_UINT8(sien1, LSIState),
2096
        VMSTATE_UINT8(mbox0, LSIState),
2097
        VMSTATE_UINT8(mbox1, LSIState),
2098
        VMSTATE_UINT8(dfifo, LSIState),
2099
        VMSTATE_UINT8(ctest2, LSIState),
2100
        VMSTATE_UINT8(ctest3, LSIState),
2101
        VMSTATE_UINT8(ctest4, LSIState),
2102
        VMSTATE_UINT8(ctest5, LSIState),
2103
        VMSTATE_UINT8(ccntl0, LSIState),
2104
        VMSTATE_UINT8(ccntl1, LSIState),
2105
        VMSTATE_UINT32(dsp, LSIState),
2106
        VMSTATE_UINT32(dsps, LSIState),
2107
        VMSTATE_UINT8(dmode, LSIState),
2108
        VMSTATE_UINT8(dcntl, LSIState),
2109
        VMSTATE_UINT8(scntl0, LSIState),
2110
        VMSTATE_UINT8(scntl1, LSIState),
2111
        VMSTATE_UINT8(scntl2, LSIState),
2112
        VMSTATE_UINT8(scntl3, LSIState),
2113
        VMSTATE_UINT8(sstat0, LSIState),
2114
        VMSTATE_UINT8(sstat1, LSIState),
2115
        VMSTATE_UINT8(scid, LSIState),
2116
        VMSTATE_UINT8(sxfer, LSIState),
2117
        VMSTATE_UINT8(socl, LSIState),
2118
        VMSTATE_UINT8(sdid, LSIState),
2119
        VMSTATE_UINT8(ssid, LSIState),
2120
        VMSTATE_UINT8(sfbr, LSIState),
2121
        VMSTATE_UINT8(stest1, LSIState),
2122
        VMSTATE_UINT8(stest2, LSIState),
2123
        VMSTATE_UINT8(stest3, LSIState),
2124
        VMSTATE_UINT8(sidl, LSIState),
2125
        VMSTATE_UINT8(stime0, LSIState),
2126
        VMSTATE_UINT8(respid0, LSIState),
2127
        VMSTATE_UINT8(respid1, LSIState),
2128
        VMSTATE_UINT32(mmrs, LSIState),
2129
        VMSTATE_UINT32(mmws, LSIState),
2130
        VMSTATE_UINT32(sfs, LSIState),
2131
        VMSTATE_UINT32(drs, LSIState),
2132
        VMSTATE_UINT32(sbms, LSIState),
2133
        VMSTATE_UINT32(dbms, LSIState),
2134
        VMSTATE_UINT32(dnad64, LSIState),
2135
        VMSTATE_UINT32(pmjad1, LSIState),
2136
        VMSTATE_UINT32(pmjad2, LSIState),
2137
        VMSTATE_UINT32(rbc, LSIState),
2138
        VMSTATE_UINT32(ua, LSIState),
2139
        VMSTATE_UINT32(ia, LSIState),
2140
        VMSTATE_UINT32(sbc, LSIState),
2141
        VMSTATE_UINT32(csbc, LSIState),
2142
        VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2143
        VMSTATE_UINT8(sbr, LSIState),
2144

    
2145
        VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2146
        VMSTATE_END_OF_LIST()
2147
    }
2148
};
2149

    
2150
static int lsi_scsi_uninit(PCIDevice *d)
2151
{
2152
    LSIState *s = DO_UPCAST(LSIState, dev, d);
2153

    
2154
    cpu_unregister_io_memory(s->mmio_io_addr);
2155
    cpu_unregister_io_memory(s->ram_io_addr);
2156

    
2157
    return 0;
2158
}
2159

    
2160
static int lsi_scsi_init(PCIDevice *dev)
2161
{
2162
    LSIState *s = DO_UPCAST(LSIState, dev, dev);
2163
    uint8_t *pci_conf;
2164

    
2165
    pci_conf = s->dev.config;
2166

    
2167
    /* PCI Vendor ID (word) */
2168
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2169
    /* PCI device ID (word) */
2170
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2171
    /* PCI base class code */
2172
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2173
    /* PCI subsystem ID */
2174
    pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2175
    pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2176
    /* PCI latency timer = 255 */
2177
    pci_conf[PCI_LATENCY_TIMER] = 0xff;
2178
    /* TODO: RST# value should be 0 */
2179
    /* Interrupt pin 1 */
2180
    pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2181

    
2182
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2183
                                             lsi_mmio_writefn, s,
2184
                                             DEVICE_NATIVE_ENDIAN);
2185
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2186
                                            lsi_ram_writefn, s,
2187
                                            DEVICE_NATIVE_ENDIAN);
2188

    
2189
    pci_register_bar(&s->dev, 0, 256,
2190
                           PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2191
    pci_register_bar(&s->dev, 1, 0x400,
2192
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2193
    pci_register_bar(&s->dev, 2, 0x2000,
2194
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2195
    QTAILQ_INIT(&s->queue);
2196

    
2197
    scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2198
    if (!dev->qdev.hotplugged) {
2199
        return scsi_bus_legacy_handle_cmdline(&s->bus);
2200
    }
2201
    return 0;
2202
}
2203

    
2204
static PCIDeviceInfo lsi_info = {
2205
    .qdev.name  = "lsi53c895a",
2206
    .qdev.alias = "lsi",
2207
    .qdev.size  = sizeof(LSIState),
2208
    .qdev.reset = lsi_scsi_reset,
2209
    .qdev.vmsd  = &vmstate_lsi_scsi,
2210
    .init       = lsi_scsi_init,
2211
    .exit       = lsi_scsi_uninit,
2212
};
2213

    
2214
static void lsi53c895a_register_devices(void)
2215
{
2216
    pci_qdev_register(&lsi_info);
2217
}
2218

    
2219
device_init(lsi53c895a_register_devices);