Statistics
| Branch: | Revision:

root / block / qcow2.c @ 44ff42de

History | View | Annotate | Download (90.5 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "qemu-common.h"
25
#include "block_int.h"
26
#include "module.h"
27
#include <zlib.h>
28
#include "aes.h"
29

    
30
/*
31
  Differences with QCOW:
32

33
  - Support for multiple incremental snapshots.
34
  - Memory management by reference counts.
35
  - Clusters which have a reference count of one have the bit
36
    QCOW_OFLAG_COPIED to optimize write performance.
37
  - Size of compressed clusters is stored in sectors to reduce bit usage
38
    in the cluster offsets.
39
  - Support for storing additional data (such as the VM state) in the
40
    snapshots.
41
  - If a backing store is used, the cluster size is not constrained
42
    (could be backported to QCOW).
43
  - L2 tables have always a size of one cluster.
44
*/
45

    
46
//#define DEBUG_ALLOC
47
//#define DEBUG_ALLOC2
48
//#define DEBUG_EXT
49

    
50
#define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
51
#define QCOW_VERSION 2
52

    
53
#define QCOW_CRYPT_NONE 0
54
#define QCOW_CRYPT_AES  1
55

    
56
#define QCOW_MAX_CRYPT_CLUSTERS 32
57

    
58
/* indicate that the refcount of the referenced cluster is exactly one. */
59
#define QCOW_OFLAG_COPIED     (1LL << 63)
60
/* indicate that the cluster is compressed (they never have the copied flag) */
61
#define QCOW_OFLAG_COMPRESSED (1LL << 62)
62

    
63
#define REFCOUNT_SHIFT 1 /* refcount size is 2 bytes */
64

    
65
#define MIN_CLUSTER_BITS 9
66
#define MAX_CLUSTER_BITS 16
67

    
68
typedef struct QCowHeader {
69
    uint32_t magic;
70
    uint32_t version;
71
    uint64_t backing_file_offset;
72
    uint32_t backing_file_size;
73
    uint32_t cluster_bits;
74
    uint64_t size; /* in bytes */
75
    uint32_t crypt_method;
76
    uint32_t l1_size; /* XXX: save number of clusters instead ? */
77
    uint64_t l1_table_offset;
78
    uint64_t refcount_table_offset;
79
    uint32_t refcount_table_clusters;
80
    uint32_t nb_snapshots;
81
    uint64_t snapshots_offset;
82
} QCowHeader;
83

    
84

    
85
typedef struct {
86
    uint32_t magic;
87
    uint32_t len;
88
} QCowExtension;
89
#define  QCOW_EXT_MAGIC_END 0
90
#define  QCOW_EXT_MAGIC_BACKING_FORMAT 0xE2792ACA
91

    
92

    
93
typedef struct __attribute__((packed)) QCowSnapshotHeader {
94
    /* header is 8 byte aligned */
95
    uint64_t l1_table_offset;
96

    
97
    uint32_t l1_size;
98
    uint16_t id_str_size;
99
    uint16_t name_size;
100

    
101
    uint32_t date_sec;
102
    uint32_t date_nsec;
103

    
104
    uint64_t vm_clock_nsec;
105

    
106
    uint32_t vm_state_size;
107
    uint32_t extra_data_size; /* for extension */
108
    /* extra data follows */
109
    /* id_str follows */
110
    /* name follows  */
111
} QCowSnapshotHeader;
112

    
113
#define L2_CACHE_SIZE 16
114

    
115
typedef struct QCowSnapshot {
116
    uint64_t l1_table_offset;
117
    uint32_t l1_size;
118
    char *id_str;
119
    char *name;
120
    uint32_t vm_state_size;
121
    uint32_t date_sec;
122
    uint32_t date_nsec;
123
    uint64_t vm_clock_nsec;
124
} QCowSnapshot;
125

    
126
typedef struct BDRVQcowState {
127
    BlockDriverState *hd;
128
    int cluster_bits;
129
    int cluster_size;
130
    int cluster_sectors;
131
    int l2_bits;
132
    int l2_size;
133
    int l1_size;
134
    int l1_vm_state_index;
135
    int csize_shift;
136
    int csize_mask;
137
    uint64_t cluster_offset_mask;
138
    uint64_t l1_table_offset;
139
    uint64_t *l1_table;
140
    uint64_t *l2_cache;
141
    uint64_t l2_cache_offsets[L2_CACHE_SIZE];
142
    uint32_t l2_cache_counts[L2_CACHE_SIZE];
143
    uint8_t *cluster_cache;
144
    uint8_t *cluster_data;
145
    uint64_t cluster_cache_offset;
146

    
147
    uint64_t *refcount_table;
148
    uint64_t refcount_table_offset;
149
    uint32_t refcount_table_size;
150
    uint64_t refcount_block_cache_offset;
151
    uint16_t *refcount_block_cache;
152
    int64_t free_cluster_index;
153
    int64_t free_byte_offset;
154

    
155
    uint32_t crypt_method; /* current crypt method, 0 if no key yet */
156
    uint32_t crypt_method_header;
157
    AES_KEY aes_encrypt_key;
158
    AES_KEY aes_decrypt_key;
159
    uint64_t snapshots_offset;
160
    int snapshots_size;
161
    int nb_snapshots;
162
    QCowSnapshot *snapshots;
163
} BDRVQcowState;
164

    
165
static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset);
166
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
167
                     uint8_t *buf, int nb_sectors);
168
static int qcow_read_snapshots(BlockDriverState *bs);
169
static void qcow_free_snapshots(BlockDriverState *bs);
170
static int refcount_init(BlockDriverState *bs);
171
static void refcount_close(BlockDriverState *bs);
172
static int get_refcount(BlockDriverState *bs, int64_t cluster_index);
173
static int update_cluster_refcount(BlockDriverState *bs,
174
                                   int64_t cluster_index,
175
                                   int addend);
176
static int update_refcount(BlockDriverState *bs,
177
                            int64_t offset, int64_t length,
178
                            int addend);
179
static int64_t alloc_clusters(BlockDriverState *bs, int64_t size);
180
static int64_t alloc_bytes(BlockDriverState *bs, int size);
181
static void free_clusters(BlockDriverState *bs,
182
                          int64_t offset, int64_t size);
183
static int check_refcounts(BlockDriverState *bs);
184

    
185
static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
186
{
187
    const QCowHeader *cow_header = (const void *)buf;
188

    
189
    if (buf_size >= sizeof(QCowHeader) &&
190
        be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
191
        be32_to_cpu(cow_header->version) == QCOW_VERSION)
192
        return 100;
193
    else
194
        return 0;
195
}
196

    
197

    
198
/* 
199
 * read qcow2 extension and fill bs
200
 * start reading from start_offset
201
 * finish reading upon magic of value 0 or when end_offset reached
202
 * unknown magic is skipped (future extension this version knows nothing about)
203
 * return 0 upon success, non-0 otherwise
204
 */
205
static int qcow_read_extensions(BlockDriverState *bs, uint64_t start_offset,
206
                                uint64_t end_offset)
207
{
208
    BDRVQcowState *s = bs->opaque;
209
    QCowExtension ext;
210
    uint64_t offset;
211

    
212
#ifdef DEBUG_EXT
213
    printf("qcow_read_extensions: start=%ld end=%ld\n", start_offset, end_offset);
214
#endif
215
    offset = start_offset;
216
    while (offset < end_offset) {
217

    
218
#ifdef DEBUG_EXT
219
        /* Sanity check */
220
        if (offset > s->cluster_size)
221
            printf("qcow_handle_extension: suspicious offset %lu\n", offset);
222

    
223
        printf("attemting to read extended header in offset %lu\n", offset);
224
#endif
225

    
226
        if (bdrv_pread(s->hd, offset, &ext, sizeof(ext)) != sizeof(ext)) {
227
            fprintf(stderr, "qcow_handle_extension: ERROR: pread fail from offset %llu\n",
228
                    (unsigned long long)offset);
229
            return 1;
230
        }
231
        be32_to_cpus(&ext.magic);
232
        be32_to_cpus(&ext.len);
233
        offset += sizeof(ext);
234
#ifdef DEBUG_EXT
235
        printf("ext.magic = 0x%x\n", ext.magic);
236
#endif
237
        switch (ext.magic) {
238
        case QCOW_EXT_MAGIC_END:
239
            return 0;
240

    
241
        case QCOW_EXT_MAGIC_BACKING_FORMAT:
242
            if (ext.len >= sizeof(bs->backing_format)) {
243
                fprintf(stderr, "ERROR: ext_backing_format: len=%u too large"
244
                        " (>=%zu)\n",
245
                        ext.len, sizeof(bs->backing_format));
246
                return 2;
247
            }
248
            if (bdrv_pread(s->hd, offset , bs->backing_format,
249
                           ext.len) != ext.len)
250
                return 3;
251
            bs->backing_format[ext.len] = '\0';
252
#ifdef DEBUG_EXT
253
            printf("Qcow2: Got format extension %s\n", bs->backing_format);
254
#endif
255
            offset += ((ext.len + 7) & ~7);
256
            break;
257

    
258
        default:
259
            /* unknown magic -- just skip it */
260
            offset += ((ext.len + 7) & ~7);
261
            break;
262
        }
263
    }
264

    
265
    return 0;
266
}
267

    
268

    
269
static int qcow_open(BlockDriverState *bs, const char *filename, int flags)
270
{
271
    BDRVQcowState *s = bs->opaque;
272
    int len, i, shift, ret;
273
    QCowHeader header;
274
    uint64_t ext_end;
275

    
276
    /* Performance is terrible right now with cache=writethrough due mainly
277
     * to reference count updates.  If the user does not explicitly specify
278
     * a caching type, force to writeback caching.
279
     */
280
    if ((flags & BDRV_O_CACHE_DEF)) {
281
        flags |= BDRV_O_CACHE_WB;
282
        flags &= ~BDRV_O_CACHE_DEF;
283
    }
284
    ret = bdrv_file_open(&s->hd, filename, flags);
285
    if (ret < 0)
286
        return ret;
287
    if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header))
288
        goto fail;
289
    be32_to_cpus(&header.magic);
290
    be32_to_cpus(&header.version);
291
    be64_to_cpus(&header.backing_file_offset);
292
    be32_to_cpus(&header.backing_file_size);
293
    be64_to_cpus(&header.size);
294
    be32_to_cpus(&header.cluster_bits);
295
    be32_to_cpus(&header.crypt_method);
296
    be64_to_cpus(&header.l1_table_offset);
297
    be32_to_cpus(&header.l1_size);
298
    be64_to_cpus(&header.refcount_table_offset);
299
    be32_to_cpus(&header.refcount_table_clusters);
300
    be64_to_cpus(&header.snapshots_offset);
301
    be32_to_cpus(&header.nb_snapshots);
302

    
303
    if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION)
304
        goto fail;
305
    if (header.size <= 1 ||
306
        header.cluster_bits < MIN_CLUSTER_BITS ||
307
        header.cluster_bits > MAX_CLUSTER_BITS)
308
        goto fail;
309
    if (header.crypt_method > QCOW_CRYPT_AES)
310
        goto fail;
311
    s->crypt_method_header = header.crypt_method;
312
    if (s->crypt_method_header)
313
        bs->encrypted = 1;
314
    s->cluster_bits = header.cluster_bits;
315
    s->cluster_size = 1 << s->cluster_bits;
316
    s->cluster_sectors = 1 << (s->cluster_bits - 9);
317
    s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */
318
    s->l2_size = 1 << s->l2_bits;
319
    bs->total_sectors = header.size / 512;
320
    s->csize_shift = (62 - (s->cluster_bits - 8));
321
    s->csize_mask = (1 << (s->cluster_bits - 8)) - 1;
322
    s->cluster_offset_mask = (1LL << s->csize_shift) - 1;
323
    s->refcount_table_offset = header.refcount_table_offset;
324
    s->refcount_table_size =
325
        header.refcount_table_clusters << (s->cluster_bits - 3);
326

    
327
    s->snapshots_offset = header.snapshots_offset;
328
    s->nb_snapshots = header.nb_snapshots;
329

    
330
    /* read the level 1 table */
331
    s->l1_size = header.l1_size;
332
    shift = s->cluster_bits + s->l2_bits;
333
    s->l1_vm_state_index = (header.size + (1LL << shift) - 1) >> shift;
334
    /* the L1 table must contain at least enough entries to put
335
       header.size bytes */
336
    if (s->l1_size < s->l1_vm_state_index)
337
        goto fail;
338
    s->l1_table_offset = header.l1_table_offset;
339
    s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
340
    if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) !=
341
        s->l1_size * sizeof(uint64_t))
342
        goto fail;
343
    for(i = 0;i < s->l1_size; i++) {
344
        be64_to_cpus(&s->l1_table[i]);
345
    }
346
    /* alloc L2 cache */
347
    s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
348
    s->cluster_cache = qemu_malloc(s->cluster_size);
349
    /* one more sector for decompressed data alignment */
350
    s->cluster_data = qemu_malloc(QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size
351
                                  + 512);
352
    s->cluster_cache_offset = -1;
353

    
354
    if (refcount_init(bs) < 0)
355
        goto fail;
356

    
357
    /* read qcow2 extensions */
358
    if (header.backing_file_offset)
359
        ext_end = header.backing_file_offset;
360
    else
361
        ext_end = s->cluster_size;
362
    if (qcow_read_extensions(bs, sizeof(header), ext_end))
363
        goto fail;
364

    
365
    /* read the backing file name */
366
    if (header.backing_file_offset != 0) {
367
        len = header.backing_file_size;
368
        if (len > 1023)
369
            len = 1023;
370
        if (bdrv_pread(s->hd, header.backing_file_offset, bs->backing_file, len) != len)
371
            goto fail;
372
        bs->backing_file[len] = '\0';
373
    }
374
    if (qcow_read_snapshots(bs) < 0)
375
        goto fail;
376

    
377
#ifdef DEBUG_ALLOC
378
    check_refcounts(bs);
379
#endif
380
    return 0;
381

    
382
 fail:
383
    qcow_free_snapshots(bs);
384
    refcount_close(bs);
385
    qemu_free(s->l1_table);
386
    qemu_free(s->l2_cache);
387
    qemu_free(s->cluster_cache);
388
    qemu_free(s->cluster_data);
389
    bdrv_delete(s->hd);
390
    return -1;
391
}
392

    
393
static int qcow_set_key(BlockDriverState *bs, const char *key)
394
{
395
    BDRVQcowState *s = bs->opaque;
396
    uint8_t keybuf[16];
397
    int len, i;
398

    
399
    memset(keybuf, 0, 16);
400
    len = strlen(key);
401
    if (len > 16)
402
        len = 16;
403
    /* XXX: we could compress the chars to 7 bits to increase
404
       entropy */
405
    for(i = 0;i < len;i++) {
406
        keybuf[i] = key[i];
407
    }
408
    s->crypt_method = s->crypt_method_header;
409

    
410
    if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
411
        return -1;
412
    if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
413
        return -1;
414
#if 0
415
    /* test */
416
    {
417
        uint8_t in[16];
418
        uint8_t out[16];
419
        uint8_t tmp[16];
420
        for(i=0;i<16;i++)
421
            in[i] = i;
422
        AES_encrypt(in, tmp, &s->aes_encrypt_key);
423
        AES_decrypt(tmp, out, &s->aes_decrypt_key);
424
        for(i = 0; i < 16; i++)
425
            printf(" %02x", tmp[i]);
426
        printf("\n");
427
        for(i = 0; i < 16; i++)
428
            printf(" %02x", out[i]);
429
        printf("\n");
430
    }
431
#endif
432
    return 0;
433
}
434

    
435
/* The crypt function is compatible with the linux cryptoloop
436
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
437
   supported */
438
static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
439
                            uint8_t *out_buf, const uint8_t *in_buf,
440
                            int nb_sectors, int enc,
441
                            const AES_KEY *key)
442
{
443
    union {
444
        uint64_t ll[2];
445
        uint8_t b[16];
446
    } ivec;
447
    int i;
448

    
449
    for(i = 0; i < nb_sectors; i++) {
450
        ivec.ll[0] = cpu_to_le64(sector_num);
451
        ivec.ll[1] = 0;
452
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
453
                        ivec.b, enc);
454
        sector_num++;
455
        in_buf += 512;
456
        out_buf += 512;
457
    }
458
}
459

    
460
static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
461
                        uint64_t cluster_offset, int n_start, int n_end)
462
{
463
    BDRVQcowState *s = bs->opaque;
464
    int n, ret;
465

    
466
    n = n_end - n_start;
467
    if (n <= 0)
468
        return 0;
469
    ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
470
    if (ret < 0)
471
        return ret;
472
    if (s->crypt_method) {
473
        encrypt_sectors(s, start_sect + n_start,
474
                        s->cluster_data,
475
                        s->cluster_data, n, 1,
476
                        &s->aes_encrypt_key);
477
    }
478
    ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
479
                     s->cluster_data, n);
480
    if (ret < 0)
481
        return ret;
482
    return 0;
483
}
484

    
485
static void l2_cache_reset(BlockDriverState *bs)
486
{
487
    BDRVQcowState *s = bs->opaque;
488

    
489
    memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
490
    memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
491
    memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
492
}
493

    
494
static inline int l2_cache_new_entry(BlockDriverState *bs)
495
{
496
    BDRVQcowState *s = bs->opaque;
497
    uint32_t min_count;
498
    int min_index, i;
499

    
500
    /* find a new entry in the least used one */
501
    min_index = 0;
502
    min_count = 0xffffffff;
503
    for(i = 0; i < L2_CACHE_SIZE; i++) {
504
        if (s->l2_cache_counts[i] < min_count) {
505
            min_count = s->l2_cache_counts[i];
506
            min_index = i;
507
        }
508
    }
509
    return min_index;
510
}
511

    
512
static int64_t align_offset(int64_t offset, int n)
513
{
514
    offset = (offset + n - 1) & ~(n - 1);
515
    return offset;
516
}
517

    
518
static int grow_l1_table(BlockDriverState *bs, int min_size)
519
{
520
    BDRVQcowState *s = bs->opaque;
521
    int new_l1_size, new_l1_size2, ret, i;
522
    uint64_t *new_l1_table;
523
    uint64_t new_l1_table_offset;
524
    uint8_t data[12];
525

    
526
    new_l1_size = s->l1_size;
527
    if (min_size <= new_l1_size)
528
        return 0;
529
    while (min_size > new_l1_size) {
530
        new_l1_size = (new_l1_size * 3 + 1) / 2;
531
    }
532
#ifdef DEBUG_ALLOC2
533
    printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
534
#endif
535

    
536
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
537
    new_l1_table = qemu_mallocz(new_l1_size2);
538
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
539

    
540
    /* write new table (align to cluster) */
541
    new_l1_table_offset = alloc_clusters(bs, new_l1_size2);
542

    
543
    for(i = 0; i < s->l1_size; i++)
544
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
545
    ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
546
    if (ret != new_l1_size2)
547
        goto fail;
548
    for(i = 0; i < s->l1_size; i++)
549
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
550

    
551
    /* set new table */
552
    cpu_to_be32w((uint32_t*)data, new_l1_size);
553
    cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
554
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
555
                sizeof(data)) != sizeof(data))
556
        goto fail;
557
    qemu_free(s->l1_table);
558
    free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
559
    s->l1_table_offset = new_l1_table_offset;
560
    s->l1_table = new_l1_table;
561
    s->l1_size = new_l1_size;
562
    return 0;
563
 fail:
564
    qemu_free(s->l1_table);
565
    return -EIO;
566
}
567

    
568
/*
569
 * seek_l2_table
570
 *
571
 * seek l2_offset in the l2_cache table
572
 * if not found, return NULL,
573
 * if found,
574
 *   increments the l2 cache hit count of the entry,
575
 *   if counter overflow, divide by two all counters
576
 *   return the pointer to the l2 cache entry
577
 *
578
 */
579

    
580
static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
581
{
582
    int i, j;
583

    
584
    for(i = 0; i < L2_CACHE_SIZE; i++) {
585
        if (l2_offset == s->l2_cache_offsets[i]) {
586
            /* increment the hit count */
587
            if (++s->l2_cache_counts[i] == 0xffffffff) {
588
                for(j = 0; j < L2_CACHE_SIZE; j++) {
589
                    s->l2_cache_counts[j] >>= 1;
590
                }
591
            }
592
            return s->l2_cache + (i << s->l2_bits);
593
        }
594
    }
595
    return NULL;
596
}
597

    
598
/*
599
 * l2_load
600
 *
601
 * Loads a L2 table into memory. If the table is in the cache, the cache
602
 * is used; otherwise the L2 table is loaded from the image file.
603
 *
604
 * Returns a pointer to the L2 table on success, or NULL if the read from
605
 * the image file failed.
606
 */
607

    
608
static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
609
{
610
    BDRVQcowState *s = bs->opaque;
611
    int min_index;
612
    uint64_t *l2_table;
613

    
614
    /* seek if the table for the given offset is in the cache */
615

    
616
    l2_table = seek_l2_table(s, l2_offset);
617
    if (l2_table != NULL)
618
        return l2_table;
619

    
620
    /* not found: load a new entry in the least used one */
621

    
622
    min_index = l2_cache_new_entry(bs);
623
    l2_table = s->l2_cache + (min_index << s->l2_bits);
624
    if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
625
        s->l2_size * sizeof(uint64_t))
626
        return NULL;
627
    s->l2_cache_offsets[min_index] = l2_offset;
628
    s->l2_cache_counts[min_index] = 1;
629

    
630
    return l2_table;
631
}
632

    
633
/*
634
 * l2_allocate
635
 *
636
 * Allocate a new l2 entry in the file. If l1_index points to an already
637
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
638
 * table) copy the contents of the old L2 table into the newly allocated one.
639
 * Otherwise the new table is initialized with zeros.
640
 *
641
 */
642

    
643
static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
644
{
645
    BDRVQcowState *s = bs->opaque;
646
    int min_index;
647
    uint64_t old_l2_offset, tmp;
648
    uint64_t *l2_table, l2_offset;
649

    
650
    old_l2_offset = s->l1_table[l1_index];
651

    
652
    /* allocate a new l2 entry */
653

    
654
    l2_offset = alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
655

    
656
    /* update the L1 entry */
657

    
658
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
659

    
660
    tmp = cpu_to_be64(l2_offset | QCOW_OFLAG_COPIED);
661
    if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
662
                    &tmp, sizeof(tmp)) != sizeof(tmp))
663
        return NULL;
664

    
665
    /* allocate a new entry in the l2 cache */
666

    
667
    min_index = l2_cache_new_entry(bs);
668
    l2_table = s->l2_cache + (min_index << s->l2_bits);
669

    
670
    if (old_l2_offset == 0) {
671
        /* if there was no old l2 table, clear the new table */
672
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
673
    } else {
674
        /* if there was an old l2 table, read it from the disk */
675
        if (bdrv_pread(s->hd, old_l2_offset,
676
                       l2_table, s->l2_size * sizeof(uint64_t)) !=
677
            s->l2_size * sizeof(uint64_t))
678
            return NULL;
679
    }
680
    /* write the l2 table to the file */
681
    if (bdrv_pwrite(s->hd, l2_offset,
682
                    l2_table, s->l2_size * sizeof(uint64_t)) !=
683
        s->l2_size * sizeof(uint64_t))
684
        return NULL;
685

    
686
    /* update the l2 cache entry */
687

    
688
    s->l2_cache_offsets[min_index] = l2_offset;
689
    s->l2_cache_counts[min_index] = 1;
690

    
691
    return l2_table;
692
}
693

    
694
static int size_to_clusters(BDRVQcowState *s, int64_t size)
695
{
696
    return (size + (s->cluster_size - 1)) >> s->cluster_bits;
697
}
698

    
699
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
700
        uint64_t *l2_table, uint64_t start, uint64_t mask)
701
{
702
    int i;
703
    uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
704

    
705
    if (!offset)
706
        return 0;
707

    
708
    for (i = start; i < start + nb_clusters; i++)
709
        if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
710
            break;
711

    
712
        return (i - start);
713
}
714

    
715
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
716
{
717
    int i = 0;
718

    
719
    while(nb_clusters-- && l2_table[i] == 0)
720
        i++;
721

    
722
    return i;
723
}
724

    
725
/*
726
 * get_cluster_offset
727
 *
728
 * For a given offset of the disk image, return cluster offset in
729
 * qcow2 file.
730
 *
731
 * on entry, *num is the number of contiguous clusters we'd like to
732
 * access following offset.
733
 *
734
 * on exit, *num is the number of contiguous clusters we can read.
735
 *
736
 * Return 1, if the offset is found
737
 * Return 0, otherwise.
738
 *
739
 */
740

    
741
static uint64_t get_cluster_offset(BlockDriverState *bs,
742
                                   uint64_t offset, int *num)
743
{
744
    BDRVQcowState *s = bs->opaque;
745
    int l1_index, l2_index;
746
    uint64_t l2_offset, *l2_table, cluster_offset;
747
    int l1_bits, c;
748
    int index_in_cluster, nb_available, nb_needed, nb_clusters;
749

    
750
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
751
    nb_needed = *num + index_in_cluster;
752

    
753
    l1_bits = s->l2_bits + s->cluster_bits;
754

    
755
    /* compute how many bytes there are between the offset and
756
     * the end of the l1 entry
757
     */
758

    
759
    nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));
760

    
761
    /* compute the number of available sectors */
762

    
763
    nb_available = (nb_available >> 9) + index_in_cluster;
764

    
765
    if (nb_needed > nb_available) {
766
        nb_needed = nb_available;
767
    }
768

    
769
    cluster_offset = 0;
770

    
771
    /* seek the the l2 offset in the l1 table */
772

    
773
    l1_index = offset >> l1_bits;
774
    if (l1_index >= s->l1_size)
775
        goto out;
776

    
777
    l2_offset = s->l1_table[l1_index];
778

    
779
    /* seek the l2 table of the given l2 offset */
780

    
781
    if (!l2_offset)
782
        goto out;
783

    
784
    /* load the l2 table in memory */
785

    
786
    l2_offset &= ~QCOW_OFLAG_COPIED;
787
    l2_table = l2_load(bs, l2_offset);
788
    if (l2_table == NULL)
789
        return 0;
790

    
791
    /* find the cluster offset for the given disk offset */
792

    
793
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
794
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
795
    nb_clusters = size_to_clusters(s, nb_needed << 9);
796

    
797
    if (!cluster_offset) {
798
        /* how many empty clusters ? */
799
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
800
    } else {
801
        /* how many allocated clusters ? */
802
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
803
                &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
804
    }
805

    
806
   nb_available = (c * s->cluster_sectors);
807
out:
808
    if (nb_available > nb_needed)
809
        nb_available = nb_needed;
810

    
811
    *num = nb_available - index_in_cluster;
812

    
813
    return cluster_offset & ~QCOW_OFLAG_COPIED;
814
}
815

    
816
/*
817
 * free_any_clusters
818
 *
819
 * free clusters according to its type: compressed or not
820
 *
821
 */
822

    
823
static void free_any_clusters(BlockDriverState *bs,
824
                              uint64_t cluster_offset, int nb_clusters)
825
{
826
    BDRVQcowState *s = bs->opaque;
827

    
828
    /* free the cluster */
829

    
830
    if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
831
        int nb_csectors;
832
        nb_csectors = ((cluster_offset >> s->csize_shift) &
833
                       s->csize_mask) + 1;
834
        free_clusters(bs, (cluster_offset & s->cluster_offset_mask) & ~511,
835
                      nb_csectors * 512);
836
        return;
837
    }
838

    
839
    free_clusters(bs, cluster_offset, nb_clusters << s->cluster_bits);
840

    
841
    return;
842
}
843

    
844
/*
845
 * get_cluster_table
846
 *
847
 * for a given disk offset, load (and allocate if needed)
848
 * the l2 table.
849
 *
850
 * the l2 table offset in the qcow2 file and the cluster index
851
 * in the l2 table are given to the caller.
852
 *
853
 */
854

    
855
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
856
                             uint64_t **new_l2_table,
857
                             uint64_t *new_l2_offset,
858
                             int *new_l2_index)
859
{
860
    BDRVQcowState *s = bs->opaque;
861
    int l1_index, l2_index, ret;
862
    uint64_t l2_offset, *l2_table;
863

    
864
    /* seek the the l2 offset in the l1 table */
865

    
866
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
867
    if (l1_index >= s->l1_size) {
868
        ret = grow_l1_table(bs, l1_index + 1);
869
        if (ret < 0)
870
            return 0;
871
    }
872
    l2_offset = s->l1_table[l1_index];
873

    
874
    /* seek the l2 table of the given l2 offset */
875

    
876
    if (l2_offset & QCOW_OFLAG_COPIED) {
877
        /* load the l2 table in memory */
878
        l2_offset &= ~QCOW_OFLAG_COPIED;
879
        l2_table = l2_load(bs, l2_offset);
880
        if (l2_table == NULL)
881
            return 0;
882
    } else {
883
        if (l2_offset)
884
            free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
885
        l2_table = l2_allocate(bs, l1_index);
886
        if (l2_table == NULL)
887
            return 0;
888
        l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
889
    }
890

    
891
    /* find the cluster offset for the given disk offset */
892

    
893
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
894

    
895
    *new_l2_table = l2_table;
896
    *new_l2_offset = l2_offset;
897
    *new_l2_index = l2_index;
898

    
899
    return 1;
900
}
901

    
902
/*
903
 * alloc_compressed_cluster_offset
904
 *
905
 * For a given offset of the disk image, return cluster offset in
906
 * qcow2 file.
907
 *
908
 * If the offset is not found, allocate a new compressed cluster.
909
 *
910
 * Return the cluster offset if successful,
911
 * Return 0, otherwise.
912
 *
913
 */
914

    
915
static uint64_t alloc_compressed_cluster_offset(BlockDriverState *bs,
916
                                                uint64_t offset,
917
                                                int compressed_size)
918
{
919
    BDRVQcowState *s = bs->opaque;
920
    int l2_index, ret;
921
    uint64_t l2_offset, *l2_table, cluster_offset;
922
    int nb_csectors;
923

    
924
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
925
    if (ret == 0)
926
        return 0;
927

    
928
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
929
    if (cluster_offset & QCOW_OFLAG_COPIED)
930
        return cluster_offset & ~QCOW_OFLAG_COPIED;
931

    
932
    if (cluster_offset)
933
        free_any_clusters(bs, cluster_offset, 1);
934

    
935
    cluster_offset = alloc_bytes(bs, compressed_size);
936
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
937
                  (cluster_offset >> 9);
938

    
939
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
940
                      ((uint64_t)nb_csectors << s->csize_shift);
941

    
942
    /* update L2 table */
943

    
944
    /* compressed clusters never have the copied flag */
945

    
946
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
947
    if (bdrv_pwrite(s->hd,
948
                    l2_offset + l2_index * sizeof(uint64_t),
949
                    l2_table + l2_index,
950
                    sizeof(uint64_t)) != sizeof(uint64_t))
951
        return 0;
952

    
953
    return cluster_offset;
954
}
955

    
956
typedef struct QCowL2Meta
957
{
958
    uint64_t offset;
959
    int n_start;
960
    int nb_available;
961
    int nb_clusters;
962
} QCowL2Meta;
963

    
964
static int alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
965
        QCowL2Meta *m)
966
{
967
    BDRVQcowState *s = bs->opaque;
968
    int i, j = 0, l2_index, ret;
969
    uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
970

    
971
    if (m->nb_clusters == 0)
972
        return 0;
973

    
974
    old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
975

    
976
    /* copy content of unmodified sectors */
977
    start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
978
    if (m->n_start) {
979
        ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
980
        if (ret < 0)
981
            goto err;
982
    }
983

    
984
    if (m->nb_available & (s->cluster_sectors - 1)) {
985
        uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
986
        ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
987
                m->nb_available - end, s->cluster_sectors);
988
        if (ret < 0)
989
            goto err;
990
    }
991

    
992
    ret = -EIO;
993
    /* update L2 table */
994
    if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
995
        goto err;
996

    
997
    for (i = 0; i < m->nb_clusters; i++) {
998
        /* if two concurrent writes happen to the same unallocated cluster
999
         * each write allocates separate cluster and writes data concurrently.
1000
         * The first one to complete updates l2 table with pointer to its
1001
         * cluster the second one has to do RMW (which is done above by
1002
         * copy_sectors()), update l2 table with its cluster pointer and free
1003
         * old cluster. This is what this loop does */
1004
        if(l2_table[l2_index + i] != 0)
1005
            old_cluster[j++] = l2_table[l2_index + i];
1006

    
1007
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
1008
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
1009
     }
1010

    
1011
    if (bdrv_pwrite(s->hd, l2_offset + l2_index * sizeof(uint64_t),
1012
                l2_table + l2_index, m->nb_clusters * sizeof(uint64_t)) !=
1013
            m->nb_clusters * sizeof(uint64_t))
1014
        goto err;
1015

    
1016
    for (i = 0; i < j; i++)
1017
        free_any_clusters(bs, be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED,
1018
                          1);
1019

    
1020
    ret = 0;
1021
err:
1022
    qemu_free(old_cluster);
1023
    return ret;
1024
 }
1025

    
1026
/*
1027
 * alloc_cluster_offset
1028
 *
1029
 * For a given offset of the disk image, return cluster offset in
1030
 * qcow2 file.
1031
 *
1032
 * If the offset is not found, allocate a new cluster.
1033
 *
1034
 * Return the cluster offset if successful,
1035
 * Return 0, otherwise.
1036
 *
1037
 */
1038

    
1039
static uint64_t alloc_cluster_offset(BlockDriverState *bs,
1040
                                     uint64_t offset,
1041
                                     int n_start, int n_end,
1042
                                     int *num, QCowL2Meta *m)
1043
{
1044
    BDRVQcowState *s = bs->opaque;
1045
    int l2_index, ret;
1046
    uint64_t l2_offset, *l2_table, cluster_offset;
1047
    int nb_clusters, i = 0;
1048

    
1049
    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
1050
    if (ret == 0)
1051
        return 0;
1052

    
1053
    nb_clusters = size_to_clusters(s, n_end << 9);
1054

    
1055
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1056

    
1057
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
1058

    
1059
    /* We keep all QCOW_OFLAG_COPIED clusters */
1060

    
1061
    if (cluster_offset & QCOW_OFLAG_COPIED) {
1062
        nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
1063
                &l2_table[l2_index], 0, 0);
1064

    
1065
        cluster_offset &= ~QCOW_OFLAG_COPIED;
1066
        m->nb_clusters = 0;
1067

    
1068
        goto out;
1069
    }
1070

    
1071
    /* for the moment, multiple compressed clusters are not managed */
1072

    
1073
    if (cluster_offset & QCOW_OFLAG_COMPRESSED)
1074
        nb_clusters = 1;
1075

    
1076
    /* how many available clusters ? */
1077

    
1078
    while (i < nb_clusters) {
1079
        i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
1080
                &l2_table[l2_index], i, 0);
1081

    
1082
        if(be64_to_cpu(l2_table[l2_index + i]))
1083
            break;
1084

    
1085
        i += count_contiguous_free_clusters(nb_clusters - i,
1086
                &l2_table[l2_index + i]);
1087

    
1088
        cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
1089

    
1090
        if ((cluster_offset & QCOW_OFLAG_COPIED) ||
1091
                (cluster_offset & QCOW_OFLAG_COMPRESSED))
1092
            break;
1093
    }
1094
    nb_clusters = i;
1095

    
1096
    /* allocate a new cluster */
1097

    
1098
    cluster_offset = alloc_clusters(bs, nb_clusters * s->cluster_size);
1099

    
1100
    /* save info needed for meta data update */
1101
    m->offset = offset;
1102
    m->n_start = n_start;
1103
    m->nb_clusters = nb_clusters;
1104

    
1105
out:
1106
    m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
1107

    
1108
    *num = m->nb_available - n_start;
1109

    
1110
    return cluster_offset;
1111
}
1112

    
1113
static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num,
1114
                             int nb_sectors, int *pnum)
1115
{
1116
    uint64_t cluster_offset;
1117

    
1118
    *pnum = nb_sectors;
1119
    cluster_offset = get_cluster_offset(bs, sector_num << 9, pnum);
1120

    
1121
    return (cluster_offset != 0);
1122
}
1123

    
1124
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1125
                             const uint8_t *buf, int buf_size)
1126
{
1127
    z_stream strm1, *strm = &strm1;
1128
    int ret, out_len;
1129

    
1130
    memset(strm, 0, sizeof(*strm));
1131

    
1132
    strm->next_in = (uint8_t *)buf;
1133
    strm->avail_in = buf_size;
1134
    strm->next_out = out_buf;
1135
    strm->avail_out = out_buf_size;
1136

    
1137
    ret = inflateInit2(strm, -12);
1138
    if (ret != Z_OK)
1139
        return -1;
1140
    ret = inflate(strm, Z_FINISH);
1141
    out_len = strm->next_out - out_buf;
1142
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1143
        out_len != out_buf_size) {
1144
        inflateEnd(strm);
1145
        return -1;
1146
    }
1147
    inflateEnd(strm);
1148
    return 0;
1149
}
1150

    
1151
static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
1152
{
1153
    int ret, csize, nb_csectors, sector_offset;
1154
    uint64_t coffset;
1155

    
1156
    coffset = cluster_offset & s->cluster_offset_mask;
1157
    if (s->cluster_cache_offset != coffset) {
1158
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1159
        sector_offset = coffset & 511;
1160
        csize = nb_csectors * 512 - sector_offset;
1161
        ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
1162
        if (ret < 0) {
1163
            return -1;
1164
        }
1165
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1166
                              s->cluster_data + sector_offset, csize) < 0) {
1167
            return -1;
1168
        }
1169
        s->cluster_cache_offset = coffset;
1170
    }
1171
    return 0;
1172
}
1173

    
1174
/* handle reading after the end of the backing file */
1175
static int backing_read1(BlockDriverState *bs,
1176
                         int64_t sector_num, uint8_t *buf, int nb_sectors)
1177
{
1178
    int n1;
1179
    if ((sector_num + nb_sectors) <= bs->total_sectors)
1180
        return nb_sectors;
1181
    if (sector_num >= bs->total_sectors)
1182
        n1 = 0;
1183
    else
1184
        n1 = bs->total_sectors - sector_num;
1185
    memset(buf + n1 * 512, 0, 512 * (nb_sectors - n1));
1186
    return n1;
1187
}
1188

    
1189
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
1190
                     uint8_t *buf, int nb_sectors)
1191
{
1192
    BDRVQcowState *s = bs->opaque;
1193
    int ret, index_in_cluster, n, n1;
1194
    uint64_t cluster_offset;
1195

    
1196
    while (nb_sectors > 0) {
1197
        n = nb_sectors;
1198
        cluster_offset = get_cluster_offset(bs, sector_num << 9, &n);
1199
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
1200
        if (!cluster_offset) {
1201
            if (bs->backing_hd) {
1202
                /* read from the base image */
1203
                n1 = backing_read1(bs->backing_hd, sector_num, buf, n);
1204
                if (n1 > 0) {
1205
                    ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
1206
                    if (ret < 0)
1207
                        return -1;
1208
                }
1209
            } else {
1210
                memset(buf, 0, 512 * n);
1211
            }
1212
        } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
1213
            if (decompress_cluster(s, cluster_offset) < 0)
1214
                return -1;
1215
            memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
1216
        } else {
1217
            ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
1218
            if (ret != n * 512)
1219
                return -1;
1220
            if (s->crypt_method) {
1221
                encrypt_sectors(s, sector_num, buf, buf, n, 0,
1222
                                &s->aes_decrypt_key);
1223
            }
1224
        }
1225
        nb_sectors -= n;
1226
        sector_num += n;
1227
        buf += n * 512;
1228
    }
1229
    return 0;
1230
}
1231

    
1232
typedef struct QCowAIOCB {
1233
    BlockDriverAIOCB common;
1234
    int64_t sector_num;
1235
    QEMUIOVector *qiov;
1236
    uint8_t *buf;
1237
    void *orig_buf;
1238
    int nb_sectors;
1239
    int n;
1240
    uint64_t cluster_offset;
1241
    uint8_t *cluster_data;
1242
    BlockDriverAIOCB *hd_aiocb;
1243
    struct iovec hd_iov;
1244
    QEMUIOVector hd_qiov;
1245
    QEMUBH *bh;
1246
    QCowL2Meta l2meta;
1247
} QCowAIOCB;
1248

    
1249
static void qcow_aio_read_cb(void *opaque, int ret);
1250
static void qcow_aio_read_bh(void *opaque)
1251
{
1252
    QCowAIOCB *acb = opaque;
1253
    qemu_bh_delete(acb->bh);
1254
    acb->bh = NULL;
1255
    qcow_aio_read_cb(opaque, 0);
1256
}
1257

    
1258
static int qcow_schedule_bh(QEMUBHFunc *cb, QCowAIOCB *acb)
1259
{
1260
    if (acb->bh)
1261
        return -EIO;
1262

    
1263
    acb->bh = qemu_bh_new(cb, acb);
1264
    if (!acb->bh)
1265
        return -EIO;
1266

    
1267
    qemu_bh_schedule(acb->bh);
1268

    
1269
    return 0;
1270
}
1271

    
1272
static void qcow_aio_read_cb(void *opaque, int ret)
1273
{
1274
    QCowAIOCB *acb = opaque;
1275
    BlockDriverState *bs = acb->common.bs;
1276
    BDRVQcowState *s = bs->opaque;
1277
    int index_in_cluster, n1;
1278

    
1279
    acb->hd_aiocb = NULL;
1280
    if (ret < 0)
1281
        goto done;
1282

    
1283
    /* post process the read buffer */
1284
    if (!acb->cluster_offset) {
1285
        /* nothing to do */
1286
    } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
1287
        /* nothing to do */
1288
    } else {
1289
        if (s->crypt_method) {
1290
            encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
1291
                            acb->n, 0,
1292
                            &s->aes_decrypt_key);
1293
        }
1294
    }
1295

    
1296
    acb->nb_sectors -= acb->n;
1297
    acb->sector_num += acb->n;
1298
    acb->buf += acb->n * 512;
1299

    
1300
    if (acb->nb_sectors == 0) {
1301
        /* request completed */
1302
        ret = 0;
1303
        goto done;
1304
    }
1305

    
1306
    /* prepare next AIO request */
1307
    acb->n = acb->nb_sectors;
1308
    acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, &acb->n);
1309
    index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
1310

    
1311
    if (!acb->cluster_offset) {
1312
        if (bs->backing_hd) {
1313
            /* read from the base image */
1314
            n1 = backing_read1(bs->backing_hd, acb->sector_num,
1315
                               acb->buf, acb->n);
1316
            if (n1 > 0) {
1317
                acb->hd_iov.iov_base = (void *)acb->buf;
1318
                acb->hd_iov.iov_len = acb->n * 512;
1319
                qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
1320
                acb->hd_aiocb = bdrv_aio_readv(bs->backing_hd, acb->sector_num,
1321
                                    &acb->hd_qiov, acb->n,
1322
                                    qcow_aio_read_cb, acb);
1323
                if (acb->hd_aiocb == NULL)
1324
                    goto done;
1325
            } else {
1326
                ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1327
                if (ret < 0)
1328
                    goto done;
1329
            }
1330
        } else {
1331
            /* Note: in this case, no need to wait */
1332
            memset(acb->buf, 0, 512 * acb->n);
1333
            ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1334
            if (ret < 0)
1335
                goto done;
1336
        }
1337
    } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
1338
        /* add AIO support for compressed blocks ? */
1339
        if (decompress_cluster(s, acb->cluster_offset) < 0)
1340
            goto done;
1341
        memcpy(acb->buf,
1342
               s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
1343
        ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1344
        if (ret < 0)
1345
            goto done;
1346
    } else {
1347
        if ((acb->cluster_offset & 511) != 0) {
1348
            ret = -EIO;
1349
            goto done;
1350
        }
1351

    
1352
        acb->hd_iov.iov_base = (void *)acb->buf;
1353
        acb->hd_iov.iov_len = acb->n * 512;
1354
        qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
1355
        acb->hd_aiocb = bdrv_aio_readv(s->hd,
1356
                            (acb->cluster_offset >> 9) + index_in_cluster,
1357
                            &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
1358
        if (acb->hd_aiocb == NULL)
1359
            goto done;
1360
    }
1361

    
1362
    return;
1363
done:
1364
    if (acb->qiov->niov > 1) {
1365
        qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size);
1366
        qemu_vfree(acb->orig_buf);
1367
    }
1368
    acb->common.cb(acb->common.opaque, ret);
1369
    qemu_aio_release(acb);
1370
}
1371

    
1372
static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs,
1373
        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1374
        BlockDriverCompletionFunc *cb, void *opaque, int is_write)
1375
{
1376
    QCowAIOCB *acb;
1377

    
1378
    acb = qemu_aio_get(bs, cb, opaque);
1379
    if (!acb)
1380
        return NULL;
1381
    acb->hd_aiocb = NULL;
1382
    acb->sector_num = sector_num;
1383
    acb->qiov = qiov;
1384
    if (qiov->niov > 1) {
1385
        acb->buf = acb->orig_buf = qemu_blockalign(bs, qiov->size);
1386
        if (is_write)
1387
            qemu_iovec_to_buffer(qiov, acb->buf);
1388
    } else {
1389
        acb->buf = (uint8_t *)qiov->iov->iov_base;
1390
    }
1391
    acb->nb_sectors = nb_sectors;
1392
    acb->n = 0;
1393
    acb->cluster_offset = 0;
1394
    acb->l2meta.nb_clusters = 0;
1395
    return acb;
1396
}
1397

    
1398
static BlockDriverAIOCB *qcow_aio_readv(BlockDriverState *bs,
1399
        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1400
        BlockDriverCompletionFunc *cb, void *opaque)
1401
{
1402
    QCowAIOCB *acb;
1403

    
1404
    acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1405
    if (!acb)
1406
        return NULL;
1407

    
1408
    qcow_aio_read_cb(acb, 0);
1409
    return &acb->common;
1410
}
1411

    
1412
static void qcow_aio_write_cb(void *opaque, int ret)
1413
{
1414
    QCowAIOCB *acb = opaque;
1415
    BlockDriverState *bs = acb->common.bs;
1416
    BDRVQcowState *s = bs->opaque;
1417
    int index_in_cluster;
1418
    const uint8_t *src_buf;
1419
    int n_end;
1420

    
1421
    acb->hd_aiocb = NULL;
1422

    
1423
    if (ret < 0)
1424
        goto done;
1425

    
1426
    if (alloc_cluster_link_l2(bs, acb->cluster_offset, &acb->l2meta) < 0) {
1427
        free_any_clusters(bs, acb->cluster_offset, acb->l2meta.nb_clusters);
1428
        goto done;
1429
    }
1430

    
1431
    acb->nb_sectors -= acb->n;
1432
    acb->sector_num += acb->n;
1433
    acb->buf += acb->n * 512;
1434

    
1435
    if (acb->nb_sectors == 0) {
1436
        /* request completed */
1437
        ret = 0;
1438
        goto done;
1439
    }
1440

    
1441
    index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
1442
    n_end = index_in_cluster + acb->nb_sectors;
1443
    if (s->crypt_method &&
1444
        n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors)
1445
        n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors;
1446

    
1447
    acb->cluster_offset = alloc_cluster_offset(bs, acb->sector_num << 9,
1448
                                          index_in_cluster,
1449
                                          n_end, &acb->n, &acb->l2meta);
1450
    if (!acb->cluster_offset || (acb->cluster_offset & 511) != 0) {
1451
        ret = -EIO;
1452
        goto done;
1453
    }
1454
    if (s->crypt_method) {
1455
        if (!acb->cluster_data) {
1456
            acb->cluster_data = qemu_mallocz(QCOW_MAX_CRYPT_CLUSTERS *
1457
                                             s->cluster_size);
1458
        }
1459
        encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
1460
                        acb->n, 1, &s->aes_encrypt_key);
1461
        src_buf = acb->cluster_data;
1462
    } else {
1463
        src_buf = acb->buf;
1464
    }
1465
    acb->hd_iov.iov_base = (void *)src_buf;
1466
    acb->hd_iov.iov_len = acb->n * 512;
1467
    qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
1468
    acb->hd_aiocb = bdrv_aio_writev(s->hd,
1469
                                    (acb->cluster_offset >> 9) + index_in_cluster,
1470
                                    &acb->hd_qiov, acb->n,
1471
                                    qcow_aio_write_cb, acb);
1472
    if (acb->hd_aiocb == NULL)
1473
        goto done;
1474

    
1475
    return;
1476

    
1477
done:
1478
    if (acb->qiov->niov > 1)
1479
        qemu_vfree(acb->orig_buf);
1480
    acb->common.cb(acb->common.opaque, ret);
1481
    qemu_aio_release(acb);
1482
}
1483

    
1484
static BlockDriverAIOCB *qcow_aio_writev(BlockDriverState *bs,
1485
        int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1486
        BlockDriverCompletionFunc *cb, void *opaque)
1487
{
1488
    BDRVQcowState *s = bs->opaque;
1489
    QCowAIOCB *acb;
1490

    
1491
    s->cluster_cache_offset = -1; /* disable compressed cache */
1492

    
1493
    acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
1494
    if (!acb)
1495
        return NULL;
1496

    
1497
    qcow_aio_write_cb(acb, 0);
1498
    return &acb->common;
1499
}
1500

    
1501
static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
1502
{
1503
    QCowAIOCB *acb = (QCowAIOCB *)blockacb;
1504
    if (acb->hd_aiocb)
1505
        bdrv_aio_cancel(acb->hd_aiocb);
1506
    qemu_aio_release(acb);
1507
}
1508

    
1509
static void qcow_close(BlockDriverState *bs)
1510
{
1511
    BDRVQcowState *s = bs->opaque;
1512
    qemu_free(s->l1_table);
1513
    qemu_free(s->l2_cache);
1514
    qemu_free(s->cluster_cache);
1515
    qemu_free(s->cluster_data);
1516
    refcount_close(bs);
1517
    bdrv_delete(s->hd);
1518
}
1519

    
1520
/* XXX: use std qcow open function ? */
1521
typedef struct QCowCreateState {
1522
    int cluster_size;
1523
    int cluster_bits;
1524
    uint16_t *refcount_block;
1525
    uint64_t *refcount_table;
1526
    int64_t l1_table_offset;
1527
    int64_t refcount_table_offset;
1528
    int64_t refcount_block_offset;
1529
} QCowCreateState;
1530

    
1531
static void create_refcount_update(QCowCreateState *s,
1532
                                   int64_t offset, int64_t size)
1533
{
1534
    int refcount;
1535
    int64_t start, last, cluster_offset;
1536
    uint16_t *p;
1537

    
1538
    start = offset & ~(s->cluster_size - 1);
1539
    last = (offset + size - 1)  & ~(s->cluster_size - 1);
1540
    for(cluster_offset = start; cluster_offset <= last;
1541
        cluster_offset += s->cluster_size) {
1542
        p = &s->refcount_block[cluster_offset >> s->cluster_bits];
1543
        refcount = be16_to_cpu(*p);
1544
        refcount++;
1545
        *p = cpu_to_be16(refcount);
1546
    }
1547
}
1548

    
1549
static int get_bits_from_size(size_t size)
1550
{
1551
    int res = 0;
1552

    
1553
    if (size == 0) {
1554
        return -1;
1555
    }
1556

    
1557
    while (size != 1) {
1558
        /* Not a power of two */
1559
        if (size & 1) {
1560
            return -1;
1561
        }
1562

    
1563
        size >>= 1;
1564
        res++;
1565
    }
1566

    
1567
    return res;
1568
}
1569

    
1570
static int qcow_create2(const char *filename, int64_t total_size,
1571
                        const char *backing_file, const char *backing_format,
1572
                        int flags, size_t cluster_size)
1573
{
1574

    
1575
    int fd, header_size, backing_filename_len, l1_size, i, shift, l2_bits;
1576
    int ref_clusters, backing_format_len = 0;
1577
    QCowHeader header;
1578
    uint64_t tmp, offset;
1579
    QCowCreateState s1, *s = &s1;
1580
    QCowExtension ext_bf = {0, 0};
1581

    
1582

    
1583
    memset(s, 0, sizeof(*s));
1584

    
1585
    fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
1586
    if (fd < 0)
1587
        return -1;
1588
    memset(&header, 0, sizeof(header));
1589
    header.magic = cpu_to_be32(QCOW_MAGIC);
1590
    header.version = cpu_to_be32(QCOW_VERSION);
1591
    header.size = cpu_to_be64(total_size * 512);
1592
    header_size = sizeof(header);
1593
    backing_filename_len = 0;
1594
    if (backing_file) {
1595
        if (backing_format) {
1596
            ext_bf.magic = QCOW_EXT_MAGIC_BACKING_FORMAT;
1597
            backing_format_len = strlen(backing_format);
1598
            ext_bf.len = (backing_format_len + 7) & ~7;
1599
            header_size += ((sizeof(ext_bf) + ext_bf.len + 7) & ~7);
1600
        }
1601
        header.backing_file_offset = cpu_to_be64(header_size);
1602
        backing_filename_len = strlen(backing_file);
1603
        header.backing_file_size = cpu_to_be32(backing_filename_len);
1604
        header_size += backing_filename_len;
1605
    }
1606

    
1607
    /* Cluster size */
1608
    s->cluster_bits = get_bits_from_size(cluster_size);
1609
    if (s->cluster_bits < MIN_CLUSTER_BITS ||
1610
        s->cluster_bits > MAX_CLUSTER_BITS)
1611
    {
1612
        fprintf(stderr, "Cluster size must be a power of two between "
1613
            "%d and %dk\n",
1614
            1 << MIN_CLUSTER_BITS,
1615
            1 << (MAX_CLUSTER_BITS - 10));
1616
        return -EINVAL;
1617
    }
1618
    s->cluster_size = 1 << s->cluster_bits;
1619

    
1620
    header.cluster_bits = cpu_to_be32(s->cluster_bits);
1621
    header_size = (header_size + 7) & ~7;
1622
    if (flags & BLOCK_FLAG_ENCRYPT) {
1623
        header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
1624
    } else {
1625
        header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
1626
    }
1627
    l2_bits = s->cluster_bits - 3;
1628
    shift = s->cluster_bits + l2_bits;
1629
    l1_size = (((total_size * 512) + (1LL << shift) - 1) >> shift);
1630
    offset = align_offset(header_size, s->cluster_size);
1631
    s->l1_table_offset = offset;
1632
    header.l1_table_offset = cpu_to_be64(s->l1_table_offset);
1633
    header.l1_size = cpu_to_be32(l1_size);
1634
    offset += align_offset(l1_size * sizeof(uint64_t), s->cluster_size);
1635

    
1636
    s->refcount_table = qemu_mallocz(s->cluster_size);
1637

    
1638
    s->refcount_table_offset = offset;
1639
    header.refcount_table_offset = cpu_to_be64(offset);
1640
    header.refcount_table_clusters = cpu_to_be32(1);
1641
    offset += s->cluster_size;
1642
    s->refcount_block_offset = offset;
1643

    
1644
    /* count how many refcount blocks needed */
1645
    tmp = offset >> s->cluster_bits;
1646
    ref_clusters = (tmp >> (s->cluster_bits - REFCOUNT_SHIFT)) + 1;
1647
    for (i=0; i < ref_clusters; i++) {
1648
        s->refcount_table[i] = cpu_to_be64(offset);
1649
        offset += s->cluster_size;
1650
    }
1651

    
1652
    s->refcount_block = qemu_mallocz(ref_clusters * s->cluster_size);
1653

    
1654
    /* update refcounts */
1655
    create_refcount_update(s, 0, header_size);
1656
    create_refcount_update(s, s->l1_table_offset, l1_size * sizeof(uint64_t));
1657
    create_refcount_update(s, s->refcount_table_offset, s->cluster_size);
1658
    create_refcount_update(s, s->refcount_block_offset, ref_clusters * s->cluster_size);
1659

    
1660
    /* write all the data */
1661
    write(fd, &header, sizeof(header));
1662
    if (backing_file) {
1663
        if (backing_format_len) {
1664
            char zero[16];
1665
            int d = ext_bf.len - backing_format_len;
1666

    
1667
            memset(zero, 0, sizeof(zero));
1668
            cpu_to_be32s(&ext_bf.magic);
1669
            cpu_to_be32s(&ext_bf.len);
1670
            write(fd, &ext_bf, sizeof(ext_bf));
1671
            write(fd, backing_format, backing_format_len);
1672
            if (d>0) {
1673
                write(fd, zero, d);
1674
            }
1675
        }
1676
        write(fd, backing_file, backing_filename_len);
1677
    }
1678
    lseek(fd, s->l1_table_offset, SEEK_SET);
1679
    tmp = 0;
1680
    for(i = 0;i < l1_size; i++) {
1681
        write(fd, &tmp, sizeof(tmp));
1682
    }
1683
    lseek(fd, s->refcount_table_offset, SEEK_SET);
1684
    write(fd, s->refcount_table, s->cluster_size);
1685

    
1686
    lseek(fd, s->refcount_block_offset, SEEK_SET);
1687
    write(fd, s->refcount_block, ref_clusters * s->cluster_size);
1688

    
1689
    qemu_free(s->refcount_table);
1690
    qemu_free(s->refcount_block);
1691
    close(fd);
1692
    return 0;
1693
}
1694

    
1695
static int qcow_create(const char *filename, QEMUOptionParameter *options)
1696
{
1697
    const char *backing_file = NULL;
1698
    const char *backing_fmt = NULL;
1699
    uint64_t sectors = 0;
1700
    int flags = 0;
1701
    size_t cluster_size = 4096;
1702

    
1703
    /* Read out options */
1704
    while (options && options->name) {
1705
        if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
1706
            sectors = options->value.n / 512;
1707
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
1708
            backing_file = options->value.s;
1709
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
1710
            backing_fmt = options->value.s;
1711
        } else if (!strcmp(options->name, BLOCK_OPT_ENCRYPT)) {
1712
            flags |= options->value.n ? BLOCK_FLAG_ENCRYPT : 0;
1713
        } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
1714
            if (options->value.n) {
1715
                cluster_size = options->value.n;
1716
            }
1717
        }
1718
        options++;
1719
    }
1720

    
1721
    return qcow_create2(filename, sectors, backing_file, backing_fmt, flags,
1722
        cluster_size);
1723
}
1724

    
1725
static int qcow_make_empty(BlockDriverState *bs)
1726
{
1727
#if 0
1728
    /* XXX: not correct */
1729
    BDRVQcowState *s = bs->opaque;
1730
    uint32_t l1_length = s->l1_size * sizeof(uint64_t);
1731
    int ret;
1732

1733
    memset(s->l1_table, 0, l1_length);
1734
    if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_length) < 0)
1735
        return -1;
1736
    ret = bdrv_truncate(s->hd, s->l1_table_offset + l1_length);
1737
    if (ret < 0)
1738
        return ret;
1739

1740
    l2_cache_reset(bs);
1741
#endif
1742
    return 0;
1743
}
1744

    
1745
/* XXX: put compressed sectors first, then all the cluster aligned
1746
   tables to avoid losing bytes in alignment */
1747
static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
1748
                                 const uint8_t *buf, int nb_sectors)
1749
{
1750
    BDRVQcowState *s = bs->opaque;
1751
    z_stream strm;
1752
    int ret, out_len;
1753
    uint8_t *out_buf;
1754
    uint64_t cluster_offset;
1755

    
1756
    if (nb_sectors == 0) {
1757
        /* align end of file to a sector boundary to ease reading with
1758
           sector based I/Os */
1759
        cluster_offset = bdrv_getlength(s->hd);
1760
        cluster_offset = (cluster_offset + 511) & ~511;
1761
        bdrv_truncate(s->hd, cluster_offset);
1762
        return 0;
1763
    }
1764

    
1765
    if (nb_sectors != s->cluster_sectors)
1766
        return -EINVAL;
1767

    
1768
    out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
1769

    
1770
    /* best compression, small window, no zlib header */
1771
    memset(&strm, 0, sizeof(strm));
1772
    ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
1773
                       Z_DEFLATED, -12,
1774
                       9, Z_DEFAULT_STRATEGY);
1775
    if (ret != 0) {
1776
        qemu_free(out_buf);
1777
        return -1;
1778
    }
1779

    
1780
    strm.avail_in = s->cluster_size;
1781
    strm.next_in = (uint8_t *)buf;
1782
    strm.avail_out = s->cluster_size;
1783
    strm.next_out = out_buf;
1784

    
1785
    ret = deflate(&strm, Z_FINISH);
1786
    if (ret != Z_STREAM_END && ret != Z_OK) {
1787
        qemu_free(out_buf);
1788
        deflateEnd(&strm);
1789
        return -1;
1790
    }
1791
    out_len = strm.next_out - out_buf;
1792

    
1793
    deflateEnd(&strm);
1794

    
1795
    if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
1796
        /* could not compress: write normal cluster */
1797
        bdrv_write(bs, sector_num, buf, s->cluster_sectors);
1798
    } else {
1799
        cluster_offset = alloc_compressed_cluster_offset(bs, sector_num << 9,
1800
                                              out_len);
1801
        if (!cluster_offset)
1802
            return -1;
1803
        cluster_offset &= s->cluster_offset_mask;
1804
        if (bdrv_pwrite(s->hd, cluster_offset, out_buf, out_len) != out_len) {
1805
            qemu_free(out_buf);
1806
            return -1;
1807
        }
1808
    }
1809

    
1810
    qemu_free(out_buf);
1811
    return 0;
1812
}
1813

    
1814
static void qcow_flush(BlockDriverState *bs)
1815
{
1816
    BDRVQcowState *s = bs->opaque;
1817
    bdrv_flush(s->hd);
1818
}
1819

    
1820
static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1821
{
1822
    BDRVQcowState *s = bs->opaque;
1823
    bdi->cluster_size = s->cluster_size;
1824
    bdi->vm_state_offset = (int64_t)s->l1_vm_state_index <<
1825
        (s->cluster_bits + s->l2_bits);
1826
    return 0;
1827
}
1828

    
1829
/*********************************************************/
1830
/* snapshot support */
1831

    
1832
/* update the refcounts of snapshots and the copied flag */
1833
static int update_snapshot_refcount(BlockDriverState *bs,
1834
                                    int64_t l1_table_offset,
1835
                                    int l1_size,
1836
                                    int addend)
1837
{
1838
    BDRVQcowState *s = bs->opaque;
1839
    uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, l1_allocated;
1840
    int64_t old_offset, old_l2_offset;
1841
    int l2_size, i, j, l1_modified, l2_modified, nb_csectors, refcount;
1842

    
1843
    l2_cache_reset(bs);
1844

    
1845
    l2_table = NULL;
1846
    l1_table = NULL;
1847
    l1_size2 = l1_size * sizeof(uint64_t);
1848
    l1_allocated = 0;
1849
    if (l1_table_offset != s->l1_table_offset) {
1850
        l1_table = qemu_malloc(l1_size2);
1851
        l1_allocated = 1;
1852
        if (bdrv_pread(s->hd, l1_table_offset,
1853
                       l1_table, l1_size2) != l1_size2)
1854
            goto fail;
1855
        for(i = 0;i < l1_size; i++)
1856
            be64_to_cpus(&l1_table[i]);
1857
    } else {
1858
        assert(l1_size == s->l1_size);
1859
        l1_table = s->l1_table;
1860
        l1_allocated = 0;
1861
    }
1862

    
1863
    l2_size = s->l2_size * sizeof(uint64_t);
1864
    l2_table = qemu_malloc(l2_size);
1865
    l1_modified = 0;
1866
    for(i = 0; i < l1_size; i++) {
1867
        l2_offset = l1_table[i];
1868
        if (l2_offset) {
1869
            old_l2_offset = l2_offset;
1870
            l2_offset &= ~QCOW_OFLAG_COPIED;
1871
            l2_modified = 0;
1872
            if (bdrv_pread(s->hd, l2_offset, l2_table, l2_size) != l2_size)
1873
                goto fail;
1874
            for(j = 0; j < s->l2_size; j++) {
1875
                offset = be64_to_cpu(l2_table[j]);
1876
                if (offset != 0) {
1877
                    old_offset = offset;
1878
                    offset &= ~QCOW_OFLAG_COPIED;
1879
                    if (offset & QCOW_OFLAG_COMPRESSED) {
1880
                        nb_csectors = ((offset >> s->csize_shift) &
1881
                                       s->csize_mask) + 1;
1882
                        if (addend != 0)
1883
                            update_refcount(bs, (offset & s->cluster_offset_mask) & ~511,
1884
                                            nb_csectors * 512, addend);
1885
                        /* compressed clusters are never modified */
1886
                        refcount = 2;
1887
                    } else {
1888
                        if (addend != 0) {
1889
                            refcount = update_cluster_refcount(bs, offset >> s->cluster_bits, addend);
1890
                        } else {
1891
                            refcount = get_refcount(bs, offset >> s->cluster_bits);
1892
                        }
1893
                    }
1894

    
1895
                    if (refcount == 1) {
1896
                        offset |= QCOW_OFLAG_COPIED;
1897
                    }
1898
                    if (offset != old_offset) {
1899
                        l2_table[j] = cpu_to_be64(offset);
1900
                        l2_modified = 1;
1901
                    }
1902
                }
1903
            }
1904
            if (l2_modified) {
1905
                if (bdrv_pwrite(s->hd,
1906
                                l2_offset, l2_table, l2_size) != l2_size)
1907
                    goto fail;
1908
            }
1909

    
1910
            if (addend != 0) {
1911
                refcount = update_cluster_refcount(bs, l2_offset >> s->cluster_bits, addend);
1912
            } else {
1913
                refcount = get_refcount(bs, l2_offset >> s->cluster_bits);
1914
            }
1915
            if (refcount == 1) {
1916
                l2_offset |= QCOW_OFLAG_COPIED;
1917
            }
1918
            if (l2_offset != old_l2_offset) {
1919
                l1_table[i] = l2_offset;
1920
                l1_modified = 1;
1921
            }
1922
        }
1923
    }
1924
    if (l1_modified) {
1925
        for(i = 0; i < l1_size; i++)
1926
            cpu_to_be64s(&l1_table[i]);
1927
        if (bdrv_pwrite(s->hd, l1_table_offset, l1_table,
1928
                        l1_size2) != l1_size2)
1929
            goto fail;
1930
        for(i = 0; i < l1_size; i++)
1931
            be64_to_cpus(&l1_table[i]);
1932
    }
1933
    if (l1_allocated)
1934
        qemu_free(l1_table);
1935
    qemu_free(l2_table);
1936
    return 0;
1937
 fail:
1938
    if (l1_allocated)
1939
        qemu_free(l1_table);
1940
    qemu_free(l2_table);
1941
    return -EIO;
1942
}
1943

    
1944
static void qcow_free_snapshots(BlockDriverState *bs)
1945
{
1946
    BDRVQcowState *s = bs->opaque;
1947
    int i;
1948

    
1949
    for(i = 0; i < s->nb_snapshots; i++) {
1950
        qemu_free(s->snapshots[i].name);
1951
        qemu_free(s->snapshots[i].id_str);
1952
    }
1953
    qemu_free(s->snapshots);
1954
    s->snapshots = NULL;
1955
    s->nb_snapshots = 0;
1956
}
1957

    
1958
static int qcow_read_snapshots(BlockDriverState *bs)
1959
{
1960
    BDRVQcowState *s = bs->opaque;
1961
    QCowSnapshotHeader h;
1962
    QCowSnapshot *sn;
1963
    int i, id_str_size, name_size;
1964
    int64_t offset;
1965
    uint32_t extra_data_size;
1966

    
1967
    if (!s->nb_snapshots) {
1968
        s->snapshots = NULL;
1969
        s->snapshots_size = 0;
1970
        return 0;
1971
    }
1972

    
1973
    offset = s->snapshots_offset;
1974
    s->snapshots = qemu_mallocz(s->nb_snapshots * sizeof(QCowSnapshot));
1975
    for(i = 0; i < s->nb_snapshots; i++) {
1976
        offset = align_offset(offset, 8);
1977
        if (bdrv_pread(s->hd, offset, &h, sizeof(h)) != sizeof(h))
1978
            goto fail;
1979
        offset += sizeof(h);
1980
        sn = s->snapshots + i;
1981
        sn->l1_table_offset = be64_to_cpu(h.l1_table_offset);
1982
        sn->l1_size = be32_to_cpu(h.l1_size);
1983
        sn->vm_state_size = be32_to_cpu(h.vm_state_size);
1984
        sn->date_sec = be32_to_cpu(h.date_sec);
1985
        sn->date_nsec = be32_to_cpu(h.date_nsec);
1986
        sn->vm_clock_nsec = be64_to_cpu(h.vm_clock_nsec);
1987
        extra_data_size = be32_to_cpu(h.extra_data_size);
1988

    
1989
        id_str_size = be16_to_cpu(h.id_str_size);
1990
        name_size = be16_to_cpu(h.name_size);
1991

    
1992
        offset += extra_data_size;
1993

    
1994
        sn->id_str = qemu_malloc(id_str_size + 1);
1995
        if (bdrv_pread(s->hd, offset, sn->id_str, id_str_size) != id_str_size)
1996
            goto fail;
1997
        offset += id_str_size;
1998
        sn->id_str[id_str_size] = '\0';
1999

    
2000
        sn->name = qemu_malloc(name_size + 1);
2001
        if (bdrv_pread(s->hd, offset, sn->name, name_size) != name_size)
2002
            goto fail;
2003
        offset += name_size;
2004
        sn->name[name_size] = '\0';
2005
    }
2006
    s->snapshots_size = offset - s->snapshots_offset;
2007
    return 0;
2008
 fail:
2009
    qcow_free_snapshots(bs);
2010
    return -1;
2011
}
2012

    
2013
/* add at the end of the file a new list of snapshots */
2014
static int qcow_write_snapshots(BlockDriverState *bs)
2015
{
2016
    BDRVQcowState *s = bs->opaque;
2017
    QCowSnapshot *sn;
2018
    QCowSnapshotHeader h;
2019
    int i, name_size, id_str_size, snapshots_size;
2020
    uint64_t data64;
2021
    uint32_t data32;
2022
    int64_t offset, snapshots_offset;
2023

    
2024
    /* compute the size of the snapshots */
2025
    offset = 0;
2026
    for(i = 0; i < s->nb_snapshots; i++) {
2027
        sn = s->snapshots + i;
2028
        offset = align_offset(offset, 8);
2029
        offset += sizeof(h);
2030
        offset += strlen(sn->id_str);
2031
        offset += strlen(sn->name);
2032
    }
2033
    snapshots_size = offset;
2034

    
2035
    snapshots_offset = alloc_clusters(bs, snapshots_size);
2036
    offset = snapshots_offset;
2037

    
2038
    for(i = 0; i < s->nb_snapshots; i++) {
2039
        sn = s->snapshots + i;
2040
        memset(&h, 0, sizeof(h));
2041
        h.l1_table_offset = cpu_to_be64(sn->l1_table_offset);
2042
        h.l1_size = cpu_to_be32(sn->l1_size);
2043
        h.vm_state_size = cpu_to_be32(sn->vm_state_size);
2044
        h.date_sec = cpu_to_be32(sn->date_sec);
2045
        h.date_nsec = cpu_to_be32(sn->date_nsec);
2046
        h.vm_clock_nsec = cpu_to_be64(sn->vm_clock_nsec);
2047

    
2048
        id_str_size = strlen(sn->id_str);
2049
        name_size = strlen(sn->name);
2050
        h.id_str_size = cpu_to_be16(id_str_size);
2051
        h.name_size = cpu_to_be16(name_size);
2052
        offset = align_offset(offset, 8);
2053
        if (bdrv_pwrite(s->hd, offset, &h, sizeof(h)) != sizeof(h))
2054
            goto fail;
2055
        offset += sizeof(h);
2056
        if (bdrv_pwrite(s->hd, offset, sn->id_str, id_str_size) != id_str_size)
2057
            goto fail;
2058
        offset += id_str_size;
2059
        if (bdrv_pwrite(s->hd, offset, sn->name, name_size) != name_size)
2060
            goto fail;
2061
        offset += name_size;
2062
    }
2063

    
2064
    /* update the various header fields */
2065
    data64 = cpu_to_be64(snapshots_offset);
2066
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, snapshots_offset),
2067
                    &data64, sizeof(data64)) != sizeof(data64))
2068
        goto fail;
2069
    data32 = cpu_to_be32(s->nb_snapshots);
2070
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, nb_snapshots),
2071
                    &data32, sizeof(data32)) != sizeof(data32))
2072
        goto fail;
2073

    
2074
    /* free the old snapshot table */
2075
    free_clusters(bs, s->snapshots_offset, s->snapshots_size);
2076
    s->snapshots_offset = snapshots_offset;
2077
    s->snapshots_size = snapshots_size;
2078
    return 0;
2079
 fail:
2080
    return -1;
2081
}
2082

    
2083
static void find_new_snapshot_id(BlockDriverState *bs,
2084
                                 char *id_str, int id_str_size)
2085
{
2086
    BDRVQcowState *s = bs->opaque;
2087
    QCowSnapshot *sn;
2088
    int i, id, id_max = 0;
2089

    
2090
    for(i = 0; i < s->nb_snapshots; i++) {
2091
        sn = s->snapshots + i;
2092
        id = strtoul(sn->id_str, NULL, 10);
2093
        if (id > id_max)
2094
            id_max = id;
2095
    }
2096
    snprintf(id_str, id_str_size, "%d", id_max + 1);
2097
}
2098

    
2099
static int find_snapshot_by_id(BlockDriverState *bs, const char *id_str)
2100
{
2101
    BDRVQcowState *s = bs->opaque;
2102
    int i;
2103

    
2104
    for(i = 0; i < s->nb_snapshots; i++) {
2105
        if (!strcmp(s->snapshots[i].id_str, id_str))
2106
            return i;
2107
    }
2108
    return -1;
2109
}
2110

    
2111
static int find_snapshot_by_id_or_name(BlockDriverState *bs, const char *name)
2112
{
2113
    BDRVQcowState *s = bs->opaque;
2114
    int i, ret;
2115

    
2116
    ret = find_snapshot_by_id(bs, name);
2117
    if (ret >= 0)
2118
        return ret;
2119
    for(i = 0; i < s->nb_snapshots; i++) {
2120
        if (!strcmp(s->snapshots[i].name, name))
2121
            return i;
2122
    }
2123
    return -1;
2124
}
2125

    
2126
/* if no id is provided, a new one is constructed */
2127
static int qcow_snapshot_create(BlockDriverState *bs,
2128
                                QEMUSnapshotInfo *sn_info)
2129
{
2130
    BDRVQcowState *s = bs->opaque;
2131
    QCowSnapshot *snapshots1, sn1, *sn = &sn1;
2132
    int i, ret;
2133
    uint64_t *l1_table = NULL;
2134

    
2135
    memset(sn, 0, sizeof(*sn));
2136

    
2137
    if (sn_info->id_str[0] == '\0') {
2138
        /* compute a new id */
2139
        find_new_snapshot_id(bs, sn_info->id_str, sizeof(sn_info->id_str));
2140
    }
2141

    
2142
    /* check that the ID is unique */
2143
    if (find_snapshot_by_id(bs, sn_info->id_str) >= 0)
2144
        return -ENOENT;
2145

    
2146
    sn->id_str = qemu_strdup(sn_info->id_str);
2147
    if (!sn->id_str)
2148
        goto fail;
2149
    sn->name = qemu_strdup(sn_info->name);
2150
    if (!sn->name)
2151
        goto fail;
2152
    sn->vm_state_size = sn_info->vm_state_size;
2153
    sn->date_sec = sn_info->date_sec;
2154
    sn->date_nsec = sn_info->date_nsec;
2155
    sn->vm_clock_nsec = sn_info->vm_clock_nsec;
2156

    
2157
    ret = update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1);
2158
    if (ret < 0)
2159
        goto fail;
2160

    
2161
    /* create the L1 table of the snapshot */
2162
    sn->l1_table_offset = alloc_clusters(bs, s->l1_size * sizeof(uint64_t));
2163
    sn->l1_size = s->l1_size;
2164

    
2165
    l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
2166
    for(i = 0; i < s->l1_size; i++) {
2167
        l1_table[i] = cpu_to_be64(s->l1_table[i]);
2168
    }
2169
    if (bdrv_pwrite(s->hd, sn->l1_table_offset,
2170
                    l1_table, s->l1_size * sizeof(uint64_t)) !=
2171
        (s->l1_size * sizeof(uint64_t)))
2172
        goto fail;
2173
    qemu_free(l1_table);
2174
    l1_table = NULL;
2175

    
2176
    snapshots1 = qemu_malloc((s->nb_snapshots + 1) * sizeof(QCowSnapshot));
2177
    if (s->snapshots) {
2178
        memcpy(snapshots1, s->snapshots, s->nb_snapshots * sizeof(QCowSnapshot));
2179
        qemu_free(s->snapshots);
2180
    }
2181
    s->snapshots = snapshots1;
2182
    s->snapshots[s->nb_snapshots++] = *sn;
2183

    
2184
    if (qcow_write_snapshots(bs) < 0)
2185
        goto fail;
2186
#ifdef DEBUG_ALLOC
2187
    check_refcounts(bs);
2188
#endif
2189
    return 0;
2190
 fail:
2191
    qemu_free(sn->name);
2192
    qemu_free(l1_table);
2193
    return -1;
2194
}
2195

    
2196
/* copy the snapshot 'snapshot_name' into the current disk image */
2197
static int qcow_snapshot_goto(BlockDriverState *bs,
2198
                              const char *snapshot_id)
2199
{
2200
    BDRVQcowState *s = bs->opaque;
2201
    QCowSnapshot *sn;
2202
    int i, snapshot_index, l1_size2;
2203

    
2204
    snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id);
2205
    if (snapshot_index < 0)
2206
        return -ENOENT;
2207
    sn = &s->snapshots[snapshot_index];
2208

    
2209
    if (update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, -1) < 0)
2210
        goto fail;
2211

    
2212
    if (grow_l1_table(bs, sn->l1_size) < 0)
2213
        goto fail;
2214

    
2215
    s->l1_size = sn->l1_size;
2216
    l1_size2 = s->l1_size * sizeof(uint64_t);
2217
    /* copy the snapshot l1 table to the current l1 table */
2218
    if (bdrv_pread(s->hd, sn->l1_table_offset,
2219
                   s->l1_table, l1_size2) != l1_size2)
2220
        goto fail;
2221
    if (bdrv_pwrite(s->hd, s->l1_table_offset,
2222
                    s->l1_table, l1_size2) != l1_size2)
2223
        goto fail;
2224
    for(i = 0;i < s->l1_size; i++) {
2225
        be64_to_cpus(&s->l1_table[i]);
2226
    }
2227

    
2228
    if (update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1) < 0)
2229
        goto fail;
2230

    
2231
#ifdef DEBUG_ALLOC
2232
    check_refcounts(bs);
2233
#endif
2234
    return 0;
2235
 fail:
2236
    return -EIO;
2237
}
2238

    
2239
static int qcow_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2240
{
2241
    BDRVQcowState *s = bs->opaque;
2242
    QCowSnapshot *sn;
2243
    int snapshot_index, ret;
2244

    
2245
    snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id);
2246
    if (snapshot_index < 0)
2247
        return -ENOENT;
2248
    sn = &s->snapshots[snapshot_index];
2249

    
2250
    ret = update_snapshot_refcount(bs, sn->l1_table_offset, sn->l1_size, -1);
2251
    if (ret < 0)
2252
        return ret;
2253
    /* must update the copied flag on the current cluster offsets */
2254
    ret = update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 0);
2255
    if (ret < 0)
2256
        return ret;
2257
    free_clusters(bs, sn->l1_table_offset, sn->l1_size * sizeof(uint64_t));
2258

    
2259
    qemu_free(sn->id_str);
2260
    qemu_free(sn->name);
2261
    memmove(sn, sn + 1, (s->nb_snapshots - snapshot_index - 1) * sizeof(*sn));
2262
    s->nb_snapshots--;
2263
    ret = qcow_write_snapshots(bs);
2264
    if (ret < 0) {
2265
        /* XXX: restore snapshot if error ? */
2266
        return ret;
2267
    }
2268
#ifdef DEBUG_ALLOC
2269
    check_refcounts(bs);
2270
#endif
2271
    return 0;
2272
}
2273

    
2274
static int qcow_snapshot_list(BlockDriverState *bs,
2275
                              QEMUSnapshotInfo **psn_tab)
2276
{
2277
    BDRVQcowState *s = bs->opaque;
2278
    QEMUSnapshotInfo *sn_tab, *sn_info;
2279
    QCowSnapshot *sn;
2280
    int i;
2281

    
2282
    if (!s->nb_snapshots) {
2283
        *psn_tab = NULL;
2284
        return s->nb_snapshots;
2285
    }
2286

    
2287
    sn_tab = qemu_mallocz(s->nb_snapshots * sizeof(QEMUSnapshotInfo));
2288
    for(i = 0; i < s->nb_snapshots; i++) {
2289
        sn_info = sn_tab + i;
2290
        sn = s->snapshots + i;
2291
        pstrcpy(sn_info->id_str, sizeof(sn_info->id_str),
2292
                sn->id_str);
2293
        pstrcpy(sn_info->name, sizeof(sn_info->name),
2294
                sn->name);
2295
        sn_info->vm_state_size = sn->vm_state_size;
2296
        sn_info->date_sec = sn->date_sec;
2297
        sn_info->date_nsec = sn->date_nsec;
2298
        sn_info->vm_clock_nsec = sn->vm_clock_nsec;
2299
    }
2300
    *psn_tab = sn_tab;
2301
    return s->nb_snapshots;
2302
}
2303

    
2304
/*********************************************************/
2305
/* refcount handling */
2306

    
2307
static int refcount_init(BlockDriverState *bs)
2308
{
2309
    BDRVQcowState *s = bs->opaque;
2310
    int ret, refcount_table_size2, i;
2311

    
2312
    s->refcount_block_cache = qemu_malloc(s->cluster_size);
2313
    refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
2314
    s->refcount_table = qemu_malloc(refcount_table_size2);
2315
    if (s->refcount_table_size > 0) {
2316
        ret = bdrv_pread(s->hd, s->refcount_table_offset,
2317
                         s->refcount_table, refcount_table_size2);
2318
        if (ret != refcount_table_size2)
2319
            goto fail;
2320
        for(i = 0; i < s->refcount_table_size; i++)
2321
            be64_to_cpus(&s->refcount_table[i]);
2322
    }
2323
    return 0;
2324
 fail:
2325
    return -ENOMEM;
2326
}
2327

    
2328
static void refcount_close(BlockDriverState *bs)
2329
{
2330
    BDRVQcowState *s = bs->opaque;
2331
    qemu_free(s->refcount_block_cache);
2332
    qemu_free(s->refcount_table);
2333
}
2334

    
2335

    
2336
static int load_refcount_block(BlockDriverState *bs,
2337
                               int64_t refcount_block_offset)
2338
{
2339
    BDRVQcowState *s = bs->opaque;
2340
    int ret;
2341
    ret = bdrv_pread(s->hd, refcount_block_offset, s->refcount_block_cache,
2342
                     s->cluster_size);
2343
    if (ret != s->cluster_size)
2344
        return -EIO;
2345
    s->refcount_block_cache_offset = refcount_block_offset;
2346
    return 0;
2347
}
2348

    
2349
static int get_refcount(BlockDriverState *bs, int64_t cluster_index)
2350
{
2351
    BDRVQcowState *s = bs->opaque;
2352
    int refcount_table_index, block_index;
2353
    int64_t refcount_block_offset;
2354

    
2355
    refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
2356
    if (refcount_table_index >= s->refcount_table_size)
2357
        return 0;
2358
    refcount_block_offset = s->refcount_table[refcount_table_index];
2359
    if (!refcount_block_offset)
2360
        return 0;
2361
    if (refcount_block_offset != s->refcount_block_cache_offset) {
2362
        /* better than nothing: return allocated if read error */
2363
        if (load_refcount_block(bs, refcount_block_offset) < 0)
2364
            return 1;
2365
    }
2366
    block_index = cluster_index &
2367
        ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
2368
    return be16_to_cpu(s->refcount_block_cache[block_index]);
2369
}
2370

    
2371
/* return < 0 if error */
2372
static int64_t alloc_clusters_noref(BlockDriverState *bs, int64_t size)
2373
{
2374
    BDRVQcowState *s = bs->opaque;
2375
    int i, nb_clusters;
2376

    
2377
    nb_clusters = size_to_clusters(s, size);
2378
retry:
2379
    for(i = 0; i < nb_clusters; i++) {
2380
        int64_t i = s->free_cluster_index++;
2381
        if (get_refcount(bs, i) != 0)
2382
            goto retry;
2383
    }
2384
#ifdef DEBUG_ALLOC2
2385
    printf("alloc_clusters: size=%lld -> %lld\n",
2386
            size,
2387
            (s->free_cluster_index - nb_clusters) << s->cluster_bits);
2388
#endif
2389
    return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
2390
}
2391

    
2392
static int64_t alloc_clusters(BlockDriverState *bs, int64_t size)
2393
{
2394
    int64_t offset;
2395

    
2396
    offset = alloc_clusters_noref(bs, size);
2397
    update_refcount(bs, offset, size, 1);
2398
    return offset;
2399
}
2400

    
2401
/* only used to allocate compressed sectors. We try to allocate
2402
   contiguous sectors. size must be <= cluster_size */
2403
static int64_t alloc_bytes(BlockDriverState *bs, int size)
2404
{
2405
    BDRVQcowState *s = bs->opaque;
2406
    int64_t offset, cluster_offset;
2407
    int free_in_cluster;
2408

    
2409
    assert(size > 0 && size <= s->cluster_size);
2410
    if (s->free_byte_offset == 0) {
2411
        s->free_byte_offset = alloc_clusters(bs, s->cluster_size);
2412
    }
2413
 redo:
2414
    free_in_cluster = s->cluster_size -
2415
        (s->free_byte_offset & (s->cluster_size - 1));
2416
    if (size <= free_in_cluster) {
2417
        /* enough space in current cluster */
2418
        offset = s->free_byte_offset;
2419
        s->free_byte_offset += size;
2420
        free_in_cluster -= size;
2421
        if (free_in_cluster == 0)
2422
            s->free_byte_offset = 0;
2423
        if ((offset & (s->cluster_size - 1)) != 0)
2424
            update_cluster_refcount(bs, offset >> s->cluster_bits, 1);
2425
    } else {
2426
        offset = alloc_clusters(bs, s->cluster_size);
2427
        cluster_offset = s->free_byte_offset & ~(s->cluster_size - 1);
2428
        if ((cluster_offset + s->cluster_size) == offset) {
2429
            /* we are lucky: contiguous data */
2430
            offset = s->free_byte_offset;
2431
            update_cluster_refcount(bs, offset >> s->cluster_bits, 1);
2432
            s->free_byte_offset += size;
2433
        } else {
2434
            s->free_byte_offset = offset;
2435
            goto redo;
2436
        }
2437
    }
2438
    return offset;
2439
}
2440

    
2441
static void free_clusters(BlockDriverState *bs,
2442
                          int64_t offset, int64_t size)
2443
{
2444
    update_refcount(bs, offset, size, -1);
2445
}
2446

    
2447
static int grow_refcount_table(BlockDriverState *bs, int min_size)
2448
{
2449
    BDRVQcowState *s = bs->opaque;
2450
    int new_table_size, new_table_size2, refcount_table_clusters, i, ret;
2451
    uint64_t *new_table;
2452
    int64_t table_offset;
2453
    uint8_t data[12];
2454
    int old_table_size;
2455
    int64_t old_table_offset;
2456

    
2457
    if (min_size <= s->refcount_table_size)
2458
        return 0;
2459
    /* compute new table size */
2460
    refcount_table_clusters = s->refcount_table_size >> (s->cluster_bits - 3);
2461
    for(;;) {
2462
        if (refcount_table_clusters == 0) {
2463
            refcount_table_clusters = 1;
2464
        } else {
2465
            refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
2466
        }
2467
        new_table_size = refcount_table_clusters << (s->cluster_bits - 3);
2468
        if (min_size <= new_table_size)
2469
            break;
2470
    }
2471
#ifdef DEBUG_ALLOC2
2472
    printf("grow_refcount_table from %d to %d\n",
2473
           s->refcount_table_size,
2474
           new_table_size);
2475
#endif
2476
    new_table_size2 = new_table_size * sizeof(uint64_t);
2477
    new_table = qemu_mallocz(new_table_size2);
2478
    memcpy(new_table, s->refcount_table,
2479
           s->refcount_table_size * sizeof(uint64_t));
2480
    for(i = 0; i < s->refcount_table_size; i++)
2481
        cpu_to_be64s(&new_table[i]);
2482
    /* Note: we cannot update the refcount now to avoid recursion */
2483
    table_offset = alloc_clusters_noref(bs, new_table_size2);
2484
    ret = bdrv_pwrite(s->hd, table_offset, new_table, new_table_size2);
2485
    if (ret != new_table_size2)
2486
        goto fail;
2487
    for(i = 0; i < s->refcount_table_size; i++)
2488
        be64_to_cpus(&new_table[i]);
2489

    
2490
    cpu_to_be64w((uint64_t*)data, table_offset);
2491
    cpu_to_be32w((uint32_t*)(data + 8), refcount_table_clusters);
2492
    if (bdrv_pwrite(s->hd, offsetof(QCowHeader, refcount_table_offset),
2493
                    data, sizeof(data)) != sizeof(data))
2494
        goto fail;
2495
    qemu_free(s->refcount_table);
2496
    old_table_offset = s->refcount_table_offset;
2497
    old_table_size = s->refcount_table_size;
2498
    s->refcount_table = new_table;
2499
    s->refcount_table_size = new_table_size;
2500
    s->refcount_table_offset = table_offset;
2501

    
2502
    update_refcount(bs, table_offset, new_table_size2, 1);
2503
    free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t));
2504
    return 0;
2505
 fail:
2506
    free_clusters(bs, table_offset, new_table_size2);
2507
    qemu_free(new_table);
2508
    return -EIO;
2509
}
2510

    
2511

    
2512
static int64_t alloc_refcount_block(BlockDriverState *bs, int64_t cluster_index)
2513
{
2514
    BDRVQcowState *s = bs->opaque;
2515
    int64_t offset, refcount_block_offset;
2516
    int ret, refcount_table_index;
2517
    uint64_t data64;
2518

    
2519
    /* Find L1 index and grow refcount table if needed */
2520
    refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
2521
    if (refcount_table_index >= s->refcount_table_size) {
2522
        ret = grow_refcount_table(bs, refcount_table_index + 1);
2523
        if (ret < 0)
2524
            return ret;
2525
    }
2526

    
2527
    /* Load or allocate the refcount block */
2528
    refcount_block_offset = s->refcount_table[refcount_table_index];
2529
    if (!refcount_block_offset) {
2530
        /* create a new refcount block */
2531
        /* Note: we cannot update the refcount now to avoid recursion */
2532
        offset = alloc_clusters_noref(bs, s->cluster_size);
2533
        memset(s->refcount_block_cache, 0, s->cluster_size);
2534
        ret = bdrv_pwrite(s->hd, offset, s->refcount_block_cache, s->cluster_size);
2535
        if (ret != s->cluster_size)
2536
            return -EINVAL;
2537
        s->refcount_table[refcount_table_index] = offset;
2538
        data64 = cpu_to_be64(offset);
2539
        ret = bdrv_pwrite(s->hd, s->refcount_table_offset +
2540
                          refcount_table_index * sizeof(uint64_t),
2541
                          &data64, sizeof(data64));
2542
        if (ret != sizeof(data64))
2543
            return -EINVAL;
2544

    
2545
        refcount_block_offset = offset;
2546
        s->refcount_block_cache_offset = offset;
2547
        update_refcount(bs, offset, s->cluster_size, 1);
2548
    } else {
2549
        if (refcount_block_offset != s->refcount_block_cache_offset) {
2550
            if (load_refcount_block(bs, refcount_block_offset) < 0)
2551
                return -EIO;
2552
        }
2553
    }
2554

    
2555
    return refcount_block_offset;
2556
}
2557

    
2558
/* addend must be 1 or -1 */
2559
static int update_cluster_refcount(BlockDriverState *bs,
2560
                                   int64_t cluster_index,
2561
                                   int addend)
2562
{
2563
    BDRVQcowState *s = bs->opaque;
2564
    int ret;
2565

    
2566
    ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend);
2567
    if (ret < 0) {
2568
        return ret;
2569
    }
2570

    
2571
    return get_refcount(bs, cluster_index);
2572
}
2573

    
2574
/* XXX: cache several refcount block clusters ? */
2575
static int update_refcount(BlockDriverState *bs,
2576
                            int64_t offset, int64_t length,
2577
                            int addend)
2578
{
2579
    BDRVQcowState *s = bs->opaque;
2580
    int64_t start, last, cluster_offset;
2581

    
2582
#ifdef DEBUG_ALLOC2
2583
    printf("update_refcount: offset=%lld size=%lld addend=%d\n",
2584
           offset, length, addend);
2585
#endif
2586
    if (length <= 0)
2587
        return -EINVAL;
2588
    start = offset & ~(s->cluster_size - 1);
2589
    last = (offset + length - 1) & ~(s->cluster_size - 1);
2590
    for(cluster_offset = start; cluster_offset <= last;
2591
        cluster_offset += s->cluster_size)
2592
    {
2593
        int64_t refcount_block_offset;
2594
        int block_index, refcount;
2595
        int64_t cluster_index = cluster_offset >> s->cluster_bits;
2596

    
2597
        /* Load the refcount block and allocate it if needed */
2598
        refcount_block_offset = alloc_refcount_block(bs, cluster_index);
2599
        if (refcount_block_offset < 0) {
2600
            return refcount_block_offset;
2601
        }
2602

    
2603
        /* we can update the count and save it */
2604
        block_index = cluster_index &
2605
            ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
2606
        refcount = be16_to_cpu(s->refcount_block_cache[block_index]);
2607
        refcount += addend;
2608
        if (refcount < 0 || refcount > 0xffff)
2609
            return -EINVAL;
2610
        if (refcount == 0 && cluster_index < s->free_cluster_index) {
2611
            s->free_cluster_index = cluster_index;
2612
        }
2613
        s->refcount_block_cache[block_index] = cpu_to_be16(refcount);
2614
        if (bdrv_pwrite(s->hd,
2615
                        refcount_block_offset + (block_index << REFCOUNT_SHIFT),
2616
                        &s->refcount_block_cache[block_index], 2) != 2)
2617
            return -EIO;
2618

    
2619
    }
2620
    return 0;
2621
}
2622

    
2623
/*
2624
 * Increases the refcount for a range of clusters in a given refcount table.
2625
 * This is used to construct a temporary refcount table out of L1 and L2 tables
2626
 * which can be compared the the refcount table saved in the image.
2627
 *
2628
 * Returns the number of errors in the image that were found
2629
 */
2630
static int inc_refcounts(BlockDriverState *bs,
2631
                          uint16_t *refcount_table,
2632
                          int refcount_table_size,
2633
                          int64_t offset, int64_t size)
2634
{
2635
    BDRVQcowState *s = bs->opaque;
2636
    int64_t start, last, cluster_offset;
2637
    int k;
2638
    int errors = 0;
2639

    
2640
    if (size <= 0)
2641
        return 0;
2642

    
2643
    start = offset & ~(s->cluster_size - 1);
2644
    last = (offset + size - 1) & ~(s->cluster_size - 1);
2645
    for(cluster_offset = start; cluster_offset <= last;
2646
        cluster_offset += s->cluster_size) {
2647
        k = cluster_offset >> s->cluster_bits;
2648
        if (k < 0 || k >= refcount_table_size) {
2649
            fprintf(stderr, "ERROR: invalid cluster offset=0x%" PRIx64 "\n",
2650
                cluster_offset);
2651
            errors++;
2652
        } else {
2653
            if (++refcount_table[k] == 0) {
2654
                fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
2655
                    "\n", cluster_offset);
2656
                errors++;
2657
            }
2658
        }
2659
    }
2660

    
2661
    return errors;
2662
}
2663

    
2664
/*
2665
 * Increases the refcount in the given refcount table for the all clusters
2666
 * referenced in the L2 table. While doing so, performs some checks on L2
2667
 * entries.
2668
 *
2669
 * Returns the number of errors found by the checks or -errno if an internal
2670
 * error occurred.
2671
 */
2672
static int check_refcounts_l2(BlockDriverState *bs,
2673
    uint16_t *refcount_table, int refcount_table_size, int64_t l2_offset,
2674
    int check_copied)
2675
{
2676
    BDRVQcowState *s = bs->opaque;
2677
    uint64_t *l2_table, offset;
2678
    int i, l2_size, nb_csectors, refcount;
2679
    int errors = 0;
2680

    
2681
    /* Read L2 table from disk */
2682
    l2_size = s->l2_size * sizeof(uint64_t);
2683
    l2_table = qemu_malloc(l2_size);
2684

    
2685
    if (bdrv_pread(s->hd, l2_offset, l2_table, l2_size) != l2_size)
2686
        goto fail;
2687

    
2688
    /* Do the actual checks */
2689
    for(i = 0; i < s->l2_size; i++) {
2690
        offset = be64_to_cpu(l2_table[i]);
2691
        if (offset != 0) {
2692
            if (offset & QCOW_OFLAG_COMPRESSED) {
2693
                /* Compressed clusters don't have QCOW_OFLAG_COPIED */
2694
                if (offset & QCOW_OFLAG_COPIED) {
2695
                    fprintf(stderr, "ERROR: cluster %" PRId64 ": "
2696
                        "copied flag must never be set for compressed "
2697
                        "clusters\n", offset >> s->cluster_bits);
2698
                    offset &= ~QCOW_OFLAG_COPIED;
2699
                    errors++;
2700
                }
2701

    
2702
                /* Mark cluster as used */
2703
                nb_csectors = ((offset >> s->csize_shift) &
2704
                               s->csize_mask) + 1;
2705
                offset &= s->cluster_offset_mask;
2706
                errors += inc_refcounts(bs, refcount_table,
2707
                              refcount_table_size,
2708
                              offset & ~511, nb_csectors * 512);
2709
            } else {
2710
                /* QCOW_OFLAG_COPIED must be set iff refcount == 1 */
2711
                if (check_copied) {
2712
                    uint64_t entry = offset;
2713
                    offset &= ~QCOW_OFLAG_COPIED;
2714
                    refcount = get_refcount(bs, offset >> s->cluster_bits);
2715
                    if ((refcount == 1) != ((entry & QCOW_OFLAG_COPIED) != 0)) {
2716
                        fprintf(stderr, "ERROR OFLAG_COPIED: offset=%"
2717
                            PRIx64 " refcount=%d\n", entry, refcount);
2718
                        errors++;
2719
                    }
2720
                }
2721

    
2722
                /* Mark cluster as used */
2723
                offset &= ~QCOW_OFLAG_COPIED;
2724
                errors += inc_refcounts(bs, refcount_table,
2725
                              refcount_table_size,
2726
                              offset, s->cluster_size);
2727

    
2728
                /* Correct offsets are cluster aligned */
2729
                if (offset & (s->cluster_size - 1)) {
2730
                    fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
2731
                        "properly aligned; L2 entry corrupted.\n", offset);
2732
                    errors++;
2733
                }
2734
            }
2735
        }
2736
    }
2737

    
2738
    qemu_free(l2_table);
2739
    return errors;
2740

    
2741
fail:
2742
    fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
2743
    qemu_free(l2_table);
2744
    return -EIO;
2745
}
2746

    
2747
/*
2748
 * Increases the refcount for the L1 table, its L2 tables and all referenced
2749
 * clusters in the given refcount table. While doing so, performs some checks
2750
 * on L1 and L2 entries.
2751
 *
2752
 * Returns the number of errors found by the checks or -errno if an internal
2753
 * error occurred.
2754
 */
2755
static int check_refcounts_l1(BlockDriverState *bs,
2756
                              uint16_t *refcount_table,
2757
                              int refcount_table_size,
2758
                              int64_t l1_table_offset, int l1_size,
2759
                              int check_copied)
2760
{
2761
    BDRVQcowState *s = bs->opaque;
2762
    uint64_t *l1_table, l2_offset, l1_size2;
2763
    int i, refcount, ret;
2764
    int errors = 0;
2765

    
2766
    l1_size2 = l1_size * sizeof(uint64_t);
2767

    
2768
    /* Mark L1 table as used */
2769
    errors += inc_refcounts(bs, refcount_table, refcount_table_size,
2770
                  l1_table_offset, l1_size2);
2771

    
2772
    /* Read L1 table entries from disk */
2773
    l1_table = qemu_malloc(l1_size2);
2774
    if (bdrv_pread(s->hd, l1_table_offset,
2775
                   l1_table, l1_size2) != l1_size2)
2776
        goto fail;
2777
    for(i = 0;i < l1_size; i++)
2778
        be64_to_cpus(&l1_table[i]);
2779

    
2780
    /* Do the actual checks */
2781
    for(i = 0; i < l1_size; i++) {
2782
        l2_offset = l1_table[i];
2783
        if (l2_offset) {
2784
            /* QCOW_OFLAG_COPIED must be set iff refcount == 1 */
2785
            if (check_copied) {
2786
                refcount = get_refcount(bs, (l2_offset & ~QCOW_OFLAG_COPIED)
2787
                    >> s->cluster_bits);
2788
                if ((refcount == 1) != ((l2_offset & QCOW_OFLAG_COPIED) != 0)) {
2789
                    fprintf(stderr, "ERROR OFLAG_COPIED: l2_offset=%" PRIx64
2790
                        " refcount=%d\n", l2_offset, refcount);
2791
                    errors++;
2792
                }
2793
            }
2794

    
2795
            /* Mark L2 table as used */
2796
            l2_offset &= ~QCOW_OFLAG_COPIED;
2797
            errors += inc_refcounts(bs, refcount_table,
2798
                          refcount_table_size,
2799
                          l2_offset,
2800
                          s->cluster_size);
2801

    
2802
            /* L2 tables are cluster aligned */
2803
            if (l2_offset & (s->cluster_size - 1)) {
2804
                fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
2805
                    "cluster aligned; L1 entry corrupted\n", l2_offset);
2806
                errors++;
2807
            }
2808

    
2809
            /* Process and check L2 entries */
2810
            ret = check_refcounts_l2(bs, refcount_table, refcount_table_size,
2811
                l2_offset, check_copied);
2812
            if (ret < 0) {
2813
                goto fail;
2814
            }
2815
            errors += ret;
2816
        }
2817
    }
2818
    qemu_free(l1_table);
2819
    return errors;
2820

    
2821
fail:
2822
    fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
2823
    qemu_free(l1_table);
2824
    return -EIO;
2825
}
2826

    
2827
/*
2828
 * Checks an image for refcount consistency.
2829
 *
2830
 * Returns 0 if no errors are found, the number of errors in case the image is
2831
 * detected as corrupted, and -errno when an internal error occured.
2832
 */
2833
static int check_refcounts(BlockDriverState *bs)
2834
{
2835
    BDRVQcowState *s = bs->opaque;
2836
    int64_t size;
2837
    int nb_clusters, refcount1, refcount2, i;
2838
    QCowSnapshot *sn;
2839
    uint16_t *refcount_table;
2840
    int ret, errors = 0;
2841

    
2842
    size = bdrv_getlength(s->hd);
2843
    nb_clusters = size_to_clusters(s, size);
2844
    refcount_table = qemu_mallocz(nb_clusters * sizeof(uint16_t));
2845

    
2846
    /* header */
2847
    errors += inc_refcounts(bs, refcount_table, nb_clusters,
2848
                  0, s->cluster_size);
2849

    
2850
    /* current L1 table */
2851
    ret = check_refcounts_l1(bs, refcount_table, nb_clusters,
2852
                       s->l1_table_offset, s->l1_size, 1);
2853
    if (ret < 0) {
2854
        return ret;
2855
    }
2856
    errors += ret;
2857

    
2858
    /* snapshots */
2859
    for(i = 0; i < s->nb_snapshots; i++) {
2860
        sn = s->snapshots + i;
2861
        check_refcounts_l1(bs, refcount_table, nb_clusters,
2862
                           sn->l1_table_offset, sn->l1_size, 0);
2863
    }
2864
    errors += inc_refcounts(bs, refcount_table, nb_clusters,
2865
                  s->snapshots_offset, s->snapshots_size);
2866

    
2867
    /* refcount data */
2868
    errors += inc_refcounts(bs, refcount_table, nb_clusters,
2869
                  s->refcount_table_offset,
2870
                  s->refcount_table_size * sizeof(uint64_t));
2871
    for(i = 0; i < s->refcount_table_size; i++) {
2872
        int64_t offset;
2873
        offset = s->refcount_table[i];
2874
        if (offset != 0) {
2875
            errors += inc_refcounts(bs, refcount_table, nb_clusters,
2876
                          offset, s->cluster_size);
2877
        }
2878
    }
2879

    
2880
    /* compare ref counts */
2881
    for(i = 0; i < nb_clusters; i++) {
2882
        refcount1 = get_refcount(bs, i);
2883
        refcount2 = refcount_table[i];
2884
        if (refcount1 != refcount2) {
2885
            fprintf(stderr, "ERROR cluster %d refcount=%d reference=%d\n",
2886
                   i, refcount1, refcount2);
2887
            errors++;
2888
        }
2889
    }
2890

    
2891
    qemu_free(refcount_table);
2892

    
2893
    return errors;
2894
}
2895

    
2896
static int qcow_check(BlockDriverState *bs)
2897
{
2898
    return check_refcounts(bs);
2899
}
2900

    
2901
#if 0
2902
static void dump_refcounts(BlockDriverState *bs)
2903
{
2904
    BDRVQcowState *s = bs->opaque;
2905
    int64_t nb_clusters, k, k1, size;
2906
    int refcount;
2907

2908
    size = bdrv_getlength(s->hd);
2909
    nb_clusters = size_to_clusters(s, size);
2910
    for(k = 0; k < nb_clusters;) {
2911
        k1 = k;
2912
        refcount = get_refcount(bs, k);
2913
        k++;
2914
        while (k < nb_clusters && get_refcount(bs, k) == refcount)
2915
            k++;
2916
        printf("%lld: refcount=%d nb=%lld\n", k, refcount, k - k1);
2917
    }
2918
}
2919
#endif
2920

    
2921
static int qcow_put_buffer(BlockDriverState *bs, const uint8_t *buf,
2922
                           int64_t pos, int size)
2923
{
2924
    int growable = bs->growable;
2925

    
2926
    bs->growable = 1;
2927
    bdrv_pwrite(bs, pos, buf, size);
2928
    bs->growable = growable;
2929

    
2930
    return size;
2931
}
2932

    
2933
static int qcow_get_buffer(BlockDriverState *bs, uint8_t *buf,
2934
                           int64_t pos, int size)
2935
{
2936
    int growable = bs->growable;
2937
    int ret;
2938

    
2939
    bs->growable = 1;
2940
    ret = bdrv_pread(bs, pos, buf, size);
2941
    bs->growable = growable;
2942

    
2943
    return ret;
2944
}
2945

    
2946
static QEMUOptionParameter qcow_create_options[] = {
2947
    { BLOCK_OPT_SIZE,           OPT_SIZE },
2948
    { BLOCK_OPT_BACKING_FILE,   OPT_STRING },
2949
    { BLOCK_OPT_BACKING_FMT,    OPT_STRING },
2950
    { BLOCK_OPT_ENCRYPT,        OPT_FLAG },
2951
    { BLOCK_OPT_CLUSTER_SIZE,   OPT_SIZE },
2952
    { NULL }
2953
};
2954

    
2955
static BlockDriver bdrv_qcow2 = {
2956
    .format_name        = "qcow2",
2957
    .instance_size        = sizeof(BDRVQcowState),
2958
    .bdrv_probe                = qcow_probe,
2959
    .bdrv_open                = qcow_open,
2960
    .bdrv_close                = qcow_close,
2961
    .bdrv_create        = qcow_create,
2962
    .bdrv_flush                = qcow_flush,
2963
    .bdrv_is_allocated        = qcow_is_allocated,
2964
    .bdrv_set_key        = qcow_set_key,
2965
    .bdrv_make_empty        = qcow_make_empty,
2966

    
2967
    .bdrv_aio_readv        = qcow_aio_readv,
2968
    .bdrv_aio_writev        = qcow_aio_writev,
2969
    .bdrv_aio_cancel        = qcow_aio_cancel,
2970
    .aiocb_size                = sizeof(QCowAIOCB),
2971
    .bdrv_write_compressed = qcow_write_compressed,
2972

    
2973
    .bdrv_snapshot_create = qcow_snapshot_create,
2974
    .bdrv_snapshot_goto        = qcow_snapshot_goto,
2975
    .bdrv_snapshot_delete = qcow_snapshot_delete,
2976
    .bdrv_snapshot_list        = qcow_snapshot_list,
2977
    .bdrv_get_info        = qcow_get_info,
2978

    
2979
    .bdrv_put_buffer    = qcow_put_buffer,
2980
    .bdrv_get_buffer    = qcow_get_buffer,
2981

    
2982
    .create_options = qcow_create_options,
2983
    .bdrv_check = qcow_check,
2984
};
2985

    
2986
static void bdrv_qcow2_init(void)
2987
{
2988
    bdrv_register(&bdrv_qcow2);
2989
}
2990

    
2991
block_init(bdrv_qcow2_init);