root / target-ppc / kvm.c @ 4513d923
History | View | Annotate | Download (7.9 kB)
1 |
/*
|
---|---|
2 |
* PowerPC implementation of KVM hooks
|
3 |
*
|
4 |
* Copyright IBM Corp. 2007
|
5 |
*
|
6 |
* Authors:
|
7 |
* Jerone Young <jyoung5@us.ibm.com>
|
8 |
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
|
9 |
* Hollis Blanchard <hollisb@us.ibm.com>
|
10 |
*
|
11 |
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
12 |
* See the COPYING file in the top-level directory.
|
13 |
*
|
14 |
*/
|
15 |
|
16 |
#include <sys/types.h> |
17 |
#include <sys/ioctl.h> |
18 |
#include <sys/mman.h> |
19 |
|
20 |
#include <linux/kvm.h> |
21 |
|
22 |
#include "qemu-common.h" |
23 |
#include "qemu-timer.h" |
24 |
#include "sysemu.h" |
25 |
#include "kvm.h" |
26 |
#include "kvm_ppc.h" |
27 |
#include "cpu.h" |
28 |
#include "device_tree.h" |
29 |
|
30 |
//#define DEBUG_KVM
|
31 |
|
32 |
#ifdef DEBUG_KVM
|
33 |
#define dprintf(fmt, ...) \
|
34 |
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
35 |
#else
|
36 |
#define dprintf(fmt, ...) \
|
37 |
do { } while (0) |
38 |
#endif
|
39 |
|
40 |
/* XXX For some odd reason we sometimes hang inside KVM forever. I'd guess it's
|
41 |
* a race condition where we actually have a level triggered interrupt, but
|
42 |
* the infrastructure can't expose that yet, so the guest ACKs it, goes to
|
43 |
* sleep and never gets notified that there's still an interrupt pending.
|
44 |
*
|
45 |
* As a quick workaround, let's just wake up every 500 ms. That way we can
|
46 |
* assure that we're always reinjecting interrupts in time.
|
47 |
*/
|
48 |
static QEMUTimer *idle_timer;
|
49 |
|
50 |
static void do_nothing(void *opaque) |
51 |
{ |
52 |
qemu_mod_timer(idle_timer, qemu_get_clock(vm_clock) + |
53 |
(get_ticks_per_sec() / 2));
|
54 |
} |
55 |
|
56 |
int kvm_arch_init(KVMState *s, int smp_cpus) |
57 |
{ |
58 |
return 0; |
59 |
} |
60 |
|
61 |
int kvm_arch_init_vcpu(CPUState *cenv)
|
62 |
{ |
63 |
int ret = 0; |
64 |
struct kvm_sregs sregs;
|
65 |
|
66 |
sregs.pvr = cenv->spr[SPR_PVR]; |
67 |
ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs); |
68 |
|
69 |
return ret;
|
70 |
} |
71 |
|
72 |
void kvm_arch_reset_vcpu(CPUState *env)
|
73 |
{ |
74 |
} |
75 |
|
76 |
int kvm_arch_put_registers(CPUState *env, int level) |
77 |
{ |
78 |
struct kvm_regs regs;
|
79 |
int ret;
|
80 |
int i;
|
81 |
|
82 |
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); |
83 |
if (ret < 0) |
84 |
return ret;
|
85 |
|
86 |
regs.ctr = env->ctr; |
87 |
regs.lr = env->lr; |
88 |
regs.xer = env->xer; |
89 |
regs.msr = env->msr; |
90 |
regs.pc = env->nip; |
91 |
|
92 |
regs.srr0 = env->spr[SPR_SRR0]; |
93 |
regs.srr1 = env->spr[SPR_SRR1]; |
94 |
|
95 |
regs.sprg0 = env->spr[SPR_SPRG0]; |
96 |
regs.sprg1 = env->spr[SPR_SPRG1]; |
97 |
regs.sprg2 = env->spr[SPR_SPRG2]; |
98 |
regs.sprg3 = env->spr[SPR_SPRG3]; |
99 |
regs.sprg4 = env->spr[SPR_SPRG4]; |
100 |
regs.sprg5 = env->spr[SPR_SPRG5]; |
101 |
regs.sprg6 = env->spr[SPR_SPRG6]; |
102 |
regs.sprg7 = env->spr[SPR_SPRG7]; |
103 |
|
104 |
for (i = 0;i < 32; i++) |
105 |
regs.gpr[i] = env->gpr[i]; |
106 |
|
107 |
ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); |
108 |
if (ret < 0) |
109 |
return ret;
|
110 |
|
111 |
return ret;
|
112 |
} |
113 |
|
114 |
int kvm_arch_get_registers(CPUState *env)
|
115 |
{ |
116 |
struct kvm_regs regs;
|
117 |
struct kvm_sregs sregs;
|
118 |
uint32_t i, ret; |
119 |
|
120 |
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); |
121 |
if (ret < 0) |
122 |
return ret;
|
123 |
|
124 |
ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); |
125 |
if (ret < 0) |
126 |
return ret;
|
127 |
|
128 |
env->ctr = regs.ctr; |
129 |
env->lr = regs.lr; |
130 |
env->xer = regs.xer; |
131 |
env->msr = regs.msr; |
132 |
env->nip = regs.pc; |
133 |
|
134 |
env->spr[SPR_SRR0] = regs.srr0; |
135 |
env->spr[SPR_SRR1] = regs.srr1; |
136 |
|
137 |
env->spr[SPR_SPRG0] = regs.sprg0; |
138 |
env->spr[SPR_SPRG1] = regs.sprg1; |
139 |
env->spr[SPR_SPRG2] = regs.sprg2; |
140 |
env->spr[SPR_SPRG3] = regs.sprg3; |
141 |
env->spr[SPR_SPRG4] = regs.sprg4; |
142 |
env->spr[SPR_SPRG5] = regs.sprg5; |
143 |
env->spr[SPR_SPRG6] = regs.sprg6; |
144 |
env->spr[SPR_SPRG7] = regs.sprg7; |
145 |
|
146 |
for (i = 0;i < 32; i++) |
147 |
env->gpr[i] = regs.gpr[i]; |
148 |
|
149 |
#ifdef KVM_CAP_PPC_SEGSTATE
|
150 |
if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) {
|
151 |
env->sdr1 = sregs.u.s.sdr1; |
152 |
|
153 |
/* Sync SLB */
|
154 |
#ifdef TARGET_PPC64
|
155 |
for (i = 0; i < 64; i++) { |
156 |
ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe, |
157 |
sregs.u.s.ppc64.slb[i].slbv); |
158 |
} |
159 |
#endif
|
160 |
|
161 |
/* Sync SRs */
|
162 |
for (i = 0; i < 16; i++) { |
163 |
env->sr[i] = sregs.u.s.ppc32.sr[i]; |
164 |
} |
165 |
|
166 |
/* Sync BATs */
|
167 |
for (i = 0; i < 8; i++) { |
168 |
env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; |
169 |
env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; |
170 |
env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; |
171 |
env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; |
172 |
} |
173 |
} |
174 |
#endif
|
175 |
|
176 |
return 0; |
177 |
} |
178 |
|
179 |
#if defined(TARGET_PPCEMB)
|
180 |
#define PPC_INPUT_INT PPC40x_INPUT_INT
|
181 |
#elif defined(TARGET_PPC64)
|
182 |
#define PPC_INPUT_INT PPC970_INPUT_INT
|
183 |
#else
|
184 |
#define PPC_INPUT_INT PPC6xx_INPUT_INT
|
185 |
#endif
|
186 |
|
187 |
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) |
188 |
{ |
189 |
int r;
|
190 |
unsigned irq;
|
191 |
|
192 |
if (!idle_timer) {
|
193 |
idle_timer = qemu_new_timer(vm_clock, do_nothing, NULL);
|
194 |
qemu_mod_timer(idle_timer, qemu_get_clock(vm_clock) + |
195 |
(get_ticks_per_sec() / 2));
|
196 |
} |
197 |
|
198 |
/* PowerPC Qemu tracks the various core input pins (interrupt, critical
|
199 |
* interrupt, reset, etc) in PPC-specific env->irq_input_state. */
|
200 |
if (run->ready_for_interrupt_injection &&
|
201 |
(env->interrupt_request & CPU_INTERRUPT_HARD) && |
202 |
(env->irq_input_state & (1<<PPC_INPUT_INT)))
|
203 |
{ |
204 |
/* For now KVM disregards the 'irq' argument. However, in the
|
205 |
* future KVM could cache it in-kernel to avoid a heavyweight exit
|
206 |
* when reading the UIC.
|
207 |
*/
|
208 |
irq = -1U;
|
209 |
|
210 |
dprintf("injected interrupt %d\n", irq);
|
211 |
r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq); |
212 |
if (r < 0) |
213 |
printf("cpu %d fail inject %x\n", env->cpu_index, irq);
|
214 |
} |
215 |
|
216 |
/* We don't know if there are more interrupts pending after this. However,
|
217 |
* the guest will return to userspace in the course of handling this one
|
218 |
* anyways, so we will get a chance to deliver the rest. */
|
219 |
return 0; |
220 |
} |
221 |
|
222 |
int kvm_arch_post_run(CPUState *env, struct kvm_run *run) |
223 |
{ |
224 |
return 0; |
225 |
} |
226 |
|
227 |
int kvm_arch_process_irqchip_events(CPUState *env)
|
228 |
{ |
229 |
return 0; |
230 |
} |
231 |
|
232 |
static int kvmppc_handle_halt(CPUState *env) |
233 |
{ |
234 |
if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
|
235 |
env->halted = 1;
|
236 |
env->exception_index = EXCP_HLT; |
237 |
} |
238 |
|
239 |
return 1; |
240 |
} |
241 |
|
242 |
/* map dcr access to existing qemu dcr emulation */
|
243 |
static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data) |
244 |
{ |
245 |
if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) |
246 |
fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
|
247 |
|
248 |
return 1; |
249 |
} |
250 |
|
251 |
static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data) |
252 |
{ |
253 |
if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) |
254 |
fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
|
255 |
|
256 |
return 1; |
257 |
} |
258 |
|
259 |
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) |
260 |
{ |
261 |
int ret = 0; |
262 |
|
263 |
switch (run->exit_reason) {
|
264 |
case KVM_EXIT_DCR:
|
265 |
if (run->dcr.is_write) {
|
266 |
dprintf("handle dcr write\n");
|
267 |
ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); |
268 |
} else {
|
269 |
dprintf("handle dcr read\n");
|
270 |
ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); |
271 |
} |
272 |
break;
|
273 |
case KVM_EXIT_HLT:
|
274 |
dprintf("handle halt\n");
|
275 |
ret = kvmppc_handle_halt(env); |
276 |
break;
|
277 |
} |
278 |
|
279 |
return ret;
|
280 |
} |
281 |
|
282 |
static int read_cpuinfo(const char *field, char *value, int len) |
283 |
{ |
284 |
FILE *f; |
285 |
int ret = -1; |
286 |
int field_len = strlen(field);
|
287 |
char line[512]; |
288 |
|
289 |
f = fopen("/proc/cpuinfo", "r"); |
290 |
if (!f) {
|
291 |
return -1; |
292 |
} |
293 |
|
294 |
do {
|
295 |
if(!fgets(line, sizeof(line), f)) { |
296 |
break;
|
297 |
} |
298 |
if (!strncmp(line, field, field_len)) {
|
299 |
strncpy(value, line, len); |
300 |
ret = 0;
|
301 |
break;
|
302 |
} |
303 |
} while(*line);
|
304 |
|
305 |
fclose(f); |
306 |
|
307 |
return ret;
|
308 |
} |
309 |
|
310 |
uint32_t kvmppc_get_tbfreq(void)
|
311 |
{ |
312 |
char line[512]; |
313 |
char *ns;
|
314 |
uint32_t retval = get_ticks_per_sec(); |
315 |
|
316 |
if (read_cpuinfo("timebase", line, sizeof(line))) { |
317 |
return retval;
|
318 |
} |
319 |
|
320 |
if (!(ns = strchr(line, ':'))) { |
321 |
return retval;
|
322 |
} |
323 |
|
324 |
ns++; |
325 |
|
326 |
retval = atoi(ns); |
327 |
return retval;
|
328 |
} |
329 |
|
330 |
bool kvm_arch_stop_on_emulation_error(CPUState *env)
|
331 |
{ |
332 |
return true; |
333 |
} |