Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 486bd5a2

History | View | Annotate | Download (9 kB)

1
/*
2
 *  i386 execution defines
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#ifdef TARGET_X86_64
25
#define TARGET_LONG_BITS 64
26
#else
27
#define TARGET_LONG_BITS 32
28
#endif
29

    
30
#include "cpu-defs.h"
31

    
32
register struct CPUX86State *env asm(AREG0);
33

    
34
#include "qemu-common.h"
35
#include "qemu-log.h"
36

    
37
#define EAX (env->regs[R_EAX])
38
#define ECX (env->regs[R_ECX])
39
#define EDX (env->regs[R_EDX])
40
#define EBX (env->regs[R_EBX])
41
#define ESP (env->regs[R_ESP])
42
#define EBP (env->regs[R_EBP])
43
#define ESI (env->regs[R_ESI])
44
#define EDI (env->regs[R_EDI])
45
#define EIP (env->eip)
46
#define DF  (env->df)
47

    
48
#define CC_SRC (env->cc_src)
49
#define CC_DST (env->cc_dst)
50
#define CC_OP  (env->cc_op)
51

    
52
/* float macros */
53
#define FT0    (env->ft0)
54
#define ST0    (env->fpregs[env->fpstt].d)
55
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
56
#define ST1    ST(1)
57

    
58
#include "cpu.h"
59
#include "exec-all.h"
60

    
61
/* op_helper.c */
62
void do_interrupt(int intno, int is_int, int error_code,
63
                  target_ulong next_eip, int is_hw);
64
void do_interrupt_user(int intno, int is_int, int error_code,
65
                       target_ulong next_eip);
66
void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
67
void QEMU_NORETURN raise_exception(int exception_index);
68
void do_smm_enter(void);
69

    
70
/* n must be a constant to be efficient */
71
static inline target_long lshift(target_long x, int n)
72
{
73
    if (n >= 0)
74
        return x << n;
75
    else
76
        return x >> (-n);
77
}
78

    
79
#include "helper.h"
80

    
81
static inline void svm_check_intercept(uint32_t type)
82
{
83
    helper_svm_check_intercept_param(type, 0);
84
}
85

    
86
#if !defined(CONFIG_USER_ONLY)
87

    
88
#include "softmmu_exec.h"
89

    
90
#endif /* !defined(CONFIG_USER_ONLY) */
91

    
92
#ifdef USE_X86LDOUBLE
93
/* use long double functions */
94
#define floatx_to_int32 floatx80_to_int32
95
#define floatx_to_int64 floatx80_to_int64
96
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
97
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
98
#define int32_to_floatx int32_to_floatx80
99
#define int64_to_floatx int64_to_floatx80
100
#define float32_to_floatx float32_to_floatx80
101
#define float64_to_floatx float64_to_floatx80
102
#define floatx_to_float32 floatx80_to_float32
103
#define floatx_to_float64 floatx80_to_float64
104
#define floatx_abs floatx80_abs
105
#define floatx_chs floatx80_chs
106
#define floatx_round_to_int floatx80_round_to_int
107
#define floatx_compare floatx80_compare
108
#define floatx_compare_quiet floatx80_compare_quiet
109
#else
110
#define floatx_to_int32 float64_to_int32
111
#define floatx_to_int64 float64_to_int64
112
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
113
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
114
#define int32_to_floatx int32_to_float64
115
#define int64_to_floatx int64_to_float64
116
#define float32_to_floatx float32_to_float64
117
#define float64_to_floatx(x, e) (x)
118
#define floatx_to_float32 float64_to_float32
119
#define floatx_to_float64(x, e) (x)
120
#define floatx_abs float64_abs
121
#define floatx_chs float64_chs
122
#define floatx_round_to_int float64_round_to_int
123
#define floatx_compare float64_compare
124
#define floatx_compare_quiet float64_compare_quiet
125
#endif
126

    
127
#define RC_MASK         0xc00
128
#define RC_NEAR                0x000
129
#define RC_DOWN                0x400
130
#define RC_UP                0x800
131
#define RC_CHOP                0xc00
132

    
133
#define MAXTAN 9223372036854775808.0
134

    
135
#ifdef USE_X86LDOUBLE
136

    
137
/* only for x86 */
138
typedef union {
139
    long double d;
140
    struct {
141
        unsigned long long lower;
142
        unsigned short upper;
143
    } l;
144
} CPU86_LDoubleU;
145

    
146
/* the following deal with x86 long double-precision numbers */
147
#define MAXEXPD 0x7fff
148
#define EXPBIAS 16383
149
#define EXPD(fp)        (fp.l.upper & 0x7fff)
150
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
151
#define MANTD(fp)       (fp.l.lower)
152
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
153

    
154
#else
155

    
156
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
157
typedef union {
158
    double d;
159
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
160
    struct {
161
        uint32_t lower;
162
        int32_t upper;
163
    } l;
164
#else
165
    struct {
166
        int32_t upper;
167
        uint32_t lower;
168
    } l;
169
#endif
170
#ifndef __arm__
171
    int64_t ll;
172
#endif
173
} CPU86_LDoubleU;
174

    
175
/* the following deal with IEEE double-precision numbers */
176
#define MAXEXPD 0x7ff
177
#define EXPBIAS 1023
178
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
179
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
180
#ifdef __arm__
181
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
182
#else
183
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
184
#endif
185
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
186
#endif
187

    
188
static inline void fpush(void)
189
{
190
    env->fpstt = (env->fpstt - 1) & 7;
191
    env->fptags[env->fpstt] = 0; /* validate stack entry */
192
}
193

    
194
static inline void fpop(void)
195
{
196
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
197
    env->fpstt = (env->fpstt + 1) & 7;
198
}
199

    
200
#ifndef USE_X86LDOUBLE
201
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
202
{
203
    CPU86_LDoubleU temp;
204
    int upper, e;
205
    uint64_t ll;
206

    
207
    /* mantissa */
208
    upper = lduw(ptr + 8);
209
    /* XXX: handle overflow ? */
210
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
211
    e |= (upper >> 4) & 0x800; /* sign */
212
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
213
#ifdef __arm__
214
    temp.l.upper = (e << 20) | (ll >> 32);
215
    temp.l.lower = ll;
216
#else
217
    temp.ll = ll | ((uint64_t)e << 52);
218
#endif
219
    return temp.d;
220
}
221

    
222
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
223
{
224
    CPU86_LDoubleU temp;
225
    int e;
226

    
227
    temp.d = f;
228
    /* mantissa */
229
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
230
    /* exponent + sign */
231
    e = EXPD(temp) - EXPBIAS + 16383;
232
    e |= SIGND(temp) >> 16;
233
    stw(ptr + 8, e);
234
}
235
#else
236

    
237
/* we use memory access macros */
238

    
239
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
240
{
241
    CPU86_LDoubleU temp;
242

    
243
    temp.l.lower = ldq(ptr);
244
    temp.l.upper = lduw(ptr + 8);
245
    return temp.d;
246
}
247

    
248
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
249
{
250
    CPU86_LDoubleU temp;
251

    
252
    temp.d = f;
253
    stq(ptr, temp.l.lower);
254
    stw(ptr + 8, temp.l.upper);
255
}
256

    
257
#endif /* USE_X86LDOUBLE */
258

    
259
#define FPUS_IE (1 << 0)
260
#define FPUS_DE (1 << 1)
261
#define FPUS_ZE (1 << 2)
262
#define FPUS_OE (1 << 3)
263
#define FPUS_UE (1 << 4)
264
#define FPUS_PE (1 << 5)
265
#define FPUS_SF (1 << 6)
266
#define FPUS_SE (1 << 7)
267
#define FPUS_B  (1 << 15)
268

    
269
#define FPUC_EM 0x3f
270

    
271
static inline uint32_t compute_eflags(void)
272
{
273
    return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
274
}
275

    
276
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
277
static inline void load_eflags(int eflags, int update_mask)
278
{
279
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
280
    DF = 1 - (2 * ((eflags >> 10) & 1));
281
    env->eflags = (env->eflags & ~update_mask) |
282
        (eflags & update_mask) | 0x2;
283
}
284

    
285
static inline void env_to_regs(void)
286
{
287
#ifdef reg_EAX
288
    EAX = env->regs[R_EAX];
289
#endif
290
#ifdef reg_ECX
291
    ECX = env->regs[R_ECX];
292
#endif
293
#ifdef reg_EDX
294
    EDX = env->regs[R_EDX];
295
#endif
296
#ifdef reg_EBX
297
    EBX = env->regs[R_EBX];
298
#endif
299
#ifdef reg_ESP
300
    ESP = env->regs[R_ESP];
301
#endif
302
#ifdef reg_EBP
303
    EBP = env->regs[R_EBP];
304
#endif
305
#ifdef reg_ESI
306
    ESI = env->regs[R_ESI];
307
#endif
308
#ifdef reg_EDI
309
    EDI = env->regs[R_EDI];
310
#endif
311
}
312

    
313
static inline void regs_to_env(void)
314
{
315
#ifdef reg_EAX
316
    env->regs[R_EAX] = EAX;
317
#endif
318
#ifdef reg_ECX
319
    env->regs[R_ECX] = ECX;
320
#endif
321
#ifdef reg_EDX
322
    env->regs[R_EDX] = EDX;
323
#endif
324
#ifdef reg_EBX
325
    env->regs[R_EBX] = EBX;
326
#endif
327
#ifdef reg_ESP
328
    env->regs[R_ESP] = ESP;
329
#endif
330
#ifdef reg_EBP
331
    env->regs[R_EBP] = EBP;
332
#endif
333
#ifdef reg_ESI
334
    env->regs[R_ESI] = ESI;
335
#endif
336
#ifdef reg_EDI
337
    env->regs[R_EDI] = EDI;
338
#endif
339
}
340

    
341
static inline int cpu_halted(CPUState *env) {
342
    /* handle exit of HALTED state */
343
    if (!env->halted)
344
        return 0;
345
    /* disable halt condition */
346
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
347
         (env->eflags & IF_MASK)) ||
348
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
349
        env->halted = 0;
350
        return 0;
351
    }
352
    return EXCP_HALTED;
353
}
354

    
355
/* load efer and update the corresponding hflags. XXX: do consistency
356
   checks with cpuid bits ? */
357
static inline void cpu_load_efer(CPUState *env, uint64_t val)
358
{
359
    env->efer = val;
360
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
361
    if (env->efer & MSR_EFER_LMA)
362
        env->hflags |= HF_LMA_MASK;
363
    if (env->efer & MSR_EFER_SVME)
364
        env->hflags |= HF_SVME_MASK;
365
}