Statistics
| Branch: | Revision:

root / hw / etraxfs_eth.c @ 487414f1

History | View | Annotate | Download (13 kB)

1
/*
2
 * QEMU ETRAX Ethernet Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <stdio.h>
26
#include "hw.h"
27
#include "net.h"
28

    
29
#include "etraxfs_dma.h"
30

    
31
#define D(x)
32

    
33
/* Advertisement control register. */
34
#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
35
#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
36
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
37
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
38

    
39
/* 
40
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
41
 * linux driver (PHYID and Diagnostics reg).
42
 * TODO: Add friendly names for the register nums.
43
 */
44
struct qemu_phy
45
{
46
        uint32_t regs[32];
47

    
48
        int link;
49

    
50
        unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
51
        void (*write)(struct qemu_phy *phy, unsigned int req, 
52
                      unsigned int data);
53
};
54

    
55
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
56
{
57
        int regnum;
58
        unsigned r = 0;
59

    
60
        regnum = req & 0x1f;
61

    
62
        switch (regnum) {
63
                case 1:
64
                        if (!phy->link)
65
                                break;
66
                        /* MR1.         */
67
                        /* Speeds and modes.  */
68
                        r |= (1 << 13) | (1 << 14);
69
                        r |= (1 << 11) | (1 << 12);
70
                        r |= (1 << 5); /* Autoneg complete.  */
71
                        r |= (1 << 3); /* Autoneg able.         */
72
                        r |= (1 << 2); /* link.         */
73
                        break;
74
                case 5:
75
                        /* Link partner ability.
76
                           We are kind; always agree with whatever best mode
77
                           the guest advertises.  */
78
                        r = 1 << 14; /* Success.  */
79
                        /* Copy advertised modes.  */
80
                        r |= phy->regs[4] & (15 << 5);
81
                        /* Autoneg support.  */
82
                        r |= 1;
83
                        break;
84
                case 18:
85
                {
86
                        /* Diagnostics reg.  */
87
                        int duplex = 0;
88
                        int speed_100 = 0;
89

    
90
                        if (!phy->link)
91
                                break;
92

    
93
                        /* Are we advertising 100 half or 100 duplex ? */
94
                        speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
95
                        speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
96

    
97
                        /* Are we advertising 10 duplex or 100 duplex ? */
98
                        duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
99
                        duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
100
                        r = (speed_100 << 10) | (duplex << 11);
101
                }
102
                break;
103

    
104
                default:
105
                        r = phy->regs[regnum];
106
                        break;
107
        }
108
        D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
109
        return r;
110
}
111

    
112
static void 
113
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
114
{
115
        int regnum;
116

    
117
        regnum = req & 0x1f;
118
        D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
119
        switch (regnum) {
120
                default:
121
                        phy->regs[regnum] = data;
122
                        break;
123
        }
124
}
125

    
126
static void 
127
tdk_init(struct qemu_phy *phy)
128
{
129
        phy->regs[0] = 0x3100;
130
        /* PHY Id.  */
131
        phy->regs[2] = 0x0300;
132
        phy->regs[3] = 0xe400;
133
        /* Autonegotiation advertisement reg.  */
134
        phy->regs[4] = 0x01E1;
135
        phy->link = 1;
136

    
137
        phy->read = tdk_read;
138
        phy->write = tdk_write;
139
}
140

    
141
struct qemu_mdio
142
{
143
        /* bus.         */
144
        int mdc;
145
        int mdio;
146

    
147
        /* decoder.  */
148
        enum {
149
                PREAMBLE,
150
                SOF,
151
                OPC,
152
                ADDR,
153
                REQ,
154
                TURNAROUND,
155
                DATA
156
        } state;
157
        unsigned int drive;
158

    
159
        unsigned int cnt;
160
        unsigned int addr;
161
        unsigned int opc;
162
        unsigned int req;
163
        unsigned int data;
164

    
165
        struct qemu_phy *devs[32];
166
};
167

    
168
static void 
169
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
170
{
171
        bus->devs[addr & 0x1f] = phy;
172
}
173

    
174
#ifdef USE_THIS_DEAD_CODE
175
static void 
176
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
177
{
178
        bus->devs[addr & 0x1f] = NULL;        
179
}
180
#endif
181

    
182
static void mdio_read_req(struct qemu_mdio *bus)
183
{
184
        struct qemu_phy *phy;
185

    
186
        phy = bus->devs[bus->addr];
187
        if (phy && phy->read)
188
                bus->data = phy->read(phy, bus->req);
189
        else 
190
                bus->data = 0xffff;
191
}
192

    
193
static void mdio_write_req(struct qemu_mdio *bus)
194
{
195
        struct qemu_phy *phy;
196

    
197
        phy = bus->devs[bus->addr];
198
        if (phy && phy->write)
199
                phy->write(phy, bus->req, bus->data);
200
}
201

    
202
static void mdio_cycle(struct qemu_mdio *bus)
203
{
204
        bus->cnt++;
205

    
206
        D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
207
                bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
208
#if 0
209
        if (bus->mdc)
210
                printf("%d", bus->mdio);
211
#endif
212
        switch (bus->state)
213
        {
214
                case PREAMBLE:
215
                        if (bus->mdc) {
216
                                if (bus->cnt >= (32 * 2) && !bus->mdio) {
217
                                        bus->cnt = 0;
218
                                        bus->state = SOF;
219
                                        bus->data = 0;
220
                                }
221
                        }
222
                        break;
223
                case SOF:
224
                        if (bus->mdc) {
225
                                if (bus->mdio != 1)
226
                                        printf("WARNING: no SOF\n");
227
                                if (bus->cnt == 1*2) {
228
                                        bus->cnt = 0;
229
                                        bus->opc = 0;
230
                                        bus->state = OPC;
231
                                }
232
                        }
233
                        break;
234
                case OPC:
235
                        if (bus->mdc) {
236
                                bus->opc <<= 1;
237
                                bus->opc |= bus->mdio & 1;
238
                                if (bus->cnt == 2*2) {
239
                                        bus->cnt = 0;
240
                                        bus->addr = 0;
241
                                        bus->state = ADDR;
242
                                }
243
                        }
244
                        break;
245
                case ADDR:
246
                        if (bus->mdc) {
247
                                bus->addr <<= 1;
248
                                bus->addr |= bus->mdio & 1;
249

    
250
                                if (bus->cnt == 5*2) {
251
                                        bus->cnt = 0;
252
                                        bus->req = 0;
253
                                        bus->state = REQ;
254
                                }
255
                        }
256
                        break;
257
                case REQ:
258
                        if (bus->mdc) {
259
                                bus->req <<= 1;
260
                                bus->req |= bus->mdio & 1;
261
                                if (bus->cnt == 5*2) {
262
                                        bus->cnt = 0;
263
                                        bus->state = TURNAROUND;
264
                                }
265
                        }
266
                        break;
267
                case TURNAROUND:
268
                        if (bus->mdc && bus->cnt == 2*2) {
269
                                bus->mdio = 0;
270
                                bus->cnt = 0;
271

    
272
                                if (bus->opc == 2) {
273
                                        bus->drive = 1;
274
                                        mdio_read_req(bus);
275
                                        bus->mdio = bus->data & 1;
276
                                }
277
                                bus->state = DATA;
278
                        }
279
                        break;
280
                case DATA:                        
281
                        if (!bus->mdc) {
282
                                if (bus->drive) {
283
                                        bus->mdio = !!(bus->data & (1 << 15));
284
                                        bus->data <<= 1;
285
                                }
286
                        } else {
287
                                if (!bus->drive) {
288
                                        bus->data <<= 1;
289
                                        bus->data |= bus->mdio;
290
                                }
291
                                if (bus->cnt == 16 * 2) {
292
                                        bus->cnt = 0;
293
                                        bus->state = PREAMBLE;
294
                                        if (!bus->drive)
295
                                                mdio_write_req(bus);
296
                                        bus->drive = 0;
297
                                }
298
                        }
299
                        break;
300
                default:
301
                        break;
302
        }
303
}
304

    
305
/* ETRAX-FS Ethernet MAC block starts here.  */
306

    
307
#define RW_MA0_LO          0x00
308
#define RW_MA0_HI          0x01
309
#define RW_MA1_LO          0x02
310
#define RW_MA1_HI          0x03
311
#define RW_GA_LO          0x04
312
#define RW_GA_HI          0x05
313
#define RW_GEN_CTRL          0x06
314
#define RW_REC_CTRL          0x07
315
#define RW_TR_CTRL          0x08
316
#define RW_CLR_ERR          0x09
317
#define RW_MGM_CTRL          0x0a
318
#define R_STAT                  0x0b
319
#define FS_ETH_MAX_REGS          0x17
320

    
321
struct fs_eth
322
{
323
        CPUState *env;
324
        qemu_irq *irq;
325
        VLANClientState *vc;
326
        int ethregs;
327

    
328
        /* Two addrs in the filter.  */
329
        uint8_t macaddr[2][6];
330
        uint32_t regs[FS_ETH_MAX_REGS];
331

    
332
        struct etraxfs_dma_client *dma_out;
333
        struct etraxfs_dma_client *dma_in;
334

    
335
        /* MDIO bus.  */
336
        struct qemu_mdio mdio_bus;
337
        unsigned int phyaddr;
338
        int duplex_mismatch;
339

    
340
        /* PHY.         */
341
        struct qemu_phy phy;
342
};
343

    
344
static void eth_validate_duplex(struct fs_eth *eth)
345
{
346
        struct qemu_phy *phy;
347
        unsigned int phy_duplex;
348
        unsigned int mac_duplex;
349
        int new_mm = 0;
350

    
351
        phy = eth->mdio_bus.devs[eth->phyaddr];
352
        phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
353
        mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
354

    
355
        if (mac_duplex != phy_duplex)
356
                new_mm = 1;
357

    
358
        if (eth->regs[RW_GEN_CTRL] & 1) {
359
                if (new_mm != eth->duplex_mismatch) {
360
                        if (new_mm)
361
                                printf("HW: WARNING "
362
                                       "ETH duplex mismatch MAC=%d PHY=%d\n",
363
                                       mac_duplex, phy_duplex);
364
                        else
365
                                printf("HW: ETH duplex ok.\n");
366
                }
367
                eth->duplex_mismatch = new_mm;
368
        }
369
}
370

    
371
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
372
{
373
        struct fs_eth *eth = opaque;
374
        uint32_t r = 0;
375

    
376
        addr >>= 2;
377

    
378
        switch (addr) {
379
                case R_STAT:
380
                        r = eth->mdio_bus.mdio & 1;
381
                        break;
382
        default:
383
                r = eth->regs[addr];
384
                D(printf ("%s %x\n", __func__, addr * 4));
385
                break;
386
        }
387
        return r;
388
}
389

    
390
static void eth_update_ma(struct fs_eth *eth, int ma)
391
{
392
        int reg;
393
        int i = 0;
394

    
395
        ma &= 1;
396

    
397
        reg = RW_MA0_LO;
398
        if (ma)
399
                reg = RW_MA1_LO;
400

    
401
        eth->macaddr[ma][i++] = eth->regs[reg];
402
        eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
403
        eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
404
        eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
405
        eth->macaddr[ma][i++] = eth->regs[reg + 4];
406
        eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
407

    
408
        D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
409
                 eth->macaddr[ma][0], eth->macaddr[ma][1],
410
                 eth->macaddr[ma][2], eth->macaddr[ma][3],
411
                 eth->macaddr[ma][4], eth->macaddr[ma][5]));
412
}
413

    
414
static void
415
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
416
{
417
        struct fs_eth *eth = opaque;
418

    
419
        addr >>= 2;
420
        switch (addr)
421
        {
422
                case RW_MA0_LO:
423
                case RW_MA0_HI:
424
                        eth->regs[addr] = value;
425
                        eth_update_ma(eth, 0);
426
                        break;
427
                case RW_MA1_LO:
428
                case RW_MA1_HI:
429
                        eth->regs[addr] = value;
430
                        eth_update_ma(eth, 1);
431
                        break;
432

    
433
                case RW_MGM_CTRL:
434
                        /* Attach an MDIO/PHY abstraction.  */
435
                        if (value & 2)
436
                                eth->mdio_bus.mdio = value & 1;
437
                        if (eth->mdio_bus.mdc != (value & 4)) {
438
                                mdio_cycle(&eth->mdio_bus);
439
                                eth_validate_duplex(eth);
440
                        }
441
                        eth->mdio_bus.mdc = !!(value & 4);
442
                        break;
443

    
444
                case RW_REC_CTRL:
445
                        eth->regs[addr] = value;
446
                        eth_validate_duplex(eth);
447
                        break;
448

    
449
                default:
450
                        eth->regs[addr] = value;
451
                        D(printf ("%s %x %x\n",
452
                                  __func__, addr, value));
453
                        break;
454
        }
455
}
456

    
457
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
458
   filter dropping group addresses we have not joined.        The filter has 64
459
   bits (m). The has function is a simple nible xor of the group addr.        */
460
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
461
{
462
        unsigned int hsh;
463
        int m_individual = eth->regs[RW_REC_CTRL] & 4;
464
        int match;
465

    
466
        /* First bit on the wire of a MAC address signals multicast or
467
           physical address.  */
468
        if (!m_individual && !sa[0] & 1)
469
                return 0;
470

    
471
        /* Calculate the hash index for the GA registers. */
472
        hsh = 0;
473
        hsh ^= (*sa) & 0x3f;
474
        hsh ^= ((*sa) >> 6) & 0x03;
475
        ++sa;
476
        hsh ^= ((*sa) << 2) & 0x03c;
477
        hsh ^= ((*sa) >> 4) & 0xf;
478
        ++sa;
479
        hsh ^= ((*sa) << 4) & 0x30;
480
        hsh ^= ((*sa) >> 2) & 0x3f;
481
        ++sa;
482
        hsh ^= (*sa) & 0x3f;
483
        hsh ^= ((*sa) >> 6) & 0x03;
484
        ++sa;
485
        hsh ^= ((*sa) << 2) & 0x03c;
486
        hsh ^= ((*sa) >> 4) & 0xf;
487
        ++sa;
488
        hsh ^= ((*sa) << 4) & 0x30;
489
        hsh ^= ((*sa) >> 2) & 0x3f;
490

    
491
        hsh &= 63;
492
        if (hsh > 31)
493
                match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
494
        else
495
                match = eth->regs[RW_GA_LO] & (1 << hsh);
496
        D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
497
                 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
498
        return match;
499
}
500

    
501
static int eth_can_receive(void *opaque)
502
{
503
        return 1;
504
}
505

    
506
static void eth_receive(void *opaque, const uint8_t *buf, int size)
507
{
508
        unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
509
        struct fs_eth *eth = opaque;
510
        int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
511
        int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
512
        int r_bcast = eth->regs[RW_REC_CTRL] & 8;
513

    
514
        if (size < 12)
515
                return;
516

    
517
        D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
518
                 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
519
                 use_ma0, use_ma1, r_bcast));
520
               
521
        /* Does the frame get through the address filters?  */
522
        if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
523
            && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
524
            && (!r_bcast || memcmp(buf, sa_bcast, 6))
525
            && !eth_match_groupaddr(eth, buf))
526
                return;
527

    
528
        /* FIXME: Find another way to pass on the fake csum.  */
529
        etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
530
}
531

    
532
static int eth_tx_push(void *opaque, unsigned char *buf, int len)
533
{
534
        struct fs_eth *eth = opaque;
535

    
536
        D(printf("%s buf=%p len=%d\n", __func__, buf, len));
537
        qemu_send_packet(eth->vc, buf, len);
538
        return len;
539
}
540

    
541
static void eth_set_link(VLANClientState *vc)
542
{
543
        struct fs_eth *eth = vc->opaque;
544
        D(printf("%s %d\n", __func__, vc->link_down));
545
        eth->phy.link = !vc->link_down;
546
}
547

    
548
static CPUReadMemoryFunc *eth_read[] = {
549
        NULL, NULL,
550
        &eth_readl,
551
};
552

    
553
static CPUWriteMemoryFunc *eth_write[] = {
554
        NULL, NULL,
555
        &eth_writel,
556
};
557

    
558
void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
559
                       qemu_irq *irq, target_phys_addr_t base, int phyaddr)
560
{
561
        struct etraxfs_dma_client *dma = NULL;        
562
        struct fs_eth *eth = NULL;
563

    
564
        qemu_check_nic_model(nd, "fseth");
565

    
566
        dma = qemu_mallocz(sizeof *dma * 2);
567

    
568
        eth = qemu_mallocz(sizeof *eth);
569

    
570
        dma[0].client.push = eth_tx_push;
571
        dma[0].client.opaque = eth;
572
        dma[1].client.opaque = eth;
573
        dma[1].client.pull = NULL;
574

    
575
        eth->env = env;
576
        eth->irq = irq;
577
        eth->dma_out = dma;
578
        eth->dma_in = dma + 1;
579

    
580
        /* Connect the phy.  */
581
        eth->phyaddr = phyaddr & 0x1f;
582
        tdk_init(&eth->phy);
583
        mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
584

    
585
        eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
586
        cpu_register_physical_memory (base, 0x5c, eth->ethregs);
587

    
588
        eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
589
                                       eth_receive, eth_can_receive, eth);
590
        eth->vc->opaque = eth;
591
        eth->vc->link_status_changed = eth_set_link;
592

    
593
        return dma;
594
}