Statistics
| Branch: | Revision:

root / hw / fmopl.c @ 487414f1

History | View | Annotate | Download (34.8 kB)

1
/*
2
**
3
** File: fmopl.c -- software implementation of FM sound generator
4
**
5
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6
**
7
** Version 0.37a
8
**
9
*/
10

    
11
/*
12
        preliminary :
13
        Problem :
14
        note:
15
*/
16

    
17
/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18
 *
19
 * This library is free software; you can redistribute it and/or
20
 * modify it under the terms of the GNU Lesser General Public
21
 * License as published by the Free Software Foundation; either
22
 * version 2.1 of the License, or (at your option) any later version.
23
 *
24
 * This library is distributed in the hope that it will be useful,
25
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
 * Lesser General Public License for more details.
28
 *
29
 * You should have received a copy of the GNU Lesser General Public
30
 * License along with this library; if not, write to the Free Software
31
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
32
 */
33

    
34
#define INLINE                static inline
35
#define HAS_YM3812        1
36

    
37
#include <stdio.h>
38
#include <stdlib.h>
39
#include <string.h>
40
#include <stdarg.h>
41
#include <math.h>
42
//#include "driver.h"                /* use M.A.M.E. */
43
#include "fmopl.h"
44

    
45
#ifndef PI
46
#define PI 3.14159265358979323846
47
#endif
48

    
49
/* -------------------- for debug --------------------- */
50
/* #define OPL_OUTPUT_LOG */
51
#ifdef OPL_OUTPUT_LOG
52
static FILE *opl_dbg_fp = NULL;
53
static FM_OPL *opl_dbg_opl[16];
54
static int opl_dbg_maxchip,opl_dbg_chip;
55
#endif
56

    
57
/* -------------------- preliminary define section --------------------- */
58
/* attack/decay rate time rate */
59
#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
60
#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
61

    
62
#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
63

    
64
#define FREQ_BITS 24                        /* frequency turn          */
65

    
66
/* counter bits = 20 , octerve 7 */
67
#define FREQ_RATE   (1<<(FREQ_BITS-20))
68
#define TL_BITS    (FREQ_BITS+2)
69

    
70
/* final output shift , limit minimum and maximum */
71
#define OPL_OUTSB   (TL_BITS+3-16)                /* OPL output final shift 16bit */
72
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
73
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
74

    
75
/* -------------------- quality selection --------------------- */
76

    
77
/* sinwave entries */
78
/* used static memory = SIN_ENT * 4 (byte) */
79
#define SIN_ENT 2048
80

    
81
/* output level entries (envelope,sinwave) */
82
/* envelope counter lower bits */
83
#define ENV_BITS 16
84
/* envelope output entries */
85
#define EG_ENT   4096
86
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
87
/* used static  memory = EG_ENT*4 (byte)                     */
88

    
89
#define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
90
#define EG_DED   EG_OFF
91
#define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
92
#define EG_AED   EG_DST
93
#define EG_AST   0                       /* ATTACK START */
94

    
95
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
96

    
97
/* LFO table entries */
98
#define VIB_ENT 512
99
#define VIB_SHIFT (32-9)
100
#define AMS_ENT 512
101
#define AMS_SHIFT (32-9)
102

    
103
#define VIB_RATE 256
104

    
105
/* -------------------- local defines , macros --------------------- */
106

    
107
/* register number to channel number , slot offset */
108
#define SLOT1 0
109
#define SLOT2 1
110

    
111
/* envelope phase */
112
#define ENV_MOD_RR  0x00
113
#define ENV_MOD_DR  0x01
114
#define ENV_MOD_AR  0x02
115

    
116
/* -------------------- tables --------------------- */
117
static const int slot_array[32]=
118
{
119
         0, 2, 4, 1, 3, 5,-1,-1,
120
         6, 8,10, 7, 9,11,-1,-1,
121
        12,14,16,13,15,17,-1,-1,
122
        -1,-1,-1,-1,-1,-1,-1,-1
123
};
124

    
125
/* key scale level */
126
/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
127
#define DV (EG_STEP/2)
128
static const UINT32 KSL_TABLE[8*16]=
129
{
130
        /* OCT 0 */
131
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
133
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135
        /* OCT 1 */
136
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
138
         0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
139
         1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
140
        /* OCT 2 */
141
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
142
         0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
143
         3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
144
         4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
145
        /* OCT 3 */
146
         0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
147
         3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
148
         6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
149
         7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
150
        /* OCT 4 */
151
         0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
152
         6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
153
         9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
154
        10.875/DV,11.250/DV,11.625/DV,12.000/DV,
155
        /* OCT 5 */
156
         0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
157
         9.000/DV,10.125/DV,10.875/DV,11.625/DV,
158
        12.000/DV,12.750/DV,13.125/DV,13.500/DV,
159
        13.875/DV,14.250/DV,14.625/DV,15.000/DV,
160
        /* OCT 6 */
161
         0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
162
        12.000/DV,13.125/DV,13.875/DV,14.625/DV,
163
        15.000/DV,15.750/DV,16.125/DV,16.500/DV,
164
        16.875/DV,17.250/DV,17.625/DV,18.000/DV,
165
        /* OCT 7 */
166
         0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
167
        15.000/DV,16.125/DV,16.875/DV,17.625/DV,
168
        18.000/DV,18.750/DV,19.125/DV,19.500/DV,
169
        19.875/DV,20.250/DV,20.625/DV,21.000/DV
170
};
171
#undef DV
172

    
173
/* sustain lebel table (3db per step) */
174
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
175
#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
176
static const INT32 SL_TABLE[16]={
177
 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
178
 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
179
};
180
#undef SC
181

    
182
#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
183
/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
184
/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
185
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
186
static INT32 *TL_TABLE;
187

    
188
/* pointers to TL_TABLE with sinwave output offset */
189
static INT32 **SIN_TABLE;
190

    
191
/* LFO table */
192
static INT32 *AMS_TABLE;
193
static INT32 *VIB_TABLE;
194

    
195
/* envelope output curve table */
196
/* attack + decay + OFF */
197
static INT32 ENV_CURVE[2*EG_ENT+1];
198

    
199
/* multiple table */
200
#define ML 2
201
static const UINT32 MUL_TABLE[16]= {
202
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
203
   0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
204
   8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
205
};
206
#undef ML
207

    
208
/* dummy attack / decay rate ( when rate == 0 ) */
209
static INT32 RATE_0[16]=
210
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
211

    
212
/* -------------------- static state --------------------- */
213

    
214
/* lock level of common table */
215
static int num_lock = 0;
216

    
217
/* work table */
218
static void *cur_chip = NULL;        /* current chip point */
219
/* currenct chip state */
220
/* static OPLSAMPLE  *bufL,*bufR; */
221
static OPL_CH *S_CH;
222
static OPL_CH *E_CH;
223
OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
224

    
225
static INT32 outd[1];
226
static INT32 ams;
227
static INT32 vib;
228
INT32  *ams_table;
229
INT32  *vib_table;
230
static INT32 amsIncr;
231
static INT32 vibIncr;
232
static INT32 feedback2;                /* connect for SLOT 2 */
233

    
234
/* log output level */
235
#define LOG_ERR  3      /* ERROR       */
236
#define LOG_WAR  2      /* WARNING     */
237
#define LOG_INF  1      /* INFORMATION */
238

    
239
//#define LOG_LEVEL LOG_INF
240
#define LOG_LEVEL        LOG_ERR
241

    
242
//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
243
#define LOG(n,x)
244

    
245
/* --------------------- subroutines  --------------------- */
246

    
247
INLINE int Limit( int val, int max, int min ) {
248
        if ( val > max )
249
                val = max;
250
        else if ( val < min )
251
                val = min;
252

    
253
        return val;
254
}
255

    
256
/* status set and IRQ handling */
257
INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
258
{
259
        /* set status flag */
260
        OPL->status |= flag;
261
        if(!(OPL->status & 0x80))
262
        {
263
                if(OPL->status & OPL->statusmask)
264
                {        /* IRQ on */
265
                        OPL->status |= 0x80;
266
                        /* callback user interrupt handler (IRQ is OFF to ON) */
267
                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
268
                }
269
        }
270
}
271

    
272
/* status reset and IRQ handling */
273
INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
274
{
275
        /* reset status flag */
276
        OPL->status &=~flag;
277
        if((OPL->status & 0x80))
278
        {
279
                if (!(OPL->status & OPL->statusmask) )
280
                {
281
                        OPL->status &= 0x7f;
282
                        /* callback user interrupt handler (IRQ is ON to OFF) */
283
                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
284
                }
285
        }
286
}
287

    
288
/* IRQ mask set */
289
INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
290
{
291
        OPL->statusmask = flag;
292
        /* IRQ handling check */
293
        OPL_STATUS_SET(OPL,0);
294
        OPL_STATUS_RESET(OPL,0);
295
}
296

    
297
/* ----- key on  ----- */
298
INLINE void OPL_KEYON(OPL_SLOT *SLOT)
299
{
300
        /* sin wave restart */
301
        SLOT->Cnt = 0;
302
        /* set attack */
303
        SLOT->evm = ENV_MOD_AR;
304
        SLOT->evs = SLOT->evsa;
305
        SLOT->evc = EG_AST;
306
        SLOT->eve = EG_AED;
307
}
308
/* ----- key off ----- */
309
INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
310
{
311
        if( SLOT->evm > ENV_MOD_RR)
312
        {
313
                /* set envelope counter from envleope output */
314
                SLOT->evm = ENV_MOD_RR;
315
                if( !(SLOT->evc&EG_DST) )
316
                        //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
317
                        SLOT->evc = EG_DST;
318
                SLOT->eve = EG_DED;
319
                SLOT->evs = SLOT->evsr;
320
        }
321
}
322

    
323
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
324
/* return : envelope output */
325
INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
326
{
327
        /* calcrate envelope generator */
328
        if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
329
        {
330
                switch( SLOT->evm ){
331
                case ENV_MOD_AR: /* ATTACK -> DECAY1 */
332
                        /* next DR */
333
                        SLOT->evm = ENV_MOD_DR;
334
                        SLOT->evc = EG_DST;
335
                        SLOT->eve = SLOT->SL;
336
                        SLOT->evs = SLOT->evsd;
337
                        break;
338
                case ENV_MOD_DR: /* DECAY -> SL or RR */
339
                        SLOT->evc = SLOT->SL;
340
                        SLOT->eve = EG_DED;
341
                        if(SLOT->eg_typ)
342
                        {
343
                                SLOT->evs = 0;
344
                        }
345
                        else
346
                        {
347
                                SLOT->evm = ENV_MOD_RR;
348
                                SLOT->evs = SLOT->evsr;
349
                        }
350
                        break;
351
                case ENV_MOD_RR: /* RR -> OFF */
352
                        SLOT->evc = EG_OFF;
353
                        SLOT->eve = EG_OFF+1;
354
                        SLOT->evs = 0;
355
                        break;
356
                }
357
        }
358
        /* calcrate envelope */
359
        return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
360
}
361

    
362
/* set algorythm connection */
363
static void set_algorythm( OPL_CH *CH)
364
{
365
        INT32 *carrier = &outd[0];
366
        CH->connect1 = CH->CON ? carrier : &feedback2;
367
        CH->connect2 = carrier;
368
}
369

    
370
/* ---------- frequency counter for operater update ---------- */
371
INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
372
{
373
        int ksr;
374

    
375
        /* frequency step counter */
376
        SLOT->Incr = CH->fc * SLOT->mul;
377
        ksr = CH->kcode >> SLOT->KSR;
378

    
379
        if( SLOT->ksr != ksr )
380
        {
381
                SLOT->ksr = ksr;
382
                /* attack , decay rate recalcration */
383
                SLOT->evsa = SLOT->AR[ksr];
384
                SLOT->evsd = SLOT->DR[ksr];
385
                SLOT->evsr = SLOT->RR[ksr];
386
        }
387
        SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
388
}
389

    
390
/* set multi,am,vib,EG-TYP,KSR,mul */
391
INLINE void set_mul(FM_OPL *OPL,int slot,int v)
392
{
393
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
394
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
395

    
396
        SLOT->mul    = MUL_TABLE[v&0x0f];
397
        SLOT->KSR    = (v&0x10) ? 0 : 2;
398
        SLOT->eg_typ = (v&0x20)>>5;
399
        SLOT->vib    = (v&0x40);
400
        SLOT->ams    = (v&0x80);
401
        CALC_FCSLOT(CH,SLOT);
402
}
403

    
404
/* set ksl & tl */
405
INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
406
{
407
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
408
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
409
        int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
410

    
411
        SLOT->ksl = ksl ? 3-ksl : 31;
412
        SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
413

    
414
        if( !(OPL->mode&0x80) )
415
        {        /* not CSM latch total level */
416
                SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
417
        }
418
}
419

    
420
/* set attack rate & decay rate  */
421
INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
422
{
423
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
424
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
425
        int ar = v>>4;
426
        int dr = v&0x0f;
427

    
428
        SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
429
        SLOT->evsa = SLOT->AR[SLOT->ksr];
430
        if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
431

    
432
        SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
433
        SLOT->evsd = SLOT->DR[SLOT->ksr];
434
        if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
435
}
436

    
437
/* set sustain level & release rate */
438
INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
439
{
440
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
441
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
442
        int sl = v>>4;
443
        int rr = v & 0x0f;
444

    
445
        SLOT->SL = SL_TABLE[sl];
446
        if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
447
        SLOT->RR = &OPL->DR_TABLE[rr<<2];
448
        SLOT->evsr = SLOT->RR[SLOT->ksr];
449
        if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
450
}
451

    
452
/* operator output calcrator */
453
#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
454
/* ---------- calcrate one of channel ---------- */
455
INLINE void OPL_CALC_CH( OPL_CH *CH )
456
{
457
        UINT32 env_out;
458
        OPL_SLOT *SLOT;
459

    
460
        feedback2 = 0;
461
        /* SLOT 1 */
462
        SLOT = &CH->SLOT[SLOT1];
463
        env_out=OPL_CALC_SLOT(SLOT);
464
        if( env_out < EG_ENT-1 )
465
        {
466
                /* PG */
467
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
468
                else          SLOT->Cnt += SLOT->Incr;
469
                /* connectoion */
470
                if(CH->FB)
471
                {
472
                        int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
473
                        CH->op1_out[1] = CH->op1_out[0];
474
                        *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
475
                }
476
                else
477
                {
478
                        *CH->connect1 += OP_OUT(SLOT,env_out,0);
479
                }
480
        }else
481
        {
482
                CH->op1_out[1] = CH->op1_out[0];
483
                CH->op1_out[0] = 0;
484
        }
485
        /* SLOT 2 */
486
        SLOT = &CH->SLOT[SLOT2];
487
        env_out=OPL_CALC_SLOT(SLOT);
488
        if( env_out < EG_ENT-1 )
489
        {
490
                /* PG */
491
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
492
                else          SLOT->Cnt += SLOT->Incr;
493
                /* connectoion */
494
                outd[0] += OP_OUT(SLOT,env_out, feedback2);
495
        }
496
}
497

    
498
/* ---------- calcrate rythm block ---------- */
499
#define WHITE_NOISE_db 6.0
500
INLINE void OPL_CALC_RH( OPL_CH *CH )
501
{
502
        UINT32 env_tam,env_sd,env_top,env_hh;
503
        int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
504
        INT32 tone8;
505

    
506
        OPL_SLOT *SLOT;
507
        int env_out;
508

    
509
        /* BD : same as FM serial mode and output level is large */
510
        feedback2 = 0;
511
        /* SLOT 1 */
512
        SLOT = &CH[6].SLOT[SLOT1];
513
        env_out=OPL_CALC_SLOT(SLOT);
514
        if( env_out < EG_ENT-1 )
515
        {
516
                /* PG */
517
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
518
                else          SLOT->Cnt += SLOT->Incr;
519
                /* connectoion */
520
                if(CH[6].FB)
521
                {
522
                        int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
523
                        CH[6].op1_out[1] = CH[6].op1_out[0];
524
                        feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
525
                }
526
                else
527
                {
528
                        feedback2 = OP_OUT(SLOT,env_out,0);
529
                }
530
        }else
531
        {
532
                feedback2 = 0;
533
                CH[6].op1_out[1] = CH[6].op1_out[0];
534
                CH[6].op1_out[0] = 0;
535
        }
536
        /* SLOT 2 */
537
        SLOT = &CH[6].SLOT[SLOT2];
538
        env_out=OPL_CALC_SLOT(SLOT);
539
        if( env_out < EG_ENT-1 )
540
        {
541
                /* PG */
542
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
543
                else          SLOT->Cnt += SLOT->Incr;
544
                /* connectoion */
545
                outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
546
        }
547

    
548
        // SD  (17) = mul14[fnum7] + white noise
549
        // TAM (15) = mul15[fnum8]
550
        // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
551
        // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
552
        env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
553
        env_tam=OPL_CALC_SLOT(SLOT8_1);
554
        env_top=OPL_CALC_SLOT(SLOT8_2);
555
        env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
556

    
557
        /* PG */
558
        if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
559
        else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
560
        if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
561
        else             SLOT7_2->Cnt += (CH[7].fc*8);
562
        if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
563
        else             SLOT8_1->Cnt += SLOT8_1->Incr;
564
        if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
565
        else             SLOT8_2->Cnt += (CH[8].fc*48);
566

    
567
        tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
568

    
569
        /* SD */
570
        if( env_sd < EG_ENT-1 )
571
                outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
572
        /* TAM */
573
        if( env_tam < EG_ENT-1 )
574
                outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
575
        /* TOP-CY */
576
        if( env_top < EG_ENT-1 )
577
                outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
578
        /* HH */
579
        if( env_hh  < EG_ENT-1 )
580
                outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
581
}
582

    
583
/* ----------- initialize time tabls ----------- */
584
static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
585
{
586
        int i;
587
        double rate;
588

    
589
        /* make attack rate & decay rate tables */
590
        for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
591
        for (i = 4;i <= 60;i++){
592
                rate  = OPL->freqbase;                                                /* frequency rate */
593
                if( i < 60 ) rate *= 1.0+(i&3)*0.25;                /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
594
                rate *= 1<<((i>>2)-1);                                                /* b2-5 : shift bit */
595
                rate *= (double)(EG_ENT<<ENV_BITS);
596
                OPL->AR_TABLE[i] = rate / ARRATE;
597
                OPL->DR_TABLE[i] = rate / DRRATE;
598
        }
599
        for (i = 60;i < 76;i++)
600
        {
601
                OPL->AR_TABLE[i] = EG_AED-1;
602
                OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
603
        }
604
#if 0
605
        for (i = 0;i < 64 ;i++){        /* make for overflow area */
606
                LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
607
                        ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
608
                        ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
609
        }
610
#endif
611
}
612

    
613
/* ---------- generic table initialize ---------- */
614
static int OPLOpenTable( void )
615
{
616
        int s,t;
617
        double rate;
618
        int i,j;
619
        double pom;
620

    
621
        /* allocate dynamic tables */
622
        TL_TABLE = qemu_malloc(TL_MAX*2*sizeof(INT32));
623
        SIN_TABLE = qemu_malloc(SIN_ENT*4 *sizeof(INT32 *));
624
        AMS_TABLE = qemu_malloc(AMS_ENT*2 *sizeof(INT32));
625
        VIB_TABLE = qemu_malloc(VIB_ENT*2 *sizeof(INT32));
626
        /* make total level table */
627
        for (t = 0;t < EG_ENT-1 ;t++){
628
                rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);        /* dB -> voltage */
629
                TL_TABLE[       t] =  (int)rate;
630
                TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
631
/*                LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
632
        }
633
        /* fill volume off area */
634
        for ( t = EG_ENT-1; t < TL_MAX ;t++){
635
                TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
636
        }
637

    
638
        /* make sinwave table (total level offet) */
639
        /* degree 0 = degree 180                   = off */
640
        SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
641
        for (s = 1;s <= SIN_ENT/4;s++){
642
                pom = sin(2*PI*s/SIN_ENT); /* sin     */
643
                pom = 20*log10(1/pom);           /* decibel */
644
                j = pom / EG_STEP;         /* TL_TABLE steps */
645

    
646
        /* degree 0   -  90    , degree 180 -  90 : plus section */
647
                SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
648
        /* degree 180 - 270    , degree 360 - 270 : minus section */
649
                SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
650
/*                LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
651
        }
652
        for (s = 0;s < SIN_ENT;s++)
653
        {
654
                SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
655
                SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
656
                SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
657
        }
658

    
659
        /* envelope counter -> envelope output table */
660
        for (i=0; i<EG_ENT; i++)
661
        {
662
                /* ATTACK curve */
663
                pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
664
                /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
665
                ENV_CURVE[i] = (int)pom;
666
                /* DECAY ,RELEASE curve */
667
                ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
668
        }
669
        /* off */
670
        ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
671
        /* make LFO ams table */
672
        for (i=0; i<AMS_ENT; i++)
673
        {
674
                pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
675
                AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
676
                AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
677
        }
678
        /* make LFO vibrate table */
679
        for (i=0; i<VIB_ENT; i++)
680
        {
681
                /* 100cent = 1seminote = 6% ?? */
682
                pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
683
                VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
684
                VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
685
                /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
686
        }
687
        return 1;
688
}
689

    
690

    
691
static void OPLCloseTable( void )
692
{
693
        free(TL_TABLE);
694
        free(SIN_TABLE);
695
        free(AMS_TABLE);
696
        free(VIB_TABLE);
697
}
698

    
699
/* CSM Key Controll */
700
INLINE void CSMKeyControll(OPL_CH *CH)
701
{
702
        OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
703
        OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
704
        /* all key off */
705
        OPL_KEYOFF(slot1);
706
        OPL_KEYOFF(slot2);
707
        /* total level latch */
708
        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
709
        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
710
        /* key on */
711
        CH->op1_out[0] = CH->op1_out[1] = 0;
712
        OPL_KEYON(slot1);
713
        OPL_KEYON(slot2);
714
}
715

    
716
/* ---------- opl initialize ---------- */
717
static void OPL_initalize(FM_OPL *OPL)
718
{
719
        int fn;
720

    
721
        /* frequency base */
722
        OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
723
        /* Timer base time */
724
        OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
725
        /* make time tables */
726
        init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
727
        /* make fnumber -> increment counter table */
728
        for( fn=0 ; fn < 1024 ; fn++ )
729
        {
730
                OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
731
        }
732
        /* LFO freq.table */
733
        OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
734
        OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
735
}
736

    
737
/* ---------- write a OPL registers ---------- */
738
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
739
{
740
        OPL_CH *CH;
741
        int slot;
742
        int block_fnum;
743

    
744
        switch(r&0xe0)
745
        {
746
        case 0x00: /* 00-1f:controll */
747
                switch(r&0x1f)
748
                {
749
                case 0x01:
750
                        /* wave selector enable */
751
                        if(OPL->type&OPL_TYPE_WAVESEL)
752
                        {
753
                                OPL->wavesel = v&0x20;
754
                                if(!OPL->wavesel)
755
                                {
756
                                        /* preset compatible mode */
757
                                        int c;
758
                                        for(c=0;c<OPL->max_ch;c++)
759
                                        {
760
                                                OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
761
                                                OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
762
                                        }
763
                                }
764
                        }
765
                        return;
766
                case 0x02:        /* Timer 1 */
767
                        OPL->T[0] = (256-v)*4;
768
                        break;
769
                case 0x03:        /* Timer 2 */
770
                        OPL->T[1] = (256-v)*16;
771
                        return;
772
                case 0x04:        /* IRQ clear / mask and Timer enable */
773
                        if(v&0x80)
774
                        {        /* IRQ flag clear */
775
                                OPL_STATUS_RESET(OPL,0x7f);
776
                        }
777
                        else
778
                        {        /* set IRQ mask ,timer enable*/
779
                                UINT8 st1 = v&1;
780
                                UINT8 st2 = (v>>1)&1;
781
                                /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
782
                                OPL_STATUS_RESET(OPL,v&0x78);
783
                                OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
784
                                /* timer 2 */
785
                                if(OPL->st[1] != st2)
786
                                {
787
                                        double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
788
                                        OPL->st[1] = st2;
789
                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
790
                                }
791
                                /* timer 1 */
792
                                if(OPL->st[0] != st1)
793
                                {
794
                                        double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
795
                                        OPL->st[0] = st1;
796
                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
797
                                }
798
                        }
799
                        return;
800
#if BUILD_Y8950
801
                case 0x06:                /* Key Board OUT */
802
                        if(OPL->type&OPL_TYPE_KEYBOARD)
803
                        {
804
                                if(OPL->keyboardhandler_w)
805
                                        OPL->keyboardhandler_w(OPL->keyboard_param,v);
806
                                else
807
                                        LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
808
                        }
809
                        return;
810
                case 0x07:        /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
811
                        if(OPL->type&OPL_TYPE_ADPCM)
812
                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
813
                        return;
814
                case 0x08:        /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
815
                        OPL->mode = v;
816
                        v&=0x1f;        /* for DELTA-T unit */
817
                case 0x09:                /* START ADD */
818
                case 0x0a:
819
                case 0x0b:                /* STOP ADD  */
820
                case 0x0c:
821
                case 0x0d:                /* PRESCALE   */
822
                case 0x0e:
823
                case 0x0f:                /* ADPCM data */
824
                case 0x10:                 /* DELTA-N    */
825
                case 0x11:                 /* DELTA-N    */
826
                case 0x12:                 /* EG-CTRL    */
827
                        if(OPL->type&OPL_TYPE_ADPCM)
828
                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
829
                        return;
830
#if 0
831
                case 0x15:                /* DAC data    */
832
                case 0x16:
833
                case 0x17:                /* SHIFT    */
834
                        return;
835
                case 0x18:                /* I/O CTRL (Direction) */
836
                        if(OPL->type&OPL_TYPE_IO)
837
                                OPL->portDirection = v&0x0f;
838
                        return;
839
                case 0x19:                /* I/O DATA */
840
                        if(OPL->type&OPL_TYPE_IO)
841
                        {
842
                                OPL->portLatch = v;
843
                                if(OPL->porthandler_w)
844
                                        OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
845
                        }
846
                        return;
847
                case 0x1a:                /* PCM data */
848
                        return;
849
#endif
850
#endif
851
                }
852
                break;
853
        case 0x20:        /* am,vib,ksr,eg type,mul */
854
                slot = slot_array[r&0x1f];
855
                if(slot == -1) return;
856
                set_mul(OPL,slot,v);
857
                return;
858
        case 0x40:
859
                slot = slot_array[r&0x1f];
860
                if(slot == -1) return;
861
                set_ksl_tl(OPL,slot,v);
862
                return;
863
        case 0x60:
864
                slot = slot_array[r&0x1f];
865
                if(slot == -1) return;
866
                set_ar_dr(OPL,slot,v);
867
                return;
868
        case 0x80:
869
                slot = slot_array[r&0x1f];
870
                if(slot == -1) return;
871
                set_sl_rr(OPL,slot,v);
872
                return;
873
        case 0xa0:
874
                switch(r)
875
                {
876
                case 0xbd:
877
                        /* amsep,vibdep,r,bd,sd,tom,tc,hh */
878
                        {
879
                        UINT8 rkey = OPL->rythm^v;
880
                        OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
881
                        OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
882
                        OPL->rythm  = v&0x3f;
883
                        if(OPL->rythm&0x20)
884
                        {
885
#if 0
886
                                usrintf_showmessage("OPL Rythm mode select");
887
#endif
888
                                /* BD key on/off */
889
                                if(rkey&0x10)
890
                                {
891
                                        if(v&0x10)
892
                                        {
893
                                                OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
894
                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
895
                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
896
                                        }
897
                                        else
898
                                        {
899
                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
900
                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
901
                                        }
902
                                }
903
                                /* SD key on/off */
904
                                if(rkey&0x08)
905
                                {
906
                                        if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
907
                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
908
                                }/* TAM key on/off */
909
                                if(rkey&0x04)
910
                                {
911
                                        if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
912
                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
913
                                }
914
                                /* TOP-CY key on/off */
915
                                if(rkey&0x02)
916
                                {
917
                                        if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
918
                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
919
                                }
920
                                /* HH key on/off */
921
                                if(rkey&0x01)
922
                                {
923
                                        if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
924
                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
925
                                }
926
                        }
927
                        }
928
                        return;
929
                }
930
                /* keyon,block,fnum */
931
                if( (r&0x0f) > 8) return;
932
                CH = &OPL->P_CH[r&0x0f];
933
                if(!(r&0x10))
934
                {        /* a0-a8 */
935
                        block_fnum  = (CH->block_fnum&0x1f00) | v;
936
                }
937
                else
938
                {        /* b0-b8 */
939
                        int keyon = (v>>5)&1;
940
                        block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
941
                        if(CH->keyon != keyon)
942
                        {
943
                                if( (CH->keyon=keyon) )
944
                                {
945
                                        CH->op1_out[0] = CH->op1_out[1] = 0;
946
                                        OPL_KEYON(&CH->SLOT[SLOT1]);
947
                                        OPL_KEYON(&CH->SLOT[SLOT2]);
948
                                }
949
                                else
950
                                {
951
                                        OPL_KEYOFF(&CH->SLOT[SLOT1]);
952
                                        OPL_KEYOFF(&CH->SLOT[SLOT2]);
953
                                }
954
                        }
955
                }
956
                /* update */
957
                if(CH->block_fnum != block_fnum)
958
                {
959
                        int blockRv = 7-(block_fnum>>10);
960
                        int fnum   = block_fnum&0x3ff;
961
                        CH->block_fnum = block_fnum;
962

    
963
                        CH->ksl_base = KSL_TABLE[block_fnum>>6];
964
                        CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
965
                        CH->kcode = CH->block_fnum>>9;
966
                        if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
967
                        CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
968
                        CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
969
                }
970
                return;
971
        case 0xc0:
972
                /* FB,C */
973
                if( (r&0x0f) > 8) return;
974
                CH = &OPL->P_CH[r&0x0f];
975
                {
976
                int feedback = (v>>1)&7;
977
                CH->FB   = feedback ? (8+1) - feedback : 0;
978
                CH->CON = v&1;
979
                set_algorythm(CH);
980
                }
981
                return;
982
        case 0xe0: /* wave type */
983
                slot = slot_array[r&0x1f];
984
                if(slot == -1) return;
985
                CH = &OPL->P_CH[slot/2];
986
                if(OPL->wavesel)
987
                {
988
                        /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
989
                        CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
990
                }
991
                return;
992
        }
993
}
994

    
995
/* lock/unlock for common table */
996
static int OPL_LockTable(void)
997
{
998
        num_lock++;
999
        if(num_lock>1) return 0;
1000
        /* first time */
1001
        cur_chip = NULL;
1002
        /* allocate total level table (128kb space) */
1003
        if( !OPLOpenTable() )
1004
        {
1005
                num_lock--;
1006
                return -1;
1007
        }
1008
        return 0;
1009
}
1010

    
1011
static void OPL_UnLockTable(void)
1012
{
1013
        if(num_lock) num_lock--;
1014
        if(num_lock) return;
1015
        /* last time */
1016
        cur_chip = NULL;
1017
        OPLCloseTable();
1018
}
1019

    
1020
#if (BUILD_YM3812 || BUILD_YM3526)
1021
/*******************************************************************************/
1022
/*                YM3812 local section                                                   */
1023
/*******************************************************************************/
1024

    
1025
/* ---------- update one of chip ----------- */
1026
void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1027
{
1028
    int i;
1029
        int data;
1030
        OPLSAMPLE *buf = buffer;
1031
        UINT32 amsCnt  = OPL->amsCnt;
1032
        UINT32 vibCnt  = OPL->vibCnt;
1033
        UINT8 rythm = OPL->rythm&0x20;
1034
        OPL_CH *CH,*R_CH;
1035

    
1036
        if( (void *)OPL != cur_chip ){
1037
                cur_chip = (void *)OPL;
1038
                /* channel pointers */
1039
                S_CH = OPL->P_CH;
1040
                E_CH = &S_CH[9];
1041
                /* rythm slot */
1042
                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1043
                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1044
                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1045
                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1046
                /* LFO state */
1047
                amsIncr = OPL->amsIncr;
1048
                vibIncr = OPL->vibIncr;
1049
                ams_table = OPL->ams_table;
1050
                vib_table = OPL->vib_table;
1051
        }
1052
        R_CH = rythm ? &S_CH[6] : E_CH;
1053
    for( i=0; i < length ; i++ )
1054
        {
1055
                /*            channel A         channel B         channel C      */
1056
                /* LFO */
1057
                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1058
                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1059
                outd[0] = 0;
1060
                /* FM part */
1061
                for(CH=S_CH ; CH < R_CH ; CH++)
1062
                        OPL_CALC_CH(CH);
1063
                /* Rythn part */
1064
                if(rythm)
1065
                        OPL_CALC_RH(S_CH);
1066
                /* limit check */
1067
                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1068
                /* store to sound buffer */
1069
                buf[i] = data >> OPL_OUTSB;
1070
        }
1071

    
1072
        OPL->amsCnt = amsCnt;
1073
        OPL->vibCnt = vibCnt;
1074
#ifdef OPL_OUTPUT_LOG
1075
        if(opl_dbg_fp)
1076
        {
1077
                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1078
                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1079
                fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1080
        }
1081
#endif
1082
}
1083
#endif /* (BUILD_YM3812 || BUILD_YM3526) */
1084

    
1085
#if BUILD_Y8950
1086

    
1087
void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1088
{
1089
    int i;
1090
        int data;
1091
        OPLSAMPLE *buf = buffer;
1092
        UINT32 amsCnt  = OPL->amsCnt;
1093
        UINT32 vibCnt  = OPL->vibCnt;
1094
        UINT8 rythm = OPL->rythm&0x20;
1095
        OPL_CH *CH,*R_CH;
1096
        YM_DELTAT *DELTAT = OPL->deltat;
1097

    
1098
        /* setup DELTA-T unit */
1099
        YM_DELTAT_DECODE_PRESET(DELTAT);
1100

    
1101
        if( (void *)OPL != cur_chip ){
1102
                cur_chip = (void *)OPL;
1103
                /* channel pointers */
1104
                S_CH = OPL->P_CH;
1105
                E_CH = &S_CH[9];
1106
                /* rythm slot */
1107
                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1108
                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1109
                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1110
                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1111
                /* LFO state */
1112
                amsIncr = OPL->amsIncr;
1113
                vibIncr = OPL->vibIncr;
1114
                ams_table = OPL->ams_table;
1115
                vib_table = OPL->vib_table;
1116
        }
1117
        R_CH = rythm ? &S_CH[6] : E_CH;
1118
    for( i=0; i < length ; i++ )
1119
        {
1120
                /*            channel A         channel B         channel C      */
1121
                /* LFO */
1122
                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1123
                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1124
                outd[0] = 0;
1125
                /* deltaT ADPCM */
1126
                if( DELTAT->portstate )
1127
                        YM_DELTAT_ADPCM_CALC(DELTAT);
1128
                /* FM part */
1129
                for(CH=S_CH ; CH < R_CH ; CH++)
1130
                        OPL_CALC_CH(CH);
1131
                /* Rythn part */
1132
                if(rythm)
1133
                        OPL_CALC_RH(S_CH);
1134
                /* limit check */
1135
                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1136
                /* store to sound buffer */
1137
                buf[i] = data >> OPL_OUTSB;
1138
        }
1139
        OPL->amsCnt = amsCnt;
1140
        OPL->vibCnt = vibCnt;
1141
        /* deltaT START flag */
1142
        if( !DELTAT->portstate )
1143
                OPL->status &= 0xfe;
1144
}
1145
#endif
1146

    
1147
/* ---------- reset one of chip ---------- */
1148
void OPLResetChip(FM_OPL *OPL)
1149
{
1150
        int c,s;
1151
        int i;
1152

    
1153
        /* reset chip */
1154
        OPL->mode   = 0;        /* normal mode */
1155
        OPL_STATUS_RESET(OPL,0x7f);
1156
        /* reset with register write */
1157
        OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1158
        OPLWriteReg(OPL,0x02,0); /* Timer1 */
1159
        OPLWriteReg(OPL,0x03,0); /* Timer2 */
1160
        OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1161
        for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1162
        /* reset OPerator paramater */
1163
        for( c = 0 ; c < OPL->max_ch ; c++ )
1164
        {
1165
                OPL_CH *CH = &OPL->P_CH[c];
1166
                /* OPL->P_CH[c].PAN = OPN_CENTER; */
1167
                for(s = 0 ; s < 2 ; s++ )
1168
                {
1169
                        /* wave table */
1170
                        CH->SLOT[s].wavetable = &SIN_TABLE[0];
1171
                        /* CH->SLOT[s].evm = ENV_MOD_RR; */
1172
                        CH->SLOT[s].evc = EG_OFF;
1173
                        CH->SLOT[s].eve = EG_OFF+1;
1174
                        CH->SLOT[s].evs = 0;
1175
                }
1176
        }
1177
#if BUILD_Y8950
1178
        if(OPL->type&OPL_TYPE_ADPCM)
1179
        {
1180
                YM_DELTAT *DELTAT = OPL->deltat;
1181

    
1182
                DELTAT->freqbase = OPL->freqbase;
1183
                DELTAT->output_pointer = outd;
1184
                DELTAT->portshift = 5;
1185
                DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1186
                YM_DELTAT_ADPCM_Reset(DELTAT,0);
1187
        }
1188
#endif
1189
}
1190

    
1191
/* ----------  Create one of vietual YM3812 ----------       */
1192
/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1193
FM_OPL *OPLCreate(int type, int clock, int rate)
1194
{
1195
        char *ptr;
1196
        FM_OPL *OPL;
1197
        int state_size;
1198
        int max_ch = 9; /* normaly 9 channels */
1199

    
1200
        if( OPL_LockTable() ==-1) return NULL;
1201
        /* allocate OPL state space */
1202
        state_size  = sizeof(FM_OPL);
1203
        state_size += sizeof(OPL_CH)*max_ch;
1204
#if BUILD_Y8950
1205
        if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1206
#endif
1207
        /* allocate memory block */
1208
        ptr = qemu_malloc(state_size);
1209
        /* clear */
1210
        memset(ptr,0,state_size);
1211
        OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1212
        OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1213
#if BUILD_Y8950
1214
        if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1215
#endif
1216
        /* set channel state pointer */
1217
        OPL->type  = type;
1218
        OPL->clock = clock;
1219
        OPL->rate  = rate;
1220
        OPL->max_ch = max_ch;
1221
        /* init grobal tables */
1222
        OPL_initalize(OPL);
1223
        /* reset chip */
1224
        OPLResetChip(OPL);
1225
#ifdef OPL_OUTPUT_LOG
1226
        if(!opl_dbg_fp)
1227
        {
1228
                opl_dbg_fp = fopen("opllog.opl","wb");
1229
                opl_dbg_maxchip = 0;
1230
        }
1231
        if(opl_dbg_fp)
1232
        {
1233
                opl_dbg_opl[opl_dbg_maxchip] = OPL;
1234
                fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1235
                        type,
1236
                        clock&0xff,
1237
                        (clock/0x100)&0xff,
1238
                        (clock/0x10000)&0xff,
1239
                        (clock/0x1000000)&0xff);
1240
                opl_dbg_maxchip++;
1241
        }
1242
#endif
1243
        return OPL;
1244
}
1245

    
1246
/* ----------  Destroy one of vietual YM3812 ----------       */
1247
void OPLDestroy(FM_OPL *OPL)
1248
{
1249
#ifdef OPL_OUTPUT_LOG
1250
        if(opl_dbg_fp)
1251
        {
1252
                fclose(opl_dbg_fp);
1253
                opl_dbg_fp = NULL;
1254
        }
1255
#endif
1256
        OPL_UnLockTable();
1257
        free(OPL);
1258
}
1259

    
1260
/* ----------  Option handlers ----------       */
1261

    
1262
void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1263
{
1264
        OPL->TimerHandler   = TimerHandler;
1265
        OPL->TimerParam = channelOffset;
1266
}
1267
void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1268
{
1269
        OPL->IRQHandler     = IRQHandler;
1270
        OPL->IRQParam = param;
1271
}
1272
void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1273
{
1274
        OPL->UpdateHandler = UpdateHandler;
1275
        OPL->UpdateParam = param;
1276
}
1277
#if BUILD_Y8950
1278
void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1279
{
1280
        OPL->porthandler_w = PortHandler_w;
1281
        OPL->porthandler_r = PortHandler_r;
1282
        OPL->port_param = param;
1283
}
1284

    
1285
void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1286
{
1287
        OPL->keyboardhandler_w = KeyboardHandler_w;
1288
        OPL->keyboardhandler_r = KeyboardHandler_r;
1289
        OPL->keyboard_param = param;
1290
}
1291
#endif
1292
/* ---------- YM3812 I/O interface ---------- */
1293
int OPLWrite(FM_OPL *OPL,int a,int v)
1294
{
1295
        if( !(a&1) )
1296
        {        /* address port */
1297
                OPL->address = v & 0xff;
1298
        }
1299
        else
1300
        {        /* data port */
1301
                if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1302
#ifdef OPL_OUTPUT_LOG
1303
        if(opl_dbg_fp)
1304
        {
1305
                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1306
                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1307
                fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1308
        }
1309
#endif
1310
                OPLWriteReg(OPL,OPL->address,v);
1311
        }
1312
        return OPL->status>>7;
1313
}
1314

    
1315
unsigned char OPLRead(FM_OPL *OPL,int a)
1316
{
1317
        if( !(a&1) )
1318
        {        /* status port */
1319
                return OPL->status & (OPL->statusmask|0x80);
1320
        }
1321
        /* data port */
1322
        switch(OPL->address)
1323
        {
1324
        case 0x05: /* KeyBoard IN */
1325
                if(OPL->type&OPL_TYPE_KEYBOARD)
1326
                {
1327
                        if(OPL->keyboardhandler_r)
1328
                                return OPL->keyboardhandler_r(OPL->keyboard_param);
1329
                        else
1330
                                LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1331
                }
1332
                return 0;
1333
#if 0
1334
        case 0x0f: /* ADPCM-DATA  */
1335
                return 0;
1336
#endif
1337
        case 0x19: /* I/O DATA    */
1338
                if(OPL->type&OPL_TYPE_IO)
1339
                {
1340
                        if(OPL->porthandler_r)
1341
                                return OPL->porthandler_r(OPL->port_param);
1342
                        else
1343
                                LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1344
                }
1345
                return 0;
1346
        case 0x1a: /* PCM-DATA    */
1347
                return 0;
1348
        }
1349
        return 0;
1350
}
1351

    
1352
int OPLTimerOver(FM_OPL *OPL,int c)
1353
{
1354
        if( c )
1355
        {        /* Timer B */
1356
                OPL_STATUS_SET(OPL,0x20);
1357
        }
1358
        else
1359
        {        /* Timer A */
1360
                OPL_STATUS_SET(OPL,0x40);
1361
                /* CSM mode key,TL controll */
1362
                if( OPL->mode & 0x80 )
1363
                {        /* CSM mode total level latch and auto key on */
1364
                        int ch;
1365
                        if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1366
                        for(ch=0;ch<9;ch++)
1367
                                CSMKeyControll( &OPL->P_CH[ch] );
1368
                }
1369
        }
1370
        /* reload timer */
1371
        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1372
        return OPL->status>>7;
1373
}