Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 487414f1

History | View | Annotate | Download (12.1 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "console.h"
27

    
28
//#define DEBUG_IRQ_COUNT
29
//#define DEBUG_IRQ
30

    
31
#ifdef DEBUG_IRQ
32
#define DPRINTF(fmt, args...) \
33
do { printf("IRQ: " fmt , ##args); } while (0)
34
#else
35
#define DPRINTF(fmt, args...)
36
#endif
37

    
38
/*
39
 * Registers of interrupt controller in sun4m.
40
 *
41
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 *
45
 * There is a system master controller and one for each cpu.
46
 *
47
 */
48

    
49
#define MAX_CPUS 16
50
#define MAX_PILS 16
51

    
52
struct SLAVIO_CPUINTCTLState;
53

    
54
typedef struct SLAVIO_INTCTLState {
55
    uint32_t intregm_pending;
56
    uint32_t intregm_disabled;
57
    uint32_t target_cpu;
58
#ifdef DEBUG_IRQ_COUNT
59
    uint64_t irq_count[32];
60
#endif
61
    qemu_irq *cpu_irqs[MAX_CPUS];
62
    const uint32_t *intbit_to_level;
63
    uint32_t cputimer_lbit, cputimer_mbit;
64
    uint32_t pil_out[MAX_CPUS];
65
    struct SLAVIO_CPUINTCTLState *slaves[MAX_CPUS];
66
} SLAVIO_INTCTLState;
67

    
68
typedef struct SLAVIO_CPUINTCTLState {
69
    uint32_t intreg_pending;
70
    SLAVIO_INTCTLState *master;
71
    uint32_t cpu;
72
} SLAVIO_CPUINTCTLState;
73

    
74
#define INTCTL_MAXADDR 0xf
75
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
76
#define INTCTLM_SIZE 0x14
77
#define MASTER_IRQ_MASK ~0x0fa2007f
78
#define MASTER_DISABLE 0x80000000
79
#define CPU_SOFTIRQ_MASK 0xfffe0000
80
#define CPU_HARDIRQ_MASK 0x0000fffe
81
#define CPU_IRQ_INT15_IN 0x0004000
82
#define CPU_IRQ_INT15_MASK 0x80000000
83

    
84
static void slavio_check_interrupts(SLAVIO_INTCTLState *s);
85

    
86
// per-cpu interrupt controller
87
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
88
{
89
    SLAVIO_CPUINTCTLState *s = opaque;
90
    uint32_t saddr, ret;
91

    
92
    saddr = addr >> 2;
93
    switch (saddr) {
94
    case 0:
95
        ret = s->intreg_pending;
96
        break;
97
    default:
98
        ret = 0;
99
        break;
100
    }
101
    DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
102

    
103
    return ret;
104
}
105

    
106
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
107
                                     uint32_t val)
108
{
109
    SLAVIO_CPUINTCTLState *s = opaque;
110
    uint32_t saddr;
111

    
112
    saddr = addr >> 2;
113
    DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
114
    switch (saddr) {
115
    case 1: // clear pending softints
116
        if (val & CPU_IRQ_INT15_IN)
117
            val |= CPU_IRQ_INT15_MASK;
118
        val &= CPU_SOFTIRQ_MASK;
119
        s->intreg_pending &= ~val;
120
        slavio_check_interrupts(s->master);
121
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
122
                s->intreg_pending);
123
        break;
124
    case 2: // set softint
125
        val &= CPU_SOFTIRQ_MASK;
126
        s->intreg_pending |= val;
127
        slavio_check_interrupts(s->master);
128
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
129
                s->intreg_pending);
130
        break;
131
    default:
132
        break;
133
    }
134
}
135

    
136
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
137
    NULL,
138
    NULL,
139
    slavio_intctl_mem_readl,
140
};
141

    
142
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
143
    NULL,
144
    NULL,
145
    slavio_intctl_mem_writel,
146
};
147

    
148
// master system interrupt controller
149
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
150
{
151
    SLAVIO_INTCTLState *s = opaque;
152
    uint32_t saddr, ret;
153

    
154
    saddr = addr >> 2;
155
    switch (saddr) {
156
    case 0:
157
        ret = s->intregm_pending & ~MASTER_DISABLE;
158
        break;
159
    case 1:
160
        ret = s->intregm_disabled & MASTER_IRQ_MASK;
161
        break;
162
    case 4:
163
        ret = s->target_cpu;
164
        break;
165
    default:
166
        ret = 0;
167
        break;
168
    }
169
    DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
170

    
171
    return ret;
172
}
173

    
174
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
175
                                      uint32_t val)
176
{
177
    SLAVIO_INTCTLState *s = opaque;
178
    uint32_t saddr;
179

    
180
    saddr = addr >> 2;
181
    DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
182
    switch (saddr) {
183
    case 2: // clear (enable)
184
        // Force clear unused bits
185
        val &= MASTER_IRQ_MASK;
186
        s->intregm_disabled &= ~val;
187
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
188
                s->intregm_disabled);
189
        slavio_check_interrupts(s);
190
        break;
191
    case 3: // set (disable, clear pending)
192
        // Force clear unused bits
193
        val &= MASTER_IRQ_MASK;
194
        s->intregm_disabled |= val;
195
        s->intregm_pending &= ~val;
196
        slavio_check_interrupts(s);
197
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
198
                s->intregm_disabled);
199
        break;
200
    case 4:
201
        s->target_cpu = val & (MAX_CPUS - 1);
202
        slavio_check_interrupts(s);
203
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
204
        break;
205
    default:
206
        break;
207
    }
208
}
209

    
210
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
211
    NULL,
212
    NULL,
213
    slavio_intctlm_mem_readl,
214
};
215

    
216
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
217
    NULL,
218
    NULL,
219
    slavio_intctlm_mem_writel,
220
};
221

    
222
void slavio_pic_info(void *opaque)
223
{
224
    SLAVIO_INTCTLState *s = opaque;
225
    int i;
226

    
227
    for (i = 0; i < MAX_CPUS; i++) {
228
        term_printf("per-cpu %d: pending 0x%08x\n", i,
229
                    s->slaves[i]->intreg_pending);
230
    }
231
    term_printf("master: pending 0x%08x, disabled 0x%08x\n",
232
                s->intregm_pending, s->intregm_disabled);
233
}
234

    
235
void slavio_irq_info(void *opaque)
236
{
237
#ifndef DEBUG_IRQ_COUNT
238
    term_printf("irq statistic code not compiled.\n");
239
#else
240
    SLAVIO_INTCTLState *s = opaque;
241
    int i;
242
    int64_t count;
243

    
244
    term_printf("IRQ statistics:\n");
245
    for (i = 0; i < 32; i++) {
246
        count = s->irq_count[i];
247
        if (count > 0)
248
            term_printf("%2d: %" PRId64 "\n", i, count);
249
    }
250
#endif
251
}
252

    
253
static void slavio_check_interrupts(SLAVIO_INTCTLState *s)
254
{
255
    uint32_t pending = s->intregm_pending, pil_pending;
256
    unsigned int i, j;
257

    
258
    pending &= ~s->intregm_disabled;
259

    
260
    DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
261
    for (i = 0; i < MAX_CPUS; i++) {
262
        pil_pending = 0;
263
        if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
264
            (i == s->target_cpu)) {
265
            for (j = 0; j < 32; j++) {
266
                if (pending & (1 << j))
267
                    pil_pending |= 1 << s->intbit_to_level[j];
268
            }
269
        }
270
        pil_pending |= (s->slaves[i]->intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
271

    
272
        for (j = 0; j < MAX_PILS; j++) {
273
            if (pil_pending & (1 << j)) {
274
                if (!(s->pil_out[i] & (1 << j)))
275
                    qemu_irq_raise(s->cpu_irqs[i][j]);
276
            } else {
277
                if (s->pil_out[i] & (1 << j))
278
                    qemu_irq_lower(s->cpu_irqs[i][j]);
279
            }
280
        }
281
        s->pil_out[i] = pil_pending;
282
    }
283
}
284

    
285
/*
286
 * "irq" here is the bit number in the system interrupt register to
287
 * separate serial and keyboard interrupts sharing a level.
288
 */
289
static void slavio_set_irq(void *opaque, int irq, int level)
290
{
291
    SLAVIO_INTCTLState *s = opaque;
292
    uint32_t mask = 1 << irq;
293
    uint32_t pil = s->intbit_to_level[irq];
294

    
295
    DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
296
            level);
297
    if (pil > 0) {
298
        if (level) {
299
#ifdef DEBUG_IRQ_COUNT
300
            s->irq_count[pil]++;
301
#endif
302
            s->intregm_pending |= mask;
303
            s->slaves[s->target_cpu]->intreg_pending |= 1 << pil;
304
        } else {
305
            s->intregm_pending &= ~mask;
306
            s->slaves[s->target_cpu]->intreg_pending &= ~(1 << pil);
307
        }
308
        slavio_check_interrupts(s);
309
    }
310
}
311

    
312
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
313
{
314
    SLAVIO_INTCTLState *s = opaque;
315

    
316
    DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
317

    
318
    if (level) {
319
        s->intregm_pending |= s->cputimer_mbit;
320
        s->slaves[cpu]->intreg_pending |= s->cputimer_lbit;
321
    } else {
322
        s->intregm_pending &= ~s->cputimer_mbit;
323
        s->slaves[cpu]->intreg_pending &= ~s->cputimer_lbit;
324
    }
325

    
326
    slavio_check_interrupts(s);
327
}
328

    
329
static void slavio_intctl_save(QEMUFile *f, void *opaque)
330
{
331
    SLAVIO_INTCTLState *s = opaque;
332
    int i;
333

    
334
    for (i = 0; i < MAX_CPUS; i++) {
335
        qemu_put_be32s(f, &s->slaves[i]->intreg_pending);
336
    }
337
    qemu_put_be32s(f, &s->intregm_pending);
338
    qemu_put_be32s(f, &s->intregm_disabled);
339
    qemu_put_be32s(f, &s->target_cpu);
340
}
341

    
342
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
343
{
344
    SLAVIO_INTCTLState *s = opaque;
345
    int i;
346

    
347
    if (version_id != 1)
348
        return -EINVAL;
349

    
350
    for (i = 0; i < MAX_CPUS; i++) {
351
        qemu_get_be32s(f, &s->slaves[i]->intreg_pending);
352
    }
353
    qemu_get_be32s(f, &s->intregm_pending);
354
    qemu_get_be32s(f, &s->intregm_disabled);
355
    qemu_get_be32s(f, &s->target_cpu);
356
    slavio_check_interrupts(s);
357
    return 0;
358
}
359

    
360
static void slavio_intctl_reset(void *opaque)
361
{
362
    SLAVIO_INTCTLState *s = opaque;
363
    int i;
364

    
365
    for (i = 0; i < MAX_CPUS; i++) {
366
        s->slaves[i]->intreg_pending = 0;
367
    }
368
    s->intregm_disabled = ~MASTER_IRQ_MASK;
369
    s->intregm_pending = 0;
370
    s->target_cpu = 0;
371
    slavio_check_interrupts(s);
372
}
373

    
374
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
375
                         const uint32_t *intbit_to_level,
376
                         qemu_irq **irq, qemu_irq **cpu_irq,
377
                         qemu_irq **parent_irq, unsigned int cputimer)
378
{
379
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
380
    SLAVIO_INTCTLState *s;
381
    SLAVIO_CPUINTCTLState *slave;
382

    
383
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
384

    
385
    s->intbit_to_level = intbit_to_level;
386
    for (i = 0; i < MAX_CPUS; i++) {
387
        slave = qemu_mallocz(sizeof(SLAVIO_CPUINTCTLState));
388

    
389
        slave->cpu = i;
390
        slave->master = s;
391

    
392
        slavio_intctl_io_memory = cpu_register_io_memory(0,
393
                                                         slavio_intctl_mem_read,
394
                                                         slavio_intctl_mem_write,
395
                                                         slave);
396
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
397
                                     slavio_intctl_io_memory);
398

    
399
        s->slaves[i] = slave;
400
        s->cpu_irqs[i] = parent_irq[i];
401
    }
402

    
403
    slavio_intctlm_io_memory = cpu_register_io_memory(0,
404
                                                      slavio_intctlm_mem_read,
405
                                                      slavio_intctlm_mem_write,
406
                                                      s);
407
    cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
408

    
409
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
410
                    slavio_intctl_load, s);
411
    qemu_register_reset(slavio_intctl_reset, s);
412
    *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
413

    
414
    *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
415
    s->cputimer_mbit = 1 << cputimer;
416
    s->cputimer_lbit = 1 << intbit_to_level[cputimer];
417
    slavio_intctl_reset(s);
418
    return s;
419
}