Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 48c50a62

History | View | Annotate | Download (76 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@item Syborg SVP base model (ARM Cortex-A8).
95
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
96
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
97
@end itemize
98

    
99
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
100

    
101
@node Installation
102
@chapter Installation
103

    
104
If you want to compile QEMU yourself, see @ref{compilation}.
105

    
106
@menu
107
* install_linux::   Linux
108
* install_windows:: Windows
109
* install_mac::     Macintosh
110
@end menu
111

    
112
@node install_linux
113
@section Linux
114

    
115
If a precompiled package is available for your distribution - you just
116
have to install it. Otherwise, see @ref{compilation}.
117

    
118
@node install_windows
119
@section Windows
120

    
121
Download the experimental binary installer at
122
@url{http://www.free.oszoo.org/@/download.html}.
123

    
124
@node install_mac
125
@section Mac OS X
126

    
127
Download the experimental binary installer at
128
@url{http://www.free.oszoo.org/@/download.html}.
129

    
130
@node QEMU PC System emulator
131
@chapter QEMU PC System emulator
132

    
133
@menu
134
* pcsys_introduction:: Introduction
135
* pcsys_quickstart::   Quick Start
136
* sec_invocation::     Invocation
137
* pcsys_keys::         Keys
138
* pcsys_monitor::      QEMU Monitor
139
* disk_images::        Disk Images
140
* pcsys_network::      Network emulation
141
* direct_linux_boot::  Direct Linux Boot
142
* pcsys_usb::          USB emulation
143
* vnc_security::       VNC security
144
* gdb_usage::          GDB usage
145
* pcsys_os_specific::  Target OS specific information
146
@end menu
147

    
148
@node pcsys_introduction
149
@section Introduction
150

    
151
@c man begin DESCRIPTION
152

    
153
The QEMU PC System emulator simulates the
154
following peripherals:
155

    
156
@itemize @minus
157
@item
158
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
159
@item
160
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161
extensions (hardware level, including all non standard modes).
162
@item
163
PS/2 mouse and keyboard
164
@item
165
2 PCI IDE interfaces with hard disk and CD-ROM support
166
@item
167
Floppy disk
168
@item
169
PCI/ISA PCI network adapters
170
@item
171
Serial ports
172
@item
173
Creative SoundBlaster 16 sound card
174
@item
175
ENSONIQ AudioPCI ES1370 sound card
176
@item
177
Intel 82801AA AC97 Audio compatible sound card
178
@item
179
Adlib(OPL2) - Yamaha YM3812 compatible chip
180
@item
181
Gravis Ultrasound GF1 sound card
182
@item
183
CS4231A compatible sound card
184
@item
185
PCI UHCI USB controller and a virtual USB hub.
186
@end itemize
187

    
188
SMP is supported with up to 255 CPUs.
189

    
190
Note that adlib, gus and cs4231a are only available when QEMU was
191
configured with --audio-card-list option containing the name(s) of
192
required card(s).
193

    
194
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
195
VGA BIOS.
196

    
197
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198

    
199
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200
by Tibor "TS" Sch?tz.
201

    
202
CS4231A is the chip used in Windows Sound System and GUSMAX products
203

    
204
@c man end
205

    
206
@node pcsys_quickstart
207
@section Quick Start
208

    
209
Download and uncompress the linux image (@file{linux.img}) and type:
210

    
211
@example
212
qemu linux.img
213
@end example
214

    
215
Linux should boot and give you a prompt.
216

    
217
@node sec_invocation
218
@section Invocation
219

    
220
@example
221
@c man begin SYNOPSIS
222
usage: qemu [options] [@var{disk_image}]
223
@c man end
224
@end example
225

    
226
@c man begin OPTIONS
227
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
228
targets do not need a disk image.
229

    
230
@include qemu-options.texi
231

    
232
@c man end
233

    
234
@node pcsys_keys
235
@section Keys
236

    
237
@c man begin OPTIONS
238

    
239
During the graphical emulation, you can use the following keys:
240
@table @key
241
@item Ctrl-Alt-f
242
Toggle full screen
243

    
244
@item Ctrl-Alt-n
245
Switch to virtual console 'n'. Standard console mappings are:
246
@table @emph
247
@item 1
248
Target system display
249
@item 2
250
Monitor
251
@item 3
252
Serial port
253
@end table
254

    
255
@item Ctrl-Alt
256
Toggle mouse and keyboard grab.
257
@end table
258

    
259
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
260
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
261

    
262
During emulation, if you are using the @option{-nographic} option, use
263
@key{Ctrl-a h} to get terminal commands:
264

    
265
@table @key
266
@item Ctrl-a h
267
@item Ctrl-a ?
268
Print this help
269
@item Ctrl-a x
270
Exit emulator
271
@item Ctrl-a s
272
Save disk data back to file (if -snapshot)
273
@item Ctrl-a t
274
Toggle console timestamps
275
@item Ctrl-a b
276
Send break (magic sysrq in Linux)
277
@item Ctrl-a c
278
Switch between console and monitor
279
@item Ctrl-a Ctrl-a
280
Send Ctrl-a
281
@end table
282
@c man end
283

    
284
@ignore
285

    
286
@c man begin SEEALSO
287
The HTML documentation of QEMU for more precise information and Linux
288
user mode emulator invocation.
289
@c man end
290

    
291
@c man begin AUTHOR
292
Fabrice Bellard
293
@c man end
294

    
295
@end ignore
296

    
297
@node pcsys_monitor
298
@section QEMU Monitor
299

    
300
The QEMU monitor is used to give complex commands to the QEMU
301
emulator. You can use it to:
302

    
303
@itemize @minus
304

    
305
@item
306
Remove or insert removable media images
307
(such as CD-ROM or floppies).
308

    
309
@item
310
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
311
from a disk file.
312

    
313
@item Inspect the VM state without an external debugger.
314

    
315
@end itemize
316

    
317
@subsection Commands
318

    
319
The following commands are available:
320

    
321
@table @option
322

    
323
@item help or ? [@var{cmd}]
324
Show the help for all commands or just for command @var{cmd}.
325

    
326
@item commit
327
Commit changes to the disk images (if -snapshot is used).
328

    
329
@item info @var{subcommand}
330
Show various information about the system state.
331

    
332
@table @option
333
@item info version
334
show the version of QEMU
335
@item info network
336
show the various VLANs and the associated devices
337
@item info chardev
338
show the character devices
339
@item info block
340
show the block devices
341
@item info block
342
show block device statistics
343
@item info registers
344
show the cpu registers
345
@item info cpus
346
show infos for each CPU
347
@item info history
348
show the command line history
349
@item info irq
350
show the interrupts statistics (if available)
351
@item info pic
352
show i8259 (PIC) state
353
@item info pci
354
show emulated PCI device info
355
@item info tlb
356
show virtual to physical memory mappings (i386 only)
357
@item info mem
358
show the active virtual memory mappings (i386 only)
359
@item info hpet
360
show state of HPET (i386 only)
361
@item info kqemu
362
show KQEMU information
363
@item info kvm
364
show KVM information
365
@item info usb
366
show USB devices plugged on the virtual USB hub
367
@item info usbhost
368
show all USB host devices
369
@item info profile
370
show profiling information
371
@item info capture
372
show information about active capturing
373
@item info snapshots
374
show list of VM snapshots
375
@item info status
376
show the current VM status (running|paused)
377
@item info pcmcia
378
show guest PCMCIA status
379
@item info mice
380
show which guest mouse is receiving events
381
@item info vnc
382
show the vnc server status
383
@item info name
384
show the current VM name
385
@item info uuid
386
show the current VM UUID
387
@item info cpustats
388
show CPU statistics
389
@item info slirp
390
show SLIRP statistics (if available)
391
@item info migrate
392
show migration status
393
@item info balloon
394
show balloon information
395
@end table
396

    
397
@item q or quit
398
Quit the emulator.
399

    
400
@item eject [-f] @var{device}
401
Eject a removable medium (use -f to force it).
402

    
403
@item change @var{device} @var{setting}
404

    
405
Change the configuration of a device.
406

    
407
@table @option
408
@item change @var{diskdevice} @var{filename} [@var{format}]
409
Change the medium for a removable disk device to point to @var{filename}. eg
410

    
411
@example
412
(qemu) change ide1-cd0 /path/to/some.iso
413
@end example
414

    
415
@var{format} is optional.
416

    
417
@item change vnc @var{display},@var{options}
418
Change the configuration of the VNC server. The valid syntax for @var{display}
419
and @var{options} are described at @ref{sec_invocation}. eg
420

    
421
@example
422
(qemu) change vnc localhost:1
423
@end example
424

    
425
@item change vnc password [@var{password}]
426

    
427
Change the password associated with the VNC server. If the new password is not
428
supplied, the monitor will prompt for it to be entered. VNC passwords are only
429
significant up to 8 letters. eg
430

    
431
@example
432
(qemu) change vnc password
433
Password: ********
434
@end example
435

    
436
@end table
437

    
438
@item acl @var{subcommand} @var{aclname} @var{match} @var{index}
439

    
440
Manage access control lists for network services. There are currently
441
two named access control lists, @var{vnc.x509dname} and @var{vnc.username}
442
matching on the x509 client certificate distinguished name, and SASL
443
username respectively.
444

    
445
@table @option
446
@item acl show <aclname>
447
list all the match rules in the access control list, and the default
448
policy
449
@item acl policy <aclname> @code{allow|deny}
450
set the default access control list policy, used in the event that
451
none of the explicit rules match. The default policy at startup is
452
always @code{deny}
453
@item acl allow <aclname> <match> [<index>]
454
add a match to the access control list, allowing access. The match will
455
normally be an exact username or x509 distinguished name, but can
456
optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
457
all users in the @code{EXAMPLE.COM} kerberos realm. The match will
458
normally be appended to the end of the ACL, but can be inserted
459
earlier in the list if the optional @code{index} parameter is supplied.
460
@item acl deny <aclname> <match> [<index>]
461
add a match to the access control list, denying access. The match will
462
normally be an exact username or x509 distinguished name, but can
463
optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
464
all users in the @code{EXAMPLE.COM} kerberos realm. The match will
465
normally be appended to the end of the ACL, but can be inserted
466
earlier in the list if the optional @code{index} parameter is supplied.
467
@item acl remove <aclname> <match>
468
remove the specified match rule from the access control list.
469
@item acl reset <aclname>
470
remove all matches from the access control list, and set the default
471
policy back to @code{deny}.
472
@end table
473

    
474
@item screendump @var{filename}
475
Save screen into PPM image @var{filename}.
476

    
477
@item logfile @var{filename}
478
Output logs to @var{filename}.
479

    
480
@item log @var{item1}[,...]
481
Activate logging of the specified items to @file{/tmp/qemu.log}.
482

    
483
@item savevm [@var{tag}|@var{id}]
484
Create a snapshot of the whole virtual machine. If @var{tag} is
485
provided, it is used as human readable identifier. If there is already
486
a snapshot with the same tag or ID, it is replaced. More info at
487
@ref{vm_snapshots}.
488

    
489
@item loadvm @var{tag}|@var{id}
490
Set the whole virtual machine to the snapshot identified by the tag
491
@var{tag} or the unique snapshot ID @var{id}.
492

    
493
@item delvm @var{tag}|@var{id}
494
Delete the snapshot identified by @var{tag} or @var{id}.
495

    
496
@item singlestep [off]
497
Run the emulation in single step mode.
498
If called with option off, the emulation returns to normal mode.
499

    
500
@item stop
501
Stop emulation.
502

    
503
@item c or cont
504
Resume emulation.
505

    
506
@item gdbserver [@var{port}]
507
Start gdbserver session (default @var{port}=1234)
508

    
509
@item x/fmt @var{addr}
510
Virtual memory dump starting at @var{addr}.
511

    
512
@item xp /@var{fmt} @var{addr}
513
Physical memory dump starting at @var{addr}.
514

    
515
@var{fmt} is a format which tells the command how to format the
516
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
517

    
518
@table @var
519
@item count
520
is the number of items to be dumped.
521

    
522
@item format
523
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
524
c (char) or i (asm instruction).
525

    
526
@item size
527
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
528
@code{h} or @code{w} can be specified with the @code{i} format to
529
respectively select 16 or 32 bit code instruction size.
530

    
531
@end table
532

    
533
Examples:
534
@itemize
535
@item
536
Dump 10 instructions at the current instruction pointer:
537
@example
538
(qemu) x/10i $eip
539
0x90107063:  ret
540
0x90107064:  sti
541
0x90107065:  lea    0x0(%esi,1),%esi
542
0x90107069:  lea    0x0(%edi,1),%edi
543
0x90107070:  ret
544
0x90107071:  jmp    0x90107080
545
0x90107073:  nop
546
0x90107074:  nop
547
0x90107075:  nop
548
0x90107076:  nop
549
@end example
550

    
551
@item
552
Dump 80 16 bit values at the start of the video memory.
553
@smallexample
554
(qemu) xp/80hx 0xb8000
555
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
556
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
557
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
558
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
559
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
560
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
561
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
562
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
563
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
564
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
565
@end smallexample
566
@end itemize
567

    
568
@item p or print/@var{fmt} @var{expr}
569

    
570
Print expression value. Only the @var{format} part of @var{fmt} is
571
used.
572

    
573
@item sendkey @var{keys}
574

    
575
Send @var{keys} to the emulator. @var{keys} could be the name of the
576
key or @code{#} followed by the raw value in either decimal or hexadecimal
577
format. Use @code{-} to press several keys simultaneously. Example:
578
@example
579
sendkey ctrl-alt-f1
580
@end example
581

    
582
This command is useful to send keys that your graphical user interface
583
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
584

    
585
@item system_reset
586

    
587
Reset the system.
588

    
589
@item system_powerdown
590

    
591
Power down the system (if supported).
592

    
593
@item sum @var{addr} @var{size}
594

    
595
Compute the checksum of a memory region.
596

    
597
@item usb_add @var{devname}
598

    
599
Add the USB device @var{devname}.  For details of available devices see
600
@ref{usb_devices}
601

    
602
@item usb_del @var{devname}
603

    
604
Remove the USB device @var{devname} from the QEMU virtual USB
605
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
606
command @code{info usb} to see the devices you can remove.
607

    
608
@item mouse_move @var{dx} @var{dy} [@var{dz}]
609
Move the active mouse to the specified coordinates @var{dx} @var{dy}
610
with optional scroll axis @var{dz}.
611

    
612
@item mouse_button @var{val}
613
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
614

    
615
@item mouse_set @var{index}
616
Set which mouse device receives events at given @var{index}, index
617
can be obtained with
618
@example
619
info mice
620
@end example
621

    
622
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
623
Capture audio into @var{filename}. Using sample rate @var{frequency}
624
bits per sample @var{bits} and number of channels @var{channels}.
625

    
626
Defaults:
627
@itemize @minus
628
@item Sample rate = 44100 Hz - CD quality
629
@item Bits = 16
630
@item Number of channels = 2 - Stereo
631
@end itemize
632

    
633
@item stopcapture @var{index}
634
Stop capture with a given @var{index}, index can be obtained with
635
@example
636
info capture
637
@end example
638

    
639
@item memsave @var{addr} @var{size} @var{file}
640
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
641

    
642
@item pmemsave @var{addr} @var{size} @var{file}
643
save to disk physical memory dump starting at @var{addr} of size @var{size}.
644

    
645
@item boot_set @var{bootdevicelist}
646

    
647
Define new values for the boot device list. Those values will override
648
the values specified on the command line through the @code{-boot} option.
649

    
650
The values that can be specified here depend on the machine type, but are
651
the same that can be specified in the @code{-boot} command line option.
652

    
653
@item nmi @var{cpu}
654
Inject an NMI on the given CPU.
655

    
656
@item migrate [-d] @var{uri}
657
Migrate to @var{uri} (using -d to not wait for completion).
658

    
659
@item migrate_cancel
660
Cancel the current VM migration.
661

    
662
@item migrate_set_speed @var{value}
663
Set maximum speed to @var{value} (in bytes) for migrations.
664

    
665
@item balloon @var{value}
666
Request VM to change its memory allocation to @var{value} (in MB).
667

    
668
@item set_link @var{name} [up|down]
669
Set link @var{name} up or down.
670

    
671
@end table
672

    
673
@subsection Integer expressions
674

    
675
The monitor understands integers expressions for every integer
676
argument. You can use register names to get the value of specifics
677
CPU registers by prefixing them with @emph{$}.
678

    
679
@node disk_images
680
@section Disk Images
681

    
682
Since version 0.6.1, QEMU supports many disk image formats, including
683
growable disk images (their size increase as non empty sectors are
684
written), compressed and encrypted disk images. Version 0.8.3 added
685
the new qcow2 disk image format which is essential to support VM
686
snapshots.
687

    
688
@menu
689
* disk_images_quickstart::    Quick start for disk image creation
690
* disk_images_snapshot_mode:: Snapshot mode
691
* vm_snapshots::              VM snapshots
692
* qemu_img_invocation::       qemu-img Invocation
693
* qemu_nbd_invocation::       qemu-nbd Invocation
694
* host_drives::               Using host drives
695
* disk_images_fat_images::    Virtual FAT disk images
696
* disk_images_nbd::           NBD access
697
@end menu
698

    
699
@node disk_images_quickstart
700
@subsection Quick start for disk image creation
701

    
702
You can create a disk image with the command:
703
@example
704
qemu-img create myimage.img mysize
705
@end example
706
where @var{myimage.img} is the disk image filename and @var{mysize} is its
707
size in kilobytes. You can add an @code{M} suffix to give the size in
708
megabytes and a @code{G} suffix for gigabytes.
709

    
710
See @ref{qemu_img_invocation} for more information.
711

    
712
@node disk_images_snapshot_mode
713
@subsection Snapshot mode
714

    
715
If you use the option @option{-snapshot}, all disk images are
716
considered as read only. When sectors in written, they are written in
717
a temporary file created in @file{/tmp}. You can however force the
718
write back to the raw disk images by using the @code{commit} monitor
719
command (or @key{C-a s} in the serial console).
720

    
721
@node vm_snapshots
722
@subsection VM snapshots
723

    
724
VM snapshots are snapshots of the complete virtual machine including
725
CPU state, RAM, device state and the content of all the writable
726
disks. In order to use VM snapshots, you must have at least one non
727
removable and writable block device using the @code{qcow2} disk image
728
format. Normally this device is the first virtual hard drive.
729

    
730
Use the monitor command @code{savevm} to create a new VM snapshot or
731
replace an existing one. A human readable name can be assigned to each
732
snapshot in addition to its numerical ID.
733

    
734
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
735
a VM snapshot. @code{info snapshots} lists the available snapshots
736
with their associated information:
737

    
738
@example
739
(qemu) info snapshots
740
Snapshot devices: hda
741
Snapshot list (from hda):
742
ID        TAG                 VM SIZE                DATE       VM CLOCK
743
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
744
2                                 40M 2006-08-06 12:43:29   00:00:18.633
745
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
746
@end example
747

    
748
A VM snapshot is made of a VM state info (its size is shown in
749
@code{info snapshots}) and a snapshot of every writable disk image.
750
The VM state info is stored in the first @code{qcow2} non removable
751
and writable block device. The disk image snapshots are stored in
752
every disk image. The size of a snapshot in a disk image is difficult
753
to evaluate and is not shown by @code{info snapshots} because the
754
associated disk sectors are shared among all the snapshots to save
755
disk space (otherwise each snapshot would need a full copy of all the
756
disk images).
757

    
758
When using the (unrelated) @code{-snapshot} option
759
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
760
but they are deleted as soon as you exit QEMU.
761

    
762
VM snapshots currently have the following known limitations:
763
@itemize
764
@item
765
They cannot cope with removable devices if they are removed or
766
inserted after a snapshot is done.
767
@item
768
A few device drivers still have incomplete snapshot support so their
769
state is not saved or restored properly (in particular USB).
770
@end itemize
771

    
772
@node qemu_img_invocation
773
@subsection @code{qemu-img} Invocation
774

    
775
@include qemu-img.texi
776

    
777
@node qemu_nbd_invocation
778
@subsection @code{qemu-nbd} Invocation
779

    
780
@include qemu-nbd.texi
781

    
782
@node host_drives
783
@subsection Using host drives
784

    
785
In addition to disk image files, QEMU can directly access host
786
devices. We describe here the usage for QEMU version >= 0.8.3.
787

    
788
@subsubsection Linux
789

    
790
On Linux, you can directly use the host device filename instead of a
791
disk image filename provided you have enough privileges to access
792
it. For example, use @file{/dev/cdrom} to access to the CDROM or
793
@file{/dev/fd0} for the floppy.
794

    
795
@table @code
796
@item CD
797
You can specify a CDROM device even if no CDROM is loaded. QEMU has
798
specific code to detect CDROM insertion or removal. CDROM ejection by
799
the guest OS is supported. Currently only data CDs are supported.
800
@item Floppy
801
You can specify a floppy device even if no floppy is loaded. Floppy
802
removal is currently not detected accurately (if you change floppy
803
without doing floppy access while the floppy is not loaded, the guest
804
OS will think that the same floppy is loaded).
805
@item Hard disks
806
Hard disks can be used. Normally you must specify the whole disk
807
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
808
see it as a partitioned disk. WARNING: unless you know what you do, it
809
is better to only make READ-ONLY accesses to the hard disk otherwise
810
you may corrupt your host data (use the @option{-snapshot} command
811
line option or modify the device permissions accordingly).
812
@end table
813

    
814
@subsubsection Windows
815

    
816
@table @code
817
@item CD
818
The preferred syntax is the drive letter (e.g. @file{d:}). The
819
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
820
supported as an alias to the first CDROM drive.
821

    
822
Currently there is no specific code to handle removable media, so it
823
is better to use the @code{change} or @code{eject} monitor commands to
824
change or eject media.
825
@item Hard disks
826
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
827
where @var{N} is the drive number (0 is the first hard disk).
828

    
829
WARNING: unless you know what you do, it is better to only make
830
READ-ONLY accesses to the hard disk otherwise you may corrupt your
831
host data (use the @option{-snapshot} command line so that the
832
modifications are written in a temporary file).
833
@end table
834

    
835

    
836
@subsubsection Mac OS X
837

    
838
@file{/dev/cdrom} is an alias to the first CDROM.
839

    
840
Currently there is no specific code to handle removable media, so it
841
is better to use the @code{change} or @code{eject} monitor commands to
842
change or eject media.
843

    
844
@node disk_images_fat_images
845
@subsection Virtual FAT disk images
846

    
847
QEMU can automatically create a virtual FAT disk image from a
848
directory tree. In order to use it, just type:
849

    
850
@example
851
qemu linux.img -hdb fat:/my_directory
852
@end example
853

    
854
Then you access access to all the files in the @file{/my_directory}
855
directory without having to copy them in a disk image or to export
856
them via SAMBA or NFS. The default access is @emph{read-only}.
857

    
858
Floppies can be emulated with the @code{:floppy:} option:
859

    
860
@example
861
qemu linux.img -fda fat:floppy:/my_directory
862
@end example
863

    
864
A read/write support is available for testing (beta stage) with the
865
@code{:rw:} option:
866

    
867
@example
868
qemu linux.img -fda fat:floppy:rw:/my_directory
869
@end example
870

    
871
What you should @emph{never} do:
872
@itemize
873
@item use non-ASCII filenames ;
874
@item use "-snapshot" together with ":rw:" ;
875
@item expect it to work when loadvm'ing ;
876
@item write to the FAT directory on the host system while accessing it with the guest system.
877
@end itemize
878

    
879
@node disk_images_nbd
880
@subsection NBD access
881

    
882
QEMU can access directly to block device exported using the Network Block Device
883
protocol.
884

    
885
@example
886
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
887
@end example
888

    
889
If the NBD server is located on the same host, you can use an unix socket instead
890
of an inet socket:
891

    
892
@example
893
qemu linux.img -hdb nbd:unix:/tmp/my_socket
894
@end example
895

    
896
In this case, the block device must be exported using qemu-nbd:
897

    
898
@example
899
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
900
@end example
901

    
902
The use of qemu-nbd allows to share a disk between several guests:
903
@example
904
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
905
@end example
906

    
907
and then you can use it with two guests:
908
@example
909
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
910
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
911
@end example
912

    
913
@node pcsys_network
914
@section Network emulation
915

    
916
QEMU can simulate several network cards (PCI or ISA cards on the PC
917
target) and can connect them to an arbitrary number of Virtual Local
918
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
919
VLAN. VLAN can be connected between separate instances of QEMU to
920
simulate large networks. For simpler usage, a non privileged user mode
921
network stack can replace the TAP device to have a basic network
922
connection.
923

    
924
@subsection VLANs
925

    
926
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
927
connection between several network devices. These devices can be for
928
example QEMU virtual Ethernet cards or virtual Host ethernet devices
929
(TAP devices).
930

    
931
@subsection Using TAP network interfaces
932

    
933
This is the standard way to connect QEMU to a real network. QEMU adds
934
a virtual network device on your host (called @code{tapN}), and you
935
can then configure it as if it was a real ethernet card.
936

    
937
@subsubsection Linux host
938

    
939
As an example, you can download the @file{linux-test-xxx.tar.gz}
940
archive and copy the script @file{qemu-ifup} in @file{/etc} and
941
configure properly @code{sudo} so that the command @code{ifconfig}
942
contained in @file{qemu-ifup} can be executed as root. You must verify
943
that your host kernel supports the TAP network interfaces: the
944
device @file{/dev/net/tun} must be present.
945

    
946
See @ref{sec_invocation} to have examples of command lines using the
947
TAP network interfaces.
948

    
949
@subsubsection Windows host
950

    
951
There is a virtual ethernet driver for Windows 2000/XP systems, called
952
TAP-Win32. But it is not included in standard QEMU for Windows,
953
so you will need to get it separately. It is part of OpenVPN package,
954
so download OpenVPN from : @url{http://openvpn.net/}.
955

    
956
@subsection Using the user mode network stack
957

    
958
By using the option @option{-net user} (default configuration if no
959
@option{-net} option is specified), QEMU uses a completely user mode
960
network stack (you don't need root privilege to use the virtual
961
network). The virtual network configuration is the following:
962

    
963
@example
964

    
965
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
966
                           |          (10.0.2.2)
967
                           |
968
                           ---->  DNS server (10.0.2.3)
969
                           |
970
                           ---->  SMB server (10.0.2.4)
971
@end example
972

    
973
The QEMU VM behaves as if it was behind a firewall which blocks all
974
incoming connections. You can use a DHCP client to automatically
975
configure the network in the QEMU VM. The DHCP server assign addresses
976
to the hosts starting from 10.0.2.15.
977

    
978
In order to check that the user mode network is working, you can ping
979
the address 10.0.2.2 and verify that you got an address in the range
980
10.0.2.x from the QEMU virtual DHCP server.
981

    
982
Note that @code{ping} is not supported reliably to the internet as it
983
would require root privileges. It means you can only ping the local
984
router (10.0.2.2).
985

    
986
When using the built-in TFTP server, the router is also the TFTP
987
server.
988

    
989
When using the @option{-redir} option, TCP or UDP connections can be
990
redirected from the host to the guest. It allows for example to
991
redirect X11, telnet or SSH connections.
992

    
993
@subsection Connecting VLANs between QEMU instances
994

    
995
Using the @option{-net socket} option, it is possible to make VLANs
996
that span several QEMU instances. See @ref{sec_invocation} to have a
997
basic example.
998

    
999
@node direct_linux_boot
1000
@section Direct Linux Boot
1001

    
1002
This section explains how to launch a Linux kernel inside QEMU without
1003
having to make a full bootable image. It is very useful for fast Linux
1004
kernel testing.
1005

    
1006
The syntax is:
1007
@example
1008
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1009
@end example
1010

    
1011
Use @option{-kernel} to provide the Linux kernel image and
1012
@option{-append} to give the kernel command line arguments. The
1013
@option{-initrd} option can be used to provide an INITRD image.
1014

    
1015
When using the direct Linux boot, a disk image for the first hard disk
1016
@file{hda} is required because its boot sector is used to launch the
1017
Linux kernel.
1018

    
1019
If you do not need graphical output, you can disable it and redirect
1020
the virtual serial port and the QEMU monitor to the console with the
1021
@option{-nographic} option. The typical command line is:
1022
@example
1023
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1024
     -append "root=/dev/hda console=ttyS0" -nographic
1025
@end example
1026

    
1027
Use @key{Ctrl-a c} to switch between the serial console and the
1028
monitor (@pxref{pcsys_keys}).
1029

    
1030
@node pcsys_usb
1031
@section USB emulation
1032

    
1033
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1034
virtual USB devices or real host USB devices (experimental, works only
1035
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1036
as necessary to connect multiple USB devices.
1037

    
1038
@menu
1039
* usb_devices::
1040
* host_usb_devices::
1041
@end menu
1042
@node usb_devices
1043
@subsection Connecting USB devices
1044

    
1045
USB devices can be connected with the @option{-usbdevice} commandline option
1046
or the @code{usb_add} monitor command.  Available devices are:
1047

    
1048
@table @code
1049
@item mouse
1050
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1051
@item tablet
1052
Pointer device that uses absolute coordinates (like a touchscreen).
1053
This means qemu is able to report the mouse position without having
1054
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1055
@item disk:@var{file}
1056
Mass storage device based on @var{file} (@pxref{disk_images})
1057
@item host:@var{bus.addr}
1058
Pass through the host device identified by @var{bus.addr}
1059
(Linux only)
1060
@item host:@var{vendor_id:product_id}
1061
Pass through the host device identified by @var{vendor_id:product_id}
1062
(Linux only)
1063
@item wacom-tablet
1064
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1065
above but it can be used with the tslib library because in addition to touch
1066
coordinates it reports touch pressure.
1067
@item keyboard
1068
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1069
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1070
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1071
device @var{dev}. The available character devices are the same as for the
1072
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1073
used to override the default 0403:6001. For instance, 
1074
@example
1075
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1076
@end example
1077
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1078
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1079
@item braille
1080
Braille device.  This will use BrlAPI to display the braille output on a real
1081
or fake device.
1082
@item net:@var{options}
1083
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1084
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1085
For instance, user-mode networking can be used with
1086
@example
1087
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1088
@end example
1089
Currently this cannot be used in machines that support PCI NICs.
1090
@item bt[:@var{hci-type}]
1091
Bluetooth dongle whose type is specified in the same format as with
1092
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1093
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1094
This USB device implements the USB Transport Layer of HCI.  Example
1095
usage:
1096
@example
1097
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1098
@end example
1099
@end table
1100

    
1101
@node host_usb_devices
1102
@subsection Using host USB devices on a Linux host
1103

    
1104
WARNING: this is an experimental feature. QEMU will slow down when
1105
using it. USB devices requiring real time streaming (i.e. USB Video
1106
Cameras) are not supported yet.
1107

    
1108
@enumerate
1109
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1110
is actually using the USB device. A simple way to do that is simply to
1111
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1112
to @file{mydriver.o.disabled}.
1113

    
1114
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1115
@example
1116
ls /proc/bus/usb
1117
001  devices  drivers
1118
@end example
1119

    
1120
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1121
@example
1122
chown -R myuid /proc/bus/usb
1123
@end example
1124

    
1125
@item Launch QEMU and do in the monitor:
1126
@example
1127
info usbhost
1128
  Device 1.2, speed 480 Mb/s
1129
    Class 00: USB device 1234:5678, USB DISK
1130
@end example
1131
You should see the list of the devices you can use (Never try to use
1132
hubs, it won't work).
1133

    
1134
@item Add the device in QEMU by using:
1135
@example
1136
usb_add host:1234:5678
1137
@end example
1138

    
1139
Normally the guest OS should report that a new USB device is
1140
plugged. You can use the option @option{-usbdevice} to do the same.
1141

    
1142
@item Now you can try to use the host USB device in QEMU.
1143

    
1144
@end enumerate
1145

    
1146
When relaunching QEMU, you may have to unplug and plug again the USB
1147
device to make it work again (this is a bug).
1148

    
1149
@node vnc_security
1150
@section VNC security
1151

    
1152
The VNC server capability provides access to the graphical console
1153
of the guest VM across the network. This has a number of security
1154
considerations depending on the deployment scenarios.
1155

    
1156
@menu
1157
* vnc_sec_none::
1158
* vnc_sec_password::
1159
* vnc_sec_certificate::
1160
* vnc_sec_certificate_verify::
1161
* vnc_sec_certificate_pw::
1162
* vnc_sec_sasl::
1163
* vnc_sec_certificate_sasl::
1164
* vnc_generate_cert::
1165
* vnc_setup_sasl::
1166
@end menu
1167
@node vnc_sec_none
1168
@subsection Without passwords
1169

    
1170
The simplest VNC server setup does not include any form of authentication.
1171
For this setup it is recommended to restrict it to listen on a UNIX domain
1172
socket only. For example
1173

    
1174
@example
1175
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1176
@end example
1177

    
1178
This ensures that only users on local box with read/write access to that
1179
path can access the VNC server. To securely access the VNC server from a
1180
remote machine, a combination of netcat+ssh can be used to provide a secure
1181
tunnel.
1182

    
1183
@node vnc_sec_password
1184
@subsection With passwords
1185

    
1186
The VNC protocol has limited support for password based authentication. Since
1187
the protocol limits passwords to 8 characters it should not be considered
1188
to provide high security. The password can be fairly easily brute-forced by
1189
a client making repeat connections. For this reason, a VNC server using password
1190
authentication should be restricted to only listen on the loopback interface
1191
or UNIX domain sockets. Password authentication is requested with the @code{password}
1192
option, and then once QEMU is running the password is set with the monitor. Until
1193
the monitor is used to set the password all clients will be rejected.
1194

    
1195
@example
1196
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1197
(qemu) change vnc password
1198
Password: ********
1199
(qemu)
1200
@end example
1201

    
1202
@node vnc_sec_certificate
1203
@subsection With x509 certificates
1204

    
1205
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1206
TLS for encryption of the session, and x509 certificates for authentication.
1207
The use of x509 certificates is strongly recommended, because TLS on its
1208
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1209
support provides a secure session, but no authentication. This allows any
1210
client to connect, and provides an encrypted session.
1211

    
1212
@example
1213
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1214
@end example
1215

    
1216
In the above example @code{/etc/pki/qemu} should contain at least three files,
1217
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1218
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1219
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1220
only be readable by the user owning it.
1221

    
1222
@node vnc_sec_certificate_verify
1223
@subsection With x509 certificates and client verification
1224

    
1225
Certificates can also provide a means to authenticate the client connecting.
1226
The server will request that the client provide a certificate, which it will
1227
then validate against the CA certificate. This is a good choice if deploying
1228
in an environment with a private internal certificate authority.
1229

    
1230
@example
1231
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1232
@end example
1233

    
1234

    
1235
@node vnc_sec_certificate_pw
1236
@subsection With x509 certificates, client verification and passwords
1237

    
1238
Finally, the previous method can be combined with VNC password authentication
1239
to provide two layers of authentication for clients.
1240

    
1241
@example
1242
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1243
(qemu) change vnc password
1244
Password: ********
1245
(qemu)
1246
@end example
1247

    
1248

    
1249
@node vnc_sec_sasl
1250
@subsection With SASL authentication
1251

    
1252
The SASL authentication method is a VNC extension, that provides an
1253
easily extendable, pluggable authentication method. This allows for
1254
integration with a wide range of authentication mechanisms, such as
1255
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1256
The strength of the authentication depends on the exact mechanism
1257
configured. If the chosen mechanism also provides a SSF layer, then
1258
it will encrypt the datastream as well.
1259

    
1260
Refer to the later docs on how to choose the exact SASL mechanism
1261
used for authentication, but assuming use of one supporting SSF,
1262
then QEMU can be launched with:
1263

    
1264
@example
1265
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1266
@end example
1267

    
1268
@node vnc_sec_certificate_sasl
1269
@subsection With x509 certificates and SASL authentication
1270

    
1271
If the desired SASL authentication mechanism does not supported
1272
SSF layers, then it is strongly advised to run it in combination
1273
with TLS and x509 certificates. This provides securely encrypted
1274
data stream, avoiding risk of compromising of the security
1275
credentials. This can be enabled, by combining the 'sasl' option
1276
with the aforementioned TLS + x509 options:
1277

    
1278
@example
1279
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1280
@end example
1281

    
1282

    
1283
@node vnc_generate_cert
1284
@subsection Generating certificates for VNC
1285

    
1286
The GNU TLS packages provides a command called @code{certtool} which can
1287
be used to generate certificates and keys in PEM format. At a minimum it
1288
is neccessary to setup a certificate authority, and issue certificates to
1289
each server. If using certificates for authentication, then each client
1290
will also need to be issued a certificate. The recommendation is for the
1291
server to keep its certificates in either @code{/etc/pki/qemu} or for
1292
unprivileged users in @code{$HOME/.pki/qemu}.
1293

    
1294
@menu
1295
* vnc_generate_ca::
1296
* vnc_generate_server::
1297
* vnc_generate_client::
1298
@end menu
1299
@node vnc_generate_ca
1300
@subsubsection Setup the Certificate Authority
1301

    
1302
This step only needs to be performed once per organization / organizational
1303
unit. First the CA needs a private key. This key must be kept VERY secret
1304
and secure. If this key is compromised the entire trust chain of the certificates
1305
issued with it is lost.
1306

    
1307
@example
1308
# certtool --generate-privkey > ca-key.pem
1309
@end example
1310

    
1311
A CA needs to have a public certificate. For simplicity it can be a self-signed
1312
certificate, or one issue by a commercial certificate issuing authority. To
1313
generate a self-signed certificate requires one core piece of information, the
1314
name of the organization.
1315

    
1316
@example
1317
# cat > ca.info <<EOF
1318
cn = Name of your organization
1319
ca
1320
cert_signing_key
1321
EOF
1322
# certtool --generate-self-signed \
1323
           --load-privkey ca-key.pem
1324
           --template ca.info \
1325
           --outfile ca-cert.pem
1326
@end example
1327

    
1328
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1329
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1330

    
1331
@node vnc_generate_server
1332
@subsubsection Issuing server certificates
1333

    
1334
Each server (or host) needs to be issued with a key and certificate. When connecting
1335
the certificate is sent to the client which validates it against the CA certificate.
1336
The core piece of information for a server certificate is the hostname. This should
1337
be the fully qualified hostname that the client will connect with, since the client
1338
will typically also verify the hostname in the certificate. On the host holding the
1339
secure CA private key:
1340

    
1341
@example
1342
# cat > server.info <<EOF
1343
organization = Name  of your organization
1344
cn = server.foo.example.com
1345
tls_www_server
1346
encryption_key
1347
signing_key
1348
EOF
1349
# certtool --generate-privkey > server-key.pem
1350
# certtool --generate-certificate \
1351
           --load-ca-certificate ca-cert.pem \
1352
           --load-ca-privkey ca-key.pem \
1353
           --load-privkey server server-key.pem \
1354
           --template server.info \
1355
           --outfile server-cert.pem
1356
@end example
1357

    
1358
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1359
to the server for which they were generated. The @code{server-key.pem} is security
1360
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1361

    
1362
@node vnc_generate_client
1363
@subsubsection Issuing client certificates
1364

    
1365
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1366
certificates as its authentication mechanism, each client also needs to be issued
1367
a certificate. The client certificate contains enough metadata to uniquely identify
1368
the client, typically organization, state, city, building, etc. On the host holding
1369
the secure CA private key:
1370

    
1371
@example
1372
# cat > client.info <<EOF
1373
country = GB
1374
state = London
1375
locality = London
1376
organiazation = Name of your organization
1377
cn = client.foo.example.com
1378
tls_www_client
1379
encryption_key
1380
signing_key
1381
EOF
1382
# certtool --generate-privkey > client-key.pem
1383
# certtool --generate-certificate \
1384
           --load-ca-certificate ca-cert.pem \
1385
           --load-ca-privkey ca-key.pem \
1386
           --load-privkey client-key.pem \
1387
           --template client.info \
1388
           --outfile client-cert.pem
1389
@end example
1390

    
1391
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1392
copied to the client for which they were generated.
1393

    
1394

    
1395
@node vnc_setup_sasl
1396

    
1397
@subsection Configuring SASL mechanisms
1398

    
1399
The following documentation assumes use of the Cyrus SASL implementation on a
1400
Linux host, but the principals should apply to any other SASL impl. When SASL
1401
is enabled, the mechanism configuration will be loaded from system default
1402
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1403
unprivileged user, an environment variable SASL_CONF_PATH can be used
1404
to make it search alternate locations for the service config.
1405

    
1406
The default configuration might contain
1407

    
1408
@example
1409
mech_list: digest-md5
1410
sasldb_path: /etc/qemu/passwd.db
1411
@end example
1412

    
1413
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1414
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1415
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1416
command. While this mechanism is easy to configure and use, it is not
1417
considered secure by modern standards, so only suitable for developers /
1418
ad-hoc testing.
1419

    
1420
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1421
mechanism
1422

    
1423
@example
1424
mech_list: gssapi
1425
keytab: /etc/qemu/krb5.tab
1426
@end example
1427

    
1428
For this to work the administrator of your KDC must generate a Kerberos
1429
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1430
replacing 'somehost.example.com' with the fully qualified host name of the
1431
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1432

    
1433
Other configurations will be left as an exercise for the reader. It should
1434
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1435
encryption. For all other mechanisms, VNC should always be configured to
1436
use TLS and x509 certificates to protect security credentials from snooping.
1437

    
1438
@node gdb_usage
1439
@section GDB usage
1440

    
1441
QEMU has a primitive support to work with gdb, so that you can do
1442
'Ctrl-C' while the virtual machine is running and inspect its state.
1443

    
1444
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1445
gdb connection:
1446
@example
1447
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1448
       -append "root=/dev/hda"
1449
Connected to host network interface: tun0
1450
Waiting gdb connection on port 1234
1451
@end example
1452

    
1453
Then launch gdb on the 'vmlinux' executable:
1454
@example
1455
> gdb vmlinux
1456
@end example
1457

    
1458
In gdb, connect to QEMU:
1459
@example
1460
(gdb) target remote localhost:1234
1461
@end example
1462

    
1463
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1464
@example
1465
(gdb) c
1466
@end example
1467

    
1468
Here are some useful tips in order to use gdb on system code:
1469

    
1470
@enumerate
1471
@item
1472
Use @code{info reg} to display all the CPU registers.
1473
@item
1474
Use @code{x/10i $eip} to display the code at the PC position.
1475
@item
1476
Use @code{set architecture i8086} to dump 16 bit code. Then use
1477
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1478
@end enumerate
1479

    
1480
Advanced debugging options:
1481

    
1482
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1483
@table @code
1484
@item maintenance packet qqemu.sstepbits
1485

    
1486
This will display the MASK bits used to control the single stepping IE:
1487
@example
1488
(gdb) maintenance packet qqemu.sstepbits
1489
sending: "qqemu.sstepbits"
1490
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1491
@end example
1492
@item maintenance packet qqemu.sstep
1493

    
1494
This will display the current value of the mask used when single stepping IE:
1495
@example
1496
(gdb) maintenance packet qqemu.sstep
1497
sending: "qqemu.sstep"
1498
received: "0x7"
1499
@end example
1500
@item maintenance packet Qqemu.sstep=HEX_VALUE
1501

    
1502
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1503
@example
1504
(gdb) maintenance packet Qqemu.sstep=0x5
1505
sending: "qemu.sstep=0x5"
1506
received: "OK"
1507
@end example
1508
@end table
1509

    
1510
@node pcsys_os_specific
1511
@section Target OS specific information
1512

    
1513
@subsection Linux
1514

    
1515
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1516
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1517
color depth in the guest and the host OS.
1518

    
1519
When using a 2.6 guest Linux kernel, you should add the option
1520
@code{clock=pit} on the kernel command line because the 2.6 Linux
1521
kernels make very strict real time clock checks by default that QEMU
1522
cannot simulate exactly.
1523

    
1524
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1525
not activated because QEMU is slower with this patch. The QEMU
1526
Accelerator Module is also much slower in this case. Earlier Fedora
1527
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1528
patch by default. Newer kernels don't have it.
1529

    
1530
@subsection Windows
1531

    
1532
If you have a slow host, using Windows 95 is better as it gives the
1533
best speed. Windows 2000 is also a good choice.
1534

    
1535
@subsubsection SVGA graphic modes support
1536

    
1537
QEMU emulates a Cirrus Logic GD5446 Video
1538
card. All Windows versions starting from Windows 95 should recognize
1539
and use this graphic card. For optimal performances, use 16 bit color
1540
depth in the guest and the host OS.
1541

    
1542
If you are using Windows XP as guest OS and if you want to use high
1543
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1544
1280x1024x16), then you should use the VESA VBE virtual graphic card
1545
(option @option{-std-vga}).
1546

    
1547
@subsubsection CPU usage reduction
1548

    
1549
Windows 9x does not correctly use the CPU HLT
1550
instruction. The result is that it takes host CPU cycles even when
1551
idle. You can install the utility from
1552
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1553
problem. Note that no such tool is needed for NT, 2000 or XP.
1554

    
1555
@subsubsection Windows 2000 disk full problem
1556

    
1557
Windows 2000 has a bug which gives a disk full problem during its
1558
installation. When installing it, use the @option{-win2k-hack} QEMU
1559
option to enable a specific workaround. After Windows 2000 is
1560
installed, you no longer need this option (this option slows down the
1561
IDE transfers).
1562

    
1563
@subsubsection Windows 2000 shutdown
1564

    
1565
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1566
can. It comes from the fact that Windows 2000 does not automatically
1567
use the APM driver provided by the BIOS.
1568

    
1569
In order to correct that, do the following (thanks to Struan
1570
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1571
Add/Troubleshoot a device => Add a new device & Next => No, select the
1572
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1573
(again) a few times. Now the driver is installed and Windows 2000 now
1574
correctly instructs QEMU to shutdown at the appropriate moment.
1575

    
1576
@subsubsection Share a directory between Unix and Windows
1577

    
1578
See @ref{sec_invocation} about the help of the option @option{-smb}.
1579

    
1580
@subsubsection Windows XP security problem
1581

    
1582
Some releases of Windows XP install correctly but give a security
1583
error when booting:
1584
@example
1585
A problem is preventing Windows from accurately checking the
1586
license for this computer. Error code: 0x800703e6.
1587
@end example
1588

    
1589
The workaround is to install a service pack for XP after a boot in safe
1590
mode. Then reboot, and the problem should go away. Since there is no
1591
network while in safe mode, its recommended to download the full
1592
installation of SP1 or SP2 and transfer that via an ISO or using the
1593
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1594

    
1595
@subsection MS-DOS and FreeDOS
1596

    
1597
@subsubsection CPU usage reduction
1598

    
1599
DOS does not correctly use the CPU HLT instruction. The result is that
1600
it takes host CPU cycles even when idle. You can install the utility
1601
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1602
problem.
1603

    
1604
@node QEMU System emulator for non PC targets
1605
@chapter QEMU System emulator for non PC targets
1606

    
1607
QEMU is a generic emulator and it emulates many non PC
1608
machines. Most of the options are similar to the PC emulator. The
1609
differences are mentioned in the following sections.
1610

    
1611
@menu
1612
* QEMU PowerPC System emulator::
1613
* Sparc32 System emulator::
1614
* Sparc64 System emulator::
1615
* MIPS System emulator::
1616
* ARM System emulator::
1617
* ColdFire System emulator::
1618
@end menu
1619

    
1620
@node QEMU PowerPC System emulator
1621
@section QEMU PowerPC System emulator
1622

    
1623
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1624
or PowerMac PowerPC system.
1625

    
1626
QEMU emulates the following PowerMac peripherals:
1627

    
1628
@itemize @minus
1629
@item
1630
UniNorth or Grackle PCI Bridge
1631
@item
1632
PCI VGA compatible card with VESA Bochs Extensions
1633
@item
1634
2 PMAC IDE interfaces with hard disk and CD-ROM support
1635
@item
1636
NE2000 PCI adapters
1637
@item
1638
Non Volatile RAM
1639
@item
1640
VIA-CUDA with ADB keyboard and mouse.
1641
@end itemize
1642

    
1643
QEMU emulates the following PREP peripherals:
1644

    
1645
@itemize @minus
1646
@item
1647
PCI Bridge
1648
@item
1649
PCI VGA compatible card with VESA Bochs Extensions
1650
@item
1651
2 IDE interfaces with hard disk and CD-ROM support
1652
@item
1653
Floppy disk
1654
@item
1655
NE2000 network adapters
1656
@item
1657
Serial port
1658
@item
1659
PREP Non Volatile RAM
1660
@item
1661
PC compatible keyboard and mouse.
1662
@end itemize
1663

    
1664
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1665
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1666

    
1667
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1668
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1669
v2) portable firmware implementation. The goal is to implement a 100%
1670
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1671

    
1672
@c man begin OPTIONS
1673

    
1674
The following options are specific to the PowerPC emulation:
1675

    
1676
@table @option
1677

    
1678
@item -g WxH[xDEPTH]
1679

    
1680
Set the initial VGA graphic mode. The default is 800x600x15.
1681

    
1682
@item -prom-env string
1683

    
1684
Set OpenBIOS variables in NVRAM, for example:
1685

    
1686
@example
1687
qemu-system-ppc -prom-env 'auto-boot?=false' \
1688
 -prom-env 'boot-device=hd:2,\yaboot' \
1689
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1690
@end example
1691

    
1692
These variables are not used by Open Hack'Ware.
1693

    
1694
@end table
1695

    
1696
@c man end
1697

    
1698

    
1699
More information is available at
1700
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1701

    
1702
@node Sparc32 System emulator
1703
@section Sparc32 System emulator
1704

    
1705
Use the executable @file{qemu-system-sparc} to simulate the following
1706
Sun4m architecture machines:
1707
@itemize @minus
1708
@item
1709
SPARCstation 4
1710
@item
1711
SPARCstation 5
1712
@item
1713
SPARCstation 10
1714
@item
1715
SPARCstation 20
1716
@item
1717
SPARCserver 600MP
1718
@item
1719
SPARCstation LX
1720
@item
1721
SPARCstation Voyager
1722
@item
1723
SPARCclassic
1724
@item
1725
SPARCbook
1726
@end itemize
1727

    
1728
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1729
but Linux limits the number of usable CPUs to 4.
1730

    
1731
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1732
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1733
emulators are not usable yet.
1734

    
1735
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1736

    
1737
@itemize @minus
1738
@item
1739
IOMMU or IO-UNITs
1740
@item
1741
TCX Frame buffer
1742
@item
1743
Lance (Am7990) Ethernet
1744
@item
1745
Non Volatile RAM M48T02/M48T08
1746
@item
1747
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1748
and power/reset logic
1749
@item
1750
ESP SCSI controller with hard disk and CD-ROM support
1751
@item
1752
Floppy drive (not on SS-600MP)
1753
@item
1754
CS4231 sound device (only on SS-5, not working yet)
1755
@end itemize
1756

    
1757
The number of peripherals is fixed in the architecture.  Maximum
1758
memory size depends on the machine type, for SS-5 it is 256MB and for
1759
others 2047MB.
1760

    
1761
Since version 0.8.2, QEMU uses OpenBIOS
1762
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1763
firmware implementation. The goal is to implement a 100% IEEE
1764
1275-1994 (referred to as Open Firmware) compliant firmware.
1765

    
1766
A sample Linux 2.6 series kernel and ram disk image are available on
1767
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1768
some kernel versions work. Please note that currently Solaris kernels
1769
don't work probably due to interface issues between OpenBIOS and
1770
Solaris.
1771

    
1772
@c man begin OPTIONS
1773

    
1774
The following options are specific to the Sparc32 emulation:
1775

    
1776
@table @option
1777

    
1778
@item -g WxHx[xDEPTH]
1779

    
1780
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1781
the only other possible mode is 1024x768x24.
1782

    
1783
@item -prom-env string
1784

    
1785
Set OpenBIOS variables in NVRAM, for example:
1786

    
1787
@example
1788
qemu-system-sparc -prom-env 'auto-boot?=false' \
1789
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1790
@end example
1791

    
1792
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1793

    
1794
Set the emulated machine type. Default is SS-5.
1795

    
1796
@end table
1797

    
1798
@c man end
1799

    
1800
@node Sparc64 System emulator
1801
@section Sparc64 System emulator
1802

    
1803
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1804
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1805
Niagara (T1) machine. The emulator is not usable for anything yet, but
1806
it can launch some kernels.
1807

    
1808
QEMU emulates the following peripherals:
1809

    
1810
@itemize @minus
1811
@item
1812
UltraSparc IIi APB PCI Bridge
1813
@item
1814
PCI VGA compatible card with VESA Bochs Extensions
1815
@item
1816
PS/2 mouse and keyboard
1817
@item
1818
Non Volatile RAM M48T59
1819
@item
1820
PC-compatible serial ports
1821
@item
1822
2 PCI IDE interfaces with hard disk and CD-ROM support
1823
@item
1824
Floppy disk
1825
@end itemize
1826

    
1827
@c man begin OPTIONS
1828

    
1829
The following options are specific to the Sparc64 emulation:
1830

    
1831
@table @option
1832

    
1833
@item -prom-env string
1834

    
1835
Set OpenBIOS variables in NVRAM, for example:
1836

    
1837
@example
1838
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1839
@end example
1840

    
1841
@item -M [sun4u|sun4v|Niagara]
1842

    
1843
Set the emulated machine type. The default is sun4u.
1844

    
1845
@end table
1846

    
1847
@c man end
1848

    
1849
@node MIPS System emulator
1850
@section MIPS System emulator
1851

    
1852
Four executables cover simulation of 32 and 64-bit MIPS systems in
1853
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1854
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1855
Five different machine types are emulated:
1856

    
1857
@itemize @minus
1858
@item
1859
A generic ISA PC-like machine "mips"
1860
@item
1861
The MIPS Malta prototype board "malta"
1862
@item
1863
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1864
@item
1865
MIPS emulator pseudo board "mipssim"
1866
@item
1867
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1868
@end itemize
1869

    
1870
The generic emulation is supported by Debian 'Etch' and is able to
1871
install Debian into a virtual disk image. The following devices are
1872
emulated:
1873

    
1874
@itemize @minus
1875
@item
1876
A range of MIPS CPUs, default is the 24Kf
1877
@item
1878
PC style serial port
1879
@item
1880
PC style IDE disk
1881
@item
1882
NE2000 network card
1883
@end itemize
1884

    
1885
The Malta emulation supports the following devices:
1886

    
1887
@itemize @minus
1888
@item
1889
Core board with MIPS 24Kf CPU and Galileo system controller
1890
@item
1891
PIIX4 PCI/USB/SMbus controller
1892
@item
1893
The Multi-I/O chip's serial device
1894
@item
1895
PCnet32 PCI network card
1896
@item
1897
Malta FPGA serial device
1898
@item
1899
Cirrus (default) or any other PCI VGA graphics card
1900
@end itemize
1901

    
1902
The ACER Pica emulation supports:
1903

    
1904
@itemize @minus
1905
@item
1906
MIPS R4000 CPU
1907
@item
1908
PC-style IRQ and DMA controllers
1909
@item
1910
PC Keyboard
1911
@item
1912
IDE controller
1913
@end itemize
1914

    
1915
The mipssim pseudo board emulation provides an environment similiar
1916
to what the proprietary MIPS emulator uses for running Linux.
1917
It supports:
1918

    
1919
@itemize @minus
1920
@item
1921
A range of MIPS CPUs, default is the 24Kf
1922
@item
1923
PC style serial port
1924
@item
1925
MIPSnet network emulation
1926
@end itemize
1927

    
1928
The MIPS Magnum R4000 emulation supports:
1929

    
1930
@itemize @minus
1931
@item
1932
MIPS R4000 CPU
1933
@item
1934
PC-style IRQ controller
1935
@item
1936
PC Keyboard
1937
@item
1938
SCSI controller
1939
@item
1940
G364 framebuffer
1941
@end itemize
1942

    
1943

    
1944
@node ARM System emulator
1945
@section ARM System emulator
1946

    
1947
Use the executable @file{qemu-system-arm} to simulate a ARM
1948
machine. The ARM Integrator/CP board is emulated with the following
1949
devices:
1950

    
1951
@itemize @minus
1952
@item
1953
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1954
@item
1955
Two PL011 UARTs
1956
@item
1957
SMC 91c111 Ethernet adapter
1958
@item
1959
PL110 LCD controller
1960
@item
1961
PL050 KMI with PS/2 keyboard and mouse.
1962
@item
1963
PL181 MultiMedia Card Interface with SD card.
1964
@end itemize
1965

    
1966
The ARM Versatile baseboard is emulated with the following devices:
1967

    
1968
@itemize @minus
1969
@item
1970
ARM926E, ARM1136 or Cortex-A8 CPU
1971
@item
1972
PL190 Vectored Interrupt Controller
1973
@item
1974
Four PL011 UARTs
1975
@item
1976
SMC 91c111 Ethernet adapter
1977
@item
1978
PL110 LCD controller
1979
@item
1980
PL050 KMI with PS/2 keyboard and mouse.
1981
@item
1982
PCI host bridge.  Note the emulated PCI bridge only provides access to
1983
PCI memory space.  It does not provide access to PCI IO space.
1984
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1985
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1986
mapped control registers.
1987
@item
1988
PCI OHCI USB controller.
1989
@item
1990
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1991
@item
1992
PL181 MultiMedia Card Interface with SD card.
1993
@end itemize
1994

    
1995
The ARM RealView Emulation baseboard is emulated with the following devices:
1996

    
1997
@itemize @minus
1998
@item
1999
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2000
@item
2001
ARM AMBA Generic/Distributed Interrupt Controller
2002
@item
2003
Four PL011 UARTs
2004
@item
2005
SMC 91c111 Ethernet adapter
2006
@item
2007
PL110 LCD controller
2008
@item
2009
PL050 KMI with PS/2 keyboard and mouse
2010
@item
2011
PCI host bridge
2012
@item
2013
PCI OHCI USB controller
2014
@item
2015
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2016
@item
2017
PL181 MultiMedia Card Interface with SD card.
2018
@end itemize
2019

    
2020
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2021
and "Terrier") emulation includes the following peripherals:
2022

    
2023
@itemize @minus
2024
@item
2025
Intel PXA270 System-on-chip (ARM V5TE core)
2026
@item
2027
NAND Flash memory
2028
@item
2029
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2030
@item
2031
On-chip OHCI USB controller
2032
@item
2033
On-chip LCD controller
2034
@item
2035
On-chip Real Time Clock
2036
@item
2037
TI ADS7846 touchscreen controller on SSP bus
2038
@item
2039
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2040
@item
2041
GPIO-connected keyboard controller and LEDs
2042
@item
2043
Secure Digital card connected to PXA MMC/SD host
2044
@item
2045
Three on-chip UARTs
2046
@item
2047
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2048
@end itemize
2049

    
2050
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2051
following elements:
2052

    
2053
@itemize @minus
2054
@item
2055
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2056
@item
2057
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2058
@item
2059
On-chip LCD controller
2060
@item
2061
On-chip Real Time Clock
2062
@item
2063
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2064
CODEC, connected through MicroWire and I@math{^2}S busses
2065
@item
2066
GPIO-connected matrix keypad
2067
@item
2068
Secure Digital card connected to OMAP MMC/SD host
2069
@item
2070
Three on-chip UARTs
2071
@end itemize
2072

    
2073
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2074
emulation supports the following elements:
2075

    
2076
@itemize @minus
2077
@item
2078
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2079
@item
2080
RAM and non-volatile OneNAND Flash memories
2081
@item
2082
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2083
display controller and a LS041y3 MIPI DBI-C controller
2084
@item
2085
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2086
driven through SPI bus
2087
@item
2088
National Semiconductor LM8323-controlled qwerty keyboard driven
2089
through I@math{^2}C bus
2090
@item
2091
Secure Digital card connected to OMAP MMC/SD host
2092
@item
2093
Three OMAP on-chip UARTs and on-chip STI debugging console
2094
@item
2095
A Bluetooth(R) transciever and HCI connected to an UART
2096
@item
2097
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2098
TUSB6010 chip - only USB host mode is supported
2099
@item
2100
TI TMP105 temperature sensor driven through I@math{^2}C bus
2101
@item
2102
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2103
@item
2104
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2105
through CBUS
2106
@end itemize
2107

    
2108
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2109
devices:
2110

    
2111
@itemize @minus
2112
@item
2113
Cortex-M3 CPU core.
2114
@item
2115
64k Flash and 8k SRAM.
2116
@item
2117
Timers, UARTs, ADC and I@math{^2}C interface.
2118
@item
2119
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2120
@end itemize
2121

    
2122
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2123
devices:
2124

    
2125
@itemize @minus
2126
@item
2127
Cortex-M3 CPU core.
2128
@item
2129
256k Flash and 64k SRAM.
2130
@item
2131
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2132
@item
2133
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2134
@end itemize
2135

    
2136
The Freecom MusicPal internet radio emulation includes the following
2137
elements:
2138

    
2139
@itemize @minus
2140
@item
2141
Marvell MV88W8618 ARM core.
2142
@item
2143
32 MB RAM, 256 KB SRAM, 8 MB flash.
2144
@item
2145
Up to 2 16550 UARTs
2146
@item
2147
MV88W8xx8 Ethernet controller
2148
@item
2149
MV88W8618 audio controller, WM8750 CODEC and mixer
2150
@item
2151
128?64 display with brightness control
2152
@item
2153
2 buttons, 2 navigation wheels with button function
2154
@end itemize
2155

    
2156
The Siemens SX1 models v1 and v2 (default) basic emulation.
2157
The emulaton includes the following elements:
2158

    
2159
@itemize @minus
2160
@item
2161
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2162
@item
2163
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2164
V1
2165
1 Flash of 16MB and 1 Flash of 8MB
2166
V2
2167
1 Flash of 32MB
2168
@item
2169
On-chip LCD controller
2170
@item
2171
On-chip Real Time Clock
2172
@item
2173
Secure Digital card connected to OMAP MMC/SD host
2174
@item
2175
Three on-chip UARTs
2176
@end itemize
2177

    
2178
The "Syborg" Symbian Virtual Platform base model includes the following
2179
elements:
2180

    
2181
@itemize @minus
2182
@item
2183
ARM Cortex-A8 CPU
2184
@item
2185
Interrupt controller
2186
@item
2187
Timer
2188
@item
2189
Real Time Clock
2190
@item
2191
Keyboard
2192
@item
2193
Framebuffer
2194
@item
2195
Touchscreen
2196
@item
2197
UARTs
2198
@end itemize
2199

    
2200
A Linux 2.6 test image is available on the QEMU web site. More
2201
information is available in the QEMU mailing-list archive.
2202

    
2203
@c man begin OPTIONS
2204

    
2205
The following options are specific to the ARM emulation:
2206

    
2207
@table @option
2208

    
2209
@item -semihosting
2210
Enable semihosting syscall emulation.
2211

    
2212
On ARM this implements the "Angel" interface.
2213

    
2214
Note that this allows guest direct access to the host filesystem,
2215
so should only be used with trusted guest OS.
2216

    
2217
@end table
2218

    
2219
@node ColdFire System emulator
2220
@section ColdFire System emulator
2221

    
2222
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2223
The emulator is able to boot a uClinux kernel.
2224

    
2225
The M5208EVB emulation includes the following devices:
2226

    
2227
@itemize @minus
2228
@item
2229
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2230
@item
2231
Three Two on-chip UARTs.
2232
@item
2233
Fast Ethernet Controller (FEC)
2234
@end itemize
2235

    
2236
The AN5206 emulation includes the following devices:
2237

    
2238
@itemize @minus
2239
@item
2240
MCF5206 ColdFire V2 Microprocessor.
2241
@item
2242
Two on-chip UARTs.
2243
@end itemize
2244

    
2245
@c man begin OPTIONS
2246

    
2247
The following options are specific to the ARM emulation:
2248

    
2249
@table @option
2250

    
2251
@item -semihosting
2252
Enable semihosting syscall emulation.
2253

    
2254
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2255

    
2256
Note that this allows guest direct access to the host filesystem,
2257
so should only be used with trusted guest OS.
2258

    
2259
@end table
2260

    
2261
@node QEMU User space emulator
2262
@chapter QEMU User space emulator
2263

    
2264
@menu
2265
* Supported Operating Systems ::
2266
* Linux User space emulator::
2267
* Mac OS X/Darwin User space emulator ::
2268
* BSD User space emulator ::
2269
@end menu
2270

    
2271
@node Supported Operating Systems
2272
@section Supported Operating Systems
2273

    
2274
The following OS are supported in user space emulation:
2275

    
2276
@itemize @minus
2277
@item
2278
Linux (referred as qemu-linux-user)
2279
@item
2280
Mac OS X/Darwin (referred as qemu-darwin-user)
2281
@item
2282
BSD (referred as qemu-bsd-user)
2283
@end itemize
2284

    
2285
@node Linux User space emulator
2286
@section Linux User space emulator
2287

    
2288
@menu
2289
* Quick Start::
2290
* Wine launch::
2291
* Command line options::
2292
* Other binaries::
2293
@end menu
2294

    
2295
@node Quick Start
2296
@subsection Quick Start
2297

    
2298
In order to launch a Linux process, QEMU needs the process executable
2299
itself and all the target (x86) dynamic libraries used by it.
2300

    
2301
@itemize
2302

    
2303
@item On x86, you can just try to launch any process by using the native
2304
libraries:
2305

    
2306
@example
2307
qemu-i386 -L / /bin/ls
2308
@end example
2309

    
2310
@code{-L /} tells that the x86 dynamic linker must be searched with a
2311
@file{/} prefix.
2312

    
2313
@item Since QEMU is also a linux process, you can launch qemu with
2314
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2315

    
2316
@example
2317
qemu-i386 -L / qemu-i386 -L / /bin/ls
2318
@end example
2319

    
2320
@item On non x86 CPUs, you need first to download at least an x86 glibc
2321
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2322
@code{LD_LIBRARY_PATH} is not set:
2323

    
2324
@example
2325
unset LD_LIBRARY_PATH
2326
@end example
2327

    
2328
Then you can launch the precompiled @file{ls} x86 executable:
2329

    
2330
@example
2331
qemu-i386 tests/i386/ls
2332
@end example
2333
You can look at @file{qemu-binfmt-conf.sh} so that
2334
QEMU is automatically launched by the Linux kernel when you try to
2335
launch x86 executables. It requires the @code{binfmt_misc} module in the
2336
Linux kernel.
2337

    
2338
@item The x86 version of QEMU is also included. You can try weird things such as:
2339
@example
2340
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2341
          /usr/local/qemu-i386/bin/ls-i386
2342
@end example
2343

    
2344
@end itemize
2345

    
2346
@node Wine launch
2347
@subsection Wine launch
2348

    
2349
@itemize
2350

    
2351
@item Ensure that you have a working QEMU with the x86 glibc
2352
distribution (see previous section). In order to verify it, you must be
2353
able to do:
2354

    
2355
@example
2356
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2357
@end example
2358

    
2359
@item Download the binary x86 Wine install
2360
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2361

    
2362
@item Configure Wine on your account. Look at the provided script
2363
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2364
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2365

    
2366
@item Then you can try the example @file{putty.exe}:
2367

    
2368
@example
2369
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2370
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2371
@end example
2372

    
2373
@end itemize
2374

    
2375
@node Command line options
2376
@subsection Command line options
2377

    
2378
@example
2379
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2380
@end example
2381

    
2382
@table @option
2383
@item -h
2384
Print the help
2385
@item -L path
2386
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2387
@item -s size
2388
Set the x86 stack size in bytes (default=524288)
2389
@item -cpu model
2390
Select CPU model (-cpu ? for list and additional feature selection)
2391
@end table
2392

    
2393
Debug options:
2394

    
2395
@table @option
2396
@item -d
2397
Activate log (logfile=/tmp/qemu.log)
2398
@item -p pagesize
2399
Act as if the host page size was 'pagesize' bytes
2400
@item -g port
2401
Wait gdb connection to port
2402
@item -singlestep
2403
Run the emulation in single step mode.
2404
@end table
2405

    
2406
Environment variables:
2407

    
2408
@table @env
2409
@item QEMU_STRACE
2410
Print system calls and arguments similar to the 'strace' program
2411
(NOTE: the actual 'strace' program will not work because the user
2412
space emulator hasn't implemented ptrace).  At the moment this is
2413
incomplete.  All system calls that don't have a specific argument
2414
format are printed with information for six arguments.  Many
2415
flag-style arguments don't have decoders and will show up as numbers.
2416
@end table
2417

    
2418
@node Other binaries
2419
@subsection Other binaries
2420

    
2421
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2422
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2423
configurations), and arm-uclinux bFLT format binaries.
2424

    
2425
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2426
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2427
coldfire uClinux bFLT format binaries.
2428

    
2429
The binary format is detected automatically.
2430

    
2431
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2432

    
2433
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2434
(Sparc64 CPU, 32 bit ABI).
2435

    
2436
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2437
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2438

    
2439
@node Mac OS X/Darwin User space emulator
2440
@section Mac OS X/Darwin User space emulator
2441

    
2442
@menu
2443
* Mac OS X/Darwin Status::
2444
* Mac OS X/Darwin Quick Start::
2445
* Mac OS X/Darwin Command line options::
2446
@end menu
2447

    
2448
@node Mac OS X/Darwin Status
2449
@subsection Mac OS X/Darwin Status
2450

    
2451
@itemize @minus
2452
@item
2453
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2454
@item
2455
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2456
@item
2457
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2458
@item
2459
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2460
@end itemize
2461

    
2462
[1] If you're host commpage can be executed by qemu.
2463

    
2464
@node Mac OS X/Darwin Quick Start
2465
@subsection Quick Start
2466

    
2467
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2468
itself and all the target dynamic libraries used by it. If you don't have the FAT
2469
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2470
CD or compile them by hand.
2471

    
2472
@itemize
2473

    
2474
@item On x86, you can just try to launch any process by using the native
2475
libraries:
2476

    
2477
@example
2478
qemu-i386 /bin/ls
2479
@end example
2480

    
2481
or to run the ppc version of the executable:
2482

    
2483
@example
2484
qemu-ppc /bin/ls
2485
@end example
2486

    
2487
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2488
are installed:
2489

    
2490
@example
2491
qemu-i386 -L /opt/x86_root/ /bin/ls
2492
@end example
2493

    
2494
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2495
@file{/opt/x86_root/usr/bin/dyld}.
2496

    
2497
@end itemize
2498

    
2499
@node Mac OS X/Darwin Command line options
2500
@subsection Command line options
2501

    
2502
@example
2503
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2504
@end example
2505

    
2506
@table @option
2507
@item -h
2508
Print the help
2509
@item -L path
2510
Set the library root path (default=/)
2511
@item -s size
2512
Set the stack size in bytes (default=524288)
2513
@end table
2514

    
2515
Debug options:
2516

    
2517
@table @option
2518
@item -d
2519
Activate log (logfile=/tmp/qemu.log)
2520
@item -p pagesize
2521
Act as if the host page size was 'pagesize' bytes
2522
@item -singlestep
2523
Run the emulation in single step mode.
2524
@end table
2525

    
2526
@node BSD User space emulator
2527
@section BSD User space emulator
2528

    
2529
@menu
2530
* BSD Status::
2531
* BSD Quick Start::
2532
* BSD Command line options::
2533
@end menu
2534

    
2535
@node BSD Status
2536
@subsection BSD Status
2537

    
2538
@itemize @minus
2539
@item
2540
target Sparc64 on Sparc64: Some trivial programs work.
2541
@end itemize
2542

    
2543
@node BSD Quick Start
2544
@subsection Quick Start
2545

    
2546
In order to launch a BSD process, QEMU needs the process executable
2547
itself and all the target dynamic libraries used by it.
2548

    
2549
@itemize
2550

    
2551
@item On Sparc64, you can just try to launch any process by using the native
2552
libraries:
2553

    
2554
@example
2555
qemu-sparc64 /bin/ls
2556
@end example
2557

    
2558
@end itemize
2559

    
2560
@node BSD Command line options
2561
@subsection Command line options
2562

    
2563
@example
2564
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2565
@end example
2566

    
2567
@table @option
2568
@item -h
2569
Print the help
2570
@item -L path
2571
Set the library root path (default=/)
2572
@item -s size
2573
Set the stack size in bytes (default=524288)
2574
@item -bsd type
2575
Set the type of the emulated BSD Operating system. Valid values are
2576
FreeBSD, NetBSD and OpenBSD (default).
2577
@end table
2578

    
2579
Debug options:
2580

    
2581
@table @option
2582
@item -d
2583
Activate log (logfile=/tmp/qemu.log)
2584
@item -p pagesize
2585
Act as if the host page size was 'pagesize' bytes
2586
@item -singlestep
2587
Run the emulation in single step mode.
2588
@end table
2589

    
2590
@node compilation
2591
@chapter Compilation from the sources
2592

    
2593
@menu
2594
* Linux/Unix::
2595
* Windows::
2596
* Cross compilation for Windows with Linux::
2597
* Mac OS X::
2598
@end menu
2599

    
2600
@node Linux/Unix
2601
@section Linux/Unix
2602

    
2603
@subsection Compilation
2604

    
2605
First you must decompress the sources:
2606
@example
2607
cd /tmp
2608
tar zxvf qemu-x.y.z.tar.gz
2609
cd qemu-x.y.z
2610
@end example
2611

    
2612
Then you configure QEMU and build it (usually no options are needed):
2613
@example
2614
./configure
2615
make
2616
@end example
2617

    
2618
Then type as root user:
2619
@example
2620
make install
2621
@end example
2622
to install QEMU in @file{/usr/local}.
2623

    
2624
@node Windows
2625
@section Windows
2626

    
2627
@itemize
2628
@item Install the current versions of MSYS and MinGW from
2629
@url{http://www.mingw.org/}. You can find detailed installation
2630
instructions in the download section and the FAQ.
2631

    
2632
@item Download
2633
the MinGW development library of SDL 1.2.x
2634
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2635
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2636
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2637
directory. Edit the @file{sdl-config} script so that it gives the
2638
correct SDL directory when invoked.
2639

    
2640
@item Extract the current version of QEMU.
2641

    
2642
@item Start the MSYS shell (file @file{msys.bat}).
2643

    
2644
@item Change to the QEMU directory. Launch @file{./configure} and
2645
@file{make}.  If you have problems using SDL, verify that
2646
@file{sdl-config} can be launched from the MSYS command line.
2647

    
2648
@item You can install QEMU in @file{Program Files/Qemu} by typing
2649
@file{make install}. Don't forget to copy @file{SDL.dll} in
2650
@file{Program Files/Qemu}.
2651

    
2652
@end itemize
2653

    
2654
@node Cross compilation for Windows with Linux
2655
@section Cross compilation for Windows with Linux
2656

    
2657
@itemize
2658
@item
2659
Install the MinGW cross compilation tools available at
2660
@url{http://www.mingw.org/}.
2661

    
2662
@item
2663
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2664
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2665
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2666
the QEMU configuration script.
2667

    
2668
@item
2669
Configure QEMU for Windows cross compilation:
2670
@example
2671
./configure --enable-mingw32
2672
@end example
2673
If necessary, you can change the cross-prefix according to the prefix
2674
chosen for the MinGW tools with --cross-prefix. You can also use
2675
--prefix to set the Win32 install path.
2676

    
2677
@item You can install QEMU in the installation directory by typing
2678
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2679
installation directory.
2680

    
2681
@end itemize
2682

    
2683
Note: Currently, Wine does not seem able to launch
2684
QEMU for Win32.
2685

    
2686
@node Mac OS X
2687
@section Mac OS X
2688

    
2689
The Mac OS X patches are not fully merged in QEMU, so you should look
2690
at the QEMU mailing list archive to have all the necessary
2691
information.
2692

    
2693
@node Index
2694
@chapter Index
2695
@printindex cp
2696

    
2697
@bye