Statistics
| Branch: | Revision:

root / vl.c @ 492c30af

History | View | Annotate | Download (252.8 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "block.h"
40
#include "audio/audio.h"
41
#include "migration.h"
42

    
43
#include <unistd.h>
44
#include <fcntl.h>
45
#include <signal.h>
46
#include <time.h>
47
#include <errno.h>
48
#include <sys/time.h>
49
#include <zlib.h>
50

    
51
#ifndef _WIN32
52
#include <sys/times.h>
53
#include <sys/wait.h>
54
#include <termios.h>
55
#include <sys/mman.h>
56
#include <sys/ioctl.h>
57
#include <sys/socket.h>
58
#include <netinet/in.h>
59
#include <dirent.h>
60
#include <netdb.h>
61
#include <sys/select.h>
62
#include <arpa/inet.h>
63
#ifdef _BSD
64
#include <sys/stat.h>
65
#if !defined(__APPLE__) && !defined(__OpenBSD__)
66
#include <libutil.h>
67
#endif
68
#ifdef __OpenBSD__
69
#include <net/if.h>
70
#endif
71
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
72
#include <freebsd/stdlib.h>
73
#else
74
#ifdef __linux__
75
#include <linux/if.h>
76
#include <linux/if_tun.h>
77
#include <pty.h>
78
#include <malloc.h>
79
#include <linux/rtc.h>
80

    
81
/* For the benefit of older linux systems which don't supply it,
82
   we use a local copy of hpet.h. */
83
/* #include <linux/hpet.h> */
84
#include "hpet.h"
85

    
86
#include <linux/ppdev.h>
87
#include <linux/parport.h>
88
#endif
89
#ifdef __sun__
90
#include <sys/stat.h>
91
#include <sys/ethernet.h>
92
#include <sys/sockio.h>
93
#include <netinet/arp.h>
94
#include <netinet/in.h>
95
#include <netinet/in_systm.h>
96
#include <netinet/ip.h>
97
#include <netinet/ip_icmp.h> // must come after ip.h
98
#include <netinet/udp.h>
99
#include <netinet/tcp.h>
100
#include <net/if.h>
101
#include <syslog.h>
102
#include <stropts.h>
103
#endif
104
#endif
105
#endif
106

    
107
#include "qemu_socket.h"
108

    
109
#if defined(CONFIG_SLIRP)
110
#include "libslirp.h"
111
#endif
112

    
113
#if defined(__OpenBSD__)
114
#include <util.h>
115
#endif
116

    
117
#if defined(CONFIG_VDE)
118
#include <libvdeplug.h>
119
#endif
120

    
121
#ifdef _WIN32
122
#include <malloc.h>
123
#include <sys/timeb.h>
124
#include <mmsystem.h>
125
#define getopt_long_only getopt_long
126
#define memalign(align, size) malloc(size)
127
#endif
128

    
129
#ifdef CONFIG_SDL
130
#ifdef __APPLE__
131
#include <SDL/SDL.h>
132
#endif
133
#endif /* CONFIG_SDL */
134

    
135
#ifdef CONFIG_COCOA
136
#undef main
137
#define main qemu_main
138
#endif /* CONFIG_COCOA */
139

    
140
#include "disas.h"
141

    
142
#include "exec-all.h"
143

    
144
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
145
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
146
#ifdef __sun__
147
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
148
#else
149
#define SMBD_COMMAND "/usr/sbin/smbd"
150
#endif
151

    
152
//#define DEBUG_UNUSED_IOPORT
153
//#define DEBUG_IOPORT
154
//#define DEBUG_NET
155
//#define DEBUG_SLIRP
156

    
157
#ifdef TARGET_PPC
158
#define DEFAULT_RAM_SIZE 144
159
#else
160
#define DEFAULT_RAM_SIZE 128
161
#endif
162

    
163
/* Max number of USB devices that can be specified on the commandline.  */
164
#define MAX_USB_CMDLINE 8
165

    
166
/* XXX: use a two level table to limit memory usage */
167
#define MAX_IOPORTS 65536
168

    
169
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
170
const char *bios_name = NULL;
171
static void *ioport_opaque[MAX_IOPORTS];
172
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
173
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
174
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
175
   to store the VM snapshots */
176
DriveInfo drives_table[MAX_DRIVES+1];
177
int nb_drives;
178
/* point to the block driver where the snapshots are managed */
179
static BlockDriverState *bs_snapshots;
180
static int vga_ram_size;
181
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
182
static DisplayState display_state;
183
int nographic;
184
static int curses;
185
const char* keyboard_layout = NULL;
186
int64_t ticks_per_sec;
187
ram_addr_t ram_size;
188
int nb_nics;
189
NICInfo nd_table[MAX_NICS];
190
int vm_running;
191
static int rtc_utc = 1;
192
static int rtc_date_offset = -1; /* -1 means no change */
193
int cirrus_vga_enabled = 1;
194
int vmsvga_enabled = 0;
195
#ifdef TARGET_SPARC
196
int graphic_width = 1024;
197
int graphic_height = 768;
198
int graphic_depth = 8;
199
#else
200
int graphic_width = 800;
201
int graphic_height = 600;
202
int graphic_depth = 15;
203
#endif
204
static int full_screen = 0;
205
static int no_frame = 0;
206
int no_quit = 0;
207
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
208
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
209
#ifdef TARGET_I386
210
int win2k_install_hack = 0;
211
#endif
212
int usb_enabled = 0;
213
static VLANState *first_vlan;
214
int smp_cpus = 1;
215
const char *vnc_display;
216
int acpi_enabled = 1;
217
int fd_bootchk = 1;
218
int no_reboot = 0;
219
int no_shutdown = 0;
220
int cursor_hide = 1;
221
int graphic_rotate = 0;
222
int daemonize = 0;
223
const char *option_rom[MAX_OPTION_ROMS];
224
int nb_option_roms;
225
int semihosting_enabled = 0;
226
#ifdef TARGET_ARM
227
int old_param = 0;
228
#endif
229
const char *qemu_name;
230
int alt_grab = 0;
231
#ifdef TARGET_SPARC
232
unsigned int nb_prom_envs = 0;
233
const char *prom_envs[MAX_PROM_ENVS];
234
#endif
235
static int nb_drives_opt;
236
static struct drive_opt {
237
    const char *file;
238
    char opt[1024];
239
} drives_opt[MAX_DRIVES];
240

    
241
static CPUState *cur_cpu;
242
static CPUState *next_cpu;
243
static int event_pending = 1;
244
/* Conversion factor from emulated instructions to virtual clock ticks.  */
245
static int icount_time_shift;
246
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
247
#define MAX_ICOUNT_SHIFT 10
248
/* Compensate for varying guest execution speed.  */
249
static int64_t qemu_icount_bias;
250
static QEMUTimer *icount_rt_timer;
251
static QEMUTimer *icount_vm_timer;
252

    
253
uint8_t qemu_uuid[16];
254

    
255
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
256

    
257
/***********************************************************/
258
/* x86 ISA bus support */
259

    
260
target_phys_addr_t isa_mem_base = 0;
261
PicState2 *isa_pic;
262

    
263
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
264
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
265

    
266
static uint32_t ioport_read(int index, uint32_t address)
267
{
268
    static IOPortReadFunc *default_func[3] = {
269
        default_ioport_readb,
270
        default_ioport_readw,
271
        default_ioport_readl
272
    };
273
    IOPortReadFunc *func = ioport_read_table[index][address];
274
    if (!func)
275
        func = default_func[index];
276
    return func(ioport_opaque[address], address);
277
}
278

    
279
static void ioport_write(int index, uint32_t address, uint32_t data)
280
{
281
    static IOPortWriteFunc *default_func[3] = {
282
        default_ioport_writeb,
283
        default_ioport_writew,
284
        default_ioport_writel
285
    };
286
    IOPortWriteFunc *func = ioport_write_table[index][address];
287
    if (!func)
288
        func = default_func[index];
289
    func(ioport_opaque[address], address, data);
290
}
291

    
292
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
293
{
294
#ifdef DEBUG_UNUSED_IOPORT
295
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
296
#endif
297
    return 0xff;
298
}
299

    
300
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
301
{
302
#ifdef DEBUG_UNUSED_IOPORT
303
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
304
#endif
305
}
306

    
307
/* default is to make two byte accesses */
308
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
309
{
310
    uint32_t data;
311
    data = ioport_read(0, address);
312
    address = (address + 1) & (MAX_IOPORTS - 1);
313
    data |= ioport_read(0, address) << 8;
314
    return data;
315
}
316

    
317
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
318
{
319
    ioport_write(0, address, data & 0xff);
320
    address = (address + 1) & (MAX_IOPORTS - 1);
321
    ioport_write(0, address, (data >> 8) & 0xff);
322
}
323

    
324
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
325
{
326
#ifdef DEBUG_UNUSED_IOPORT
327
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
328
#endif
329
    return 0xffffffff;
330
}
331

    
332
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
333
{
334
#ifdef DEBUG_UNUSED_IOPORT
335
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
336
#endif
337
}
338

    
339
/* size is the word size in byte */
340
int register_ioport_read(int start, int length, int size,
341
                         IOPortReadFunc *func, void *opaque)
342
{
343
    int i, bsize;
344

    
345
    if (size == 1) {
346
        bsize = 0;
347
    } else if (size == 2) {
348
        bsize = 1;
349
    } else if (size == 4) {
350
        bsize = 2;
351
    } else {
352
        hw_error("register_ioport_read: invalid size");
353
        return -1;
354
    }
355
    for(i = start; i < start + length; i += size) {
356
        ioport_read_table[bsize][i] = func;
357
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
358
            hw_error("register_ioport_read: invalid opaque");
359
        ioport_opaque[i] = opaque;
360
    }
361
    return 0;
362
}
363

    
364
/* size is the word size in byte */
365
int register_ioport_write(int start, int length, int size,
366
                          IOPortWriteFunc *func, void *opaque)
367
{
368
    int i, bsize;
369

    
370
    if (size == 1) {
371
        bsize = 0;
372
    } else if (size == 2) {
373
        bsize = 1;
374
    } else if (size == 4) {
375
        bsize = 2;
376
    } else {
377
        hw_error("register_ioport_write: invalid size");
378
        return -1;
379
    }
380
    for(i = start; i < start + length; i += size) {
381
        ioport_write_table[bsize][i] = func;
382
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
383
            hw_error("register_ioport_write: invalid opaque");
384
        ioport_opaque[i] = opaque;
385
    }
386
    return 0;
387
}
388

    
389
void isa_unassign_ioport(int start, int length)
390
{
391
    int i;
392

    
393
    for(i = start; i < start + length; i++) {
394
        ioport_read_table[0][i] = default_ioport_readb;
395
        ioport_read_table[1][i] = default_ioport_readw;
396
        ioport_read_table[2][i] = default_ioport_readl;
397

    
398
        ioport_write_table[0][i] = default_ioport_writeb;
399
        ioport_write_table[1][i] = default_ioport_writew;
400
        ioport_write_table[2][i] = default_ioport_writel;
401
    }
402
}
403

    
404
/***********************************************************/
405

    
406
void cpu_outb(CPUState *env, int addr, int val)
407
{
408
#ifdef DEBUG_IOPORT
409
    if (loglevel & CPU_LOG_IOPORT)
410
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
411
#endif
412
    ioport_write(0, addr, val);
413
#ifdef USE_KQEMU
414
    if (env)
415
        env->last_io_time = cpu_get_time_fast();
416
#endif
417
}
418

    
419
void cpu_outw(CPUState *env, int addr, int val)
420
{
421
#ifdef DEBUG_IOPORT
422
    if (loglevel & CPU_LOG_IOPORT)
423
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
424
#endif
425
    ioport_write(1, addr, val);
426
#ifdef USE_KQEMU
427
    if (env)
428
        env->last_io_time = cpu_get_time_fast();
429
#endif
430
}
431

    
432
void cpu_outl(CPUState *env, int addr, int val)
433
{
434
#ifdef DEBUG_IOPORT
435
    if (loglevel & CPU_LOG_IOPORT)
436
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
437
#endif
438
    ioport_write(2, addr, val);
439
#ifdef USE_KQEMU
440
    if (env)
441
        env->last_io_time = cpu_get_time_fast();
442
#endif
443
}
444

    
445
int cpu_inb(CPUState *env, int addr)
446
{
447
    int val;
448
    val = ioport_read(0, addr);
449
#ifdef DEBUG_IOPORT
450
    if (loglevel & CPU_LOG_IOPORT)
451
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
452
#endif
453
#ifdef USE_KQEMU
454
    if (env)
455
        env->last_io_time = cpu_get_time_fast();
456
#endif
457
    return val;
458
}
459

    
460
int cpu_inw(CPUState *env, int addr)
461
{
462
    int val;
463
    val = ioport_read(1, addr);
464
#ifdef DEBUG_IOPORT
465
    if (loglevel & CPU_LOG_IOPORT)
466
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
467
#endif
468
#ifdef USE_KQEMU
469
    if (env)
470
        env->last_io_time = cpu_get_time_fast();
471
#endif
472
    return val;
473
}
474

    
475
int cpu_inl(CPUState *env, int addr)
476
{
477
    int val;
478
    val = ioport_read(2, addr);
479
#ifdef DEBUG_IOPORT
480
    if (loglevel & CPU_LOG_IOPORT)
481
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
482
#endif
483
#ifdef USE_KQEMU
484
    if (env)
485
        env->last_io_time = cpu_get_time_fast();
486
#endif
487
    return val;
488
}
489

    
490
/***********************************************************/
491
void hw_error(const char *fmt, ...)
492
{
493
    va_list ap;
494
    CPUState *env;
495

    
496
    va_start(ap, fmt);
497
    fprintf(stderr, "qemu: hardware error: ");
498
    vfprintf(stderr, fmt, ap);
499
    fprintf(stderr, "\n");
500
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
501
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
502
#ifdef TARGET_I386
503
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
504
#else
505
        cpu_dump_state(env, stderr, fprintf, 0);
506
#endif
507
    }
508
    va_end(ap);
509
    abort();
510
}
511

    
512
/***********************************************************/
513
/* keyboard/mouse */
514

    
515
static QEMUPutKBDEvent *qemu_put_kbd_event;
516
static void *qemu_put_kbd_event_opaque;
517
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
518
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
519

    
520
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
521
{
522
    qemu_put_kbd_event_opaque = opaque;
523
    qemu_put_kbd_event = func;
524
}
525

    
526
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
527
                                                void *opaque, int absolute,
528
                                                const char *name)
529
{
530
    QEMUPutMouseEntry *s, *cursor;
531

    
532
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
533
    if (!s)
534
        return NULL;
535

    
536
    s->qemu_put_mouse_event = func;
537
    s->qemu_put_mouse_event_opaque = opaque;
538
    s->qemu_put_mouse_event_absolute = absolute;
539
    s->qemu_put_mouse_event_name = qemu_strdup(name);
540
    s->next = NULL;
541

    
542
    if (!qemu_put_mouse_event_head) {
543
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
544
        return s;
545
    }
546

    
547
    cursor = qemu_put_mouse_event_head;
548
    while (cursor->next != NULL)
549
        cursor = cursor->next;
550

    
551
    cursor->next = s;
552
    qemu_put_mouse_event_current = s;
553

    
554
    return s;
555
}
556

    
557
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
558
{
559
    QEMUPutMouseEntry *prev = NULL, *cursor;
560

    
561
    if (!qemu_put_mouse_event_head || entry == NULL)
562
        return;
563

    
564
    cursor = qemu_put_mouse_event_head;
565
    while (cursor != NULL && cursor != entry) {
566
        prev = cursor;
567
        cursor = cursor->next;
568
    }
569

    
570
    if (cursor == NULL) // does not exist or list empty
571
        return;
572
    else if (prev == NULL) { // entry is head
573
        qemu_put_mouse_event_head = cursor->next;
574
        if (qemu_put_mouse_event_current == entry)
575
            qemu_put_mouse_event_current = cursor->next;
576
        qemu_free(entry->qemu_put_mouse_event_name);
577
        qemu_free(entry);
578
        return;
579
    }
580

    
581
    prev->next = entry->next;
582

    
583
    if (qemu_put_mouse_event_current == entry)
584
        qemu_put_mouse_event_current = prev;
585

    
586
    qemu_free(entry->qemu_put_mouse_event_name);
587
    qemu_free(entry);
588
}
589

    
590
void kbd_put_keycode(int keycode)
591
{
592
    if (qemu_put_kbd_event) {
593
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
594
    }
595
}
596

    
597
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
598
{
599
    QEMUPutMouseEvent *mouse_event;
600
    void *mouse_event_opaque;
601
    int width;
602

    
603
    if (!qemu_put_mouse_event_current) {
604
        return;
605
    }
606

    
607
    mouse_event =
608
        qemu_put_mouse_event_current->qemu_put_mouse_event;
609
    mouse_event_opaque =
610
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
611

    
612
    if (mouse_event) {
613
        if (graphic_rotate) {
614
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
615
                width = 0x7fff;
616
            else
617
                width = graphic_width - 1;
618
            mouse_event(mouse_event_opaque,
619
                                 width - dy, dx, dz, buttons_state);
620
        } else
621
            mouse_event(mouse_event_opaque,
622
                                 dx, dy, dz, buttons_state);
623
    }
624
}
625

    
626
int kbd_mouse_is_absolute(void)
627
{
628
    if (!qemu_put_mouse_event_current)
629
        return 0;
630

    
631
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
632
}
633

    
634
void do_info_mice(void)
635
{
636
    QEMUPutMouseEntry *cursor;
637
    int index = 0;
638

    
639
    if (!qemu_put_mouse_event_head) {
640
        term_printf("No mouse devices connected\n");
641
        return;
642
    }
643

    
644
    term_printf("Mouse devices available:\n");
645
    cursor = qemu_put_mouse_event_head;
646
    while (cursor != NULL) {
647
        term_printf("%c Mouse #%d: %s\n",
648
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
649
                    index, cursor->qemu_put_mouse_event_name);
650
        index++;
651
        cursor = cursor->next;
652
    }
653
}
654

    
655
void do_mouse_set(int index)
656
{
657
    QEMUPutMouseEntry *cursor;
658
    int i = 0;
659

    
660
    if (!qemu_put_mouse_event_head) {
661
        term_printf("No mouse devices connected\n");
662
        return;
663
    }
664

    
665
    cursor = qemu_put_mouse_event_head;
666
    while (cursor != NULL && index != i) {
667
        i++;
668
        cursor = cursor->next;
669
    }
670

    
671
    if (cursor != NULL)
672
        qemu_put_mouse_event_current = cursor;
673
    else
674
        term_printf("Mouse at given index not found\n");
675
}
676

    
677
/* compute with 96 bit intermediate result: (a*b)/c */
678
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
679
{
680
    union {
681
        uint64_t ll;
682
        struct {
683
#ifdef WORDS_BIGENDIAN
684
            uint32_t high, low;
685
#else
686
            uint32_t low, high;
687
#endif
688
        } l;
689
    } u, res;
690
    uint64_t rl, rh;
691

    
692
    u.ll = a;
693
    rl = (uint64_t)u.l.low * (uint64_t)b;
694
    rh = (uint64_t)u.l.high * (uint64_t)b;
695
    rh += (rl >> 32);
696
    res.l.high = rh / c;
697
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
698
    return res.ll;
699
}
700

    
701
/***********************************************************/
702
/* real time host monotonic timer */
703

    
704
#define QEMU_TIMER_BASE 1000000000LL
705

    
706
#ifdef WIN32
707

    
708
static int64_t clock_freq;
709

    
710
static void init_get_clock(void)
711
{
712
    LARGE_INTEGER freq;
713
    int ret;
714
    ret = QueryPerformanceFrequency(&freq);
715
    if (ret == 0) {
716
        fprintf(stderr, "Could not calibrate ticks\n");
717
        exit(1);
718
    }
719
    clock_freq = freq.QuadPart;
720
}
721

    
722
static int64_t get_clock(void)
723
{
724
    LARGE_INTEGER ti;
725
    QueryPerformanceCounter(&ti);
726
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
727
}
728

    
729
#else
730

    
731
static int use_rt_clock;
732

    
733
static void init_get_clock(void)
734
{
735
    use_rt_clock = 0;
736
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
737
    {
738
        struct timespec ts;
739
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
740
            use_rt_clock = 1;
741
        }
742
    }
743
#endif
744
}
745

    
746
static int64_t get_clock(void)
747
{
748
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
749
    if (use_rt_clock) {
750
        struct timespec ts;
751
        clock_gettime(CLOCK_MONOTONIC, &ts);
752
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
753
    } else
754
#endif
755
    {
756
        /* XXX: using gettimeofday leads to problems if the date
757
           changes, so it should be avoided. */
758
        struct timeval tv;
759
        gettimeofday(&tv, NULL);
760
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
761
    }
762
}
763
#endif
764

    
765
/* Return the virtual CPU time, based on the instruction counter.  */
766
static int64_t cpu_get_icount(void)
767
{
768
    int64_t icount;
769
    CPUState *env = cpu_single_env;;
770
    icount = qemu_icount;
771
    if (env) {
772
        if (!can_do_io(env))
773
            fprintf(stderr, "Bad clock read\n");
774
        icount -= (env->icount_decr.u16.low + env->icount_extra);
775
    }
776
    return qemu_icount_bias + (icount << icount_time_shift);
777
}
778

    
779
/***********************************************************/
780
/* guest cycle counter */
781

    
782
static int64_t cpu_ticks_prev;
783
static int64_t cpu_ticks_offset;
784
static int64_t cpu_clock_offset;
785
static int cpu_ticks_enabled;
786

    
787
/* return the host CPU cycle counter and handle stop/restart */
788
int64_t cpu_get_ticks(void)
789
{
790
    if (use_icount) {
791
        return cpu_get_icount();
792
    }
793
    if (!cpu_ticks_enabled) {
794
        return cpu_ticks_offset;
795
    } else {
796
        int64_t ticks;
797
        ticks = cpu_get_real_ticks();
798
        if (cpu_ticks_prev > ticks) {
799
            /* Note: non increasing ticks may happen if the host uses
800
               software suspend */
801
            cpu_ticks_offset += cpu_ticks_prev - ticks;
802
        }
803
        cpu_ticks_prev = ticks;
804
        return ticks + cpu_ticks_offset;
805
    }
806
}
807

    
808
/* return the host CPU monotonic timer and handle stop/restart */
809
static int64_t cpu_get_clock(void)
810
{
811
    int64_t ti;
812
    if (!cpu_ticks_enabled) {
813
        return cpu_clock_offset;
814
    } else {
815
        ti = get_clock();
816
        return ti + cpu_clock_offset;
817
    }
818
}
819

    
820
/* enable cpu_get_ticks() */
821
void cpu_enable_ticks(void)
822
{
823
    if (!cpu_ticks_enabled) {
824
        cpu_ticks_offset -= cpu_get_real_ticks();
825
        cpu_clock_offset -= get_clock();
826
        cpu_ticks_enabled = 1;
827
    }
828
}
829

    
830
/* disable cpu_get_ticks() : the clock is stopped. You must not call
831
   cpu_get_ticks() after that.  */
832
void cpu_disable_ticks(void)
833
{
834
    if (cpu_ticks_enabled) {
835
        cpu_ticks_offset = cpu_get_ticks();
836
        cpu_clock_offset = cpu_get_clock();
837
        cpu_ticks_enabled = 0;
838
    }
839
}
840

    
841
/***********************************************************/
842
/* timers */
843

    
844
#define QEMU_TIMER_REALTIME 0
845
#define QEMU_TIMER_VIRTUAL  1
846

    
847
struct QEMUClock {
848
    int type;
849
    /* XXX: add frequency */
850
};
851

    
852
struct QEMUTimer {
853
    QEMUClock *clock;
854
    int64_t expire_time;
855
    QEMUTimerCB *cb;
856
    void *opaque;
857
    struct QEMUTimer *next;
858
};
859

    
860
struct qemu_alarm_timer {
861
    char const *name;
862
    unsigned int flags;
863

    
864
    int (*start)(struct qemu_alarm_timer *t);
865
    void (*stop)(struct qemu_alarm_timer *t);
866
    void (*rearm)(struct qemu_alarm_timer *t);
867
    void *priv;
868
};
869

    
870
#define ALARM_FLAG_DYNTICKS  0x1
871
#define ALARM_FLAG_EXPIRED   0x2
872

    
873
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
874
{
875
    return t->flags & ALARM_FLAG_DYNTICKS;
876
}
877

    
878
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
879
{
880
    if (!alarm_has_dynticks(t))
881
        return;
882

    
883
    t->rearm(t);
884
}
885

    
886
/* TODO: MIN_TIMER_REARM_US should be optimized */
887
#define MIN_TIMER_REARM_US 250
888

    
889
static struct qemu_alarm_timer *alarm_timer;
890

    
891
#ifdef _WIN32
892

    
893
struct qemu_alarm_win32 {
894
    MMRESULT timerId;
895
    HANDLE host_alarm;
896
    unsigned int period;
897
} alarm_win32_data = {0, NULL, -1};
898

    
899
static int win32_start_timer(struct qemu_alarm_timer *t);
900
static void win32_stop_timer(struct qemu_alarm_timer *t);
901
static void win32_rearm_timer(struct qemu_alarm_timer *t);
902

    
903
#else
904

    
905
static int unix_start_timer(struct qemu_alarm_timer *t);
906
static void unix_stop_timer(struct qemu_alarm_timer *t);
907

    
908
#ifdef __linux__
909

    
910
static int dynticks_start_timer(struct qemu_alarm_timer *t);
911
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
912
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
913

    
914
static int hpet_start_timer(struct qemu_alarm_timer *t);
915
static void hpet_stop_timer(struct qemu_alarm_timer *t);
916

    
917
static int rtc_start_timer(struct qemu_alarm_timer *t);
918
static void rtc_stop_timer(struct qemu_alarm_timer *t);
919

    
920
#endif /* __linux__ */
921

    
922
#endif /* _WIN32 */
923

    
924
/* Correlation between real and virtual time is always going to be
925
   fairly approximate, so ignore small variation.
926
   When the guest is idle real and virtual time will be aligned in
927
   the IO wait loop.  */
928
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
929

    
930
static void icount_adjust(void)
931
{
932
    int64_t cur_time;
933
    int64_t cur_icount;
934
    int64_t delta;
935
    static int64_t last_delta;
936
    /* If the VM is not running, then do nothing.  */
937
    if (!vm_running)
938
        return;
939

    
940
    cur_time = cpu_get_clock();
941
    cur_icount = qemu_get_clock(vm_clock);
942
    delta = cur_icount - cur_time;
943
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
944
    if (delta > 0
945
        && last_delta + ICOUNT_WOBBLE < delta * 2
946
        && icount_time_shift > 0) {
947
        /* The guest is getting too far ahead.  Slow time down.  */
948
        icount_time_shift--;
949
    }
950
    if (delta < 0
951
        && last_delta - ICOUNT_WOBBLE > delta * 2
952
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
953
        /* The guest is getting too far behind.  Speed time up.  */
954
        icount_time_shift++;
955
    }
956
    last_delta = delta;
957
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
958
}
959

    
960
static void icount_adjust_rt(void * opaque)
961
{
962
    qemu_mod_timer(icount_rt_timer,
963
                   qemu_get_clock(rt_clock) + 1000);
964
    icount_adjust();
965
}
966

    
967
static void icount_adjust_vm(void * opaque)
968
{
969
    qemu_mod_timer(icount_vm_timer,
970
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
971
    icount_adjust();
972
}
973

    
974
static void init_icount_adjust(void)
975
{
976
    /* Have both realtime and virtual time triggers for speed adjustment.
977
       The realtime trigger catches emulated time passing too slowly,
978
       the virtual time trigger catches emulated time passing too fast.
979
       Realtime triggers occur even when idle, so use them less frequently
980
       than VM triggers.  */
981
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
982
    qemu_mod_timer(icount_rt_timer,
983
                   qemu_get_clock(rt_clock) + 1000);
984
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
985
    qemu_mod_timer(icount_vm_timer,
986
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
987
}
988

    
989
static struct qemu_alarm_timer alarm_timers[] = {
990
#ifndef _WIN32
991
#ifdef __linux__
992
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
993
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
994
    /* HPET - if available - is preferred */
995
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
996
    /* ...otherwise try RTC */
997
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
998
#endif
999
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1000
#else
1001
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1002
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1003
    {"win32", 0, win32_start_timer,
1004
     win32_stop_timer, NULL, &alarm_win32_data},
1005
#endif
1006
    {NULL, }
1007
};
1008

    
1009
static void show_available_alarms(void)
1010
{
1011
    int i;
1012

    
1013
    printf("Available alarm timers, in order of precedence:\n");
1014
    for (i = 0; alarm_timers[i].name; i++)
1015
        printf("%s\n", alarm_timers[i].name);
1016
}
1017

    
1018
static void configure_alarms(char const *opt)
1019
{
1020
    int i;
1021
    int cur = 0;
1022
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
1023
    char *arg;
1024
    char *name;
1025
    struct qemu_alarm_timer tmp;
1026

    
1027
    if (!strcmp(opt, "?")) {
1028
        show_available_alarms();
1029
        exit(0);
1030
    }
1031

    
1032
    arg = strdup(opt);
1033

    
1034
    /* Reorder the array */
1035
    name = strtok(arg, ",");
1036
    while (name) {
1037
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1038
            if (!strcmp(alarm_timers[i].name, name))
1039
                break;
1040
        }
1041

    
1042
        if (i == count) {
1043
            fprintf(stderr, "Unknown clock %s\n", name);
1044
            goto next;
1045
        }
1046

    
1047
        if (i < cur)
1048
            /* Ignore */
1049
            goto next;
1050

    
1051
        /* Swap */
1052
        tmp = alarm_timers[i];
1053
        alarm_timers[i] = alarm_timers[cur];
1054
        alarm_timers[cur] = tmp;
1055

    
1056
        cur++;
1057
next:
1058
        name = strtok(NULL, ",");
1059
    }
1060

    
1061
    free(arg);
1062

    
1063
    if (cur) {
1064
        /* Disable remaining timers */
1065
        for (i = cur; i < count; i++)
1066
            alarm_timers[i].name = NULL;
1067
    } else {
1068
        show_available_alarms();
1069
        exit(1);
1070
    }
1071
}
1072

    
1073
QEMUClock *rt_clock;
1074
QEMUClock *vm_clock;
1075

    
1076
static QEMUTimer *active_timers[2];
1077

    
1078
static QEMUClock *qemu_new_clock(int type)
1079
{
1080
    QEMUClock *clock;
1081
    clock = qemu_mallocz(sizeof(QEMUClock));
1082
    if (!clock)
1083
        return NULL;
1084
    clock->type = type;
1085
    return clock;
1086
}
1087

    
1088
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1089
{
1090
    QEMUTimer *ts;
1091

    
1092
    ts = qemu_mallocz(sizeof(QEMUTimer));
1093
    ts->clock = clock;
1094
    ts->cb = cb;
1095
    ts->opaque = opaque;
1096
    return ts;
1097
}
1098

    
1099
void qemu_free_timer(QEMUTimer *ts)
1100
{
1101
    qemu_free(ts);
1102
}
1103

    
1104
/* stop a timer, but do not dealloc it */
1105
void qemu_del_timer(QEMUTimer *ts)
1106
{
1107
    QEMUTimer **pt, *t;
1108

    
1109
    /* NOTE: this code must be signal safe because
1110
       qemu_timer_expired() can be called from a signal. */
1111
    pt = &active_timers[ts->clock->type];
1112
    for(;;) {
1113
        t = *pt;
1114
        if (!t)
1115
            break;
1116
        if (t == ts) {
1117
            *pt = t->next;
1118
            break;
1119
        }
1120
        pt = &t->next;
1121
    }
1122
}
1123

    
1124
/* modify the current timer so that it will be fired when current_time
1125
   >= expire_time. The corresponding callback will be called. */
1126
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1127
{
1128
    QEMUTimer **pt, *t;
1129

    
1130
    qemu_del_timer(ts);
1131

    
1132
    /* add the timer in the sorted list */
1133
    /* NOTE: this code must be signal safe because
1134
       qemu_timer_expired() can be called from a signal. */
1135
    pt = &active_timers[ts->clock->type];
1136
    for(;;) {
1137
        t = *pt;
1138
        if (!t)
1139
            break;
1140
        if (t->expire_time > expire_time)
1141
            break;
1142
        pt = &t->next;
1143
    }
1144
    ts->expire_time = expire_time;
1145
    ts->next = *pt;
1146
    *pt = ts;
1147

    
1148
    /* Rearm if necessary  */
1149
    if (pt == &active_timers[ts->clock->type]) {
1150
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1151
            qemu_rearm_alarm_timer(alarm_timer);
1152
        }
1153
        /* Interrupt execution to force deadline recalculation.  */
1154
        if (use_icount && cpu_single_env) {
1155
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1156
        }
1157
    }
1158
}
1159

    
1160
int qemu_timer_pending(QEMUTimer *ts)
1161
{
1162
    QEMUTimer *t;
1163
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1164
        if (t == ts)
1165
            return 1;
1166
    }
1167
    return 0;
1168
}
1169

    
1170
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1171
{
1172
    if (!timer_head)
1173
        return 0;
1174
    return (timer_head->expire_time <= current_time);
1175
}
1176

    
1177
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1178
{
1179
    QEMUTimer *ts;
1180

    
1181
    for(;;) {
1182
        ts = *ptimer_head;
1183
        if (!ts || ts->expire_time > current_time)
1184
            break;
1185
        /* remove timer from the list before calling the callback */
1186
        *ptimer_head = ts->next;
1187
        ts->next = NULL;
1188

    
1189
        /* run the callback (the timer list can be modified) */
1190
        ts->cb(ts->opaque);
1191
    }
1192
}
1193

    
1194
int64_t qemu_get_clock(QEMUClock *clock)
1195
{
1196
    switch(clock->type) {
1197
    case QEMU_TIMER_REALTIME:
1198
        return get_clock() / 1000000;
1199
    default:
1200
    case QEMU_TIMER_VIRTUAL:
1201
        if (use_icount) {
1202
            return cpu_get_icount();
1203
        } else {
1204
            return cpu_get_clock();
1205
        }
1206
    }
1207
}
1208

    
1209
static void init_timers(void)
1210
{
1211
    init_get_clock();
1212
    ticks_per_sec = QEMU_TIMER_BASE;
1213
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1214
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1215
}
1216

    
1217
/* save a timer */
1218
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1219
{
1220
    uint64_t expire_time;
1221

    
1222
    if (qemu_timer_pending(ts)) {
1223
        expire_time = ts->expire_time;
1224
    } else {
1225
        expire_time = -1;
1226
    }
1227
    qemu_put_be64(f, expire_time);
1228
}
1229

    
1230
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1231
{
1232
    uint64_t expire_time;
1233

    
1234
    expire_time = qemu_get_be64(f);
1235
    if (expire_time != -1) {
1236
        qemu_mod_timer(ts, expire_time);
1237
    } else {
1238
        qemu_del_timer(ts);
1239
    }
1240
}
1241

    
1242
static void timer_save(QEMUFile *f, void *opaque)
1243
{
1244
    if (cpu_ticks_enabled) {
1245
        hw_error("cannot save state if virtual timers are running");
1246
    }
1247
    qemu_put_be64(f, cpu_ticks_offset);
1248
    qemu_put_be64(f, ticks_per_sec);
1249
    qemu_put_be64(f, cpu_clock_offset);
1250
}
1251

    
1252
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1253
{
1254
    if (version_id != 1 && version_id != 2)
1255
        return -EINVAL;
1256
    if (cpu_ticks_enabled) {
1257
        return -EINVAL;
1258
    }
1259
    cpu_ticks_offset=qemu_get_be64(f);
1260
    ticks_per_sec=qemu_get_be64(f);
1261
    if (version_id == 2) {
1262
        cpu_clock_offset=qemu_get_be64(f);
1263
    }
1264
    return 0;
1265
}
1266

    
1267
#ifdef _WIN32
1268
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1269
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1270
#else
1271
static void host_alarm_handler(int host_signum)
1272
#endif
1273
{
1274
#if 0
1275
#define DISP_FREQ 1000
1276
    {
1277
        static int64_t delta_min = INT64_MAX;
1278
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1279
        static int count;
1280
        ti = qemu_get_clock(vm_clock);
1281
        if (last_clock != 0) {
1282
            delta = ti - last_clock;
1283
            if (delta < delta_min)
1284
                delta_min = delta;
1285
            if (delta > delta_max)
1286
                delta_max = delta;
1287
            delta_cum += delta;
1288
            if (++count == DISP_FREQ) {
1289
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1290
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1291
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1292
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1293
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1294
                count = 0;
1295
                delta_min = INT64_MAX;
1296
                delta_max = 0;
1297
                delta_cum = 0;
1298
            }
1299
        }
1300
        last_clock = ti;
1301
    }
1302
#endif
1303
    if (alarm_has_dynticks(alarm_timer) ||
1304
        (!use_icount &&
1305
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1306
                               qemu_get_clock(vm_clock))) ||
1307
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1308
                           qemu_get_clock(rt_clock))) {
1309
#ifdef _WIN32
1310
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1311
        SetEvent(data->host_alarm);
1312
#endif
1313
        CPUState *env = next_cpu;
1314

    
1315
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1316

    
1317
        if (env) {
1318
            /* stop the currently executing cpu because a timer occured */
1319
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1320
#ifdef USE_KQEMU
1321
            if (env->kqemu_enabled) {
1322
                kqemu_cpu_interrupt(env);
1323
            }
1324
#endif
1325
        }
1326
        event_pending = 1;
1327
    }
1328
}
1329

    
1330
static int64_t qemu_next_deadline(void)
1331
{
1332
    int64_t delta;
1333

    
1334
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1335
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1336
                     qemu_get_clock(vm_clock);
1337
    } else {
1338
        /* To avoid problems with overflow limit this to 2^32.  */
1339
        delta = INT32_MAX;
1340
    }
1341

    
1342
    if (delta < 0)
1343
        delta = 0;
1344

    
1345
    return delta;
1346
}
1347

    
1348
#if defined(__linux__) || defined(_WIN32)
1349
static uint64_t qemu_next_deadline_dyntick(void)
1350
{
1351
    int64_t delta;
1352
    int64_t rtdelta;
1353

    
1354
    if (use_icount)
1355
        delta = INT32_MAX;
1356
    else
1357
        delta = (qemu_next_deadline() + 999) / 1000;
1358

    
1359
    if (active_timers[QEMU_TIMER_REALTIME]) {
1360
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1361
                 qemu_get_clock(rt_clock))*1000;
1362
        if (rtdelta < delta)
1363
            delta = rtdelta;
1364
    }
1365

    
1366
    if (delta < MIN_TIMER_REARM_US)
1367
        delta = MIN_TIMER_REARM_US;
1368

    
1369
    return delta;
1370
}
1371
#endif
1372

    
1373
#ifndef _WIN32
1374

    
1375
#if defined(__linux__)
1376

    
1377
#define RTC_FREQ 1024
1378

    
1379
static void enable_sigio_timer(int fd)
1380
{
1381
    struct sigaction act;
1382

    
1383
    /* timer signal */
1384
    sigfillset(&act.sa_mask);
1385
    act.sa_flags = 0;
1386
    act.sa_handler = host_alarm_handler;
1387

    
1388
    sigaction(SIGIO, &act, NULL);
1389
    fcntl(fd, F_SETFL, O_ASYNC);
1390
    fcntl(fd, F_SETOWN, getpid());
1391
}
1392

    
1393
static int hpet_start_timer(struct qemu_alarm_timer *t)
1394
{
1395
    struct hpet_info info;
1396
    int r, fd;
1397

    
1398
    fd = open("/dev/hpet", O_RDONLY);
1399
    if (fd < 0)
1400
        return -1;
1401

    
1402
    /* Set frequency */
1403
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1404
    if (r < 0) {
1405
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1406
                "error, but for better emulation accuracy type:\n"
1407
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1408
        goto fail;
1409
    }
1410

    
1411
    /* Check capabilities */
1412
    r = ioctl(fd, HPET_INFO, &info);
1413
    if (r < 0)
1414
        goto fail;
1415

    
1416
    /* Enable periodic mode */
1417
    r = ioctl(fd, HPET_EPI, 0);
1418
    if (info.hi_flags && (r < 0))
1419
        goto fail;
1420

    
1421
    /* Enable interrupt */
1422
    r = ioctl(fd, HPET_IE_ON, 0);
1423
    if (r < 0)
1424
        goto fail;
1425

    
1426
    enable_sigio_timer(fd);
1427
    t->priv = (void *)(long)fd;
1428

    
1429
    return 0;
1430
fail:
1431
    close(fd);
1432
    return -1;
1433
}
1434

    
1435
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1436
{
1437
    int fd = (long)t->priv;
1438

    
1439
    close(fd);
1440
}
1441

    
1442
static int rtc_start_timer(struct qemu_alarm_timer *t)
1443
{
1444
    int rtc_fd;
1445
    unsigned long current_rtc_freq = 0;
1446

    
1447
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1448
    if (rtc_fd < 0)
1449
        return -1;
1450
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1451
    if (current_rtc_freq != RTC_FREQ &&
1452
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1453
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1454
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1455
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1456
        goto fail;
1457
    }
1458
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1459
    fail:
1460
        close(rtc_fd);
1461
        return -1;
1462
    }
1463

    
1464
    enable_sigio_timer(rtc_fd);
1465

    
1466
    t->priv = (void *)(long)rtc_fd;
1467

    
1468
    return 0;
1469
}
1470

    
1471
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1472
{
1473
    int rtc_fd = (long)t->priv;
1474

    
1475
    close(rtc_fd);
1476
}
1477

    
1478
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1479
{
1480
    struct sigevent ev;
1481
    timer_t host_timer;
1482
    struct sigaction act;
1483

    
1484
    sigfillset(&act.sa_mask);
1485
    act.sa_flags = 0;
1486
    act.sa_handler = host_alarm_handler;
1487

    
1488
    sigaction(SIGALRM, &act, NULL);
1489

    
1490
    ev.sigev_value.sival_int = 0;
1491
    ev.sigev_notify = SIGEV_SIGNAL;
1492
    ev.sigev_signo = SIGALRM;
1493

    
1494
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1495
        perror("timer_create");
1496

    
1497
        /* disable dynticks */
1498
        fprintf(stderr, "Dynamic Ticks disabled\n");
1499

    
1500
        return -1;
1501
    }
1502

    
1503
    t->priv = (void *)host_timer;
1504

    
1505
    return 0;
1506
}
1507

    
1508
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1509
{
1510
    timer_t host_timer = (timer_t)t->priv;
1511

    
1512
    timer_delete(host_timer);
1513
}
1514

    
1515
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1516
{
1517
    timer_t host_timer = (timer_t)t->priv;
1518
    struct itimerspec timeout;
1519
    int64_t nearest_delta_us = INT64_MAX;
1520
    int64_t current_us;
1521

    
1522
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1523
                !active_timers[QEMU_TIMER_VIRTUAL])
1524
        return;
1525

    
1526
    nearest_delta_us = qemu_next_deadline_dyntick();
1527

    
1528
    /* check whether a timer is already running */
1529
    if (timer_gettime(host_timer, &timeout)) {
1530
        perror("gettime");
1531
        fprintf(stderr, "Internal timer error: aborting\n");
1532
        exit(1);
1533
    }
1534
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1535
    if (current_us && current_us <= nearest_delta_us)
1536
        return;
1537

    
1538
    timeout.it_interval.tv_sec = 0;
1539
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1540
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1541
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1542
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1543
        perror("settime");
1544
        fprintf(stderr, "Internal timer error: aborting\n");
1545
        exit(1);
1546
    }
1547
}
1548

    
1549
#endif /* defined(__linux__) */
1550

    
1551
static int unix_start_timer(struct qemu_alarm_timer *t)
1552
{
1553
    struct sigaction act;
1554
    struct itimerval itv;
1555
    int err;
1556

    
1557
    /* timer signal */
1558
    sigfillset(&act.sa_mask);
1559
    act.sa_flags = 0;
1560
    act.sa_handler = host_alarm_handler;
1561

    
1562
    sigaction(SIGALRM, &act, NULL);
1563

    
1564
    itv.it_interval.tv_sec = 0;
1565
    /* for i386 kernel 2.6 to get 1 ms */
1566
    itv.it_interval.tv_usec = 999;
1567
    itv.it_value.tv_sec = 0;
1568
    itv.it_value.tv_usec = 10 * 1000;
1569

    
1570
    err = setitimer(ITIMER_REAL, &itv, NULL);
1571
    if (err)
1572
        return -1;
1573

    
1574
    return 0;
1575
}
1576

    
1577
static void unix_stop_timer(struct qemu_alarm_timer *t)
1578
{
1579
    struct itimerval itv;
1580

    
1581
    memset(&itv, 0, sizeof(itv));
1582
    setitimer(ITIMER_REAL, &itv, NULL);
1583
}
1584

    
1585
#endif /* !defined(_WIN32) */
1586

    
1587
#ifdef _WIN32
1588

    
1589
static int win32_start_timer(struct qemu_alarm_timer *t)
1590
{
1591
    TIMECAPS tc;
1592
    struct qemu_alarm_win32 *data = t->priv;
1593
    UINT flags;
1594

    
1595
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1596
    if (!data->host_alarm) {
1597
        perror("Failed CreateEvent");
1598
        return -1;
1599
    }
1600

    
1601
    memset(&tc, 0, sizeof(tc));
1602
    timeGetDevCaps(&tc, sizeof(tc));
1603

    
1604
    if (data->period < tc.wPeriodMin)
1605
        data->period = tc.wPeriodMin;
1606

    
1607
    timeBeginPeriod(data->period);
1608

    
1609
    flags = TIME_CALLBACK_FUNCTION;
1610
    if (alarm_has_dynticks(t))
1611
        flags |= TIME_ONESHOT;
1612
    else
1613
        flags |= TIME_PERIODIC;
1614

    
1615
    data->timerId = timeSetEvent(1,         // interval (ms)
1616
                        data->period,       // resolution
1617
                        host_alarm_handler, // function
1618
                        (DWORD)t,           // parameter
1619
                        flags);
1620

    
1621
    if (!data->timerId) {
1622
        perror("Failed to initialize win32 alarm timer");
1623

    
1624
        timeEndPeriod(data->period);
1625
        CloseHandle(data->host_alarm);
1626
        return -1;
1627
    }
1628

    
1629
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1630

    
1631
    return 0;
1632
}
1633

    
1634
static void win32_stop_timer(struct qemu_alarm_timer *t)
1635
{
1636
    struct qemu_alarm_win32 *data = t->priv;
1637

    
1638
    timeKillEvent(data->timerId);
1639
    timeEndPeriod(data->period);
1640

    
1641
    CloseHandle(data->host_alarm);
1642
}
1643

    
1644
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1645
{
1646
    struct qemu_alarm_win32 *data = t->priv;
1647
    uint64_t nearest_delta_us;
1648

    
1649
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1650
                !active_timers[QEMU_TIMER_VIRTUAL])
1651
        return;
1652

    
1653
    nearest_delta_us = qemu_next_deadline_dyntick();
1654
    nearest_delta_us /= 1000;
1655

    
1656
    timeKillEvent(data->timerId);
1657

    
1658
    data->timerId = timeSetEvent(1,
1659
                        data->period,
1660
                        host_alarm_handler,
1661
                        (DWORD)t,
1662
                        TIME_ONESHOT | TIME_PERIODIC);
1663

    
1664
    if (!data->timerId) {
1665
        perror("Failed to re-arm win32 alarm timer");
1666

    
1667
        timeEndPeriod(data->period);
1668
        CloseHandle(data->host_alarm);
1669
        exit(1);
1670
    }
1671
}
1672

    
1673
#endif /* _WIN32 */
1674

    
1675
static void init_timer_alarm(void)
1676
{
1677
    struct qemu_alarm_timer *t = NULL;
1678
    int i, err = -1;
1679

    
1680
    for (i = 0; alarm_timers[i].name; i++) {
1681
        t = &alarm_timers[i];
1682

    
1683
        err = t->start(t);
1684
        if (!err)
1685
            break;
1686
    }
1687

    
1688
    if (err) {
1689
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1690
        fprintf(stderr, "Terminating\n");
1691
        exit(1);
1692
    }
1693

    
1694
    alarm_timer = t;
1695
}
1696

    
1697
static void quit_timers(void)
1698
{
1699
    alarm_timer->stop(alarm_timer);
1700
    alarm_timer = NULL;
1701
}
1702

    
1703
/***********************************************************/
1704
/* host time/date access */
1705
void qemu_get_timedate(struct tm *tm, int offset)
1706
{
1707
    time_t ti;
1708
    struct tm *ret;
1709

    
1710
    time(&ti);
1711
    ti += offset;
1712
    if (rtc_date_offset == -1) {
1713
        if (rtc_utc)
1714
            ret = gmtime(&ti);
1715
        else
1716
            ret = localtime(&ti);
1717
    } else {
1718
        ti -= rtc_date_offset;
1719
        ret = gmtime(&ti);
1720
    }
1721

    
1722
    memcpy(tm, ret, sizeof(struct tm));
1723
}
1724

    
1725
int qemu_timedate_diff(struct tm *tm)
1726
{
1727
    time_t seconds;
1728

    
1729
    if (rtc_date_offset == -1)
1730
        if (rtc_utc)
1731
            seconds = mktimegm(tm);
1732
        else
1733
            seconds = mktime(tm);
1734
    else
1735
        seconds = mktimegm(tm) + rtc_date_offset;
1736

    
1737
    return seconds - time(NULL);
1738
}
1739

    
1740
/***********************************************************/
1741
/* character device */
1742

    
1743
static void qemu_chr_event(CharDriverState *s, int event)
1744
{
1745
    if (!s->chr_event)
1746
        return;
1747
    s->chr_event(s->handler_opaque, event);
1748
}
1749

    
1750
static void qemu_chr_reset_bh(void *opaque)
1751
{
1752
    CharDriverState *s = opaque;
1753
    qemu_chr_event(s, CHR_EVENT_RESET);
1754
    qemu_bh_delete(s->bh);
1755
    s->bh = NULL;
1756
}
1757

    
1758
void qemu_chr_reset(CharDriverState *s)
1759
{
1760
    if (s->bh == NULL) {
1761
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1762
        qemu_bh_schedule(s->bh);
1763
    }
1764
}
1765

    
1766
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1767
{
1768
    return s->chr_write(s, buf, len);
1769
}
1770

    
1771
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1772
{
1773
    if (!s->chr_ioctl)
1774
        return -ENOTSUP;
1775
    return s->chr_ioctl(s, cmd, arg);
1776
}
1777

    
1778
int qemu_chr_can_read(CharDriverState *s)
1779
{
1780
    if (!s->chr_can_read)
1781
        return 0;
1782
    return s->chr_can_read(s->handler_opaque);
1783
}
1784

    
1785
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1786
{
1787
    s->chr_read(s->handler_opaque, buf, len);
1788
}
1789

    
1790
void qemu_chr_accept_input(CharDriverState *s)
1791
{
1792
    if (s->chr_accept_input)
1793
        s->chr_accept_input(s);
1794
}
1795

    
1796
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1797
{
1798
    char buf[4096];
1799
    va_list ap;
1800
    va_start(ap, fmt);
1801
    vsnprintf(buf, sizeof(buf), fmt, ap);
1802
    qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1803
    va_end(ap);
1804
}
1805

    
1806
void qemu_chr_send_event(CharDriverState *s, int event)
1807
{
1808
    if (s->chr_send_event)
1809
        s->chr_send_event(s, event);
1810
}
1811

    
1812
void qemu_chr_add_handlers(CharDriverState *s,
1813
                           IOCanRWHandler *fd_can_read,
1814
                           IOReadHandler *fd_read,
1815
                           IOEventHandler *fd_event,
1816
                           void *opaque)
1817
{
1818
    s->chr_can_read = fd_can_read;
1819
    s->chr_read = fd_read;
1820
    s->chr_event = fd_event;
1821
    s->handler_opaque = opaque;
1822
    if (s->chr_update_read_handler)
1823
        s->chr_update_read_handler(s);
1824
}
1825

    
1826
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1827
{
1828
    return len;
1829
}
1830

    
1831
static CharDriverState *qemu_chr_open_null(void)
1832
{
1833
    CharDriverState *chr;
1834

    
1835
    chr = qemu_mallocz(sizeof(CharDriverState));
1836
    if (!chr)
1837
        return NULL;
1838
    chr->chr_write = null_chr_write;
1839
    return chr;
1840
}
1841

    
1842
/* MUX driver for serial I/O splitting */
1843
static int term_timestamps;
1844
static int64_t term_timestamps_start;
1845
#define MAX_MUX 4
1846
#define MUX_BUFFER_SIZE 32        /* Must be a power of 2.  */
1847
#define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1848
typedef struct {
1849
    IOCanRWHandler *chr_can_read[MAX_MUX];
1850
    IOReadHandler *chr_read[MAX_MUX];
1851
    IOEventHandler *chr_event[MAX_MUX];
1852
    void *ext_opaque[MAX_MUX];
1853
    CharDriverState *drv;
1854
    unsigned char buffer[MUX_BUFFER_SIZE];
1855
    int prod;
1856
    int cons;
1857
    int mux_cnt;
1858
    int term_got_escape;
1859
    int max_size;
1860
} MuxDriver;
1861

    
1862

    
1863
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1864
{
1865
    MuxDriver *d = chr->opaque;
1866
    int ret;
1867
    if (!term_timestamps) {
1868
        ret = d->drv->chr_write(d->drv, buf, len);
1869
    } else {
1870
        int i;
1871

    
1872
        ret = 0;
1873
        for(i = 0; i < len; i++) {
1874
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1875
            if (buf[i] == '\n') {
1876
                char buf1[64];
1877
                int64_t ti;
1878
                int secs;
1879

    
1880
                ti = get_clock();
1881
                if (term_timestamps_start == -1)
1882
                    term_timestamps_start = ti;
1883
                ti -= term_timestamps_start;
1884
                secs = ti / 1000000000;
1885
                snprintf(buf1, sizeof(buf1),
1886
                         "[%02d:%02d:%02d.%03d] ",
1887
                         secs / 3600,
1888
                         (secs / 60) % 60,
1889
                         secs % 60,
1890
                         (int)((ti / 1000000) % 1000));
1891
                d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1892
            }
1893
        }
1894
    }
1895
    return ret;
1896
}
1897

    
1898
static const char * const mux_help[] = {
1899
    "% h    print this help\n\r",
1900
    "% x    exit emulator\n\r",
1901
    "% s    save disk data back to file (if -snapshot)\n\r",
1902
    "% t    toggle console timestamps\n\r"
1903
    "% b    send break (magic sysrq)\n\r",
1904
    "% c    switch between console and monitor\n\r",
1905
    "% %  sends %\n\r",
1906
    NULL
1907
};
1908

    
1909
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1910
static void mux_print_help(CharDriverState *chr)
1911
{
1912
    int i, j;
1913
    char ebuf[15] = "Escape-Char";
1914
    char cbuf[50] = "\n\r";
1915

    
1916
    if (term_escape_char > 0 && term_escape_char < 26) {
1917
        snprintf(cbuf, sizeof(cbuf), "\n\r");
1918
        snprintf(ebuf, sizeof(ebuf), "C-%c", term_escape_char - 1 + 'a');
1919
    } else {
1920
        snprintf(cbuf, sizeof(cbuf),
1921
                 "\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1922
                 term_escape_char);
1923
    }
1924
    chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1925
    for (i = 0; mux_help[i] != NULL; i++) {
1926
        for (j=0; mux_help[i][j] != '\0'; j++) {
1927
            if (mux_help[i][j] == '%')
1928
                chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1929
            else
1930
                chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1931
        }
1932
    }
1933
}
1934

    
1935
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1936
{
1937
    if (d->term_got_escape) {
1938
        d->term_got_escape = 0;
1939
        if (ch == term_escape_char)
1940
            goto send_char;
1941
        switch(ch) {
1942
        case '?':
1943
        case 'h':
1944
            mux_print_help(chr);
1945
            break;
1946
        case 'x':
1947
            {
1948
                 const char *term =  "QEMU: Terminated\n\r";
1949
                 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1950
                 exit(0);
1951
                 break;
1952
            }
1953
        case 's':
1954
            {
1955
                int i;
1956
                for (i = 0; i < nb_drives; i++) {
1957
                        bdrv_commit(drives_table[i].bdrv);
1958
                }
1959
            }
1960
            break;
1961
        case 'b':
1962
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1963
            break;
1964
        case 'c':
1965
            /* Switch to the next registered device */
1966
            chr->focus++;
1967
            if (chr->focus >= d->mux_cnt)
1968
                chr->focus = 0;
1969
            break;
1970
       case 't':
1971
           term_timestamps = !term_timestamps;
1972
           term_timestamps_start = -1;
1973
           break;
1974
        }
1975
    } else if (ch == term_escape_char) {
1976
        d->term_got_escape = 1;
1977
    } else {
1978
    send_char:
1979
        return 1;
1980
    }
1981
    return 0;
1982
}
1983

    
1984
static void mux_chr_accept_input(CharDriverState *chr)
1985
{
1986
    int m = chr->focus;
1987
    MuxDriver *d = chr->opaque;
1988

    
1989
    while (d->prod != d->cons &&
1990
           d->chr_can_read[m] &&
1991
           d->chr_can_read[m](d->ext_opaque[m])) {
1992
        d->chr_read[m](d->ext_opaque[m],
1993
                       &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1994
    }
1995
}
1996

    
1997
static int mux_chr_can_read(void *opaque)
1998
{
1999
    CharDriverState *chr = opaque;
2000
    MuxDriver *d = chr->opaque;
2001

    
2002
    if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
2003
        return 1;
2004
    if (d->chr_can_read[chr->focus])
2005
        return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
2006
    return 0;
2007
}
2008

    
2009
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
2010
{
2011
    CharDriverState *chr = opaque;
2012
    MuxDriver *d = chr->opaque;
2013
    int m = chr->focus;
2014
    int i;
2015

    
2016
    mux_chr_accept_input (opaque);
2017

    
2018
    for(i = 0; i < size; i++)
2019
        if (mux_proc_byte(chr, d, buf[i])) {
2020
            if (d->prod == d->cons &&
2021
                d->chr_can_read[m] &&
2022
                d->chr_can_read[m](d->ext_opaque[m]))
2023
                d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
2024
            else
2025
                d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
2026
        }
2027
}
2028

    
2029
static void mux_chr_event(void *opaque, int event)
2030
{
2031
    CharDriverState *chr = opaque;
2032
    MuxDriver *d = chr->opaque;
2033
    int i;
2034

    
2035
    /* Send the event to all registered listeners */
2036
    for (i = 0; i < d->mux_cnt; i++)
2037
        if (d->chr_event[i])
2038
            d->chr_event[i](d->ext_opaque[i], event);
2039
}
2040

    
2041
static void mux_chr_update_read_handler(CharDriverState *chr)
2042
{
2043
    MuxDriver *d = chr->opaque;
2044

    
2045
    if (d->mux_cnt >= MAX_MUX) {
2046
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
2047
        return;
2048
    }
2049
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
2050
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
2051
    d->chr_read[d->mux_cnt] = chr->chr_read;
2052
    d->chr_event[d->mux_cnt] = chr->chr_event;
2053
    /* Fix up the real driver with mux routines */
2054
    if (d->mux_cnt == 0) {
2055
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
2056
                              mux_chr_event, chr);
2057
    }
2058
    chr->focus = d->mux_cnt;
2059
    d->mux_cnt++;
2060
}
2061

    
2062
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
2063
{
2064
    CharDriverState *chr;
2065
    MuxDriver *d;
2066

    
2067
    chr = qemu_mallocz(sizeof(CharDriverState));
2068
    if (!chr)
2069
        return NULL;
2070
    d = qemu_mallocz(sizeof(MuxDriver));
2071
    if (!d) {
2072
        free(chr);
2073
        return NULL;
2074
    }
2075

    
2076
    chr->opaque = d;
2077
    d->drv = drv;
2078
    chr->focus = -1;
2079
    chr->chr_write = mux_chr_write;
2080
    chr->chr_update_read_handler = mux_chr_update_read_handler;
2081
    chr->chr_accept_input = mux_chr_accept_input;
2082
    return chr;
2083
}
2084

    
2085

    
2086
#ifdef _WIN32
2087

    
2088
static void socket_cleanup(void)
2089
{
2090
    WSACleanup();
2091
}
2092

    
2093
static int socket_init(void)
2094
{
2095
    WSADATA Data;
2096
    int ret, err;
2097

    
2098
    ret = WSAStartup(MAKEWORD(2,2), &Data);
2099
    if (ret != 0) {
2100
        err = WSAGetLastError();
2101
        fprintf(stderr, "WSAStartup: %d\n", err);
2102
        return -1;
2103
    }
2104
    atexit(socket_cleanup);
2105
    return 0;
2106
}
2107

    
2108
static int send_all(int fd, const uint8_t *buf, int len1)
2109
{
2110
    int ret, len;
2111

    
2112
    len = len1;
2113
    while (len > 0) {
2114
        ret = send(fd, buf, len, 0);
2115
        if (ret < 0) {
2116
            int errno;
2117
            errno = WSAGetLastError();
2118
            if (errno != WSAEWOULDBLOCK) {
2119
                return -1;
2120
            }
2121
        } else if (ret == 0) {
2122
            break;
2123
        } else {
2124
            buf += ret;
2125
            len -= ret;
2126
        }
2127
    }
2128
    return len1 - len;
2129
}
2130

    
2131
#else
2132

    
2133
static int unix_write(int fd, const uint8_t *buf, int len1)
2134
{
2135
    int ret, len;
2136

    
2137
    len = len1;
2138
    while (len > 0) {
2139
        ret = write(fd, buf, len);
2140
        if (ret < 0) {
2141
            if (errno != EINTR && errno != EAGAIN)
2142
                return -1;
2143
        } else if (ret == 0) {
2144
            break;
2145
        } else {
2146
            buf += ret;
2147
            len -= ret;
2148
        }
2149
    }
2150
    return len1 - len;
2151
}
2152

    
2153
static inline int send_all(int fd, const uint8_t *buf, int len1)
2154
{
2155
    return unix_write(fd, buf, len1);
2156
}
2157
#endif /* !_WIN32 */
2158

    
2159
#ifndef _WIN32
2160

    
2161
typedef struct {
2162
    int fd_in, fd_out;
2163
    int max_size;
2164
} FDCharDriver;
2165

    
2166
#define STDIO_MAX_CLIENTS 1
2167
static int stdio_nb_clients = 0;
2168

    
2169
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2170
{
2171
    FDCharDriver *s = chr->opaque;
2172
    return unix_write(s->fd_out, buf, len);
2173
}
2174

    
2175
static int fd_chr_read_poll(void *opaque)
2176
{
2177
    CharDriverState *chr = opaque;
2178
    FDCharDriver *s = chr->opaque;
2179

    
2180
    s->max_size = qemu_chr_can_read(chr);
2181
    return s->max_size;
2182
}
2183

    
2184
static void fd_chr_read(void *opaque)
2185
{
2186
    CharDriverState *chr = opaque;
2187
    FDCharDriver *s = chr->opaque;
2188
    int size, len;
2189
    uint8_t buf[1024];
2190

    
2191
    len = sizeof(buf);
2192
    if (len > s->max_size)
2193
        len = s->max_size;
2194
    if (len == 0)
2195
        return;
2196
    size = read(s->fd_in, buf, len);
2197
    if (size == 0) {
2198
        /* FD has been closed. Remove it from the active list.  */
2199
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2200
        return;
2201
    }
2202
    if (size > 0) {
2203
        qemu_chr_read(chr, buf, size);
2204
    }
2205
}
2206

    
2207
static void fd_chr_update_read_handler(CharDriverState *chr)
2208
{
2209
    FDCharDriver *s = chr->opaque;
2210

    
2211
    if (s->fd_in >= 0) {
2212
        if (nographic && s->fd_in == 0) {
2213
        } else {
2214
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2215
                                 fd_chr_read, NULL, chr);
2216
        }
2217
    }
2218
}
2219

    
2220
static void fd_chr_close(struct CharDriverState *chr)
2221
{
2222
    FDCharDriver *s = chr->opaque;
2223

    
2224
    if (s->fd_in >= 0) {
2225
        if (nographic && s->fd_in == 0) {
2226
        } else {
2227
            qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2228
        }
2229
    }
2230

    
2231
    qemu_free(s);
2232
}
2233

    
2234
/* open a character device to a unix fd */
2235
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2236
{
2237
    CharDriverState *chr;
2238
    FDCharDriver *s;
2239

    
2240
    chr = qemu_mallocz(sizeof(CharDriverState));
2241
    if (!chr)
2242
        return NULL;
2243
    s = qemu_mallocz(sizeof(FDCharDriver));
2244
    if (!s) {
2245
        free(chr);
2246
        return NULL;
2247
    }
2248
    s->fd_in = fd_in;
2249
    s->fd_out = fd_out;
2250
    chr->opaque = s;
2251
    chr->chr_write = fd_chr_write;
2252
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2253
    chr->chr_close = fd_chr_close;
2254

    
2255
    qemu_chr_reset(chr);
2256

    
2257
    return chr;
2258
}
2259

    
2260
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2261
{
2262
    int fd_out;
2263

    
2264
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2265
    if (fd_out < 0)
2266
        return NULL;
2267
    return qemu_chr_open_fd(-1, fd_out);
2268
}
2269

    
2270
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2271
{
2272
    int fd_in, fd_out;
2273
    char filename_in[256], filename_out[256];
2274

    
2275
    snprintf(filename_in, 256, "%s.in", filename);
2276
    snprintf(filename_out, 256, "%s.out", filename);
2277
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2278
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2279
    if (fd_in < 0 || fd_out < 0) {
2280
        if (fd_in >= 0)
2281
            close(fd_in);
2282
        if (fd_out >= 0)
2283
            close(fd_out);
2284
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2285
        if (fd_in < 0)
2286
            return NULL;
2287
    }
2288
    return qemu_chr_open_fd(fd_in, fd_out);
2289
}
2290

    
2291

    
2292
/* for STDIO, we handle the case where several clients use it
2293
   (nographic mode) */
2294

    
2295
#define TERM_FIFO_MAX_SIZE 1
2296

    
2297
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2298
static int term_fifo_size;
2299

    
2300
static int stdio_read_poll(void *opaque)
2301
{
2302
    CharDriverState *chr = opaque;
2303

    
2304
    /* try to flush the queue if needed */
2305
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2306
        qemu_chr_read(chr, term_fifo, 1);
2307
        term_fifo_size = 0;
2308
    }
2309
    /* see if we can absorb more chars */
2310
    if (term_fifo_size == 0)
2311
        return 1;
2312
    else
2313
        return 0;
2314
}
2315

    
2316
static void stdio_read(void *opaque)
2317
{
2318
    int size;
2319
    uint8_t buf[1];
2320
    CharDriverState *chr = opaque;
2321

    
2322
    size = read(0, buf, 1);
2323
    if (size == 0) {
2324
        /* stdin has been closed. Remove it from the active list.  */
2325
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2326
        return;
2327
    }
2328
    if (size > 0) {
2329
        if (qemu_chr_can_read(chr) > 0) {
2330
            qemu_chr_read(chr, buf, 1);
2331
        } else if (term_fifo_size == 0) {
2332
            term_fifo[term_fifo_size++] = buf[0];
2333
        }
2334
    }
2335
}
2336

    
2337
/* init terminal so that we can grab keys */
2338
static struct termios oldtty;
2339
static int old_fd0_flags;
2340
static int term_atexit_done;
2341

    
2342
static void term_exit(void)
2343
{
2344
    tcsetattr (0, TCSANOW, &oldtty);
2345
    fcntl(0, F_SETFL, old_fd0_flags);
2346
}
2347

    
2348
static void term_init(void)
2349
{
2350
    struct termios tty;
2351

    
2352
    tcgetattr (0, &tty);
2353
    oldtty = tty;
2354
    old_fd0_flags = fcntl(0, F_GETFL);
2355

    
2356
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2357
                          |INLCR|IGNCR|ICRNL|IXON);
2358
    tty.c_oflag |= OPOST;
2359
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2360
    /* if graphical mode, we allow Ctrl-C handling */
2361
    if (nographic)
2362
        tty.c_lflag &= ~ISIG;
2363
    tty.c_cflag &= ~(CSIZE|PARENB);
2364
    tty.c_cflag |= CS8;
2365
    tty.c_cc[VMIN] = 1;
2366
    tty.c_cc[VTIME] = 0;
2367

    
2368
    tcsetattr (0, TCSANOW, &tty);
2369

    
2370
    if (!term_atexit_done++)
2371
        atexit(term_exit);
2372

    
2373
    fcntl(0, F_SETFL, O_NONBLOCK);
2374
}
2375

    
2376
static void qemu_chr_close_stdio(struct CharDriverState *chr)
2377
{
2378
    term_exit();
2379
    stdio_nb_clients--;
2380
    qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2381
    fd_chr_close(chr);
2382
}
2383

    
2384
static CharDriverState *qemu_chr_open_stdio(void)
2385
{
2386
    CharDriverState *chr;
2387

    
2388
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2389
        return NULL;
2390
    chr = qemu_chr_open_fd(0, 1);
2391
    chr->chr_close = qemu_chr_close_stdio;
2392
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2393
    stdio_nb_clients++;
2394
    term_init();
2395

    
2396
    return chr;
2397
}
2398

    
2399
#ifdef __sun__
2400
/* Once Solaris has openpty(), this is going to be removed. */
2401
int openpty(int *amaster, int *aslave, char *name,
2402
            struct termios *termp, struct winsize *winp)
2403
{
2404
        const char *slave;
2405
        int mfd = -1, sfd = -1;
2406

    
2407
        *amaster = *aslave = -1;
2408

    
2409
        mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2410
        if (mfd < 0)
2411
                goto err;
2412

    
2413
        if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2414
                goto err;
2415

    
2416
        if ((slave = ptsname(mfd)) == NULL)
2417
                goto err;
2418

    
2419
        if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2420
                goto err;
2421

    
2422
        if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2423
            (termp != NULL && tcgetattr(sfd, termp) < 0))
2424
                goto err;
2425

    
2426
        if (amaster)
2427
                *amaster = mfd;
2428
        if (aslave)
2429
                *aslave = sfd;
2430
        if (winp)
2431
                ioctl(sfd, TIOCSWINSZ, winp);
2432

    
2433
        return 0;
2434

    
2435
err:
2436
        if (sfd != -1)
2437
                close(sfd);
2438
        close(mfd);
2439
        return -1;
2440
}
2441

    
2442
void cfmakeraw (struct termios *termios_p)
2443
{
2444
        termios_p->c_iflag &=
2445
                ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2446
        termios_p->c_oflag &= ~OPOST;
2447
        termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2448
        termios_p->c_cflag &= ~(CSIZE|PARENB);
2449
        termios_p->c_cflag |= CS8;
2450

    
2451
        termios_p->c_cc[VMIN] = 0;
2452
        termios_p->c_cc[VTIME] = 0;
2453
}
2454
#endif
2455

    
2456
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2457
    || defined(__NetBSD__) || defined(__OpenBSD__)
2458

    
2459
typedef struct {
2460
    int fd;
2461
    int connected;
2462
    int polling;
2463
    int read_bytes;
2464
    QEMUTimer *timer;
2465
} PtyCharDriver;
2466

    
2467
static void pty_chr_update_read_handler(CharDriverState *chr);
2468
static void pty_chr_state(CharDriverState *chr, int connected);
2469

    
2470
static int pty_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2471
{
2472
    PtyCharDriver *s = chr->opaque;
2473

    
2474
    if (!s->connected) {
2475
        /* guest sends data, check for (re-)connect */
2476
        pty_chr_update_read_handler(chr);
2477
        return 0;
2478
    }
2479
    return unix_write(s->fd, buf, len);
2480
}
2481

    
2482
static int pty_chr_read_poll(void *opaque)
2483
{
2484
    CharDriverState *chr = opaque;
2485
    PtyCharDriver *s = chr->opaque;
2486

    
2487
    s->read_bytes = qemu_chr_can_read(chr);
2488
    return s->read_bytes;
2489
}
2490

    
2491
static void pty_chr_read(void *opaque)
2492
{
2493
    CharDriverState *chr = opaque;
2494
    PtyCharDriver *s = chr->opaque;
2495
    int size, len;
2496
    uint8_t buf[1024];
2497

    
2498
    len = sizeof(buf);
2499
    if (len > s->read_bytes)
2500
        len = s->read_bytes;
2501
    if (len == 0)
2502
        return;
2503
    size = read(s->fd, buf, len);
2504
    if ((size == -1 && errno == EIO) ||
2505
        (size == 0)) {
2506
        pty_chr_state(chr, 0);
2507
        return;
2508
    }
2509
    if (size > 0) {
2510
        pty_chr_state(chr, 1);
2511
        qemu_chr_read(chr, buf, size);
2512
    }
2513
}
2514

    
2515
static void pty_chr_update_read_handler(CharDriverState *chr)
2516
{
2517
    PtyCharDriver *s = chr->opaque;
2518

    
2519
    qemu_set_fd_handler2(s->fd, pty_chr_read_poll,
2520
                         pty_chr_read, NULL, chr);
2521
    s->polling = 1;
2522
    /*
2523
     * Short timeout here: just need wait long enougth that qemu makes
2524
     * it through the poll loop once.  When reconnected we want a
2525
     * short timeout so we notice it almost instantly.  Otherwise
2526
     * read() gives us -EIO instantly, making pty_chr_state() reset the
2527
     * timeout to the normal (much longer) poll interval before the
2528
     * timer triggers.
2529
     */
2530
    qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 10);
2531
}
2532

    
2533
static void pty_chr_state(CharDriverState *chr, int connected)
2534
{
2535
    PtyCharDriver *s = chr->opaque;
2536

    
2537
    if (!connected) {
2538
        qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2539
        s->connected = 0;
2540
        s->polling = 0;
2541
        /* (re-)connect poll interval for idle guests: once per second.
2542
         * We check more frequently in case the guests sends data to
2543
         * the virtual device linked to our pty. */
2544
        qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 1000);
2545
    } else {
2546
        if (!s->connected)
2547
            qemu_chr_reset(chr);
2548
        s->connected = 1;
2549
    }
2550
}
2551

    
2552
static void pty_chr_timer(void *opaque)
2553
{
2554
    struct CharDriverState *chr = opaque;
2555
    PtyCharDriver *s = chr->opaque;
2556

    
2557
    if (s->connected)
2558
        return;
2559
    if (s->polling) {
2560
        /* If we arrive here without polling being cleared due
2561
         * read returning -EIO, then we are (re-)connected */
2562
        pty_chr_state(chr, 1);
2563
        return;
2564
    }
2565

    
2566
    /* Next poll ... */
2567
    pty_chr_update_read_handler(chr);
2568
}
2569

    
2570
static void pty_chr_close(struct CharDriverState *chr)
2571
{
2572
    PtyCharDriver *s = chr->opaque;
2573

    
2574
    qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2575
    close(s->fd);
2576
    qemu_free(s);
2577
}
2578

    
2579
static CharDriverState *qemu_chr_open_pty(void)
2580
{
2581
    CharDriverState *chr;
2582
    PtyCharDriver *s;
2583
    struct termios tty;
2584
    int slave_fd;
2585
#if defined(__OpenBSD__)
2586
    char pty_name[PATH_MAX];
2587
#define q_ptsname(x) pty_name
2588
#else
2589
    char *pty_name = NULL;
2590
#define q_ptsname(x) ptsname(x)
2591
#endif
2592

    
2593
    chr = qemu_mallocz(sizeof(CharDriverState));
2594
    if (!chr)
2595
        return NULL;
2596
    s = qemu_mallocz(sizeof(PtyCharDriver));
2597
    if (!s) {
2598
        qemu_free(chr);
2599
        return NULL;
2600
    }
2601

    
2602
    if (openpty(&s->fd, &slave_fd, pty_name, NULL, NULL) < 0) {
2603
        return NULL;
2604
    }
2605

    
2606
    /* Set raw attributes on the pty. */
2607
    cfmakeraw(&tty);
2608
    tcsetattr(slave_fd, TCSAFLUSH, &tty);
2609
    close(slave_fd);
2610

    
2611
    fprintf(stderr, "char device redirected to %s\n", q_ptsname(s->fd));
2612

    
2613
    chr->opaque = s;
2614
    chr->chr_write = pty_chr_write;
2615
    chr->chr_update_read_handler = pty_chr_update_read_handler;
2616
    chr->chr_close = pty_chr_close;
2617

    
2618
    s->timer = qemu_new_timer(rt_clock, pty_chr_timer, chr);
2619

    
2620
    return chr;
2621
}
2622

    
2623
static void tty_serial_init(int fd, int speed,
2624
                            int parity, int data_bits, int stop_bits)
2625
{
2626
    struct termios tty;
2627
    speed_t spd;
2628

    
2629
#if 0
2630
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2631
           speed, parity, data_bits, stop_bits);
2632
#endif
2633
    tcgetattr (fd, &tty);
2634

    
2635
#define MARGIN 1.1
2636
    if (speed <= 50 * MARGIN)
2637
        spd = B50;
2638
    else if (speed <= 75 * MARGIN)
2639
        spd = B75;
2640
    else if (speed <= 300 * MARGIN)
2641
        spd = B300;
2642
    else if (speed <= 600 * MARGIN)
2643
        spd = B600;
2644
    else if (speed <= 1200 * MARGIN)
2645
        spd = B1200;
2646
    else if (speed <= 2400 * MARGIN)
2647
        spd = B2400;
2648
    else if (speed <= 4800 * MARGIN)
2649
        spd = B4800;
2650
    else if (speed <= 9600 * MARGIN)
2651
        spd = B9600;
2652
    else if (speed <= 19200 * MARGIN)
2653
        spd = B19200;
2654
    else if (speed <= 38400 * MARGIN)
2655
        spd = B38400;
2656
    else if (speed <= 57600 * MARGIN)
2657
        spd = B57600;
2658
    else if (speed <= 115200 * MARGIN)
2659
        spd = B115200;
2660
    else
2661
        spd = B115200;
2662

    
2663
    cfsetispeed(&tty, spd);
2664
    cfsetospeed(&tty, spd);
2665

    
2666
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2667
                          |INLCR|IGNCR|ICRNL|IXON);
2668
    tty.c_oflag |= OPOST;
2669
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2670
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2671
    switch(data_bits) {
2672
    default:
2673
    case 8:
2674
        tty.c_cflag |= CS8;
2675
        break;
2676
    case 7:
2677
        tty.c_cflag |= CS7;
2678
        break;
2679
    case 6:
2680
        tty.c_cflag |= CS6;
2681
        break;
2682
    case 5:
2683
        tty.c_cflag |= CS5;
2684
        break;
2685
    }
2686
    switch(parity) {
2687
    default:
2688
    case 'N':
2689
        break;
2690
    case 'E':
2691
        tty.c_cflag |= PARENB;
2692
        break;
2693
    case 'O':
2694
        tty.c_cflag |= PARENB | PARODD;
2695
        break;
2696
    }
2697
    if (stop_bits == 2)
2698
        tty.c_cflag |= CSTOPB;
2699

    
2700
    tcsetattr (fd, TCSANOW, &tty);
2701
}
2702

    
2703
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2704
{
2705
    FDCharDriver *s = chr->opaque;
2706

    
2707
    switch(cmd) {
2708
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2709
        {
2710
            QEMUSerialSetParams *ssp = arg;
2711
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2712
                            ssp->data_bits, ssp->stop_bits);
2713
        }
2714
        break;
2715
    case CHR_IOCTL_SERIAL_SET_BREAK:
2716
        {
2717
            int enable = *(int *)arg;
2718
            if (enable)
2719
                tcsendbreak(s->fd_in, 1);
2720
        }
2721
        break;
2722
    case CHR_IOCTL_SERIAL_GET_TIOCM:
2723
        {
2724
            int sarg = 0;
2725
            int *targ = (int *)arg;
2726
            ioctl(s->fd_in, TIOCMGET, &sarg);
2727
            *targ = 0;
2728
            if (sarg | TIOCM_CTS)
2729
                *targ |= CHR_TIOCM_CTS;
2730
            if (sarg | TIOCM_CAR)
2731
                *targ |= CHR_TIOCM_CAR;
2732
            if (sarg | TIOCM_DSR)
2733
                *targ |= CHR_TIOCM_DSR;
2734
            if (sarg | TIOCM_RI)
2735
                *targ |= CHR_TIOCM_RI;
2736
            if (sarg | TIOCM_DTR)
2737
                *targ |= CHR_TIOCM_DTR;
2738
            if (sarg | TIOCM_RTS)
2739
                *targ |= CHR_TIOCM_RTS;
2740
        }
2741
        break;
2742
    case CHR_IOCTL_SERIAL_SET_TIOCM:
2743
        {
2744
            int sarg = *(int *)arg;
2745
            int targ = 0;
2746
            if (sarg | CHR_TIOCM_DTR)
2747
                targ |= TIOCM_DTR;
2748
            if (sarg | CHR_TIOCM_RTS)
2749
                targ |= TIOCM_RTS;
2750
            ioctl(s->fd_in, TIOCMSET, &targ);
2751
        }
2752
        break;
2753
    default:
2754
        return -ENOTSUP;
2755
    }
2756
    return 0;
2757
}
2758

    
2759
static CharDriverState *qemu_chr_open_tty(const char *filename)
2760
{
2761
    CharDriverState *chr;
2762
    int fd;
2763

    
2764
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2765
    tty_serial_init(fd, 115200, 'N', 8, 1);
2766
    chr = qemu_chr_open_fd(fd, fd);
2767
    if (!chr) {
2768
        close(fd);
2769
        return NULL;
2770
    }
2771
    chr->chr_ioctl = tty_serial_ioctl;
2772
    qemu_chr_reset(chr);
2773
    return chr;
2774
}
2775
#else  /* ! __linux__ && ! __sun__ */
2776
static CharDriverState *qemu_chr_open_pty(void)
2777
{
2778
    return NULL;
2779
}
2780
#endif /* __linux__ || __sun__ */
2781

    
2782
#if defined(__linux__)
2783
typedef struct {
2784
    int fd;
2785
    int mode;
2786
} ParallelCharDriver;
2787

    
2788
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2789
{
2790
    if (s->mode != mode) {
2791
        int m = mode;
2792
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2793
            return 0;
2794
        s->mode = mode;
2795
    }
2796
    return 1;
2797
}
2798

    
2799
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2800
{
2801
    ParallelCharDriver *drv = chr->opaque;
2802
    int fd = drv->fd;
2803
    uint8_t b;
2804

    
2805
    switch(cmd) {
2806
    case CHR_IOCTL_PP_READ_DATA:
2807
        if (ioctl(fd, PPRDATA, &b) < 0)
2808
            return -ENOTSUP;
2809
        *(uint8_t *)arg = b;
2810
        break;
2811
    case CHR_IOCTL_PP_WRITE_DATA:
2812
        b = *(uint8_t *)arg;
2813
        if (ioctl(fd, PPWDATA, &b) < 0)
2814
            return -ENOTSUP;
2815
        break;
2816
    case CHR_IOCTL_PP_READ_CONTROL:
2817
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2818
            return -ENOTSUP;
2819
        /* Linux gives only the lowest bits, and no way to know data
2820
           direction! For better compatibility set the fixed upper
2821
           bits. */
2822
        *(uint8_t *)arg = b | 0xc0;
2823
        break;
2824
    case CHR_IOCTL_PP_WRITE_CONTROL:
2825
        b = *(uint8_t *)arg;
2826
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2827
            return -ENOTSUP;
2828
        break;
2829
    case CHR_IOCTL_PP_READ_STATUS:
2830
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2831
            return -ENOTSUP;
2832
        *(uint8_t *)arg = b;
2833
        break;
2834
    case CHR_IOCTL_PP_DATA_DIR:
2835
        if (ioctl(fd, PPDATADIR, (int *)arg) < 0)
2836
            return -ENOTSUP;
2837
        break;
2838
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2839
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2840
            struct ParallelIOArg *parg = arg;
2841
            int n = read(fd, parg->buffer, parg->count);
2842
            if (n != parg->count) {
2843
                return -EIO;
2844
            }
2845
        }
2846
        break;
2847
    case CHR_IOCTL_PP_EPP_READ:
2848
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2849
            struct ParallelIOArg *parg = arg;
2850
            int n = read(fd, parg->buffer, parg->count);
2851
            if (n != parg->count) {
2852
                return -EIO;
2853
            }
2854
        }
2855
        break;
2856
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2857
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2858
            struct ParallelIOArg *parg = arg;
2859
            int n = write(fd, parg->buffer, parg->count);
2860
            if (n != parg->count) {
2861
                return -EIO;
2862
            }
2863
        }
2864
        break;
2865
    case CHR_IOCTL_PP_EPP_WRITE:
2866
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2867
            struct ParallelIOArg *parg = arg;
2868
            int n = write(fd, parg->buffer, parg->count);
2869
            if (n != parg->count) {
2870
                return -EIO;
2871
            }
2872
        }
2873
        break;
2874
    default:
2875
        return -ENOTSUP;
2876
    }
2877
    return 0;
2878
}
2879

    
2880
static void pp_close(CharDriverState *chr)
2881
{
2882
    ParallelCharDriver *drv = chr->opaque;
2883
    int fd = drv->fd;
2884

    
2885
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2886
    ioctl(fd, PPRELEASE);
2887
    close(fd);
2888
    qemu_free(drv);
2889
}
2890

    
2891
static CharDriverState *qemu_chr_open_pp(const char *filename)
2892
{
2893
    CharDriverState *chr;
2894
    ParallelCharDriver *drv;
2895
    int fd;
2896

    
2897
    TFR(fd = open(filename, O_RDWR));
2898
    if (fd < 0)
2899
        return NULL;
2900

    
2901
    if (ioctl(fd, PPCLAIM) < 0) {
2902
        close(fd);
2903
        return NULL;
2904
    }
2905

    
2906
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2907
    if (!drv) {
2908
        close(fd);
2909
        return NULL;
2910
    }
2911
    drv->fd = fd;
2912
    drv->mode = IEEE1284_MODE_COMPAT;
2913

    
2914
    chr = qemu_mallocz(sizeof(CharDriverState));
2915
    if (!chr) {
2916
        qemu_free(drv);
2917
        close(fd);
2918
        return NULL;
2919
    }
2920
    chr->chr_write = null_chr_write;
2921
    chr->chr_ioctl = pp_ioctl;
2922
    chr->chr_close = pp_close;
2923
    chr->opaque = drv;
2924

    
2925
    qemu_chr_reset(chr);
2926

    
2927
    return chr;
2928
}
2929
#endif /* __linux__ */
2930

    
2931
#else /* _WIN32 */
2932

    
2933
typedef struct {
2934
    int max_size;
2935
    HANDLE hcom, hrecv, hsend;
2936
    OVERLAPPED orecv, osend;
2937
    BOOL fpipe;
2938
    DWORD len;
2939
} WinCharState;
2940

    
2941
#define NSENDBUF 2048
2942
#define NRECVBUF 2048
2943
#define MAXCONNECT 1
2944
#define NTIMEOUT 5000
2945

    
2946
static int win_chr_poll(void *opaque);
2947
static int win_chr_pipe_poll(void *opaque);
2948

    
2949
static void win_chr_close(CharDriverState *chr)
2950
{
2951
    WinCharState *s = chr->opaque;
2952

    
2953
    if (s->hsend) {
2954
        CloseHandle(s->hsend);
2955
        s->hsend = NULL;
2956
    }
2957
    if (s->hrecv) {
2958
        CloseHandle(s->hrecv);
2959
        s->hrecv = NULL;
2960
    }
2961
    if (s->hcom) {
2962
        CloseHandle(s->hcom);
2963
        s->hcom = NULL;
2964
    }
2965
    if (s->fpipe)
2966
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2967
    else
2968
        qemu_del_polling_cb(win_chr_poll, chr);
2969
}
2970

    
2971
static int win_chr_init(CharDriverState *chr, const char *filename)
2972
{
2973
    WinCharState *s = chr->opaque;
2974
    COMMCONFIG comcfg;
2975
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2976
    COMSTAT comstat;
2977
    DWORD size;
2978
    DWORD err;
2979

    
2980
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2981
    if (!s->hsend) {
2982
        fprintf(stderr, "Failed CreateEvent\n");
2983
        goto fail;
2984
    }
2985
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2986
    if (!s->hrecv) {
2987
        fprintf(stderr, "Failed CreateEvent\n");
2988
        goto fail;
2989
    }
2990

    
2991
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2992
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2993
    if (s->hcom == INVALID_HANDLE_VALUE) {
2994
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2995
        s->hcom = NULL;
2996
        goto fail;
2997
    }
2998

    
2999
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
3000
        fprintf(stderr, "Failed SetupComm\n");
3001
        goto fail;
3002
    }
3003

    
3004
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
3005
    size = sizeof(COMMCONFIG);
3006
    GetDefaultCommConfig(filename, &comcfg, &size);
3007
    comcfg.dcb.DCBlength = sizeof(DCB);
3008
    CommConfigDialog(filename, NULL, &comcfg);
3009

    
3010
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
3011
        fprintf(stderr, "Failed SetCommState\n");
3012
        goto fail;
3013
    }
3014

    
3015
    if (!SetCommMask(s->hcom, EV_ERR)) {
3016
        fprintf(stderr, "Failed SetCommMask\n");
3017
        goto fail;
3018
    }
3019

    
3020
    cto.ReadIntervalTimeout = MAXDWORD;
3021
    if (!SetCommTimeouts(s->hcom, &cto)) {
3022
        fprintf(stderr, "Failed SetCommTimeouts\n");
3023
        goto fail;
3024
    }
3025

    
3026
    if (!ClearCommError(s->hcom, &err, &comstat)) {
3027
        fprintf(stderr, "Failed ClearCommError\n");
3028
        goto fail;
3029
    }
3030
    qemu_add_polling_cb(win_chr_poll, chr);
3031
    return 0;
3032

    
3033
 fail:
3034
    win_chr_close(chr);
3035
    return -1;
3036
}
3037

    
3038
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
3039
{
3040
    WinCharState *s = chr->opaque;
3041
    DWORD len, ret, size, err;
3042

    
3043
    len = len1;
3044
    ZeroMemory(&s->osend, sizeof(s->osend));
3045
    s->osend.hEvent = s->hsend;
3046
    while (len > 0) {
3047
        if (s->hsend)
3048
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
3049
        else
3050
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
3051
        if (!ret) {
3052
            err = GetLastError();
3053
            if (err == ERROR_IO_PENDING) {
3054
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
3055
                if (ret) {
3056
                    buf += size;
3057
                    len -= size;
3058
                } else {
3059
                    break;
3060
                }
3061
            } else {
3062
                break;
3063
            }
3064
        } else {
3065
            buf += size;
3066
            len -= size;
3067
        }
3068
    }
3069
    return len1 - len;
3070
}
3071

    
3072
static int win_chr_read_poll(CharDriverState *chr)
3073
{
3074
    WinCharState *s = chr->opaque;
3075

    
3076
    s->max_size = qemu_chr_can_read(chr);
3077
    return s->max_size;
3078
}
3079

    
3080
static void win_chr_readfile(CharDriverState *chr)
3081
{
3082
    WinCharState *s = chr->opaque;
3083
    int ret, err;
3084
    uint8_t buf[1024];
3085
    DWORD size;
3086

    
3087
    ZeroMemory(&s->orecv, sizeof(s->orecv));
3088
    s->orecv.hEvent = s->hrecv;
3089
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
3090
    if (!ret) {
3091
        err = GetLastError();
3092
        if (err == ERROR_IO_PENDING) {
3093
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
3094
        }
3095
    }
3096

    
3097
    if (size > 0) {
3098
        qemu_chr_read(chr, buf, size);
3099
    }
3100
}
3101

    
3102
static void win_chr_read(CharDriverState *chr)
3103
{
3104
    WinCharState *s = chr->opaque;
3105

    
3106
    if (s->len > s->max_size)
3107
        s->len = s->max_size;
3108
    if (s->len == 0)
3109
        return;
3110

    
3111
    win_chr_readfile(chr);
3112
}
3113

    
3114
static int win_chr_poll(void *opaque)
3115
{
3116
    CharDriverState *chr = opaque;
3117
    WinCharState *s = chr->opaque;
3118
    COMSTAT status;
3119
    DWORD comerr;
3120

    
3121
    ClearCommError(s->hcom, &comerr, &status);
3122
    if (status.cbInQue > 0) {
3123
        s->len = status.cbInQue;
3124
        win_chr_read_poll(chr);
3125
        win_chr_read(chr);
3126
        return 1;
3127
    }
3128
    return 0;
3129
}
3130

    
3131
static CharDriverState *qemu_chr_open_win(const char *filename)
3132
{
3133
    CharDriverState *chr;
3134
    WinCharState *s;
3135

    
3136
    chr = qemu_mallocz(sizeof(CharDriverState));
3137
    if (!chr)
3138
        return NULL;
3139
    s = qemu_mallocz(sizeof(WinCharState));
3140
    if (!s) {
3141
        free(chr);
3142
        return NULL;
3143
    }
3144
    chr->opaque = s;
3145
    chr->chr_write = win_chr_write;
3146
    chr->chr_close = win_chr_close;
3147

    
3148
    if (win_chr_init(chr, filename) < 0) {
3149
        free(s);
3150
        free(chr);
3151
        return NULL;
3152
    }
3153
    qemu_chr_reset(chr);
3154
    return chr;
3155
}
3156

    
3157
static int win_chr_pipe_poll(void *opaque)
3158
{
3159
    CharDriverState *chr = opaque;
3160
    WinCharState *s = chr->opaque;
3161
    DWORD size;
3162

    
3163
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
3164
    if (size > 0) {
3165
        s->len = size;
3166
        win_chr_read_poll(chr);
3167
        win_chr_read(chr);
3168
        return 1;
3169
    }
3170
    return 0;
3171
}
3172

    
3173
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
3174
{
3175
    WinCharState *s = chr->opaque;
3176
    OVERLAPPED ov;
3177
    int ret;
3178
    DWORD size;
3179
    char openname[256];
3180

    
3181
    s->fpipe = TRUE;
3182

    
3183
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
3184
    if (!s->hsend) {
3185
        fprintf(stderr, "Failed CreateEvent\n");
3186
        goto fail;
3187
    }
3188
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
3189
    if (!s->hrecv) {
3190
        fprintf(stderr, "Failed CreateEvent\n");
3191
        goto fail;
3192
    }
3193

    
3194
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
3195
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
3196
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
3197
                              PIPE_WAIT,
3198
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
3199
    if (s->hcom == INVALID_HANDLE_VALUE) {
3200
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
3201
        s->hcom = NULL;
3202
        goto fail;
3203
    }
3204

    
3205
    ZeroMemory(&ov, sizeof(ov));
3206
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
3207
    ret = ConnectNamedPipe(s->hcom, &ov);
3208
    if (ret) {
3209
        fprintf(stderr, "Failed ConnectNamedPipe\n");
3210
        goto fail;
3211
    }
3212

    
3213
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
3214
    if (!ret) {
3215
        fprintf(stderr, "Failed GetOverlappedResult\n");
3216
        if (ov.hEvent) {
3217
            CloseHandle(ov.hEvent);
3218
            ov.hEvent = NULL;
3219
        }
3220
        goto fail;
3221
    }
3222

    
3223
    if (ov.hEvent) {
3224
        CloseHandle(ov.hEvent);
3225
        ov.hEvent = NULL;
3226
    }
3227
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
3228
    return 0;
3229

    
3230
 fail:
3231
    win_chr_close(chr);
3232
    return -1;
3233
}
3234

    
3235

    
3236
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
3237
{
3238
    CharDriverState *chr;
3239
    WinCharState *s;
3240

    
3241
    chr = qemu_mallocz(sizeof(CharDriverState));
3242
    if (!chr)
3243
        return NULL;
3244
    s = qemu_mallocz(sizeof(WinCharState));
3245
    if (!s) {
3246
        free(chr);
3247
        return NULL;
3248
    }
3249
    chr->opaque = s;
3250
    chr->chr_write = win_chr_write;
3251
    chr->chr_close = win_chr_close;
3252

    
3253
    if (win_chr_pipe_init(chr, filename) < 0) {
3254
        free(s);
3255
        free(chr);
3256
        return NULL;
3257
    }
3258
    qemu_chr_reset(chr);
3259
    return chr;
3260
}
3261

    
3262
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
3263
{
3264
    CharDriverState *chr;
3265
    WinCharState *s;
3266

    
3267
    chr = qemu_mallocz(sizeof(CharDriverState));
3268
    if (!chr)
3269
        return NULL;
3270
    s = qemu_mallocz(sizeof(WinCharState));
3271
    if (!s) {
3272
        free(chr);
3273
        return NULL;
3274
    }
3275
    s->hcom = fd_out;
3276
    chr->opaque = s;
3277
    chr->chr_write = win_chr_write;
3278
    qemu_chr_reset(chr);
3279
    return chr;
3280
}
3281

    
3282
static CharDriverState *qemu_chr_open_win_con(const char *filename)
3283
{
3284
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
3285
}
3286

    
3287
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3288
{
3289
    HANDLE fd_out;
3290

    
3291
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
3292
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
3293
    if (fd_out == INVALID_HANDLE_VALUE)
3294
        return NULL;
3295

    
3296
    return qemu_chr_open_win_file(fd_out);
3297
}
3298
#endif /* !_WIN32 */
3299

    
3300
/***********************************************************/
3301
/* UDP Net console */
3302

    
3303
typedef struct {
3304
    int fd;
3305
    struct sockaddr_in daddr;
3306
    uint8_t buf[1024];
3307
    int bufcnt;
3308
    int bufptr;
3309
    int max_size;
3310
} NetCharDriver;
3311

    
3312
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3313
{
3314
    NetCharDriver *s = chr->opaque;
3315

    
3316
    return sendto(s->fd, buf, len, 0,
3317
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3318
}
3319

    
3320
static int udp_chr_read_poll(void *opaque)
3321
{
3322
    CharDriverState *chr = opaque;
3323
    NetCharDriver *s = chr->opaque;
3324

    
3325
    s->max_size = qemu_chr_can_read(chr);
3326

    
3327
    /* If there were any stray characters in the queue process them
3328
     * first
3329
     */
3330
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3331
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3332
        s->bufptr++;
3333
        s->max_size = qemu_chr_can_read(chr);
3334
    }
3335
    return s->max_size;
3336
}
3337

    
3338
static void udp_chr_read(void *opaque)
3339
{
3340
    CharDriverState *chr = opaque;
3341
    NetCharDriver *s = chr->opaque;
3342

    
3343
    if (s->max_size == 0)
3344
        return;
3345
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3346
    s->bufptr = s->bufcnt;
3347
    if (s->bufcnt <= 0)
3348
        return;
3349

    
3350
    s->bufptr = 0;
3351
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3352
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3353
        s->bufptr++;
3354
        s->max_size = qemu_chr_can_read(chr);
3355
    }
3356
}
3357

    
3358
static void udp_chr_update_read_handler(CharDriverState *chr)
3359
{
3360
    NetCharDriver *s = chr->opaque;
3361

    
3362
    if (s->fd >= 0) {
3363
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3364
                             udp_chr_read, NULL, chr);
3365
    }
3366
}
3367

    
3368
#ifndef _WIN32
3369
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3370
#endif
3371
int parse_host_src_port(struct sockaddr_in *haddr,
3372
                        struct sockaddr_in *saddr,
3373
                        const char *str);
3374

    
3375
static CharDriverState *qemu_chr_open_udp(const char *def)
3376
{
3377
    CharDriverState *chr = NULL;
3378
    NetCharDriver *s = NULL;
3379
    int fd = -1;
3380
    struct sockaddr_in saddr;
3381

    
3382
    chr = qemu_mallocz(sizeof(CharDriverState));
3383
    if (!chr)
3384
        goto return_err;
3385
    s = qemu_mallocz(sizeof(NetCharDriver));
3386
    if (!s)
3387
        goto return_err;
3388

    
3389
    fd = socket(PF_INET, SOCK_DGRAM, 0);
3390
    if (fd < 0) {
3391
        perror("socket(PF_INET, SOCK_DGRAM)");
3392
        goto return_err;
3393
    }
3394

    
3395
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3396
        printf("Could not parse: %s\n", def);
3397
        goto return_err;
3398
    }
3399

    
3400
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3401
    {
3402
        perror("bind");
3403
        goto return_err;
3404
    }
3405

    
3406
    s->fd = fd;
3407
    s->bufcnt = 0;
3408
    s->bufptr = 0;
3409
    chr->opaque = s;
3410
    chr->chr_write = udp_chr_write;
3411
    chr->chr_update_read_handler = udp_chr_update_read_handler;
3412
    return chr;
3413

    
3414
return_err:
3415
    if (chr)
3416
        free(chr);
3417
    if (s)
3418
        free(s);
3419
    if (fd >= 0)
3420
        closesocket(fd);
3421
    return NULL;
3422
}
3423

    
3424
/***********************************************************/
3425
/* TCP Net console */
3426

    
3427
typedef struct {
3428
    int fd, listen_fd;
3429
    int connected;
3430
    int max_size;
3431
    int do_telnetopt;
3432
    int do_nodelay;
3433
    int is_unix;
3434
} TCPCharDriver;
3435

    
3436
static void tcp_chr_accept(void *opaque);
3437

    
3438
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3439
{
3440
    TCPCharDriver *s = chr->opaque;
3441
    if (s->connected) {
3442
        return send_all(s->fd, buf, len);
3443
    } else {
3444
        /* XXX: indicate an error ? */
3445
        return len;
3446
    }
3447
}
3448

    
3449
static int tcp_chr_read_poll(void *opaque)
3450
{
3451
    CharDriverState *chr = opaque;
3452
    TCPCharDriver *s = chr->opaque;
3453
    if (!s->connected)
3454
        return 0;
3455
    s->max_size = qemu_chr_can_read(chr);
3456
    return s->max_size;
3457
}
3458

    
3459
#define IAC 255
3460
#define IAC_BREAK 243
3461
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3462
                                      TCPCharDriver *s,
3463
                                      uint8_t *buf, int *size)
3464
{
3465
    /* Handle any telnet client's basic IAC options to satisfy char by
3466
     * char mode with no echo.  All IAC options will be removed from
3467
     * the buf and the do_telnetopt variable will be used to track the
3468
     * state of the width of the IAC information.
3469
     *
3470
     * IAC commands come in sets of 3 bytes with the exception of the
3471
     * "IAC BREAK" command and the double IAC.
3472
     */
3473

    
3474
    int i;
3475
    int j = 0;
3476

    
3477
    for (i = 0; i < *size; i++) {
3478
        if (s->do_telnetopt > 1) {
3479
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3480
                /* Double IAC means send an IAC */
3481
                if (j != i)
3482
                    buf[j] = buf[i];
3483
                j++;
3484
                s->do_telnetopt = 1;
3485
            } else {
3486
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3487
                    /* Handle IAC break commands by sending a serial break */
3488
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3489
                    s->do_telnetopt++;
3490
                }
3491
                s->do_telnetopt++;
3492
            }
3493
            if (s->do_telnetopt >= 4) {
3494
                s->do_telnetopt = 1;
3495
            }
3496
        } else {
3497
            if ((unsigned char)buf[i] == IAC) {
3498
                s->do_telnetopt = 2;
3499
            } else {
3500
                if (j != i)
3501
                    buf[j] = buf[i];
3502
                j++;
3503
            }
3504
        }
3505
    }
3506
    *size = j;
3507
}
3508

    
3509
static void tcp_chr_read(void *opaque)
3510
{
3511
    CharDriverState *chr = opaque;
3512
    TCPCharDriver *s = chr->opaque;
3513
    uint8_t buf[1024];
3514
    int len, size;
3515

    
3516
    if (!s->connected || s->max_size <= 0)
3517
        return;
3518
    len = sizeof(buf);
3519
    if (len > s->max_size)
3520
        len = s->max_size;
3521
    size = recv(s->fd, buf, len, 0);
3522
    if (size == 0) {
3523
        /* connection closed */
3524
        s->connected = 0;
3525
        if (s->listen_fd >= 0) {
3526
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3527
        }
3528
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3529
        closesocket(s->fd);
3530
        s->fd = -1;
3531
    } else if (size > 0) {
3532
        if (s->do_telnetopt)
3533
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3534
        if (size > 0)
3535
            qemu_chr_read(chr, buf, size);
3536
    }
3537
}
3538

    
3539
static void tcp_chr_connect(void *opaque)
3540
{
3541
    CharDriverState *chr = opaque;
3542
    TCPCharDriver *s = chr->opaque;
3543

    
3544
    s->connected = 1;
3545
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3546
                         tcp_chr_read, NULL, chr);
3547
    qemu_chr_reset(chr);
3548
}
3549

    
3550
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3551
static void tcp_chr_telnet_init(int fd)
3552
{
3553
    char buf[3];
3554
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3555
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3556
    send(fd, (char *)buf, 3, 0);
3557
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3558
    send(fd, (char *)buf, 3, 0);
3559
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3560
    send(fd, (char *)buf, 3, 0);
3561
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3562
    send(fd, (char *)buf, 3, 0);
3563
}
3564

    
3565
static void socket_set_nodelay(int fd)
3566
{
3567
    int val = 1;
3568
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3569
}
3570

    
3571
static void tcp_chr_accept(void *opaque)
3572
{
3573
    CharDriverState *chr = opaque;
3574
    TCPCharDriver *s = chr->opaque;
3575
    struct sockaddr_in saddr;
3576
#ifndef _WIN32
3577
    struct sockaddr_un uaddr;
3578
#endif
3579
    struct sockaddr *addr;
3580
    socklen_t len;
3581
    int fd;
3582

    
3583
    for(;;) {
3584
#ifndef _WIN32
3585
        if (s->is_unix) {
3586
            len = sizeof(uaddr);
3587
            addr = (struct sockaddr *)&uaddr;
3588
        } else
3589
#endif
3590
        {
3591
            len = sizeof(saddr);
3592
            addr = (struct sockaddr *)&saddr;
3593
        }
3594
        fd = accept(s->listen_fd, addr, &len);
3595
        if (fd < 0 && errno != EINTR) {
3596
            return;
3597
        } else if (fd >= 0) {
3598
            if (s->do_telnetopt)
3599
                tcp_chr_telnet_init(fd);
3600
            break;
3601
        }
3602
    }
3603
    socket_set_nonblock(fd);
3604
    if (s->do_nodelay)
3605
        socket_set_nodelay(fd);
3606
    s->fd = fd;
3607
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3608
    tcp_chr_connect(chr);
3609
}
3610

    
3611
static void tcp_chr_close(CharDriverState *chr)
3612
{
3613
    TCPCharDriver *s = chr->opaque;
3614
    if (s->fd >= 0)
3615
        closesocket(s->fd);
3616
    if (s->listen_fd >= 0)
3617
        closesocket(s->listen_fd);
3618
    qemu_free(s);
3619
}
3620

    
3621
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3622
                                          int is_telnet,
3623
                                          int is_unix)
3624
{
3625
    CharDriverState *chr = NULL;
3626
    TCPCharDriver *s = NULL;
3627
    int fd = -1, ret, err, val;
3628
    int is_listen = 0;
3629
    int is_waitconnect = 1;
3630
    int do_nodelay = 0;
3631
    const char *ptr;
3632
    struct sockaddr_in saddr;
3633
#ifndef _WIN32
3634
    struct sockaddr_un uaddr;
3635
#endif
3636
    struct sockaddr *addr;
3637
    socklen_t addrlen;
3638

    
3639
#ifndef _WIN32
3640
    if (is_unix) {
3641
        addr = (struct sockaddr *)&uaddr;
3642
        addrlen = sizeof(uaddr);
3643
        if (parse_unix_path(&uaddr, host_str) < 0)
3644
            goto fail;
3645
    } else
3646
#endif
3647
    {
3648
        addr = (struct sockaddr *)&saddr;
3649
        addrlen = sizeof(saddr);
3650
        if (parse_host_port(&saddr, host_str) < 0)
3651
            goto fail;
3652
    }
3653

    
3654
    ptr = host_str;
3655
    while((ptr = strchr(ptr,','))) {
3656
        ptr++;
3657
        if (!strncmp(ptr,"server",6)) {
3658
            is_listen = 1;
3659
        } else if (!strncmp(ptr,"nowait",6)) {
3660
            is_waitconnect = 0;
3661
        } else if (!strncmp(ptr,"nodelay",6)) {
3662
            do_nodelay = 1;
3663
        } else {
3664
            printf("Unknown option: %s\n", ptr);
3665
            goto fail;
3666
        }
3667
    }
3668
    if (!is_listen)
3669
        is_waitconnect = 0;
3670

    
3671
    chr = qemu_mallocz(sizeof(CharDriverState));
3672
    if (!chr)
3673
        goto fail;
3674
    s = qemu_mallocz(sizeof(TCPCharDriver));
3675
    if (!s)
3676
        goto fail;
3677

    
3678
#ifndef _WIN32
3679
    if (is_unix)
3680
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3681
    else
3682
#endif
3683
        fd = socket(PF_INET, SOCK_STREAM, 0);
3684

    
3685
    if (fd < 0)
3686
        goto fail;
3687

    
3688
    if (!is_waitconnect)
3689
        socket_set_nonblock(fd);
3690

    
3691
    s->connected = 0;
3692
    s->fd = -1;
3693
    s->listen_fd = -1;
3694
    s->is_unix = is_unix;
3695
    s->do_nodelay = do_nodelay && !is_unix;
3696

    
3697
    chr->opaque = s;
3698
    chr->chr_write = tcp_chr_write;
3699
    chr->chr_close = tcp_chr_close;
3700

    
3701
    if (is_listen) {
3702
        /* allow fast reuse */
3703
#ifndef _WIN32
3704
        if (is_unix) {
3705
            char path[109];
3706
            pstrcpy(path, sizeof(path), uaddr.sun_path);
3707
            unlink(path);
3708
        } else
3709
#endif
3710
        {
3711
            val = 1;
3712
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3713
        }
3714

    
3715
        ret = bind(fd, addr, addrlen);
3716
        if (ret < 0)
3717
            goto fail;
3718

    
3719
        ret = listen(fd, 0);
3720
        if (ret < 0)
3721
            goto fail;
3722

    
3723
        s->listen_fd = fd;
3724
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3725
        if (is_telnet)
3726
            s->do_telnetopt = 1;
3727
    } else {
3728
        for(;;) {
3729
            ret = connect(fd, addr, addrlen);
3730
            if (ret < 0) {
3731
                err = socket_error();
3732
                if (err == EINTR || err == EWOULDBLOCK) {
3733
                } else if (err == EINPROGRESS) {
3734
                    break;
3735
#ifdef _WIN32
3736
                } else if (err == WSAEALREADY) {
3737
                    break;
3738
#endif
3739
                } else {
3740
                    goto fail;
3741
                }
3742
            } else {
3743
                s->connected = 1;
3744
                break;
3745
            }
3746
        }
3747
        s->fd = fd;
3748
        socket_set_nodelay(fd);
3749
        if (s->connected)
3750
            tcp_chr_connect(chr);
3751
        else
3752
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3753
    }
3754

    
3755
    if (is_listen && is_waitconnect) {
3756
        printf("QEMU waiting for connection on: %s\n", host_str);
3757
        tcp_chr_accept(chr);
3758
        socket_set_nonblock(s->listen_fd);
3759
    }
3760

    
3761
    return chr;
3762
 fail:
3763
    if (fd >= 0)
3764
        closesocket(fd);
3765
    qemu_free(s);
3766
    qemu_free(chr);
3767
    return NULL;
3768
}
3769

    
3770
CharDriverState *qemu_chr_open(const char *filename)
3771
{
3772
    const char *p;
3773

    
3774
    if (!strcmp(filename, "vc")) {
3775
        return text_console_init(&display_state, 0);
3776
    } else if (strstart(filename, "vc:", &p)) {
3777
        return text_console_init(&display_state, p);
3778
    } else if (!strcmp(filename, "null")) {
3779
        return qemu_chr_open_null();
3780
    } else
3781
    if (strstart(filename, "tcp:", &p)) {
3782
        return qemu_chr_open_tcp(p, 0, 0);
3783
    } else
3784
    if (strstart(filename, "telnet:", &p)) {
3785
        return qemu_chr_open_tcp(p, 1, 0);
3786
    } else
3787
    if (strstart(filename, "udp:", &p)) {
3788
        return qemu_chr_open_udp(p);
3789
    } else
3790
    if (strstart(filename, "mon:", &p)) {
3791
        CharDriverState *drv = qemu_chr_open(p);
3792
        if (drv) {
3793
            drv = qemu_chr_open_mux(drv);
3794
            monitor_init(drv, !nographic);
3795
            return drv;
3796
        }
3797
        printf("Unable to open driver: %s\n", p);
3798
        return 0;
3799
    } else
3800
#ifndef _WIN32
3801
    if (strstart(filename, "unix:", &p)) {
3802
        return qemu_chr_open_tcp(p, 0, 1);
3803
    } else if (strstart(filename, "file:", &p)) {
3804
        return qemu_chr_open_file_out(p);
3805
    } else if (strstart(filename, "pipe:", &p)) {
3806
        return qemu_chr_open_pipe(p);
3807
    } else if (!strcmp(filename, "pty")) {
3808
        return qemu_chr_open_pty();
3809
    } else if (!strcmp(filename, "stdio")) {
3810
        return qemu_chr_open_stdio();
3811
    } else
3812
#if defined(__linux__)
3813
    if (strstart(filename, "/dev/parport", NULL)) {
3814
        return qemu_chr_open_pp(filename);
3815
    } else
3816
#endif
3817
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
3818
    || defined(__NetBSD__) || defined(__OpenBSD__)
3819
    if (strstart(filename, "/dev/", NULL)) {
3820
        return qemu_chr_open_tty(filename);
3821
    } else
3822
#endif
3823
#else /* !_WIN32 */
3824
    if (strstart(filename, "COM", NULL)) {
3825
        return qemu_chr_open_win(filename);
3826
    } else
3827
    if (strstart(filename, "pipe:", &p)) {
3828
        return qemu_chr_open_win_pipe(p);
3829
    } else
3830
    if (strstart(filename, "con:", NULL)) {
3831
        return qemu_chr_open_win_con(filename);
3832
    } else
3833
    if (strstart(filename, "file:", &p)) {
3834
        return qemu_chr_open_win_file_out(p);
3835
    } else
3836
#endif
3837
#ifdef CONFIG_BRLAPI
3838
    if (!strcmp(filename, "braille")) {
3839
        return chr_baum_init();
3840
    } else
3841
#endif
3842
    {
3843
        return NULL;
3844
    }
3845
}
3846

    
3847
void qemu_chr_close(CharDriverState *chr)
3848
{
3849
    if (chr->chr_close)
3850
        chr->chr_close(chr);
3851
    qemu_free(chr);
3852
}
3853

    
3854
/***********************************************************/
3855
/* network device redirectors */
3856

    
3857
#if defined(DEBUG_NET) || defined(DEBUG_SLIRP)
3858
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3859
{
3860
    int len, i, j, c;
3861

    
3862
    for(i=0;i<size;i+=16) {
3863
        len = size - i;
3864
        if (len > 16)
3865
            len = 16;
3866
        fprintf(f, "%08x ", i);
3867
        for(j=0;j<16;j++) {
3868
            if (j < len)
3869
                fprintf(f, " %02x", buf[i+j]);
3870
            else
3871
                fprintf(f, "   ");
3872
        }
3873
        fprintf(f, " ");
3874
        for(j=0;j<len;j++) {
3875
            c = buf[i+j];
3876
            if (c < ' ' || c > '~')
3877
                c = '.';
3878
            fprintf(f, "%c", c);
3879
        }
3880
        fprintf(f, "\n");
3881
    }
3882
}
3883
#endif
3884

    
3885
static int parse_macaddr(uint8_t *macaddr, const char *p)
3886
{
3887
    int i;
3888
    char *last_char;
3889
    long int offset;
3890

    
3891
    errno = 0;
3892
    offset = strtol(p, &last_char, 0);    
3893
    if (0 == errno && '\0' == *last_char &&
3894
            offset >= 0 && offset <= 0xFFFFFF) {
3895
        macaddr[3] = (offset & 0xFF0000) >> 16;
3896
        macaddr[4] = (offset & 0xFF00) >> 8;
3897
        macaddr[5] = offset & 0xFF;
3898
        return 0;
3899
    } else {
3900
        for(i = 0; i < 6; i++) {
3901
            macaddr[i] = strtol(p, (char **)&p, 16);
3902
            if (i == 5) {
3903
                if (*p != '\0')
3904
                    return -1;
3905
            } else {
3906
                if (*p != ':' && *p != '-')
3907
                    return -1;
3908
                p++;
3909
            }
3910
        }
3911
        return 0;    
3912
    }
3913

    
3914
    return -1;
3915
}
3916

    
3917
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3918
{
3919
    const char *p, *p1;
3920
    int len;
3921
    p = *pp;
3922
    p1 = strchr(p, sep);
3923
    if (!p1)
3924
        return -1;
3925
    len = p1 - p;
3926
    p1++;
3927
    if (buf_size > 0) {
3928
        if (len > buf_size - 1)
3929
            len = buf_size - 1;
3930
        memcpy(buf, p, len);
3931
        buf[len] = '\0';
3932
    }
3933
    *pp = p1;
3934
    return 0;
3935
}
3936

    
3937
int parse_host_src_port(struct sockaddr_in *haddr,
3938
                        struct sockaddr_in *saddr,
3939
                        const char *input_str)
3940
{
3941
    char *str = strdup(input_str);
3942
    char *host_str = str;
3943
    char *src_str;
3944
    const char *src_str2;
3945
    char *ptr;
3946

    
3947
    /*
3948
     * Chop off any extra arguments at the end of the string which
3949
     * would start with a comma, then fill in the src port information
3950
     * if it was provided else use the "any address" and "any port".
3951
     */
3952
    if ((ptr = strchr(str,',')))
3953
        *ptr = '\0';
3954

    
3955
    if ((src_str = strchr(input_str,'@'))) {
3956
        *src_str = '\0';
3957
        src_str++;
3958
    }
3959

    
3960
    if (parse_host_port(haddr, host_str) < 0)
3961
        goto fail;
3962

    
3963
    src_str2 = src_str;
3964
    if (!src_str || *src_str == '\0')
3965
        src_str2 = ":0";
3966

    
3967
    if (parse_host_port(saddr, src_str2) < 0)
3968
        goto fail;
3969

    
3970
    free(str);
3971
    return(0);
3972

    
3973
fail:
3974
    free(str);
3975
    return -1;
3976
}
3977

    
3978
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3979
{
3980
    char buf[512];
3981
    struct hostent *he;
3982
    const char *p, *r;
3983
    int port;
3984

    
3985
    p = str;
3986
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3987
        return -1;
3988
    saddr->sin_family = AF_INET;
3989
    if (buf[0] == '\0') {
3990
        saddr->sin_addr.s_addr = 0;
3991
    } else {
3992
        if (isdigit(buf[0])) {
3993
            if (!inet_aton(buf, &saddr->sin_addr))
3994
                return -1;
3995
        } else {
3996
            if ((he = gethostbyname(buf)) == NULL)
3997
                return - 1;
3998
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3999
        }
4000
    }
4001
    port = strtol(p, (char **)&r, 0);
4002
    if (r == p)
4003
        return -1;
4004
    saddr->sin_port = htons(port);
4005
    return 0;
4006
}
4007

    
4008
#ifndef _WIN32
4009
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
4010
{
4011
    const char *p;
4012
    int len;
4013

    
4014
    len = MIN(108, strlen(str));
4015
    p = strchr(str, ',');
4016
    if (p)
4017
        len = MIN(len, p - str);
4018

    
4019
    memset(uaddr, 0, sizeof(*uaddr));
4020

    
4021
    uaddr->sun_family = AF_UNIX;
4022
    memcpy(uaddr->sun_path, str, len);
4023

    
4024
    return 0;
4025
}
4026
#endif
4027

    
4028
/* find or alloc a new VLAN */
4029
VLANState *qemu_find_vlan(int id)
4030
{
4031
    VLANState **pvlan, *vlan;
4032
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4033
        if (vlan->id == id)
4034
            return vlan;
4035
    }
4036
    vlan = qemu_mallocz(sizeof(VLANState));
4037
    if (!vlan)
4038
        return NULL;
4039
    vlan->id = id;
4040
    vlan->next = NULL;
4041
    pvlan = &first_vlan;
4042
    while (*pvlan != NULL)
4043
        pvlan = &(*pvlan)->next;
4044
    *pvlan = vlan;
4045
    return vlan;
4046
}
4047

    
4048
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
4049
                                      IOReadHandler *fd_read,
4050
                                      IOCanRWHandler *fd_can_read,
4051
                                      void *opaque)
4052
{
4053
    VLANClientState *vc, **pvc;
4054
    vc = qemu_mallocz(sizeof(VLANClientState));
4055
    if (!vc)
4056
        return NULL;
4057
    vc->fd_read = fd_read;
4058
    vc->fd_can_read = fd_can_read;
4059
    vc->opaque = opaque;
4060
    vc->vlan = vlan;
4061

    
4062
    vc->next = NULL;
4063
    pvc = &vlan->first_client;
4064
    while (*pvc != NULL)
4065
        pvc = &(*pvc)->next;
4066
    *pvc = vc;
4067
    return vc;
4068
}
4069

    
4070
void qemu_del_vlan_client(VLANClientState *vc)
4071
{
4072
    VLANClientState **pvc = &vc->vlan->first_client;
4073

    
4074
    while (*pvc != NULL)
4075
        if (*pvc == vc) {
4076
            *pvc = vc->next;
4077
            free(vc);
4078
            break;
4079
        } else
4080
            pvc = &(*pvc)->next;
4081
}
4082

    
4083
int qemu_can_send_packet(VLANClientState *vc1)
4084
{
4085
    VLANState *vlan = vc1->vlan;
4086
    VLANClientState *vc;
4087

    
4088
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4089
        if (vc != vc1) {
4090
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
4091
                return 1;
4092
        }
4093
    }
4094
    return 0;
4095
}
4096

    
4097
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
4098
{
4099
    VLANState *vlan = vc1->vlan;
4100
    VLANClientState *vc;
4101

    
4102
#ifdef DEBUG_NET
4103
    printf("vlan %d send:\n", vlan->id);
4104
    hex_dump(stdout, buf, size);
4105
#endif
4106
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4107
        if (vc != vc1) {
4108
            vc->fd_read(vc->opaque, buf, size);
4109
        }
4110
    }
4111
}
4112

    
4113
#if defined(CONFIG_SLIRP)
4114

    
4115
/* slirp network adapter */
4116

    
4117
static int slirp_inited;
4118
static VLANClientState *slirp_vc;
4119

    
4120
int slirp_can_output(void)
4121
{
4122
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
4123
}
4124

    
4125
void slirp_output(const uint8_t *pkt, int pkt_len)
4126
{
4127
#ifdef DEBUG_SLIRP
4128
    printf("slirp output:\n");
4129
    hex_dump(stdout, pkt, pkt_len);
4130
#endif
4131
    if (!slirp_vc)
4132
        return;
4133
    qemu_send_packet(slirp_vc, pkt, pkt_len);
4134
}
4135

    
4136
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
4137
{
4138
#ifdef DEBUG_SLIRP
4139
    printf("slirp input:\n");
4140
    hex_dump(stdout, buf, size);
4141
#endif
4142
    slirp_input(buf, size);
4143
}
4144

    
4145
static int net_slirp_init(VLANState *vlan)
4146
{
4147
    if (!slirp_inited) {
4148
        slirp_inited = 1;
4149
        slirp_init();
4150
    }
4151
    slirp_vc = qemu_new_vlan_client(vlan,
4152
                                    slirp_receive, NULL, NULL);
4153
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
4154
    return 0;
4155
}
4156

    
4157
static void net_slirp_redir(const char *redir_str)
4158
{
4159
    int is_udp;
4160
    char buf[256], *r;
4161
    const char *p;
4162
    struct in_addr guest_addr;
4163
    int host_port, guest_port;
4164

    
4165
    if (!slirp_inited) {
4166
        slirp_inited = 1;
4167
        slirp_init();
4168
    }
4169

    
4170
    p = redir_str;
4171
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4172
        goto fail;
4173
    if (!strcmp(buf, "tcp")) {
4174
        is_udp = 0;
4175
    } else if (!strcmp(buf, "udp")) {
4176
        is_udp = 1;
4177
    } else {
4178
        goto fail;
4179
    }
4180

    
4181
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4182
        goto fail;
4183
    host_port = strtol(buf, &r, 0);
4184
    if (r == buf)
4185
        goto fail;
4186

    
4187
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4188
        goto fail;
4189
    if (buf[0] == '\0') {
4190
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
4191
    }
4192
    if (!inet_aton(buf, &guest_addr))
4193
        goto fail;
4194

    
4195
    guest_port = strtol(p, &r, 0);
4196
    if (r == p)
4197
        goto fail;
4198

    
4199
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
4200
        fprintf(stderr, "qemu: could not set up redirection\n");
4201
        exit(1);
4202
    }
4203
    return;
4204
 fail:
4205
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
4206
    exit(1);
4207
}
4208

    
4209
#ifndef _WIN32
4210

    
4211
static char smb_dir[1024];
4212

    
4213
static void erase_dir(char *dir_name)
4214
{
4215
    DIR *d;
4216
    struct dirent *de;
4217
    char filename[1024];
4218

    
4219
    /* erase all the files in the directory */
4220
    if ((d = opendir(dir_name)) != 0) {
4221
        for(;;) {
4222
            de = readdir(d);
4223
            if (!de)
4224
                break;
4225
            if (strcmp(de->d_name, ".") != 0 &&
4226
                strcmp(de->d_name, "..") != 0) {
4227
                snprintf(filename, sizeof(filename), "%s/%s",
4228
                         smb_dir, de->d_name);
4229
                if (unlink(filename) != 0)  /* is it a directory? */
4230
                    erase_dir(filename);
4231
            }
4232
        }
4233
        closedir(d);
4234
        rmdir(dir_name);
4235
    }
4236
}
4237

    
4238
/* automatic user mode samba server configuration */
4239
static void smb_exit(void)
4240
{
4241
    erase_dir(smb_dir);
4242
}
4243

    
4244
/* automatic user mode samba server configuration */
4245
static void net_slirp_smb(const char *exported_dir)
4246
{
4247
    char smb_conf[1024];
4248
    char smb_cmdline[1024];
4249
    FILE *f;
4250

    
4251
    if (!slirp_inited) {
4252
        slirp_inited = 1;
4253
        slirp_init();
4254
    }
4255

    
4256
    /* XXX: better tmp dir construction */
4257
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
4258
    if (mkdir(smb_dir, 0700) < 0) {
4259
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
4260
        exit(1);
4261
    }
4262
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4263

    
4264
    f = fopen(smb_conf, "w");
4265
    if (!f) {
4266
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
4267
        exit(1);
4268
    }
4269
    fprintf(f,
4270
            "[global]\n"
4271
            "private dir=%s\n"
4272
            "smb ports=0\n"
4273
            "socket address=127.0.0.1\n"
4274
            "pid directory=%s\n"
4275
            "lock directory=%s\n"
4276
            "log file=%s/log.smbd\n"
4277
            "smb passwd file=%s/smbpasswd\n"
4278
            "security = share\n"
4279
            "[qemu]\n"
4280
            "path=%s\n"
4281
            "read only=no\n"
4282
            "guest ok=yes\n",
4283
            smb_dir,
4284
            smb_dir,
4285
            smb_dir,
4286
            smb_dir,
4287
            smb_dir,
4288
            exported_dir
4289
            );
4290
    fclose(f);
4291
    atexit(smb_exit);
4292

    
4293
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
4294
             SMBD_COMMAND, smb_conf);
4295

    
4296
    slirp_add_exec(0, smb_cmdline, 4, 139);
4297
}
4298

    
4299
#endif /* !defined(_WIN32) */
4300
void do_info_slirp(void)
4301
{
4302
    slirp_stats();
4303
}
4304

    
4305
#endif /* CONFIG_SLIRP */
4306

    
4307
#if !defined(_WIN32)
4308

    
4309
typedef struct TAPState {
4310
    VLANClientState *vc;
4311
    int fd;
4312
    char down_script[1024];
4313
} TAPState;
4314

    
4315
static void tap_receive(void *opaque, const uint8_t *buf, int size)
4316
{
4317
    TAPState *s = opaque;
4318
    int ret;
4319
    for(;;) {
4320
        ret = write(s->fd, buf, size);
4321
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
4322
        } else {
4323
            break;
4324
        }
4325
    }
4326
}
4327

    
4328
static void tap_send(void *opaque)
4329
{
4330
    TAPState *s = opaque;
4331
    uint8_t buf[4096];
4332
    int size;
4333

    
4334
#ifdef __sun__
4335
    struct strbuf sbuf;
4336
    int f = 0;
4337
    sbuf.maxlen = sizeof(buf);
4338
    sbuf.buf = buf;
4339
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4340
#else
4341
    size = read(s->fd, buf, sizeof(buf));
4342
#endif
4343
    if (size > 0) {
4344
        qemu_send_packet(s->vc, buf, size);
4345
    }
4346
}
4347

    
4348
/* fd support */
4349

    
4350
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4351
{
4352
    TAPState *s;
4353

    
4354
    s = qemu_mallocz(sizeof(TAPState));
4355
    if (!s)
4356
        return NULL;
4357
    s->fd = fd;
4358
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4359
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
4360
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4361
    return s;
4362
}
4363

    
4364
#if defined (_BSD) || defined (__FreeBSD_kernel__)
4365
static int tap_open(char *ifname, int ifname_size)
4366
{
4367
    int fd;
4368
    char *dev;
4369
    struct stat s;
4370

    
4371
    TFR(fd = open("/dev/tap", O_RDWR));
4372
    if (fd < 0) {
4373
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4374
        return -1;
4375
    }
4376

    
4377
    fstat(fd, &s);
4378
    dev = devname(s.st_rdev, S_IFCHR);
4379
    pstrcpy(ifname, ifname_size, dev);
4380

    
4381
    fcntl(fd, F_SETFL, O_NONBLOCK);
4382
    return fd;
4383
}
4384
#elif defined(__sun__)
4385
#define TUNNEWPPA       (('T'<<16) | 0x0001)
4386
/*
4387
 * Allocate TAP device, returns opened fd.
4388
 * Stores dev name in the first arg(must be large enough).
4389
 */
4390
int tap_alloc(char *dev, size_t dev_size)
4391
{
4392
    int tap_fd, if_fd, ppa = -1;
4393
    static int ip_fd = 0;
4394
    char *ptr;
4395

    
4396
    static int arp_fd = 0;
4397
    int ip_muxid, arp_muxid;
4398
    struct strioctl  strioc_if, strioc_ppa;
4399
    int link_type = I_PLINK;;
4400
    struct lifreq ifr;
4401
    char actual_name[32] = "";
4402

    
4403
    memset(&ifr, 0x0, sizeof(ifr));
4404

    
4405
    if( *dev ){
4406
       ptr = dev;
4407
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
4408
       ppa = atoi(ptr);
4409
    }
4410

    
4411
    /* Check if IP device was opened */
4412
    if( ip_fd )
4413
       close(ip_fd);
4414

    
4415
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4416
    if (ip_fd < 0) {
4417
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4418
       return -1;
4419
    }
4420

    
4421
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4422
    if (tap_fd < 0) {
4423
       syslog(LOG_ERR, "Can't open /dev/tap");
4424
       return -1;
4425
    }
4426

    
4427
    /* Assign a new PPA and get its unit number. */
4428
    strioc_ppa.ic_cmd = TUNNEWPPA;
4429
    strioc_ppa.ic_timout = 0;
4430
    strioc_ppa.ic_len = sizeof(ppa);
4431
    strioc_ppa.ic_dp = (char *)&ppa;
4432
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4433
       syslog (LOG_ERR, "Can't assign new interface");
4434

    
4435
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4436
    if (if_fd < 0) {
4437
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
4438
       return -1;
4439
    }
4440
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
4441
       syslog(LOG_ERR, "Can't push IP module");
4442
       return -1;
4443
    }
4444

    
4445
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4446
        syslog(LOG_ERR, "Can't get flags\n");
4447

    
4448
    snprintf (actual_name, 32, "tap%d", ppa);
4449
    pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name);
4450

    
4451
    ifr.lifr_ppa = ppa;
4452
    /* Assign ppa according to the unit number returned by tun device */
4453

    
4454
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4455
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
4456
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4457
        syslog (LOG_ERR, "Can't get flags\n");
4458
    /* Push arp module to if_fd */
4459
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
4460
        syslog (LOG_ERR, "Can't push ARP module (2)");
4461

    
4462
    /* Push arp module to ip_fd */
4463
    if (ioctl (ip_fd, I_POP, NULL) < 0)
4464
        syslog (LOG_ERR, "I_POP failed\n");
4465
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4466
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
4467
    /* Open arp_fd */
4468
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4469
    if (arp_fd < 0)
4470
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4471

    
4472
    /* Set ifname to arp */
4473
    strioc_if.ic_cmd = SIOCSLIFNAME;
4474
    strioc_if.ic_timout = 0;
4475
    strioc_if.ic_len = sizeof(ifr);
4476
    strioc_if.ic_dp = (char *)&ifr;
4477
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4478
        syslog (LOG_ERR, "Can't set ifname to arp\n");
4479
    }
4480

    
4481
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4482
       syslog(LOG_ERR, "Can't link TAP device to IP");
4483
       return -1;
4484
    }
4485

    
4486
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4487
        syslog (LOG_ERR, "Can't link TAP device to ARP");
4488

    
4489
    close (if_fd);
4490

    
4491
    memset(&ifr, 0x0, sizeof(ifr));
4492
    pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name);
4493
    ifr.lifr_ip_muxid  = ip_muxid;
4494
    ifr.lifr_arp_muxid = arp_muxid;
4495

    
4496
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4497
    {
4498
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
4499
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
4500
      syslog (LOG_ERR, "Can't set multiplexor id");
4501
    }
4502

    
4503
    snprintf(dev, dev_size, "tap%d", ppa);
4504
    return tap_fd;
4505
}
4506

    
4507
static int tap_open(char *ifname, int ifname_size)
4508
{
4509
    char  dev[10]="";
4510
    int fd;
4511
    if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
4512
       fprintf(stderr, "Cannot allocate TAP device\n");
4513
       return -1;
4514
    }
4515
    pstrcpy(ifname, ifname_size, dev);
4516
    fcntl(fd, F_SETFL, O_NONBLOCK);
4517
    return fd;
4518
}
4519
#else
4520
static int tap_open(char *ifname, int ifname_size)
4521
{
4522
    struct ifreq ifr;
4523
    int fd, ret;
4524

    
4525
    TFR(fd = open("/dev/net/tun", O_RDWR));
4526
    if (fd < 0) {
4527
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4528
        return -1;
4529
    }
4530
    memset(&ifr, 0, sizeof(ifr));
4531
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4532
    if (ifname[0] != '\0')
4533
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4534
    else
4535
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4536
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4537
    if (ret != 0) {
4538
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4539
        close(fd);
4540
        return -1;
4541
    }
4542
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4543
    fcntl(fd, F_SETFL, O_NONBLOCK);
4544
    return fd;
4545
}
4546
#endif
4547

    
4548
static int launch_script(const char *setup_script, const char *ifname, int fd)
4549
{
4550
    int pid, status;
4551
    char *args[3];
4552
    char **parg;
4553

    
4554
        /* try to launch network script */
4555
        pid = fork();
4556
        if (pid >= 0) {
4557
            if (pid == 0) {
4558
                int open_max = sysconf (_SC_OPEN_MAX), i;
4559
                for (i = 0; i < open_max; i++)
4560
                    if (i != STDIN_FILENO &&
4561
                        i != STDOUT_FILENO &&
4562
                        i != STDERR_FILENO &&
4563
                        i != fd)
4564
                        close(i);
4565

    
4566
                parg = args;
4567
                *parg++ = (char *)setup_script;
4568
                *parg++ = (char *)ifname;
4569
                *parg++ = NULL;
4570
                execv(setup_script, args);
4571
                _exit(1);
4572
            }
4573
            while (waitpid(pid, &status, 0) != pid);
4574
            if (!WIFEXITED(status) ||
4575
                WEXITSTATUS(status) != 0) {
4576
                fprintf(stderr, "%s: could not launch network script\n",
4577
                        setup_script);
4578
                return -1;
4579
            }
4580
        }
4581
    return 0;
4582
}
4583

    
4584
static int net_tap_init(VLANState *vlan, const char *ifname1,
4585
                        const char *setup_script, const char *down_script)
4586
{
4587
    TAPState *s;
4588
    int fd;
4589
    char ifname[128];
4590

    
4591
    if (ifname1 != NULL)
4592
        pstrcpy(ifname, sizeof(ifname), ifname1);
4593
    else
4594
        ifname[0] = '\0';
4595
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4596
    if (fd < 0)
4597
        return -1;
4598

    
4599
    if (!setup_script || !strcmp(setup_script, "no"))
4600
        setup_script = "";
4601
    if (setup_script[0] != '\0') {
4602
        if (launch_script(setup_script, ifname, fd))
4603
            return -1;
4604
    }
4605
    s = net_tap_fd_init(vlan, fd);
4606
    if (!s)
4607
        return -1;
4608
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4609
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4610
    if (down_script && strcmp(down_script, "no"))
4611
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4612
    return 0;
4613
}
4614

    
4615
#endif /* !_WIN32 */
4616

    
4617
#if defined(CONFIG_VDE)
4618
typedef struct VDEState {
4619
    VLANClientState *vc;
4620
    VDECONN *vde;
4621
} VDEState;
4622

    
4623
static void vde_to_qemu(void *opaque)
4624
{
4625
    VDEState *s = opaque;
4626
    uint8_t buf[4096];
4627
    int size;
4628

    
4629
    size = vde_recv(s->vde, buf, sizeof(buf), 0);
4630
    if (size > 0) {
4631
        qemu_send_packet(s->vc, buf, size);
4632
    }
4633
}
4634

    
4635
static void vde_from_qemu(void *opaque, const uint8_t *buf, int size)
4636
{
4637
    VDEState *s = opaque;
4638
    int ret;
4639
    for(;;) {
4640
        ret = vde_send(s->vde, buf, size, 0);
4641
        if (ret < 0 && errno == EINTR) {
4642
        } else {
4643
            break;
4644
        }
4645
    }
4646
}
4647

    
4648
static int net_vde_init(VLANState *vlan, const char *sock, int port,
4649
                        const char *group, int mode)
4650
{
4651
    VDEState *s;
4652
    char *init_group = strlen(group) ? (char *)group : NULL;
4653
    char *init_sock = strlen(sock) ? (char *)sock : NULL;
4654

    
4655
    struct vde_open_args args = {
4656
        .port = port,
4657
        .group = init_group,
4658
        .mode = mode,
4659
    };
4660

    
4661
    s = qemu_mallocz(sizeof(VDEState));
4662
    if (!s)
4663
        return -1;
4664
    s->vde = vde_open(init_sock, "QEMU", &args);
4665
    if (!s->vde){
4666
        free(s);
4667
        return -1;
4668
    }
4669
    s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s);
4670
    qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
4671
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d",
4672
             sock, vde_datafd(s->vde));
4673
    return 0;
4674
}
4675
#endif
4676

    
4677
/* network connection */
4678
typedef struct NetSocketState {
4679
    VLANClientState *vc;
4680
    int fd;
4681
    int state; /* 0 = getting length, 1 = getting data */
4682
    int index;
4683
    int packet_len;
4684
    uint8_t buf[4096];
4685
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4686
} NetSocketState;
4687

    
4688
typedef struct NetSocketListenState {
4689
    VLANState *vlan;
4690
    int fd;
4691
} NetSocketListenState;
4692

    
4693
/* XXX: we consider we can send the whole packet without blocking */
4694
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4695
{
4696
    NetSocketState *s = opaque;
4697
    uint32_t len;
4698
    len = htonl(size);
4699

    
4700
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4701
    send_all(s->fd, buf, size);
4702
}
4703

    
4704
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4705
{
4706
    NetSocketState *s = opaque;
4707
    sendto(s->fd, buf, size, 0,
4708
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4709
}
4710

    
4711
static void net_socket_send(void *opaque)
4712
{
4713
    NetSocketState *s = opaque;
4714
    int l, size, err;
4715
    uint8_t buf1[4096];
4716
    const uint8_t *buf;
4717

    
4718
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4719
    if (size < 0) {
4720
        err = socket_error();
4721
        if (err != EWOULDBLOCK)
4722
            goto eoc;
4723
    } else if (size == 0) {
4724
        /* end of connection */
4725
    eoc:
4726
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4727
        closesocket(s->fd);
4728
        return;
4729
    }
4730
    buf = buf1;
4731
    while (size > 0) {
4732
        /* reassemble a packet from the network */
4733
        switch(s->state) {
4734
        case 0:
4735
            l = 4 - s->index;
4736
            if (l > size)
4737
                l = size;
4738
            memcpy(s->buf + s->index, buf, l);
4739
            buf += l;
4740
            size -= l;
4741
            s->index += l;
4742
            if (s->index == 4) {
4743
                /* got length */
4744
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4745
                s->index = 0;
4746
                s->state = 1;
4747
            }
4748
            break;
4749
        case 1:
4750
            l = s->packet_len - s->index;
4751
            if (l > size)
4752
                l = size;
4753
            memcpy(s->buf + s->index, buf, l);
4754
            s->index += l;
4755
            buf += l;
4756
            size -= l;
4757
            if (s->index >= s->packet_len) {
4758
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4759
                s->index = 0;
4760
                s->state = 0;
4761
            }
4762
            break;
4763
        }
4764
    }
4765
}
4766

    
4767
static void net_socket_send_dgram(void *opaque)
4768
{
4769
    NetSocketState *s = opaque;
4770
    int size;
4771

    
4772
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4773
    if (size < 0)
4774
        return;
4775
    if (size == 0) {
4776
        /* end of connection */
4777
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4778
        return;
4779
    }
4780
    qemu_send_packet(s->vc, s->buf, size);
4781
}
4782

    
4783
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4784
{
4785
    struct ip_mreq imr;
4786
    int fd;
4787
    int val, ret;
4788
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4789
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4790
                inet_ntoa(mcastaddr->sin_addr),
4791
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4792
        return -1;
4793

    
4794
    }
4795
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4796
    if (fd < 0) {
4797
        perror("socket(PF_INET, SOCK_DGRAM)");
4798
        return -1;
4799
    }
4800

    
4801
    val = 1;
4802
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4803
                   (const char *)&val, sizeof(val));
4804
    if (ret < 0) {
4805
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4806
        goto fail;
4807
    }
4808

    
4809
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4810
    if (ret < 0) {
4811
        perror("bind");
4812
        goto fail;
4813
    }
4814

    
4815
    /* Add host to multicast group */
4816
    imr.imr_multiaddr = mcastaddr->sin_addr;
4817
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4818

    
4819
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4820
                     (const char *)&imr, sizeof(struct ip_mreq));
4821
    if (ret < 0) {
4822
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4823
        goto fail;
4824
    }
4825

    
4826
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4827
    val = 1;
4828
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4829
                   (const char *)&val, sizeof(val));
4830
    if (ret < 0) {
4831
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4832
        goto fail;
4833
    }
4834

    
4835
    socket_set_nonblock(fd);
4836
    return fd;
4837
fail:
4838
    if (fd >= 0)
4839
        closesocket(fd);
4840
    return -1;
4841
}
4842

    
4843
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4844
                                          int is_connected)
4845
{
4846
    struct sockaddr_in saddr;
4847
    int newfd;
4848
    socklen_t saddr_len;
4849
    NetSocketState *s;
4850

    
4851
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4852
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4853
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4854
     */
4855

    
4856
    if (is_connected) {
4857
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4858
            /* must be bound */
4859
            if (saddr.sin_addr.s_addr==0) {
4860
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4861
                        fd);
4862
                return NULL;
4863
            }
4864
            /* clone dgram socket */
4865
            newfd = net_socket_mcast_create(&saddr);
4866
            if (newfd < 0) {
4867
                /* error already reported by net_socket_mcast_create() */
4868
                close(fd);
4869
                return NULL;
4870
            }
4871
            /* clone newfd to fd, close newfd */
4872
            dup2(newfd, fd);
4873
            close(newfd);
4874

    
4875
        } else {
4876
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4877
                    fd, strerror(errno));
4878
            return NULL;
4879
        }
4880
    }
4881

    
4882
    s = qemu_mallocz(sizeof(NetSocketState));
4883
    if (!s)
4884
        return NULL;
4885
    s->fd = fd;
4886

    
4887
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4888
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4889

    
4890
    /* mcast: save bound address as dst */
4891
    if (is_connected) s->dgram_dst=saddr;
4892

    
4893
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4894
            "socket: fd=%d (%s mcast=%s:%d)",
4895
            fd, is_connected? "cloned" : "",
4896
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4897
    return s;
4898
}
4899

    
4900
static void net_socket_connect(void *opaque)
4901
{
4902
    NetSocketState *s = opaque;
4903
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4904
}
4905

    
4906
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4907
                                          int is_connected)
4908
{
4909
    NetSocketState *s;
4910
    s = qemu_mallocz(sizeof(NetSocketState));
4911
    if (!s)
4912
        return NULL;
4913
    s->fd = fd;
4914
    s->vc = qemu_new_vlan_client(vlan,
4915
                                 net_socket_receive, NULL, s);
4916
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4917
             "socket: fd=%d", fd);
4918
    if (is_connected) {
4919
        net_socket_connect(s);
4920
    } else {
4921
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4922
    }
4923
    return s;
4924
}
4925

    
4926
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4927
                                          int is_connected)
4928
{
4929
    int so_type=-1, optlen=sizeof(so_type);
4930

    
4931
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4932
        (socklen_t *)&optlen)< 0) {
4933
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4934
        return NULL;
4935
    }
4936
    switch(so_type) {
4937
    case SOCK_DGRAM:
4938
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4939
    case SOCK_STREAM:
4940
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4941
    default:
4942
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4943
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4944
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4945
    }
4946
    return NULL;
4947
}
4948

    
4949
static void net_socket_accept(void *opaque)
4950
{
4951
    NetSocketListenState *s = opaque;
4952
    NetSocketState *s1;
4953
    struct sockaddr_in saddr;
4954
    socklen_t len;
4955
    int fd;
4956

    
4957
    for(;;) {
4958
        len = sizeof(saddr);
4959
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4960
        if (fd < 0 && errno != EINTR) {
4961
            return;
4962
        } else if (fd >= 0) {
4963
            break;
4964
        }
4965
    }
4966
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4967
    if (!s1) {
4968
        closesocket(fd);
4969
    } else {
4970
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4971
                 "socket: connection from %s:%d",
4972
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4973
    }
4974
}
4975

    
4976
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4977
{
4978
    NetSocketListenState *s;
4979
    int fd, val, ret;
4980
    struct sockaddr_in saddr;
4981

    
4982
    if (parse_host_port(&saddr, host_str) < 0)
4983
        return -1;
4984

    
4985
    s = qemu_mallocz(sizeof(NetSocketListenState));
4986
    if (!s)
4987
        return -1;
4988

    
4989
    fd = socket(PF_INET, SOCK_STREAM, 0);
4990
    if (fd < 0) {
4991
        perror("socket");
4992
        return -1;
4993
    }
4994
    socket_set_nonblock(fd);
4995

    
4996
    /* allow fast reuse */
4997
    val = 1;
4998
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4999

    
5000
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5001
    if (ret < 0) {
5002
        perror("bind");
5003
        return -1;
5004
    }
5005
    ret = listen(fd, 0);
5006
    if (ret < 0) {
5007
        perror("listen");
5008
        return -1;
5009
    }
5010
    s->vlan = vlan;
5011
    s->fd = fd;
5012
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
5013
    return 0;
5014
}
5015

    
5016
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
5017
{
5018
    NetSocketState *s;
5019
    int fd, connected, ret, err;
5020
    struct sockaddr_in saddr;
5021

    
5022
    if (parse_host_port(&saddr, host_str) < 0)
5023
        return -1;
5024

    
5025
    fd = socket(PF_INET, SOCK_STREAM, 0);
5026
    if (fd < 0) {
5027
        perror("socket");
5028
        return -1;
5029
    }
5030
    socket_set_nonblock(fd);
5031

    
5032
    connected = 0;
5033
    for(;;) {
5034
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5035
        if (ret < 0) {
5036
            err = socket_error();
5037
            if (err == EINTR || err == EWOULDBLOCK) {
5038
            } else if (err == EINPROGRESS) {
5039
                break;
5040
#ifdef _WIN32
5041
            } else if (err == WSAEALREADY) {
5042
                break;
5043
#endif
5044
            } else {
5045
                perror("connect");
5046
                closesocket(fd);
5047
                return -1;
5048
            }
5049
        } else {
5050
            connected = 1;
5051
            break;
5052
        }
5053
    }
5054
    s = net_socket_fd_init(vlan, fd, connected);
5055
    if (!s)
5056
        return -1;
5057
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5058
             "socket: connect to %s:%d",
5059
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5060
    return 0;
5061
}
5062

    
5063
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
5064
{
5065
    NetSocketState *s;
5066
    int fd;
5067
    struct sockaddr_in saddr;
5068

    
5069
    if (parse_host_port(&saddr, host_str) < 0)
5070
        return -1;
5071

    
5072

    
5073
    fd = net_socket_mcast_create(&saddr);
5074
    if (fd < 0)
5075
        return -1;
5076

    
5077
    s = net_socket_fd_init(vlan, fd, 0);
5078
    if (!s)
5079
        return -1;
5080

    
5081
    s->dgram_dst = saddr;
5082

    
5083
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5084
             "socket: mcast=%s:%d",
5085
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5086
    return 0;
5087

    
5088
}
5089

    
5090
static const char *get_opt_name(char *buf, int buf_size, const char *p)
5091
{
5092
    char *q;
5093

    
5094
    q = buf;
5095
    while (*p != '\0' && *p != '=') {
5096
        if (q && (q - buf) < buf_size - 1)
5097
            *q++ = *p;
5098
        p++;
5099
    }
5100
    if (q)
5101
        *q = '\0';
5102

    
5103
    return p;
5104
}
5105

    
5106
static const char *get_opt_value(char *buf, int buf_size, const char *p)
5107
{
5108
    char *q;
5109

    
5110
    q = buf;
5111
    while (*p != '\0') {
5112
        if (*p == ',') {
5113
            if (*(p + 1) != ',')
5114
                break;
5115
            p++;
5116
        }
5117
        if (q && (q - buf) < buf_size - 1)
5118
            *q++ = *p;
5119
        p++;
5120
    }
5121
    if (q)
5122
        *q = '\0';
5123

    
5124
    return p;
5125
}
5126

    
5127
static int get_param_value(char *buf, int buf_size,
5128
                           const char *tag, const char *str)
5129
{
5130
    const char *p;
5131
    char option[128];
5132

    
5133
    p = str;
5134
    for(;;) {
5135
        p = get_opt_name(option, sizeof(option), p);
5136
        if (*p != '=')
5137
            break;
5138
        p++;
5139
        if (!strcmp(tag, option)) {
5140
            (void)get_opt_value(buf, buf_size, p);
5141
            return strlen(buf);
5142
        } else {
5143
            p = get_opt_value(NULL, 0, p);
5144
        }
5145
        if (*p != ',')
5146
            break;
5147
        p++;
5148
    }
5149
    return 0;
5150
}
5151

    
5152
static int check_params(char *buf, int buf_size,
5153
                        const char * const *params, const char *str)
5154
{
5155
    const char *p;
5156
    int i;
5157

    
5158
    p = str;
5159
    for(;;) {
5160
        p = get_opt_name(buf, buf_size, p);
5161
        if (*p != '=')
5162
            return -1;
5163
        p++;
5164
        for(i = 0; params[i] != NULL; i++)
5165
            if (!strcmp(params[i], buf))
5166
                break;
5167
        if (params[i] == NULL)
5168
            return -1;
5169
        p = get_opt_value(NULL, 0, p);
5170
        if (*p != ',')
5171
            break;
5172
        p++;
5173
    }
5174
    return 0;
5175
}
5176

    
5177
static int net_client_init(const char *device, const char *p)
5178
{
5179
    char buf[1024];
5180
    int vlan_id, ret;
5181
    VLANState *vlan;
5182

    
5183
    vlan_id = 0;
5184
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
5185
        vlan_id = strtol(buf, NULL, 0);
5186
    }
5187
    vlan = qemu_find_vlan(vlan_id);
5188
    if (!vlan) {
5189
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
5190
        return -1;
5191
    }
5192
    if (!strcmp(device, "nic")) {
5193
        NICInfo *nd;
5194
        uint8_t *macaddr;
5195

    
5196
        if (nb_nics >= MAX_NICS) {
5197
            fprintf(stderr, "Too Many NICs\n");
5198
            return -1;
5199
        }
5200
        nd = &nd_table[nb_nics];
5201
        macaddr = nd->macaddr;
5202
        macaddr[0] = 0x52;
5203
        macaddr[1] = 0x54;
5204
        macaddr[2] = 0x00;
5205
        macaddr[3] = 0x12;
5206
        macaddr[4] = 0x34;
5207
        macaddr[5] = 0x56 + nb_nics;
5208

    
5209
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
5210
            if (parse_macaddr(macaddr, buf) < 0) {
5211
                fprintf(stderr, "invalid syntax for ethernet address\n");
5212
                return -1;
5213
            }
5214
        }
5215
        if (get_param_value(buf, sizeof(buf), "model", p)) {
5216
            nd->model = strdup(buf);
5217
        }
5218
        nd->vlan = vlan;
5219
        nb_nics++;
5220
        vlan->nb_guest_devs++;
5221
        ret = 0;
5222
    } else
5223
    if (!strcmp(device, "none")) {
5224
        /* does nothing. It is needed to signal that no network cards
5225
           are wanted */
5226
        ret = 0;
5227
    } else
5228
#ifdef CONFIG_SLIRP
5229
    if (!strcmp(device, "user")) {
5230
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
5231
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
5232
        }
5233
        vlan->nb_host_devs++;
5234
        ret = net_slirp_init(vlan);
5235
    } else
5236
#endif
5237
#ifdef _WIN32
5238
    if (!strcmp(device, "tap")) {
5239
        char ifname[64];
5240
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5241
            fprintf(stderr, "tap: no interface name\n");
5242
            return -1;
5243
        }
5244
        vlan->nb_host_devs++;
5245
        ret = tap_win32_init(vlan, ifname);
5246
    } else
5247
#else
5248
    if (!strcmp(device, "tap")) {
5249
        char ifname[64];
5250
        char setup_script[1024], down_script[1024];
5251
        int fd;
5252
        vlan->nb_host_devs++;
5253
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5254
            fd = strtol(buf, NULL, 0);
5255
            fcntl(fd, F_SETFL, O_NONBLOCK);
5256
            ret = -1;
5257
            if (net_tap_fd_init(vlan, fd))
5258
                ret = 0;
5259
        } else {
5260
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5261
                ifname[0] = '\0';
5262
            }
5263
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
5264
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
5265
            }
5266
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
5267
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
5268
            }
5269
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
5270
        }
5271
    } else
5272
#endif
5273
    if (!strcmp(device, "socket")) {
5274
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5275
            int fd;
5276
            fd = strtol(buf, NULL, 0);
5277
            ret = -1;
5278
            if (net_socket_fd_init(vlan, fd, 1))
5279
                ret = 0;
5280
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
5281
            ret = net_socket_listen_init(vlan, buf);
5282
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
5283
            ret = net_socket_connect_init(vlan, buf);
5284
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
5285
            ret = net_socket_mcast_init(vlan, buf);
5286
        } else {
5287
            fprintf(stderr, "Unknown socket options: %s\n", p);
5288
            return -1;
5289
        }
5290
        vlan->nb_host_devs++;
5291
    } else
5292
#ifdef CONFIG_VDE
5293
    if (!strcmp(device, "vde")) {
5294
        char vde_sock[1024], vde_group[512];
5295
        int vde_port, vde_mode;
5296
        vlan->nb_host_devs++;
5297
        if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
5298
            vde_sock[0] = '\0';
5299
        }
5300
        if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
5301
            vde_port = strtol(buf, NULL, 10);
5302
        } else {
5303
            vde_port = 0;
5304
        }
5305
        if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
5306
            vde_group[0] = '\0';
5307
        }
5308
        if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
5309
            vde_mode = strtol(buf, NULL, 8);
5310
        } else {
5311
            vde_mode = 0700;
5312
        }
5313
        ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode);
5314
    } else
5315
#endif
5316
    {
5317
        fprintf(stderr, "Unknown network device: %s\n", device);
5318
        return -1;
5319
    }
5320
    if (ret < 0) {
5321
        fprintf(stderr, "Could not initialize device '%s'\n", device);
5322
    }
5323

    
5324
    return ret;
5325
}
5326

    
5327
static int net_client_parse(const char *str)
5328
{
5329
    const char *p;
5330
    char *q;
5331
    char device[64];
5332

    
5333
    p = str;
5334
    q = device;
5335
    while (*p != '\0' && *p != ',') {
5336
        if ((q - device) < sizeof(device) - 1)
5337
            *q++ = *p;
5338
        p++;
5339
    }
5340
    *q = '\0';
5341
    if (*p == ',')
5342
        p++;
5343

    
5344
    return net_client_init(device, p);
5345
}
5346

    
5347
void do_info_network(void)
5348
{
5349
    VLANState *vlan;
5350
    VLANClientState *vc;
5351

    
5352
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
5353
        term_printf("VLAN %d devices:\n", vlan->id);
5354
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
5355
            term_printf("  %s\n", vc->info_str);
5356
    }
5357
}
5358

    
5359
/***********************************************************/
5360
/* Bluetooth support */
5361
static int nb_hcis;
5362
static int cur_hci;
5363
static struct HCIInfo *hci_table[MAX_NICS];
5364
#if 0
5365
static struct bt_vlan_s {
5366
    struct bt_scatternet_s net;
5367
    int id;
5368
    struct bt_vlan_s *next;
5369
} *first_bt_vlan;
5370

5371
/* find or alloc a new bluetooth "VLAN" */
5372
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
5373
{
5374
    struct bt_vlan_s **pvlan, *vlan;
5375
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
5376
        if (vlan->id == id)
5377
            return &vlan->net;
5378
    }
5379
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
5380
    vlan->id = id;
5381
    pvlan = &first_bt_vlan;
5382
    while (*pvlan != NULL)
5383
        pvlan = &(*pvlan)->next;
5384
    *pvlan = vlan;
5385
    return &vlan->net;
5386
}
5387
#endif
5388

    
5389
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
5390
{
5391
}
5392

    
5393
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
5394
{
5395
    return -ENOTSUP;
5396
}
5397

    
5398
static struct HCIInfo null_hci = {
5399
    .cmd_send = null_hci_send,
5400
    .sco_send = null_hci_send,
5401
    .acl_send = null_hci_send,
5402
    .bdaddr_set = null_hci_addr_set,
5403
};
5404

    
5405
struct HCIInfo *qemu_next_hci(void)
5406
{
5407
    if (cur_hci == nb_hcis)
5408
        return &null_hci;
5409

    
5410
    return hci_table[cur_hci++];
5411
}
5412

    
5413
/***********************************************************/
5414
/* QEMU Block devices */
5415

    
5416
#define HD_ALIAS "index=%d,media=disk"
5417
#ifdef TARGET_PPC
5418
#define CDROM_ALIAS "index=1,media=cdrom"
5419
#else
5420
#define CDROM_ALIAS "index=2,media=cdrom"
5421
#endif
5422
#define FD_ALIAS "index=%d,if=floppy"
5423
#define PFLASH_ALIAS "if=pflash"
5424
#define MTD_ALIAS "if=mtd"
5425
#define SD_ALIAS "index=0,if=sd"
5426

    
5427
static int drive_add(const char *file, const char *fmt, ...)
5428
{
5429
    va_list ap;
5430

    
5431
    if (nb_drives_opt >= MAX_DRIVES) {
5432
        fprintf(stderr, "qemu: too many drives\n");
5433
        exit(1);
5434
    }
5435

    
5436
    drives_opt[nb_drives_opt].file = file;
5437
    va_start(ap, fmt);
5438
    vsnprintf(drives_opt[nb_drives_opt].opt,
5439
              sizeof(drives_opt[0].opt), fmt, ap);
5440
    va_end(ap);
5441

    
5442
    return nb_drives_opt++;
5443
}
5444

    
5445
int drive_get_index(BlockInterfaceType type, int bus, int unit)
5446
{
5447
    int index;
5448

    
5449
    /* seek interface, bus and unit */
5450

    
5451
    for (index = 0; index < nb_drives; index++)
5452
        if (drives_table[index].type == type &&
5453
            drives_table[index].bus == bus &&
5454
            drives_table[index].unit == unit)
5455
        return index;
5456

    
5457
    return -1;
5458
}
5459

    
5460
int drive_get_max_bus(BlockInterfaceType type)
5461
{
5462
    int max_bus;
5463
    int index;
5464

    
5465
    max_bus = -1;
5466
    for (index = 0; index < nb_drives; index++) {
5467
        if(drives_table[index].type == type &&
5468
           drives_table[index].bus > max_bus)
5469
            max_bus = drives_table[index].bus;
5470
    }
5471
    return max_bus;
5472
}
5473

    
5474
static void bdrv_format_print(void *opaque, const char *name)
5475
{
5476
    fprintf(stderr, " %s", name);
5477
}
5478

    
5479
static int drive_init(struct drive_opt *arg, int snapshot,
5480
                      QEMUMachine *machine)
5481
{
5482
    char buf[128];
5483
    char file[1024];
5484
    char devname[128];
5485
    const char *mediastr = "";
5486
    BlockInterfaceType type;
5487
    enum { MEDIA_DISK, MEDIA_CDROM } media;
5488
    int bus_id, unit_id;
5489
    int cyls, heads, secs, translation;
5490
    BlockDriverState *bdrv;
5491
    BlockDriver *drv = NULL;
5492
    int max_devs;
5493
    int index;
5494
    int cache;
5495
    int bdrv_flags;
5496
    char *str = arg->opt;
5497
    static const char * const params[] = { "bus", "unit", "if", "index",
5498
                                           "cyls", "heads", "secs", "trans",
5499
                                           "media", "snapshot", "file",
5500
                                           "cache", "format", NULL };
5501

    
5502
    if (check_params(buf, sizeof(buf), params, str) < 0) {
5503
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5504
                         buf, str);
5505
         return -1;
5506
    }
5507

    
5508
    file[0] = 0;
5509
    cyls = heads = secs = 0;
5510
    bus_id = 0;
5511
    unit_id = -1;
5512
    translation = BIOS_ATA_TRANSLATION_AUTO;
5513
    index = -1;
5514
    cache = 1;
5515

    
5516
    if (machine->use_scsi) {
5517
        type = IF_SCSI;
5518
        max_devs = MAX_SCSI_DEVS;
5519
        pstrcpy(devname, sizeof(devname), "scsi");
5520
    } else {
5521
        type = IF_IDE;
5522
        max_devs = MAX_IDE_DEVS;
5523
        pstrcpy(devname, sizeof(devname), "ide");
5524
    }
5525
    media = MEDIA_DISK;
5526

    
5527
    /* extract parameters */
5528

    
5529
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
5530
        bus_id = strtol(buf, NULL, 0);
5531
        if (bus_id < 0) {
5532
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5533
            return -1;
5534
        }
5535
    }
5536

    
5537
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
5538
        unit_id = strtol(buf, NULL, 0);
5539
        if (unit_id < 0) {
5540
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5541
            return -1;
5542
        }
5543
    }
5544

    
5545
    if (get_param_value(buf, sizeof(buf), "if", str)) {
5546
        pstrcpy(devname, sizeof(devname), buf);
5547
        if (!strcmp(buf, "ide")) {
5548
            type = IF_IDE;
5549
            max_devs = MAX_IDE_DEVS;
5550
        } else if (!strcmp(buf, "scsi")) {
5551
            type = IF_SCSI;
5552
            max_devs = MAX_SCSI_DEVS;
5553
        } else if (!strcmp(buf, "floppy")) {
5554
            type = IF_FLOPPY;
5555
            max_devs = 0;
5556
        } else if (!strcmp(buf, "pflash")) {
5557
            type = IF_PFLASH;
5558
            max_devs = 0;
5559
        } else if (!strcmp(buf, "mtd")) {
5560
            type = IF_MTD;
5561
            max_devs = 0;
5562
        } else if (!strcmp(buf, "sd")) {
5563
            type = IF_SD;
5564
            max_devs = 0;
5565
        } else {
5566
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5567
            return -1;
5568
        }
5569
    }
5570

    
5571
    if (get_param_value(buf, sizeof(buf), "index", str)) {
5572
        index = strtol(buf, NULL, 0);
5573
        if (index < 0) {
5574
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
5575
            return -1;
5576
        }
5577
    }
5578

    
5579
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5580
        cyls = strtol(buf, NULL, 0);
5581
    }
5582

    
5583
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
5584
        heads = strtol(buf, NULL, 0);
5585
    }
5586

    
5587
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
5588
        secs = strtol(buf, NULL, 0);
5589
    }
5590

    
5591
    if (cyls || heads || secs) {
5592
        if (cyls < 1 || cyls > 16383) {
5593
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5594
            return -1;
5595
        }
5596
        if (heads < 1 || heads > 16) {
5597
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5598
            return -1;
5599
        }
5600
        if (secs < 1 || secs > 63) {
5601
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5602
            return -1;
5603
        }
5604
    }
5605

    
5606
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
5607
        if (!cyls) {
5608
            fprintf(stderr,
5609
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
5610
                    str);
5611
            return -1;
5612
        }
5613
        if (!strcmp(buf, "none"))
5614
            translation = BIOS_ATA_TRANSLATION_NONE;
5615
        else if (!strcmp(buf, "lba"))
5616
            translation = BIOS_ATA_TRANSLATION_LBA;
5617
        else if (!strcmp(buf, "auto"))
5618
            translation = BIOS_ATA_TRANSLATION_AUTO;
5619
        else {
5620
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5621
            return -1;
5622
        }
5623
    }
5624

    
5625
    if (get_param_value(buf, sizeof(buf), "media", str)) {
5626
        if (!strcmp(buf, "disk")) {
5627
            media = MEDIA_DISK;
5628
        } else if (!strcmp(buf, "cdrom")) {
5629
            if (cyls || secs || heads) {
5630
                fprintf(stderr,
5631
                        "qemu: '%s' invalid physical CHS format\n", str);
5632
                return -1;
5633
            }
5634
            media = MEDIA_CDROM;
5635
        } else {
5636
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
5637
            return -1;
5638
        }
5639
    }
5640

    
5641
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5642
        if (!strcmp(buf, "on"))
5643
            snapshot = 1;
5644
        else if (!strcmp(buf, "off"))
5645
            snapshot = 0;
5646
        else {
5647
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5648
            return -1;
5649
        }
5650
    }
5651

    
5652
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
5653
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
5654
            cache = 0;
5655
        else if (!strcmp(buf, "writethrough"))
5656
            cache = 1;
5657
        else if (!strcmp(buf, "writeback"))
5658
            cache = 2;
5659
        else {
5660
           fprintf(stderr, "qemu: invalid cache option\n");
5661
           return -1;
5662
        }
5663
    }
5664

    
5665
    if (get_param_value(buf, sizeof(buf), "format", str)) {
5666
       if (strcmp(buf, "?") == 0) {
5667
            fprintf(stderr, "qemu: Supported formats:");
5668
            bdrv_iterate_format(bdrv_format_print, NULL);
5669
            fprintf(stderr, "\n");
5670
            return -1;
5671
        }
5672
        drv = bdrv_find_format(buf);
5673
        if (!drv) {
5674
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5675
            return -1;
5676
        }
5677
    }
5678

    
5679
    if (arg->file == NULL)
5680
        get_param_value(file, sizeof(file), "file", str);
5681
    else
5682
        pstrcpy(file, sizeof(file), arg->file);
5683

    
5684
    /* compute bus and unit according index */
5685

    
5686
    if (index != -1) {
5687
        if (bus_id != 0 || unit_id != -1) {
5688
            fprintf(stderr,
5689
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
5690
            return -1;
5691
        }
5692
        if (max_devs == 0)
5693
        {
5694
            unit_id = index;
5695
            bus_id = 0;
5696
        } else {
5697
            unit_id = index % max_devs;
5698
            bus_id = index / max_devs;
5699
        }
5700
    }
5701

    
5702
    /* if user doesn't specify a unit_id,
5703
     * try to find the first free
5704
     */
5705

    
5706
    if (unit_id == -1) {
5707
       unit_id = 0;
5708
       while (drive_get_index(type, bus_id, unit_id) != -1) {
5709
           unit_id++;
5710
           if (max_devs && unit_id >= max_devs) {
5711
               unit_id -= max_devs;
5712
               bus_id++;
5713
           }
5714
       }
5715
    }
5716

    
5717
    /* check unit id */
5718

    
5719
    if (max_devs && unit_id >= max_devs) {
5720
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5721
                        str, unit_id, max_devs - 1);
5722
        return -1;
5723
    }
5724

    
5725
    /*
5726
     * ignore multiple definitions
5727
     */
5728

    
5729
    if (drive_get_index(type, bus_id, unit_id) != -1)
5730
        return 0;
5731

    
5732
    /* init */
5733

    
5734
    if (type == IF_IDE || type == IF_SCSI)
5735
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5736
    if (max_devs)
5737
        snprintf(buf, sizeof(buf), "%s%i%s%i",
5738
                 devname, bus_id, mediastr, unit_id);
5739
    else
5740
        snprintf(buf, sizeof(buf), "%s%s%i",
5741
                 devname, mediastr, unit_id);
5742
    bdrv = bdrv_new(buf);
5743
    drives_table[nb_drives].bdrv = bdrv;
5744
    drives_table[nb_drives].type = type;
5745
    drives_table[nb_drives].bus = bus_id;
5746
    drives_table[nb_drives].unit = unit_id;
5747
    nb_drives++;
5748

    
5749
    switch(type) {
5750
    case IF_IDE:
5751
    case IF_SCSI:
5752
        switch(media) {
5753
        case MEDIA_DISK:
5754
            if (cyls != 0) {
5755
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5756
                bdrv_set_translation_hint(bdrv, translation);
5757
            }
5758
            break;
5759
        case MEDIA_CDROM:
5760
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5761
            break;
5762
        }
5763
        break;
5764
    case IF_SD:
5765
        /* FIXME: This isn't really a floppy, but it's a reasonable
5766
           approximation.  */
5767
    case IF_FLOPPY:
5768
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5769
        break;
5770
    case IF_PFLASH:
5771
    case IF_MTD:
5772
        break;
5773
    }
5774
    if (!file[0])
5775
        return 0;
5776
    bdrv_flags = 0;
5777
    if (snapshot) {
5778
        bdrv_flags |= BDRV_O_SNAPSHOT;
5779
        cache = 2; /* always use write-back with snapshot */
5780
    }
5781
    if (cache == 0) /* no caching */
5782
        bdrv_flags |= BDRV_O_NOCACHE;
5783
    else if (cache == 2) /* write-back */
5784
        bdrv_flags |= BDRV_O_CACHE_WB;
5785
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5786
        fprintf(stderr, "qemu: could not open disk image %s\n",
5787
                        file);
5788
        return -1;
5789
    }
5790
    return 0;
5791
}
5792

    
5793
/***********************************************************/
5794
/* USB devices */
5795

    
5796
static USBPort *used_usb_ports;
5797
static USBPort *free_usb_ports;
5798

    
5799
/* ??? Maybe change this to register a hub to keep track of the topology.  */
5800
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5801
                            usb_attachfn attach)
5802
{
5803
    port->opaque = opaque;
5804
    port->index = index;
5805
    port->attach = attach;
5806
    port->next = free_usb_ports;
5807
    free_usb_ports = port;
5808
}
5809

    
5810
int usb_device_add_dev(USBDevice *dev)
5811
{
5812
    USBPort *port;
5813

    
5814
    /* Find a USB port to add the device to.  */
5815
    port = free_usb_ports;
5816
    if (!port->next) {
5817
        USBDevice *hub;
5818

    
5819
        /* Create a new hub and chain it on.  */
5820
        free_usb_ports = NULL;
5821
        port->next = used_usb_ports;
5822
        used_usb_ports = port;
5823

    
5824
        hub = usb_hub_init(VM_USB_HUB_SIZE);
5825
        usb_attach(port, hub);
5826
        port = free_usb_ports;
5827
    }
5828

    
5829
    free_usb_ports = port->next;
5830
    port->next = used_usb_ports;
5831
    used_usb_ports = port;
5832
    usb_attach(port, dev);
5833
    return 0;
5834
}
5835

    
5836
static int usb_device_add(const char *devname)
5837
{
5838
    const char *p;
5839
    USBDevice *dev;
5840

    
5841
    if (!free_usb_ports)
5842
        return -1;
5843

    
5844
    if (strstart(devname, "host:", &p)) {
5845
        dev = usb_host_device_open(p);
5846
    } else if (!strcmp(devname, "mouse")) {
5847
        dev = usb_mouse_init();
5848
    } else if (!strcmp(devname, "tablet")) {
5849
        dev = usb_tablet_init();
5850
    } else if (!strcmp(devname, "keyboard")) {
5851
        dev = usb_keyboard_init();
5852
    } else if (strstart(devname, "disk:", &p)) {
5853
        dev = usb_msd_init(p);
5854
    } else if (!strcmp(devname, "wacom-tablet")) {
5855
        dev = usb_wacom_init();
5856
    } else if (strstart(devname, "serial:", &p)) {
5857
        dev = usb_serial_init(p);
5858
#ifdef CONFIG_BRLAPI
5859
    } else if (!strcmp(devname, "braille")) {
5860
        dev = usb_baum_init();
5861
#endif
5862
    } else if (strstart(devname, "net:", &p)) {
5863
        int nic = nb_nics;
5864

    
5865
        if (net_client_init("nic", p) < 0)
5866
            return -1;
5867
        nd_table[nic].model = "usb";
5868
        dev = usb_net_init(&nd_table[nic]);
5869
    } else {
5870
        return -1;
5871
    }
5872
    if (!dev)
5873
        return -1;
5874

    
5875
    return usb_device_add_dev(dev);
5876
}
5877

    
5878
int usb_device_del_addr(int bus_num, int addr)
5879
{
5880
    USBPort *port;
5881
    USBPort **lastp;
5882
    USBDevice *dev;
5883

    
5884
    if (!used_usb_ports)
5885
        return -1;
5886

    
5887
    if (bus_num != 0)
5888
        return -1;
5889

    
5890
    lastp = &used_usb_ports;
5891
    port = used_usb_ports;
5892
    while (port && port->dev->addr != addr) {
5893
        lastp = &port->next;
5894
        port = port->next;
5895
    }
5896

    
5897
    if (!port)
5898
        return -1;
5899

    
5900
    dev = port->dev;
5901
    *lastp = port->next;
5902
    usb_attach(port, NULL);
5903
    dev->handle_destroy(dev);
5904
    port->next = free_usb_ports;
5905
    free_usb_ports = port;
5906
    return 0;
5907
}
5908

    
5909
static int usb_device_del(const char *devname)
5910
{
5911
    int bus_num, addr;
5912
    const char *p;
5913

    
5914
    if (strstart(devname, "host:", &p))
5915
        return usb_host_device_close(p);
5916

    
5917
    if (!used_usb_ports)
5918
        return -1;
5919

    
5920
    p = strchr(devname, '.');
5921
    if (!p)
5922
        return -1;
5923
    bus_num = strtoul(devname, NULL, 0);
5924
    addr = strtoul(p + 1, NULL, 0);
5925

    
5926
    return usb_device_del_addr(bus_num, addr);
5927
}
5928

    
5929
void do_usb_add(const char *devname)
5930
{
5931
    usb_device_add(devname);
5932
}
5933

    
5934
void do_usb_del(const char *devname)
5935
{
5936
    usb_device_del(devname);
5937
}
5938

    
5939
void usb_info(void)
5940
{
5941
    USBDevice *dev;
5942
    USBPort *port;
5943
    const char *speed_str;
5944

    
5945
    if (!usb_enabled) {
5946
        term_printf("USB support not enabled\n");
5947
        return;
5948
    }
5949

    
5950
    for (port = used_usb_ports; port; port = port->next) {
5951
        dev = port->dev;
5952
        if (!dev)
5953
            continue;
5954
        switch(dev->speed) {
5955
        case USB_SPEED_LOW:
5956
            speed_str = "1.5";
5957
            break;
5958
        case USB_SPEED_FULL:
5959
            speed_str = "12";
5960
            break;
5961
        case USB_SPEED_HIGH:
5962
            speed_str = "480";
5963
            break;
5964
        default:
5965
            speed_str = "?";
5966
            break;
5967
        }
5968
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
5969
                    0, dev->addr, speed_str, dev->devname);
5970
    }
5971
}
5972

    
5973
/***********************************************************/
5974
/* PCMCIA/Cardbus */
5975

    
5976
static struct pcmcia_socket_entry_s {
5977
    struct pcmcia_socket_s *socket;
5978
    struct pcmcia_socket_entry_s *next;
5979
} *pcmcia_sockets = 0;
5980

    
5981
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5982
{
5983
    struct pcmcia_socket_entry_s *entry;
5984

    
5985
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5986
    entry->socket = socket;
5987
    entry->next = pcmcia_sockets;
5988
    pcmcia_sockets = entry;
5989
}
5990

    
5991
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5992
{
5993
    struct pcmcia_socket_entry_s *entry, **ptr;
5994

    
5995
    ptr = &pcmcia_sockets;
5996
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5997
        if (entry->socket == socket) {
5998
            *ptr = entry->next;
5999
            qemu_free(entry);
6000
        }
6001
}
6002

    
6003
void pcmcia_info(void)
6004
{
6005
    struct pcmcia_socket_entry_s *iter;
6006
    if (!pcmcia_sockets)
6007
        term_printf("No PCMCIA sockets\n");
6008

    
6009
    for (iter = pcmcia_sockets; iter; iter = iter->next)
6010
        term_printf("%s: %s\n", iter->socket->slot_string,
6011
                    iter->socket->attached ? iter->socket->card_string :
6012
                    "Empty");
6013
}
6014

    
6015
/***********************************************************/
6016
/* dumb display */
6017

    
6018
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
6019
{
6020
}
6021

    
6022
static void dumb_resize(DisplayState *ds, int w, int h)
6023
{
6024
}
6025

    
6026
static void dumb_refresh(DisplayState *ds)
6027
{
6028
#if defined(CONFIG_SDL)
6029
    vga_hw_update();
6030
#endif
6031
}
6032

    
6033
static void dumb_display_init(DisplayState *ds)
6034
{
6035
    ds->data = NULL;
6036
    ds->linesize = 0;
6037
    ds->depth = 0;
6038
    ds->dpy_update = dumb_update;
6039
    ds->dpy_resize = dumb_resize;
6040
    ds->dpy_refresh = dumb_refresh;
6041
    ds->gui_timer_interval = 500;
6042
    ds->idle = 1;
6043
}
6044

    
6045
/***********************************************************/
6046
/* I/O handling */
6047

    
6048
#define MAX_IO_HANDLERS 64
6049

    
6050
typedef struct IOHandlerRecord {
6051
    int fd;
6052
    IOCanRWHandler *fd_read_poll;
6053
    IOHandler *fd_read;
6054
    IOHandler *fd_write;
6055
    int deleted;
6056
    void *opaque;
6057
    /* temporary data */
6058
    struct pollfd *ufd;
6059
    struct IOHandlerRecord *next;
6060
} IOHandlerRecord;
6061

    
6062
static IOHandlerRecord *first_io_handler;
6063

    
6064
/* XXX: fd_read_poll should be suppressed, but an API change is
6065
   necessary in the character devices to suppress fd_can_read(). */
6066
int qemu_set_fd_handler2(int fd,
6067
                         IOCanRWHandler *fd_read_poll,
6068
                         IOHandler *fd_read,
6069
                         IOHandler *fd_write,
6070
                         void *opaque)
6071
{
6072
    IOHandlerRecord **pioh, *ioh;
6073

    
6074
    if (!fd_read && !fd_write) {
6075
        pioh = &first_io_handler;
6076
        for(;;) {
6077
            ioh = *pioh;
6078
            if (ioh == NULL)
6079
                break;
6080
            if (ioh->fd == fd) {
6081
                ioh->deleted = 1;
6082
                break;
6083
            }
6084
            pioh = &ioh->next;
6085
        }
6086
    } else {
6087
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6088
            if (ioh->fd == fd)
6089
                goto found;
6090
        }
6091
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
6092
        if (!ioh)
6093
            return -1;
6094
        ioh->next = first_io_handler;
6095
        first_io_handler = ioh;
6096
    found:
6097
        ioh->fd = fd;
6098
        ioh->fd_read_poll = fd_read_poll;
6099
        ioh->fd_read = fd_read;
6100
        ioh->fd_write = fd_write;
6101
        ioh->opaque = opaque;
6102
        ioh->deleted = 0;
6103
    }
6104
    return 0;
6105
}
6106

    
6107
int qemu_set_fd_handler(int fd,
6108
                        IOHandler *fd_read,
6109
                        IOHandler *fd_write,
6110
                        void *opaque)
6111
{
6112
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
6113
}
6114

    
6115
/***********************************************************/
6116
/* Polling handling */
6117

    
6118
typedef struct PollingEntry {
6119
    PollingFunc *func;
6120
    void *opaque;
6121
    struct PollingEntry *next;
6122
} PollingEntry;
6123

    
6124
static PollingEntry *first_polling_entry;
6125

    
6126
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
6127
{
6128
    PollingEntry **ppe, *pe;
6129
    pe = qemu_mallocz(sizeof(PollingEntry));
6130
    if (!pe)
6131
        return -1;
6132
    pe->func = func;
6133
    pe->opaque = opaque;
6134
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
6135
    *ppe = pe;
6136
    return 0;
6137
}
6138

    
6139
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
6140
{
6141
    PollingEntry **ppe, *pe;
6142
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
6143
        pe = *ppe;
6144
        if (pe->func == func && pe->opaque == opaque) {
6145
            *ppe = pe->next;
6146
            qemu_free(pe);
6147
            break;
6148
        }
6149
    }
6150
}
6151

    
6152
#ifdef _WIN32
6153
/***********************************************************/
6154
/* Wait objects support */
6155
typedef struct WaitObjects {
6156
    int num;
6157
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
6158
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
6159
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
6160
} WaitObjects;
6161

    
6162
static WaitObjects wait_objects = {0};
6163

    
6164
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6165
{
6166
    WaitObjects *w = &wait_objects;
6167

    
6168
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
6169
        return -1;
6170
    w->events[w->num] = handle;
6171
    w->func[w->num] = func;
6172
    w->opaque[w->num] = opaque;
6173
    w->num++;
6174
    return 0;
6175
}
6176

    
6177
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6178
{
6179
    int i, found;
6180
    WaitObjects *w = &wait_objects;
6181

    
6182
    found = 0;
6183
    for (i = 0; i < w->num; i++) {
6184
        if (w->events[i] == handle)
6185
            found = 1;
6186
        if (found) {
6187
            w->events[i] = w->events[i + 1];
6188
            w->func[i] = w->func[i + 1];
6189
            w->opaque[i] = w->opaque[i + 1];
6190
        }
6191
    }
6192
    if (found)
6193
        w->num--;
6194
}
6195
#endif
6196

    
6197
#define SELF_ANNOUNCE_ROUNDS 5
6198
#define ETH_P_EXPERIMENTAL 0x01F1 /* just a number */
6199
//#define ETH_P_EXPERIMENTAL 0x0012 /* make it the size of the packet */
6200
#define EXPERIMENTAL_MAGIC 0xf1f23f4f
6201

    
6202
static int announce_self_create(uint8_t *buf, 
6203
                                uint8_t *mac_addr)
6204
{
6205
    uint32_t magic = EXPERIMENTAL_MAGIC;
6206
    uint16_t proto = htons(ETH_P_EXPERIMENTAL);
6207

    
6208
    /* FIXME: should we send a different packet (arp/rarp/ping)? */
6209

    
6210
    memset(buf, 0xff, 6);         /* h_dst */
6211
    memcpy(buf + 6, mac_addr, 6); /* h_src */
6212
    memcpy(buf + 12, &proto, 2);  /* h_proto */
6213
    memcpy(buf + 14, &magic, 4);  /* magic */
6214

    
6215
    return 18; /* len */
6216
}
6217

    
6218
void qemu_announce_self(void)
6219
{
6220
    int i, j, len;
6221
    VLANState *vlan;
6222
    VLANClientState *vc;
6223
    uint8_t buf[256];
6224

    
6225
    for (i = 0; i < nb_nics; i++) {
6226
        len = announce_self_create(buf, nd_table[i].macaddr);
6227
        vlan = nd_table[i].vlan;
6228
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
6229
            for (j=0; j < SELF_ANNOUNCE_ROUNDS; j++)
6230
                vc->fd_read(vc->opaque, buf, len);
6231
        }
6232
    }
6233
}
6234

    
6235
/***********************************************************/
6236
/* savevm/loadvm support */
6237

    
6238
#define IO_BUF_SIZE 32768
6239

    
6240
struct QEMUFile {
6241
    QEMUFilePutBufferFunc *put_buffer;
6242
    QEMUFileGetBufferFunc *get_buffer;
6243
    QEMUFileCloseFunc *close;
6244
    QEMUFileRateLimit *rate_limit;
6245
    void *opaque;
6246
    int is_write;
6247

    
6248
    int64_t buf_offset; /* start of buffer when writing, end of buffer
6249
                           when reading */
6250
    int buf_index;
6251
    int buf_size; /* 0 when writing */
6252
    uint8_t buf[IO_BUF_SIZE];
6253

    
6254
    int has_error;
6255
};
6256

    
6257
typedef struct QEMUFileSocket
6258
{
6259
    int fd;
6260
    QEMUFile *file;
6261
} QEMUFileSocket;
6262

    
6263
static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6264
{
6265
    QEMUFileSocket *s = opaque;
6266
    ssize_t len;
6267

    
6268
    do {
6269
        len = recv(s->fd, buf, size, 0);
6270
    } while (len == -1 && socket_error() == EINTR);
6271

    
6272
    if (len == -1)
6273
        len = -socket_error();
6274

    
6275
    return len;
6276
}
6277

    
6278
static int socket_close(void *opaque)
6279
{
6280
    QEMUFileSocket *s = opaque;
6281
    qemu_free(s);
6282
    return 0;
6283
}
6284

    
6285
QEMUFile *qemu_fopen_socket(int fd)
6286
{
6287
    QEMUFileSocket *s = qemu_mallocz(sizeof(QEMUFileSocket));
6288

    
6289
    if (s == NULL)
6290
        return NULL;
6291

    
6292
    s->fd = fd;
6293
    s->file = qemu_fopen_ops(s, NULL, socket_get_buffer, socket_close, NULL);
6294
    return s->file;
6295
}
6296

    
6297
typedef struct QEMUFileStdio
6298
{
6299
    FILE *outfile;
6300
} QEMUFileStdio;
6301

    
6302
static int file_put_buffer(void *opaque, const uint8_t *buf,
6303
                            int64_t pos, int size)
6304
{
6305
    QEMUFileStdio *s = opaque;
6306
    fseek(s->outfile, pos, SEEK_SET);
6307
    fwrite(buf, 1, size, s->outfile);
6308
    return size;
6309
}
6310

    
6311
static int file_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6312
{
6313
    QEMUFileStdio *s = opaque;
6314
    fseek(s->outfile, pos, SEEK_SET);
6315
    return fread(buf, 1, size, s->outfile);
6316
}
6317

    
6318
static int file_close(void *opaque)
6319
{
6320
    QEMUFileStdio *s = opaque;
6321
    fclose(s->outfile);
6322
    qemu_free(s);
6323
    return 0;
6324
}
6325

    
6326
QEMUFile *qemu_fopen(const char *filename, const char *mode)
6327
{
6328
    QEMUFileStdio *s;
6329

    
6330
    s = qemu_mallocz(sizeof(QEMUFileStdio));
6331
    if (!s)
6332
        return NULL;
6333

    
6334
    s->outfile = fopen(filename, mode);
6335
    if (!s->outfile)
6336
        goto fail;
6337

    
6338
    if (!strcmp(mode, "wb"))
6339
        return qemu_fopen_ops(s, file_put_buffer, NULL, file_close, NULL);
6340
    else if (!strcmp(mode, "rb"))
6341
        return qemu_fopen_ops(s, NULL, file_get_buffer, file_close, NULL);
6342

    
6343
fail:
6344
    if (s->outfile)
6345
        fclose(s->outfile);
6346
    qemu_free(s);
6347
    return NULL;
6348
}
6349

    
6350
typedef struct QEMUFileBdrv
6351
{
6352
    BlockDriverState *bs;
6353
    int64_t base_offset;
6354
} QEMUFileBdrv;
6355

    
6356
static int bdrv_put_buffer(void *opaque, const uint8_t *buf,
6357
                           int64_t pos, int size)
6358
{
6359
    QEMUFileBdrv *s = opaque;
6360
    bdrv_pwrite(s->bs, s->base_offset + pos, buf, size);
6361
    return size;
6362
}
6363

    
6364
static int bdrv_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6365
{
6366
    QEMUFileBdrv *s = opaque;
6367
    return bdrv_pread(s->bs, s->base_offset + pos, buf, size);
6368
}
6369

    
6370
static int bdrv_fclose(void *opaque)
6371
{
6372
    QEMUFileBdrv *s = opaque;
6373
    qemu_free(s);
6374
    return 0;
6375
}
6376

    
6377
static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
6378
{
6379
    QEMUFileBdrv *s;
6380

    
6381
    s = qemu_mallocz(sizeof(QEMUFileBdrv));
6382
    if (!s)
6383
        return NULL;
6384

    
6385
    s->bs = bs;
6386
    s->base_offset = offset;
6387

    
6388
    if (is_writable)
6389
        return qemu_fopen_ops(s, bdrv_put_buffer, NULL, bdrv_fclose, NULL);
6390

    
6391
    return qemu_fopen_ops(s, NULL, bdrv_get_buffer, bdrv_fclose, NULL);
6392
}
6393

    
6394
QEMUFile *qemu_fopen_ops(void *opaque, QEMUFilePutBufferFunc *put_buffer,
6395
                         QEMUFileGetBufferFunc *get_buffer,
6396
                         QEMUFileCloseFunc *close,
6397
                         QEMUFileRateLimit *rate_limit)
6398
{
6399
    QEMUFile *f;
6400

    
6401
    f = qemu_mallocz(sizeof(QEMUFile));
6402
    if (!f)
6403
        return NULL;
6404

    
6405
    f->opaque = opaque;
6406
    f->put_buffer = put_buffer;
6407
    f->get_buffer = get_buffer;
6408
    f->close = close;
6409
    f->rate_limit = rate_limit;
6410
    f->is_write = 0;
6411

    
6412
    return f;
6413
}
6414

    
6415
int qemu_file_has_error(QEMUFile *f)
6416
{
6417
    return f->has_error;
6418
}
6419

    
6420
void qemu_fflush(QEMUFile *f)
6421
{
6422
    if (!f->put_buffer)
6423
        return;
6424

    
6425
    if (f->is_write && f->buf_index > 0) {
6426
        int len;
6427

    
6428
        len = f->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
6429
        if (len > 0)
6430
            f->buf_offset += f->buf_index;
6431
        else
6432
            f->has_error = 1;
6433
        f->buf_index = 0;
6434
    }
6435
}
6436

    
6437
static void qemu_fill_buffer(QEMUFile *f)
6438
{
6439
    int len;
6440

    
6441
    if (!f->get_buffer)
6442
        return;
6443

    
6444
    if (f->is_write)
6445
        abort();
6446

    
6447
    len = f->get_buffer(f->opaque, f->buf, f->buf_offset, IO_BUF_SIZE);
6448
    if (len > 0) {
6449
        f->buf_index = 0;
6450
        f->buf_size = len;
6451
        f->buf_offset += len;
6452
    } else if (len != -EAGAIN)
6453
        f->has_error = 1;
6454
}
6455

    
6456
int qemu_fclose(QEMUFile *f)
6457
{
6458
    int ret = 0;
6459
    qemu_fflush(f);
6460
    if (f->close)
6461
        ret = f->close(f->opaque);
6462
    qemu_free(f);
6463
    return ret;
6464
}
6465

    
6466
void qemu_file_put_notify(QEMUFile *f)
6467
{
6468
    f->put_buffer(f->opaque, NULL, 0, 0);
6469
}
6470

    
6471
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
6472
{
6473
    int l;
6474

    
6475
    if (!f->has_error && f->is_write == 0 && f->buf_index > 0) {
6476
        fprintf(stderr,
6477
                "Attempted to write to buffer while read buffer is not empty\n");
6478
        abort();
6479
    }
6480

    
6481
    while (!f->has_error && size > 0) {
6482
        l = IO_BUF_SIZE - f->buf_index;
6483
        if (l > size)
6484
            l = size;
6485
        memcpy(f->buf + f->buf_index, buf, l);
6486
        f->is_write = 1;
6487
        f->buf_index += l;
6488
        buf += l;
6489
        size -= l;
6490
        if (f->buf_index >= IO_BUF_SIZE)
6491
            qemu_fflush(f);
6492
    }
6493
}
6494

    
6495
void qemu_put_byte(QEMUFile *f, int v)
6496
{
6497
    if (!f->has_error && f->is_write == 0 && f->buf_index > 0) {
6498
        fprintf(stderr,
6499
                "Attempted to write to buffer while read buffer is not empty\n");
6500
        abort();
6501
    }
6502

    
6503
    f->buf[f->buf_index++] = v;
6504
    f->is_write = 1;
6505
    if (f->buf_index >= IO_BUF_SIZE)
6506
        qemu_fflush(f);
6507
}
6508

    
6509
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
6510
{
6511
    int size, l;
6512

    
6513
    if (f->is_write)
6514
        abort();
6515

    
6516
    size = size1;
6517
    while (size > 0) {
6518
        l = f->buf_size - f->buf_index;
6519
        if (l == 0) {
6520
            qemu_fill_buffer(f);
6521
            l = f->buf_size - f->buf_index;
6522
            if (l == 0)
6523
                break;
6524
        }
6525
        if (l > size)
6526
            l = size;
6527
        memcpy(buf, f->buf + f->buf_index, l);
6528
        f->buf_index += l;
6529
        buf += l;
6530
        size -= l;
6531
    }
6532
    return size1 - size;
6533
}
6534

    
6535
int qemu_get_byte(QEMUFile *f)
6536
{
6537
    if (f->is_write)
6538
        abort();
6539

    
6540
    if (f->buf_index >= f->buf_size) {
6541
        qemu_fill_buffer(f);
6542
        if (f->buf_index >= f->buf_size)
6543
            return 0;
6544
    }
6545
    return f->buf[f->buf_index++];
6546
}
6547

    
6548
int64_t qemu_ftell(QEMUFile *f)
6549
{
6550
    return f->buf_offset - f->buf_size + f->buf_index;
6551
}
6552

    
6553
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
6554
{
6555
    if (whence == SEEK_SET) {
6556
        /* nothing to do */
6557
    } else if (whence == SEEK_CUR) {
6558
        pos += qemu_ftell(f);
6559
    } else {
6560
        /* SEEK_END not supported */
6561
        return -1;
6562
    }
6563
    if (f->put_buffer) {
6564
        qemu_fflush(f);
6565
        f->buf_offset = pos;
6566
    } else {
6567
        f->buf_offset = pos;
6568
        f->buf_index = 0;
6569
        f->buf_size = 0;
6570
    }
6571
    return pos;
6572
}
6573

    
6574
int qemu_file_rate_limit(QEMUFile *f)
6575
{
6576
    if (f->rate_limit)
6577
        return f->rate_limit(f->opaque);
6578

    
6579
    return 0;
6580
}
6581

    
6582
void qemu_put_be16(QEMUFile *f, unsigned int v)
6583
{
6584
    qemu_put_byte(f, v >> 8);
6585
    qemu_put_byte(f, v);
6586
}
6587

    
6588
void qemu_put_be32(QEMUFile *f, unsigned int v)
6589
{
6590
    qemu_put_byte(f, v >> 24);
6591
    qemu_put_byte(f, v >> 16);
6592
    qemu_put_byte(f, v >> 8);
6593
    qemu_put_byte(f, v);
6594
}
6595

    
6596
void qemu_put_be64(QEMUFile *f, uint64_t v)
6597
{
6598
    qemu_put_be32(f, v >> 32);
6599
    qemu_put_be32(f, v);
6600
}
6601

    
6602
unsigned int qemu_get_be16(QEMUFile *f)
6603
{
6604
    unsigned int v;
6605
    v = qemu_get_byte(f) << 8;
6606
    v |= qemu_get_byte(f);
6607
    return v;
6608
}
6609

    
6610
unsigned int qemu_get_be32(QEMUFile *f)
6611
{
6612
    unsigned int v;
6613
    v = qemu_get_byte(f) << 24;
6614
    v |= qemu_get_byte(f) << 16;
6615
    v |= qemu_get_byte(f) << 8;
6616
    v |= qemu_get_byte(f);
6617
    return v;
6618
}
6619

    
6620
uint64_t qemu_get_be64(QEMUFile *f)
6621
{
6622
    uint64_t v;
6623
    v = (uint64_t)qemu_get_be32(f) << 32;
6624
    v |= qemu_get_be32(f);
6625
    return v;
6626
}
6627

    
6628
typedef struct SaveStateEntry {
6629
    char idstr[256];
6630
    int instance_id;
6631
    int version_id;
6632
    int section_id;
6633
    SaveLiveStateHandler *save_live_state;
6634
    SaveStateHandler *save_state;
6635
    LoadStateHandler *load_state;
6636
    void *opaque;
6637
    struct SaveStateEntry *next;
6638
} SaveStateEntry;
6639

    
6640
static SaveStateEntry *first_se;
6641

    
6642
/* TODO: Individual devices generally have very little idea about the rest
6643
   of the system, so instance_id should be removed/replaced.
6644
   Meanwhile pass -1 as instance_id if you do not already have a clearly
6645
   distinguishing id for all instances of your device class. */
6646
int register_savevm_live(const char *idstr,
6647
                         int instance_id,
6648
                         int version_id,
6649
                         SaveLiveStateHandler *save_live_state,
6650
                         SaveStateHandler *save_state,
6651
                         LoadStateHandler *load_state,
6652
                         void *opaque)
6653
{
6654
    SaveStateEntry *se, **pse;
6655
    static int global_section_id;
6656

    
6657
    se = qemu_malloc(sizeof(SaveStateEntry));
6658
    if (!se)
6659
        return -1;
6660
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6661
    se->instance_id = (instance_id == -1) ? 0 : instance_id;
6662
    se->version_id = version_id;
6663
    se->section_id = global_section_id++;
6664
    se->save_live_state = save_live_state;
6665
    se->save_state = save_state;
6666
    se->load_state = load_state;
6667
    se->opaque = opaque;
6668
    se->next = NULL;
6669

    
6670
    /* add at the end of list */
6671
    pse = &first_se;
6672
    while (*pse != NULL) {
6673
        if (instance_id == -1
6674
                && strcmp(se->idstr, (*pse)->idstr) == 0
6675
                && se->instance_id <= (*pse)->instance_id)
6676
            se->instance_id = (*pse)->instance_id + 1;
6677
        pse = &(*pse)->next;
6678
    }
6679
    *pse = se;
6680
    return 0;
6681
}
6682

    
6683
int register_savevm(const char *idstr,
6684
                    int instance_id,
6685
                    int version_id,
6686
                    SaveStateHandler *save_state,
6687
                    LoadStateHandler *load_state,
6688
                    void *opaque)
6689
{
6690
    return register_savevm_live(idstr, instance_id, version_id,
6691
                                NULL, save_state, load_state, opaque);
6692
}
6693

    
6694
#define QEMU_VM_FILE_MAGIC           0x5145564d
6695
#define QEMU_VM_FILE_VERSION_COMPAT  0x00000002
6696
#define QEMU_VM_FILE_VERSION         0x00000003
6697

    
6698
#define QEMU_VM_EOF                  0x00
6699
#define QEMU_VM_SECTION_START        0x01
6700
#define QEMU_VM_SECTION_PART         0x02
6701
#define QEMU_VM_SECTION_END          0x03
6702
#define QEMU_VM_SECTION_FULL         0x04
6703

    
6704
int qemu_savevm_state_begin(QEMUFile *f)
6705
{
6706
    SaveStateEntry *se;
6707

    
6708
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6709
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6710

    
6711
    for (se = first_se; se != NULL; se = se->next) {
6712
        int len;
6713

    
6714
        if (se->save_live_state == NULL)
6715
            continue;
6716

    
6717
        /* Section type */
6718
        qemu_put_byte(f, QEMU_VM_SECTION_START);
6719
        qemu_put_be32(f, se->section_id);
6720

    
6721
        /* ID string */
6722
        len = strlen(se->idstr);
6723
        qemu_put_byte(f, len);
6724
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6725

    
6726
        qemu_put_be32(f, se->instance_id);
6727
        qemu_put_be32(f, se->version_id);
6728

    
6729
        se->save_live_state(f, QEMU_VM_SECTION_START, se->opaque);
6730
    }
6731

    
6732
    if (qemu_file_has_error(f))
6733
        return -EIO;
6734

    
6735
    return 0;
6736
}
6737

    
6738
int qemu_savevm_state_iterate(QEMUFile *f)
6739
{
6740
    SaveStateEntry *se;
6741
    int ret = 1;
6742

    
6743
    for (se = first_se; se != NULL; se = se->next) {
6744
        if (se->save_live_state == NULL)
6745
            continue;
6746

    
6747
        /* Section type */
6748
        qemu_put_byte(f, QEMU_VM_SECTION_PART);
6749
        qemu_put_be32(f, se->section_id);
6750

    
6751
        ret &= !!se->save_live_state(f, QEMU_VM_SECTION_PART, se->opaque);
6752
    }
6753

    
6754
    if (ret)
6755
        return 1;
6756

    
6757
    if (qemu_file_has_error(f))
6758
        return -EIO;
6759

    
6760
    return 0;
6761
}
6762

    
6763
int qemu_savevm_state_complete(QEMUFile *f)
6764
{
6765
    SaveStateEntry *se;
6766

    
6767
    for (se = first_se; se != NULL; se = se->next) {
6768
        if (se->save_live_state == NULL)
6769
            continue;
6770

    
6771
        /* Section type */
6772
        qemu_put_byte(f, QEMU_VM_SECTION_END);
6773
        qemu_put_be32(f, se->section_id);
6774

    
6775
        se->save_live_state(f, QEMU_VM_SECTION_END, se->opaque);
6776
    }
6777

    
6778
    for(se = first_se; se != NULL; se = se->next) {
6779
        int len;
6780

    
6781
        if (se->save_state == NULL)
6782
            continue;
6783

    
6784
        /* Section type */
6785
        qemu_put_byte(f, QEMU_VM_SECTION_FULL);
6786
        qemu_put_be32(f, se->section_id);
6787

    
6788
        /* ID string */
6789
        len = strlen(se->idstr);
6790
        qemu_put_byte(f, len);
6791
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6792

    
6793
        qemu_put_be32(f, se->instance_id);
6794
        qemu_put_be32(f, se->version_id);
6795

    
6796
        se->save_state(f, se->opaque);
6797
    }
6798

    
6799
    qemu_put_byte(f, QEMU_VM_EOF);
6800

    
6801
    if (qemu_file_has_error(f))
6802
        return -EIO;
6803

    
6804
    return 0;
6805
}
6806

    
6807
int qemu_savevm_state(QEMUFile *f)
6808
{
6809
    int saved_vm_running;
6810
    int ret;
6811

    
6812
    saved_vm_running = vm_running;
6813
    vm_stop(0);
6814

    
6815
    bdrv_flush_all();
6816

    
6817
    ret = qemu_savevm_state_begin(f);
6818
    if (ret < 0)
6819
        goto out;
6820

    
6821
    do {
6822
        ret = qemu_savevm_state_iterate(f);
6823
        if (ret < 0)
6824
            goto out;
6825
    } while (ret == 0);
6826

    
6827
    ret = qemu_savevm_state_complete(f);
6828

    
6829
out:
6830
    if (qemu_file_has_error(f))
6831
        ret = -EIO;
6832

    
6833
    if (!ret && saved_vm_running)
6834
        vm_start();
6835

    
6836
    return ret;
6837
}
6838

    
6839
static SaveStateEntry *find_se(const char *idstr, int instance_id)
6840
{
6841
    SaveStateEntry *se;
6842

    
6843
    for(se = first_se; se != NULL; se = se->next) {
6844
        if (!strcmp(se->idstr, idstr) &&
6845
            instance_id == se->instance_id)
6846
            return se;
6847
    }
6848
    return NULL;
6849
}
6850

    
6851
typedef struct LoadStateEntry {
6852
    SaveStateEntry *se;
6853
    int section_id;
6854
    int version_id;
6855
    struct LoadStateEntry *next;
6856
} LoadStateEntry;
6857

    
6858
static int qemu_loadvm_state_v2(QEMUFile *f)
6859
{
6860
    SaveStateEntry *se;
6861
    int len, ret, instance_id, record_len, version_id;
6862
    int64_t total_len, end_pos, cur_pos;
6863
    char idstr[256];
6864

    
6865
    total_len = qemu_get_be64(f);
6866
    end_pos = total_len + qemu_ftell(f);
6867
    for(;;) {
6868
        if (qemu_ftell(f) >= end_pos)
6869
            break;
6870
        len = qemu_get_byte(f);
6871
        qemu_get_buffer(f, (uint8_t *)idstr, len);
6872
        idstr[len] = '\0';
6873
        instance_id = qemu_get_be32(f);
6874
        version_id = qemu_get_be32(f);
6875
        record_len = qemu_get_be32(f);
6876
        cur_pos = qemu_ftell(f);
6877
        se = find_se(idstr, instance_id);
6878
        if (!se) {
6879
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6880
                    instance_id, idstr);
6881
        } else {
6882
            ret = se->load_state(f, se->opaque, version_id);
6883
            if (ret < 0) {
6884
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6885
                        instance_id, idstr);
6886
            }
6887
        }
6888
        /* always seek to exact end of record */
6889
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6890
    }
6891

    
6892
    if (qemu_file_has_error(f))
6893
        return -EIO;
6894

    
6895
    return 0;
6896
}
6897

    
6898
int qemu_loadvm_state(QEMUFile *f)
6899
{
6900
    LoadStateEntry *first_le = NULL;
6901
    uint8_t section_type;
6902
    unsigned int v;
6903
    int ret;
6904

    
6905
    v = qemu_get_be32(f);
6906
    if (v != QEMU_VM_FILE_MAGIC)
6907
        return -EINVAL;
6908

    
6909
    v = qemu_get_be32(f);
6910
    if (v == QEMU_VM_FILE_VERSION_COMPAT)
6911
        return qemu_loadvm_state_v2(f);
6912
    if (v != QEMU_VM_FILE_VERSION)
6913
        return -ENOTSUP;
6914

    
6915
    while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
6916
        uint32_t instance_id, version_id, section_id;
6917
        LoadStateEntry *le;
6918
        SaveStateEntry *se;
6919
        char idstr[257];
6920
        int len;
6921

    
6922
        switch (section_type) {
6923
        case QEMU_VM_SECTION_START:
6924
        case QEMU_VM_SECTION_FULL:
6925
            /* Read section start */
6926
            section_id = qemu_get_be32(f);
6927
            len = qemu_get_byte(f);
6928
            qemu_get_buffer(f, (uint8_t *)idstr, len);
6929
            idstr[len] = 0;
6930
            instance_id = qemu_get_be32(f);
6931
            version_id = qemu_get_be32(f);
6932

    
6933
            /* Find savevm section */
6934
            se = find_se(idstr, instance_id);
6935
            if (se == NULL) {
6936
                fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
6937
                ret = -EINVAL;
6938
                goto out;
6939
            }
6940

    
6941
            /* Validate version */
6942
            if (version_id > se->version_id) {
6943
                fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
6944
                        version_id, idstr, se->version_id);
6945
                ret = -EINVAL;
6946
                goto out;
6947
            }
6948

    
6949
            /* Add entry */
6950
            le = qemu_mallocz(sizeof(*le));
6951
            if (le == NULL) {
6952
                ret = -ENOMEM;
6953
                goto out;
6954
            }
6955

    
6956
            le->se = se;
6957
            le->section_id = section_id;
6958
            le->version_id = version_id;
6959
            le->next = first_le;
6960
            first_le = le;
6961

    
6962
            le->se->load_state(f, le->se->opaque, le->version_id);
6963
            break;
6964
        case QEMU_VM_SECTION_PART:
6965
        case QEMU_VM_SECTION_END:
6966
            section_id = qemu_get_be32(f);
6967

    
6968
            for (le = first_le; le && le->section_id != section_id; le = le->next);
6969
            if (le == NULL) {
6970
                fprintf(stderr, "Unknown savevm section %d\n", section_id);
6971
                ret = -EINVAL;
6972
                goto out;
6973
            }
6974

    
6975
            le->se->load_state(f, le->se->opaque, le->version_id);
6976
            break;
6977
        default:
6978
            fprintf(stderr, "Unknown savevm section type %d\n", section_type);
6979
            ret = -EINVAL;
6980
            goto out;
6981
        }
6982
    }
6983

    
6984
    ret = 0;
6985

    
6986
out:
6987
    while (first_le) {
6988
        LoadStateEntry *le = first_le;
6989
        first_le = first_le->next;
6990
        qemu_free(le);
6991
    }
6992

    
6993
    if (qemu_file_has_error(f))
6994
        ret = -EIO;
6995

    
6996
    return ret;
6997
}
6998

    
6999
/* device can contain snapshots */
7000
static int bdrv_can_snapshot(BlockDriverState *bs)
7001
{
7002
    return (bs &&
7003
            !bdrv_is_removable(bs) &&
7004
            !bdrv_is_read_only(bs));
7005
}
7006

    
7007
/* device must be snapshots in order to have a reliable snapshot */
7008
static int bdrv_has_snapshot(BlockDriverState *bs)
7009
{
7010
    return (bs &&
7011
            !bdrv_is_removable(bs) &&
7012
            !bdrv_is_read_only(bs));
7013
}
7014

    
7015
static BlockDriverState *get_bs_snapshots(void)
7016
{
7017
    BlockDriverState *bs;
7018
    int i;
7019

    
7020
    if (bs_snapshots)
7021
        return bs_snapshots;
7022
    for(i = 0; i <= nb_drives; i++) {
7023
        bs = drives_table[i].bdrv;
7024
        if (bdrv_can_snapshot(bs))
7025
            goto ok;
7026
    }
7027
    return NULL;
7028
 ok:
7029
    bs_snapshots = bs;
7030
    return bs;
7031
}
7032

    
7033
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
7034
                              const char *name)
7035
{
7036
    QEMUSnapshotInfo *sn_tab, *sn;
7037
    int nb_sns, i, ret;
7038

    
7039
    ret = -ENOENT;
7040
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7041
    if (nb_sns < 0)
7042
        return ret;
7043
    for(i = 0; i < nb_sns; i++) {
7044
        sn = &sn_tab[i];
7045
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
7046
            *sn_info = *sn;
7047
            ret = 0;
7048
            break;
7049
        }
7050
    }
7051
    qemu_free(sn_tab);
7052
    return ret;
7053
}
7054

    
7055
void do_savevm(const char *name)
7056
{
7057
    BlockDriverState *bs, *bs1;
7058
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
7059
    int must_delete, ret, i;
7060
    BlockDriverInfo bdi1, *bdi = &bdi1;
7061
    QEMUFile *f;
7062
    int saved_vm_running;
7063
#ifdef _WIN32
7064
    struct _timeb tb;
7065
#else
7066
    struct timeval tv;
7067
#endif
7068

    
7069
    bs = get_bs_snapshots();
7070
    if (!bs) {
7071
        term_printf("No block device can accept snapshots\n");
7072
        return;
7073
    }
7074

    
7075
    /* ??? Should this occur after vm_stop?  */
7076
    qemu_aio_flush();
7077

    
7078
    saved_vm_running = vm_running;
7079
    vm_stop(0);
7080

    
7081
    must_delete = 0;
7082
    if (name) {
7083
        ret = bdrv_snapshot_find(bs, old_sn, name);
7084
        if (ret >= 0) {
7085
            must_delete = 1;
7086
        }
7087
    }
7088
    memset(sn, 0, sizeof(*sn));
7089
    if (must_delete) {
7090
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
7091
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
7092
    } else {
7093
        if (name)
7094
            pstrcpy(sn->name, sizeof(sn->name), name);
7095
    }
7096

    
7097
    /* fill auxiliary fields */
7098
#ifdef _WIN32
7099
    _ftime(&tb);
7100
    sn->date_sec = tb.time;
7101
    sn->date_nsec = tb.millitm * 1000000;
7102
#else
7103
    gettimeofday(&tv, NULL);
7104
    sn->date_sec = tv.tv_sec;
7105
    sn->date_nsec = tv.tv_usec * 1000;
7106
#endif
7107
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
7108

    
7109
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
7110
        term_printf("Device %s does not support VM state snapshots\n",
7111
                    bdrv_get_device_name(bs));
7112
        goto the_end;
7113
    }
7114

    
7115
    /* save the VM state */
7116
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
7117
    if (!f) {
7118
        term_printf("Could not open VM state file\n");
7119
        goto the_end;
7120
    }
7121
    ret = qemu_savevm_state(f);
7122
    sn->vm_state_size = qemu_ftell(f);
7123
    qemu_fclose(f);
7124
    if (ret < 0) {
7125
        term_printf("Error %d while writing VM\n", ret);
7126
        goto the_end;
7127
    }
7128

    
7129
    /* create the snapshots */
7130

    
7131
    for(i = 0; i < nb_drives; i++) {
7132
        bs1 = drives_table[i].bdrv;
7133
        if (bdrv_has_snapshot(bs1)) {
7134
            if (must_delete) {
7135
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
7136
                if (ret < 0) {
7137
                    term_printf("Error while deleting snapshot on '%s'\n",
7138
                                bdrv_get_device_name(bs1));
7139
                }
7140
            }
7141
            ret = bdrv_snapshot_create(bs1, sn);
7142
            if (ret < 0) {
7143
                term_printf("Error while creating snapshot on '%s'\n",
7144
                            bdrv_get_device_name(bs1));
7145
            }
7146
        }
7147
    }
7148

    
7149
 the_end:
7150
    if (saved_vm_running)
7151
        vm_start();
7152
}
7153

    
7154
void do_loadvm(const char *name)
7155
{
7156
    BlockDriverState *bs, *bs1;
7157
    BlockDriverInfo bdi1, *bdi = &bdi1;
7158
    QEMUFile *f;
7159
    int i, ret;
7160
    int saved_vm_running;
7161

    
7162
    bs = get_bs_snapshots();
7163
    if (!bs) {
7164
        term_printf("No block device supports snapshots\n");
7165
        return;
7166
    }
7167

    
7168
    /* Flush all IO requests so they don't interfere with the new state.  */
7169
    qemu_aio_flush();
7170

    
7171
    saved_vm_running = vm_running;
7172
    vm_stop(0);
7173

    
7174
    for(i = 0; i <= nb_drives; i++) {
7175
        bs1 = drives_table[i].bdrv;
7176
        if (bdrv_has_snapshot(bs1)) {
7177
            ret = bdrv_snapshot_goto(bs1, name);
7178
            if (ret < 0) {
7179
                if (bs != bs1)
7180
                    term_printf("Warning: ");
7181
                switch(ret) {
7182
                case -ENOTSUP:
7183
                    term_printf("Snapshots not supported on device '%s'\n",
7184
                                bdrv_get_device_name(bs1));
7185
                    break;
7186
                case -ENOENT:
7187
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
7188
                                name, bdrv_get_device_name(bs1));
7189
                    break;
7190
                default:
7191
                    term_printf("Error %d while activating snapshot on '%s'\n",
7192
                                ret, bdrv_get_device_name(bs1));
7193
                    break;
7194
                }
7195
                /* fatal on snapshot block device */
7196
                if (bs == bs1)
7197
                    goto the_end;
7198
            }
7199
        }
7200
    }
7201

    
7202
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
7203
        term_printf("Device %s does not support VM state snapshots\n",
7204
                    bdrv_get_device_name(bs));
7205
        return;
7206
    }
7207

    
7208
    /* restore the VM state */
7209
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
7210
    if (!f) {
7211
        term_printf("Could not open VM state file\n");
7212
        goto the_end;
7213
    }
7214
    ret = qemu_loadvm_state(f);
7215
    qemu_fclose(f);
7216
    if (ret < 0) {
7217
        term_printf("Error %d while loading VM state\n", ret);
7218
    }
7219
 the_end:
7220
    if (saved_vm_running)
7221
        vm_start();
7222
}
7223

    
7224
void do_delvm(const char *name)
7225
{
7226
    BlockDriverState *bs, *bs1;
7227
    int i, ret;
7228

    
7229
    bs = get_bs_snapshots();
7230
    if (!bs) {
7231
        term_printf("No block device supports snapshots\n");
7232
        return;
7233
    }
7234

    
7235
    for(i = 0; i <= nb_drives; i++) {
7236
        bs1 = drives_table[i].bdrv;
7237
        if (bdrv_has_snapshot(bs1)) {
7238
            ret = bdrv_snapshot_delete(bs1, name);
7239
            if (ret < 0) {
7240
                if (ret == -ENOTSUP)
7241
                    term_printf("Snapshots not supported on device '%s'\n",
7242
                                bdrv_get_device_name(bs1));
7243
                else
7244
                    term_printf("Error %d while deleting snapshot on '%s'\n",
7245
                                ret, bdrv_get_device_name(bs1));
7246
            }
7247
        }
7248
    }
7249
}
7250

    
7251
void do_info_snapshots(void)
7252
{
7253
    BlockDriverState *bs, *bs1;
7254
    QEMUSnapshotInfo *sn_tab, *sn;
7255
    int nb_sns, i;
7256
    char buf[256];
7257

    
7258
    bs = get_bs_snapshots();
7259
    if (!bs) {
7260
        term_printf("No available block device supports snapshots\n");
7261
        return;
7262
    }
7263
    term_printf("Snapshot devices:");
7264
    for(i = 0; i <= nb_drives; i++) {
7265
        bs1 = drives_table[i].bdrv;
7266
        if (bdrv_has_snapshot(bs1)) {
7267
            if (bs == bs1)
7268
                term_printf(" %s", bdrv_get_device_name(bs1));
7269
        }
7270
    }
7271
    term_printf("\n");
7272

    
7273
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7274
    if (nb_sns < 0) {
7275
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
7276
        return;
7277
    }
7278
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
7279
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
7280
    for(i = 0; i < nb_sns; i++) {
7281
        sn = &sn_tab[i];
7282
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
7283
    }
7284
    qemu_free(sn_tab);
7285
}
7286

    
7287
/***********************************************************/
7288
/* ram save/restore */
7289

    
7290
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
7291
{
7292
    int v;
7293

    
7294
    v = qemu_get_byte(f);
7295
    switch(v) {
7296
    case 0:
7297
        if (qemu_get_buffer(f, buf, len) != len)
7298
            return -EIO;
7299
        break;
7300
    case 1:
7301
        v = qemu_get_byte(f);
7302
        memset(buf, v, len);
7303
        break;
7304
    default:
7305
        return -EINVAL;
7306
    }
7307

    
7308
    if (qemu_file_has_error(f))
7309
        return -EIO;
7310

    
7311
    return 0;
7312
}
7313

    
7314
static int ram_load_v1(QEMUFile *f, void *opaque)
7315
{
7316
    int ret;
7317
    ram_addr_t i;
7318

    
7319
    if (qemu_get_be32(f) != phys_ram_size)
7320
        return -EINVAL;
7321
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
7322
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
7323
        if (ret)
7324
            return ret;
7325
    }
7326
    return 0;
7327
}
7328

    
7329
#define BDRV_HASH_BLOCK_SIZE 1024
7330
#define IOBUF_SIZE 4096
7331
#define RAM_CBLOCK_MAGIC 0xfabe
7332

    
7333
typedef struct RamDecompressState {
7334
    z_stream zstream;
7335
    QEMUFile *f;
7336
    uint8_t buf[IOBUF_SIZE];
7337
} RamDecompressState;
7338

    
7339
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
7340
{
7341
    int ret;
7342
    memset(s, 0, sizeof(*s));
7343
    s->f = f;
7344
    ret = inflateInit(&s->zstream);
7345
    if (ret != Z_OK)
7346
        return -1;
7347
    return 0;
7348
}
7349

    
7350
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
7351
{
7352
    int ret, clen;
7353

    
7354
    s->zstream.avail_out = len;
7355
    s->zstream.next_out = buf;
7356
    while (s->zstream.avail_out > 0) {
7357
        if (s->zstream.avail_in == 0) {
7358
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
7359
                return -1;
7360
            clen = qemu_get_be16(s->f);
7361
            if (clen > IOBUF_SIZE)
7362
                return -1;
7363
            qemu_get_buffer(s->f, s->buf, clen);
7364
            s->zstream.avail_in = clen;
7365
            s->zstream.next_in = s->buf;
7366
        }
7367
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7368
        if (ret != Z_OK && ret != Z_STREAM_END) {
7369
            return -1;
7370
        }
7371
    }
7372
    return 0;
7373
}
7374

    
7375
static void ram_decompress_close(RamDecompressState *s)
7376
{
7377
    inflateEnd(&s->zstream);
7378
}
7379

    
7380
#define RAM_SAVE_FLAG_FULL        0x01
7381
#define RAM_SAVE_FLAG_COMPRESS        0x02
7382
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
7383
#define RAM_SAVE_FLAG_PAGE        0x08
7384
#define RAM_SAVE_FLAG_EOS        0x10
7385

    
7386
static int is_dup_page(uint8_t *page, uint8_t ch)
7387
{
7388
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
7389
    uint32_t *array = (uint32_t *)page;
7390
    int i;
7391

    
7392
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
7393
        if (array[i] != val)
7394
            return 0;
7395
    }
7396

    
7397
    return 1;
7398
}
7399

    
7400
static int ram_save_block(QEMUFile *f)
7401
{
7402
    static ram_addr_t current_addr = 0;
7403
    ram_addr_t saved_addr = current_addr;
7404
    ram_addr_t addr = 0;
7405
    int found = 0;
7406

    
7407
    while (addr < phys_ram_size) {
7408
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
7409
            uint8_t ch;
7410

    
7411
            cpu_physical_memory_reset_dirty(current_addr,
7412
                                            current_addr + TARGET_PAGE_SIZE,
7413
                                            MIGRATION_DIRTY_FLAG);
7414

    
7415
            ch = *(phys_ram_base + current_addr);
7416

    
7417
            if (is_dup_page(phys_ram_base + current_addr, ch)) {
7418
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
7419
                qemu_put_byte(f, ch);
7420
            } else {
7421
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
7422
                qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
7423
            }
7424

    
7425
            found = 1;
7426
            break;
7427
        }
7428
        addr += TARGET_PAGE_SIZE;
7429
        current_addr = (saved_addr + addr) % phys_ram_size;
7430
    }
7431

    
7432
    return found;
7433
}
7434

    
7435
static ram_addr_t ram_save_threshold = 10;
7436

    
7437
static ram_addr_t ram_save_remaining(void)
7438
{
7439
    ram_addr_t addr;
7440
    ram_addr_t count = 0;
7441

    
7442
    for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
7443
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
7444
            count++;
7445
    }
7446

    
7447
    return count;
7448
}
7449

    
7450
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
7451
{
7452
    ram_addr_t addr;
7453

    
7454
    if (stage == 1) {
7455
        /* Make sure all dirty bits are set */
7456
        for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
7457
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
7458
                cpu_physical_memory_set_dirty(addr);
7459
        }
7460
        
7461
        /* Enable dirty memory tracking */
7462
        cpu_physical_memory_set_dirty_tracking(1);
7463

    
7464
        qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
7465
    }
7466

    
7467
    while (!qemu_file_rate_limit(f)) {
7468
        int ret;
7469

    
7470
        ret = ram_save_block(f);
7471
        if (ret == 0) /* no more blocks */
7472
            break;
7473
    }
7474

    
7475
    /* try transferring iterative blocks of memory */
7476

    
7477
    if (stage == 3) {
7478
        cpu_physical_memory_set_dirty_tracking(0);
7479

    
7480
        /* flush all remaining blocks regardless of rate limiting */
7481
        while (ram_save_block(f) != 0);
7482
    }
7483

    
7484
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
7485

    
7486
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
7487
}
7488

    
7489
static int ram_load_dead(QEMUFile *f, void *opaque)
7490
{
7491
    RamDecompressState s1, *s = &s1;
7492
    uint8_t buf[10];
7493
    ram_addr_t i;
7494

    
7495
    if (ram_decompress_open(s, f) < 0)
7496
        return -EINVAL;
7497
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7498
        if (ram_decompress_buf(s, buf, 1) < 0) {
7499
            fprintf(stderr, "Error while reading ram block header\n");
7500
            goto error;
7501
        }
7502
        if (buf[0] == 0) {
7503
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7504
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7505
                goto error;
7506
            }
7507
        } else {
7508
        error:
7509
            printf("Error block header\n");
7510
            return -EINVAL;
7511
        }
7512
    }
7513
    ram_decompress_close(s);
7514

    
7515
    return 0;
7516
}
7517

    
7518
static int ram_load(QEMUFile *f, void *opaque, int version_id)
7519
{
7520
    ram_addr_t addr;
7521
    int flags;
7522

    
7523
    if (version_id == 1)
7524
        return ram_load_v1(f, opaque);
7525

    
7526
    if (version_id == 2) {
7527
        if (qemu_get_be32(f) != phys_ram_size)
7528
            return -EINVAL;
7529
        return ram_load_dead(f, opaque);
7530
    }
7531

    
7532
    if (version_id != 3)
7533
        return -EINVAL;
7534

    
7535
    do {
7536
        addr = qemu_get_be64(f);
7537

    
7538
        flags = addr & ~TARGET_PAGE_MASK;
7539
        addr &= TARGET_PAGE_MASK;
7540

    
7541
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
7542
            if (addr != phys_ram_size)
7543
                return -EINVAL;
7544
        }
7545

    
7546
        if (flags & RAM_SAVE_FLAG_FULL) {
7547
            if (ram_load_dead(f, opaque) < 0)
7548
                return -EINVAL;
7549
        }
7550
        
7551
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
7552
            uint8_t ch = qemu_get_byte(f);
7553
            memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
7554
        } else if (flags & RAM_SAVE_FLAG_PAGE)
7555
            qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
7556
    } while (!(flags & RAM_SAVE_FLAG_EOS));
7557

    
7558
    return 0;
7559
}
7560

    
7561
void qemu_service_io(void)
7562
{
7563
    CPUState *env = cpu_single_env;
7564
    if (env) {
7565
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7566
#ifdef USE_KQEMU
7567
        if (env->kqemu_enabled) {
7568
            kqemu_cpu_interrupt(env);
7569
        }
7570
#endif
7571
    }
7572
}
7573

    
7574
/***********************************************************/
7575
/* bottom halves (can be seen as timers which expire ASAP) */
7576

    
7577
struct QEMUBH {
7578
    QEMUBHFunc *cb;
7579
    void *opaque;
7580
    int scheduled;
7581
    int idle;
7582
    int deleted;
7583
    QEMUBH *next;
7584
};
7585

    
7586
static QEMUBH *first_bh = NULL;
7587

    
7588
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7589
{
7590
    QEMUBH *bh;
7591
    bh = qemu_mallocz(sizeof(QEMUBH));
7592
    if (!bh)
7593
        return NULL;
7594
    bh->cb = cb;
7595
    bh->opaque = opaque;
7596
    bh->next = first_bh;
7597
    first_bh = bh;
7598
    return bh;
7599
}
7600

    
7601
int qemu_bh_poll(void)
7602
{
7603
    QEMUBH *bh, **bhp;
7604
    int ret;
7605

    
7606
    ret = 0;
7607
    for (bh = first_bh; bh; bh = bh->next) {
7608
        if (!bh->deleted && bh->scheduled) {
7609
            bh->scheduled = 0;
7610
            if (!bh->idle)
7611
                ret = 1;
7612
            bh->idle = 0;
7613
            bh->cb(bh->opaque);
7614
        }
7615
    }
7616

    
7617
    /* remove deleted bhs */
7618
    bhp = &first_bh;
7619
    while (*bhp) {
7620
        bh = *bhp;
7621
        if (bh->deleted) {
7622
            *bhp = bh->next;
7623
            qemu_free(bh);
7624
        } else
7625
            bhp = &bh->next;
7626
    }
7627

    
7628
    return ret;
7629
}
7630

    
7631
void qemu_bh_schedule_idle(QEMUBH *bh)
7632
{
7633
    if (bh->scheduled)
7634
        return;
7635
    bh->scheduled = 1;
7636
    bh->idle = 1;
7637
}
7638

    
7639
void qemu_bh_schedule(QEMUBH *bh)
7640
{
7641
    CPUState *env = cpu_single_env;
7642
    if (bh->scheduled)
7643
        return;
7644
    bh->scheduled = 1;
7645
    bh->idle = 0;
7646
    /* stop the currently executing CPU to execute the BH ASAP */
7647
    if (env) {
7648
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7649
    }
7650
}
7651

    
7652
void qemu_bh_cancel(QEMUBH *bh)
7653
{
7654
    bh->scheduled = 0;
7655
}
7656

    
7657
void qemu_bh_delete(QEMUBH *bh)
7658
{
7659
    bh->scheduled = 0;
7660
    bh->deleted = 1;
7661
}
7662

    
7663
/***********************************************************/
7664
/* machine registration */
7665

    
7666
static QEMUMachine *first_machine = NULL;
7667

    
7668
int qemu_register_machine(QEMUMachine *m)
7669
{
7670
    QEMUMachine **pm;
7671
    pm = &first_machine;
7672
    while (*pm != NULL)
7673
        pm = &(*pm)->next;
7674
    m->next = NULL;
7675
    *pm = m;
7676
    return 0;
7677
}
7678

    
7679
static QEMUMachine *find_machine(const char *name)
7680
{
7681
    QEMUMachine *m;
7682

    
7683
    for(m = first_machine; m != NULL; m = m->next) {
7684
        if (!strcmp(m->name, name))
7685
            return m;
7686
    }
7687
    return NULL;
7688
}
7689

    
7690
/***********************************************************/
7691
/* main execution loop */
7692

    
7693
static void gui_update(void *opaque)
7694
{
7695
    DisplayState *ds = opaque;
7696
    ds->dpy_refresh(ds);
7697
    qemu_mod_timer(ds->gui_timer,
7698
        (ds->gui_timer_interval ?
7699
            ds->gui_timer_interval :
7700
            GUI_REFRESH_INTERVAL)
7701
        + qemu_get_clock(rt_clock));
7702
}
7703

    
7704
struct vm_change_state_entry {
7705
    VMChangeStateHandler *cb;
7706
    void *opaque;
7707
    LIST_ENTRY (vm_change_state_entry) entries;
7708
};
7709

    
7710
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7711

    
7712
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7713
                                                     void *opaque)
7714
{
7715
    VMChangeStateEntry *e;
7716

    
7717
    e = qemu_mallocz(sizeof (*e));
7718
    if (!e)
7719
        return NULL;
7720

    
7721
    e->cb = cb;
7722
    e->opaque = opaque;
7723
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7724
    return e;
7725
}
7726

    
7727
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7728
{
7729
    LIST_REMOVE (e, entries);
7730
    qemu_free (e);
7731
}
7732

    
7733
static void vm_state_notify(int running)
7734
{
7735
    VMChangeStateEntry *e;
7736

    
7737
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7738
        e->cb(e->opaque, running);
7739
    }
7740
}
7741

    
7742
/* XXX: support several handlers */
7743
static VMStopHandler *vm_stop_cb;
7744
static void *vm_stop_opaque;
7745

    
7746
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7747
{
7748
    vm_stop_cb = cb;
7749
    vm_stop_opaque = opaque;
7750
    return 0;
7751
}
7752

    
7753
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7754
{
7755
    vm_stop_cb = NULL;
7756
}
7757

    
7758
void vm_start(void)
7759
{
7760
    if (!vm_running) {
7761
        cpu_enable_ticks();
7762
        vm_running = 1;
7763
        vm_state_notify(1);
7764
        qemu_rearm_alarm_timer(alarm_timer);
7765
    }
7766
}
7767

    
7768
void vm_stop(int reason)
7769
{
7770
    if (vm_running) {
7771
        cpu_disable_ticks();
7772
        vm_running = 0;
7773
        if (reason != 0) {
7774
            if (vm_stop_cb) {
7775
                vm_stop_cb(vm_stop_opaque, reason);
7776
            }
7777
        }
7778
        vm_state_notify(0);
7779
    }
7780
}
7781

    
7782
/* reset/shutdown handler */
7783

    
7784
typedef struct QEMUResetEntry {
7785
    QEMUResetHandler *func;
7786
    void *opaque;
7787
    struct QEMUResetEntry *next;
7788
} QEMUResetEntry;
7789

    
7790
static QEMUResetEntry *first_reset_entry;
7791
static int reset_requested;
7792
static int shutdown_requested;
7793
static int powerdown_requested;
7794

    
7795
int qemu_shutdown_requested(void)
7796
{
7797
    int r = shutdown_requested;
7798
    shutdown_requested = 0;
7799
    return r;
7800
}
7801

    
7802
int qemu_reset_requested(void)
7803
{
7804
    int r = reset_requested;
7805
    reset_requested = 0;
7806
    return r;
7807
}
7808

    
7809
int qemu_powerdown_requested(void)
7810
{
7811
    int r = powerdown_requested;
7812
    powerdown_requested = 0;
7813
    return r;
7814
}
7815

    
7816
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7817
{
7818
    QEMUResetEntry **pre, *re;
7819

    
7820
    pre = &first_reset_entry;
7821
    while (*pre != NULL)
7822
        pre = &(*pre)->next;
7823
    re = qemu_mallocz(sizeof(QEMUResetEntry));
7824
    re->func = func;
7825
    re->opaque = opaque;
7826
    re->next = NULL;
7827
    *pre = re;
7828
}
7829

    
7830
void qemu_system_reset(void)
7831
{
7832
    QEMUResetEntry *re;
7833

    
7834
    /* reset all devices */
7835
    for(re = first_reset_entry; re != NULL; re = re->next) {
7836
        re->func(re->opaque);
7837
    }
7838
}
7839

    
7840
void qemu_system_reset_request(void)
7841
{
7842
    if (no_reboot) {
7843
        shutdown_requested = 1;
7844
    } else {
7845
        reset_requested = 1;
7846
    }
7847
    if (cpu_single_env)
7848
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7849
}
7850

    
7851
void qemu_system_shutdown_request(void)
7852
{
7853
    shutdown_requested = 1;
7854
    if (cpu_single_env)
7855
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7856
}
7857

    
7858
void qemu_system_powerdown_request(void)
7859
{
7860
    powerdown_requested = 1;
7861
    if (cpu_single_env)
7862
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7863
}
7864

    
7865
void main_loop_wait(int timeout)
7866
{
7867
    IOHandlerRecord *ioh;
7868
    fd_set rfds, wfds, xfds;
7869
    int ret, nfds;
7870
#ifdef _WIN32
7871
    int ret2, i;
7872
#endif
7873
    struct timeval tv;
7874
    PollingEntry *pe;
7875

    
7876

    
7877
    /* XXX: need to suppress polling by better using win32 events */
7878
    ret = 0;
7879
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7880
        ret |= pe->func(pe->opaque);
7881
    }
7882
#ifdef _WIN32
7883
    if (ret == 0) {
7884
        int err;
7885
        WaitObjects *w = &wait_objects;
7886

    
7887
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7888
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7889
            if (w->func[ret - WAIT_OBJECT_0])
7890
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7891

    
7892
            /* Check for additional signaled events */
7893
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7894

    
7895
                /* Check if event is signaled */
7896
                ret2 = WaitForSingleObject(w->events[i], 0);
7897
                if(ret2 == WAIT_OBJECT_0) {
7898
                    if (w->func[i])
7899
                        w->func[i](w->opaque[i]);
7900
                } else if (ret2 == WAIT_TIMEOUT) {
7901
                } else {
7902
                    err = GetLastError();
7903
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7904
                }
7905
            }
7906
        } else if (ret == WAIT_TIMEOUT) {
7907
        } else {
7908
            err = GetLastError();
7909
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7910
        }
7911
    }
7912
#endif
7913
    /* poll any events */
7914
    /* XXX: separate device handlers from system ones */
7915
    nfds = -1;
7916
    FD_ZERO(&rfds);
7917
    FD_ZERO(&wfds);
7918
    FD_ZERO(&xfds);
7919
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7920
        if (ioh->deleted)
7921
            continue;
7922
        if (ioh->fd_read &&
7923
            (!ioh->fd_read_poll ||
7924
             ioh->fd_read_poll(ioh->opaque) != 0)) {
7925
            FD_SET(ioh->fd, &rfds);
7926
            if (ioh->fd > nfds)
7927
                nfds = ioh->fd;
7928
        }
7929
        if (ioh->fd_write) {
7930
            FD_SET(ioh->fd, &wfds);
7931
            if (ioh->fd > nfds)
7932
                nfds = ioh->fd;
7933
        }
7934
    }
7935

    
7936
    tv.tv_sec = 0;
7937
#ifdef _WIN32
7938
    tv.tv_usec = 0;
7939
#else
7940
    tv.tv_usec = timeout * 1000;
7941
#endif
7942
#if defined(CONFIG_SLIRP)
7943
    if (slirp_inited) {
7944
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7945
    }
7946
#endif
7947
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7948
    if (ret > 0) {
7949
        IOHandlerRecord **pioh;
7950

    
7951
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7952
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7953
                ioh->fd_read(ioh->opaque);
7954
            }
7955
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7956
                ioh->fd_write(ioh->opaque);
7957
            }
7958
        }
7959

    
7960
        /* remove deleted IO handlers */
7961
        pioh = &first_io_handler;
7962
        while (*pioh) {
7963
            ioh = *pioh;
7964
            if (ioh->deleted) {
7965
                *pioh = ioh->next;
7966
                qemu_free(ioh);
7967
            } else
7968
                pioh = &ioh->next;
7969
        }
7970
    }
7971
#if defined(CONFIG_SLIRP)
7972
    if (slirp_inited) {
7973
        if (ret < 0) {
7974
            FD_ZERO(&rfds);
7975
            FD_ZERO(&wfds);
7976
            FD_ZERO(&xfds);
7977
        }
7978
        slirp_select_poll(&rfds, &wfds, &xfds);
7979
    }
7980
#endif
7981

    
7982
    if (vm_running) {
7983
        if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
7984
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7985
                        qemu_get_clock(vm_clock));
7986
    }
7987

    
7988
    /* real time timers */
7989
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7990
                    qemu_get_clock(rt_clock));
7991

    
7992
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7993
        alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7994
        qemu_rearm_alarm_timer(alarm_timer);
7995
    }
7996

    
7997
    /* Check bottom-halves last in case any of the earlier events triggered
7998
       them.  */
7999
    qemu_bh_poll();
8000

    
8001
}
8002

    
8003
static int main_loop(void)
8004
{
8005
    int ret, timeout;
8006
#ifdef CONFIG_PROFILER
8007
    int64_t ti;
8008
#endif
8009
    CPUState *env;
8010

    
8011
    cur_cpu = first_cpu;
8012
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
8013
    for(;;) {
8014
        if (vm_running) {
8015

    
8016
            for(;;) {
8017
                /* get next cpu */
8018
                env = next_cpu;
8019
#ifdef CONFIG_PROFILER
8020
                ti = profile_getclock();
8021
#endif
8022
                if (use_icount) {
8023
                    int64_t count;
8024
                    int decr;
8025
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
8026
                    env->icount_decr.u16.low = 0;
8027
                    env->icount_extra = 0;
8028
                    count = qemu_next_deadline();
8029
                    count = (count + (1 << icount_time_shift) - 1)
8030
                            >> icount_time_shift;
8031
                    qemu_icount += count;
8032
                    decr = (count > 0xffff) ? 0xffff : count;
8033
                    count -= decr;
8034
                    env->icount_decr.u16.low = decr;
8035
                    env->icount_extra = count;
8036
                }
8037
                ret = cpu_exec(env);
8038
#ifdef CONFIG_PROFILER
8039
                qemu_time += profile_getclock() - ti;
8040
#endif
8041
                if (use_icount) {
8042
                    /* Fold pending instructions back into the
8043
                       instruction counter, and clear the interrupt flag.  */
8044
                    qemu_icount -= (env->icount_decr.u16.low
8045
                                    + env->icount_extra);
8046
                    env->icount_decr.u32 = 0;
8047
                    env->icount_extra = 0;
8048
                }
8049
                next_cpu = env->next_cpu ?: first_cpu;
8050
                if (event_pending && likely(ret != EXCP_DEBUG)) {
8051
                    ret = EXCP_INTERRUPT;
8052
                    event_pending = 0;
8053
                    break;
8054
                }
8055
                if (ret == EXCP_HLT) {
8056
                    /* Give the next CPU a chance to run.  */
8057
                    cur_cpu = env;
8058
                    continue;
8059
                }
8060
                if (ret != EXCP_HALTED)
8061
                    break;
8062
                /* all CPUs are halted ? */
8063
                if (env == cur_cpu)
8064
                    break;
8065
            }
8066
            cur_cpu = env;
8067

    
8068
            if (shutdown_requested) {
8069
                ret = EXCP_INTERRUPT;
8070
                if (no_shutdown) {
8071
                    vm_stop(0);
8072
                    no_shutdown = 0;
8073
                }
8074
                else
8075
                    break;
8076
            }
8077
            if (reset_requested) {
8078
                reset_requested = 0;
8079
                qemu_system_reset();
8080
                ret = EXCP_INTERRUPT;
8081
            }
8082
            if (powerdown_requested) {
8083
                powerdown_requested = 0;
8084
                qemu_system_powerdown();
8085
                ret = EXCP_INTERRUPT;
8086
            }
8087
            if (unlikely(ret == EXCP_DEBUG)) {
8088
                vm_stop(EXCP_DEBUG);
8089
            }
8090
            /* If all cpus are halted then wait until the next IRQ */
8091
            /* XXX: use timeout computed from timers */
8092
            if (ret == EXCP_HALTED) {
8093
                if (use_icount) {
8094
                    int64_t add;
8095
                    int64_t delta;
8096
                    /* Advance virtual time to the next event.  */
8097
                    if (use_icount == 1) {
8098
                        /* When not using an adaptive execution frequency
8099
                           we tend to get badly out of sync with real time,
8100
                           so just delay for a reasonable amount of time.  */
8101
                        delta = 0;
8102
                    } else {
8103
                        delta = cpu_get_icount() - cpu_get_clock();
8104
                    }
8105
                    if (delta > 0) {
8106
                        /* If virtual time is ahead of real time then just
8107
                           wait for IO.  */
8108
                        timeout = (delta / 1000000) + 1;
8109
                    } else {
8110
                        /* Wait for either IO to occur or the next
8111
                           timer event.  */
8112
                        add = qemu_next_deadline();
8113
                        /* We advance the timer before checking for IO.
8114
                           Limit the amount we advance so that early IO
8115
                           activity won't get the guest too far ahead.  */
8116
                        if (add > 10000000)
8117
                            add = 10000000;
8118
                        delta += add;
8119
                        add = (add + (1 << icount_time_shift) - 1)
8120
                              >> icount_time_shift;
8121
                        qemu_icount += add;
8122
                        timeout = delta / 1000000;
8123
                        if (timeout < 0)
8124
                            timeout = 0;
8125
                    }
8126
                } else {
8127
                    timeout = 10;
8128
                }
8129
            } else {
8130
                timeout = 0;
8131
            }
8132
        } else {
8133
            if (shutdown_requested) {
8134
                ret = EXCP_INTERRUPT;
8135
                break;
8136
            }
8137
            timeout = 10;
8138
        }
8139
#ifdef CONFIG_PROFILER
8140
        ti = profile_getclock();
8141
#endif
8142
        main_loop_wait(timeout);
8143
#ifdef CONFIG_PROFILER
8144
        dev_time += profile_getclock() - ti;
8145
#endif
8146
    }
8147
    cpu_disable_ticks();
8148
    return ret;
8149
}
8150

    
8151
static void help(int exitcode)
8152
{
8153
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
8154
           "usage: %s [options] [disk_image]\n"
8155
           "\n"
8156
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
8157
           "\n"
8158
           "Standard options:\n"
8159
           "-M machine      select emulated machine (-M ? for list)\n"
8160
           "-cpu cpu        select CPU (-cpu ? for list)\n"
8161
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
8162
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
8163
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
8164
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
8165
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
8166
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
8167
           "       [,cache=writethrough|writeback|none][,format=f]\n"
8168
           "                use 'file' as a drive image\n"
8169
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
8170
           "-sd file        use 'file' as SecureDigital card image\n"
8171
           "-pflash file    use 'file' as a parallel flash image\n"
8172
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
8173
           "-snapshot       write to temporary files instead of disk image files\n"
8174
#ifdef CONFIG_SDL
8175
           "-no-frame       open SDL window without a frame and window decorations\n"
8176
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
8177
           "-no-quit        disable SDL window close capability\n"
8178
#endif
8179
#ifdef TARGET_I386
8180
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
8181
#endif
8182
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
8183
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
8184
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
8185
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
8186
#ifndef _WIN32
8187
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
8188
#endif
8189
#ifdef HAS_AUDIO
8190
           "-audio-help     print list of audio drivers and their options\n"
8191
           "-soundhw c1,... enable audio support\n"
8192
           "                and only specified sound cards (comma separated list)\n"
8193
           "                use -soundhw ? to get the list of supported cards\n"
8194
           "                use -soundhw all to enable all of them\n"
8195
#endif
8196
           "-vga [std|cirrus|vmware]\n"
8197
           "                select video card type\n"
8198
           "-localtime      set the real time clock to local time [default=utc]\n"
8199
           "-full-screen    start in full screen\n"
8200
#ifdef TARGET_I386
8201
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
8202
#endif
8203
           "-usb            enable the USB driver (will be the default soon)\n"
8204
           "-usbdevice name add the host or guest USB device 'name'\n"
8205
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
8206
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
8207
#endif
8208
           "-name string    set the name of the guest\n"
8209
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
8210
           "\n"
8211
           "Network options:\n"
8212
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
8213
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
8214
#ifdef CONFIG_SLIRP
8215
           "-net user[,vlan=n][,hostname=host]\n"
8216
           "                connect the user mode network stack to VLAN 'n' and send\n"
8217
           "                hostname 'host' to DHCP clients\n"
8218
#endif
8219
#ifdef _WIN32
8220
           "-net tap[,vlan=n],ifname=name\n"
8221
           "                connect the host TAP network interface to VLAN 'n'\n"
8222
#else
8223
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
8224
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
8225
           "                network scripts 'file' (default=%s)\n"
8226
           "                and 'dfile' (default=%s);\n"
8227
           "                use '[down]script=no' to disable script execution;\n"
8228
           "                use 'fd=h' to connect to an already opened TAP interface\n"
8229
#endif
8230
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
8231
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
8232
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
8233
           "                connect the vlan 'n' to multicast maddr and port\n"
8234
#ifdef CONFIG_VDE
8235
           "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
8236
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
8237
           "                on host and listening for incoming connections on 'socketpath'.\n"
8238
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
8239
           "                ownership and permissions for communication port.\n"
8240
#endif
8241
           "-net none       use it alone to have zero network devices; if no -net option\n"
8242
           "                is provided, the default is '-net nic -net user'\n"
8243
           "\n"
8244
#ifdef CONFIG_SLIRP
8245
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
8246
           "-bootp file     advertise file in BOOTP replies\n"
8247
#ifndef _WIN32
8248
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
8249
#endif
8250
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
8251
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
8252
#endif
8253
           "\n"
8254
           "Linux boot specific:\n"
8255
           "-kernel bzImage use 'bzImage' as kernel image\n"
8256
           "-append cmdline use 'cmdline' as kernel command line\n"
8257
           "-initrd file    use 'file' as initial ram disk\n"
8258
           "\n"
8259
           "Debug/Expert options:\n"
8260
           "-monitor dev    redirect the monitor to char device 'dev'\n"
8261
           "-serial dev     redirect the serial port to char device 'dev'\n"
8262
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
8263
           "-pidfile file   Write PID to 'file'\n"
8264
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
8265
           "-s              wait gdb connection to port\n"
8266
           "-p port         set gdb connection port [default=%s]\n"
8267
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
8268
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
8269
           "                translation (t=none or lba) (usually qemu can guess them)\n"
8270
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
8271
#ifdef USE_KQEMU
8272
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
8273
           "-no-kqemu       disable KQEMU kernel module usage\n"
8274
#endif
8275
#ifdef TARGET_I386
8276
           "-no-acpi        disable ACPI\n"
8277
#endif
8278
#ifdef CONFIG_CURSES
8279
           "-curses         use a curses/ncurses interface instead of SDL\n"
8280
#endif
8281
           "-no-reboot      exit instead of rebooting\n"
8282
           "-no-shutdown    stop before shutdown\n"
8283
           "-loadvm [tag|id]  start right away with a saved state (loadvm in monitor)\n"
8284
           "-vnc display    start a VNC server on display\n"
8285
#ifndef _WIN32
8286
           "-daemonize      daemonize QEMU after initializing\n"
8287
#endif
8288
           "-option-rom rom load a file, rom, into the option ROM space\n"
8289
#ifdef TARGET_SPARC
8290
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
8291
#endif
8292
           "-clock          force the use of the given methods for timer alarm.\n"
8293
           "                To see what timers are available use -clock ?\n"
8294
           "-startdate      select initial date of the clock\n"
8295
           "-icount [N|auto]\n"
8296
           "                Enable virtual instruction counter with 2^N clock ticks per instruction\n"
8297
           "\n"
8298
           "During emulation, the following keys are useful:\n"
8299
           "ctrl-alt-f      toggle full screen\n"
8300
           "ctrl-alt-n      switch to virtual console 'n'\n"
8301
           "ctrl-alt        toggle mouse and keyboard grab\n"
8302
           "\n"
8303
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
8304
           ,
8305
           "qemu",
8306
           DEFAULT_RAM_SIZE,
8307
#ifndef _WIN32
8308
           DEFAULT_NETWORK_SCRIPT,
8309
           DEFAULT_NETWORK_DOWN_SCRIPT,
8310
#endif
8311
           DEFAULT_GDBSTUB_PORT,
8312
           "/tmp/qemu.log");
8313
    exit(exitcode);
8314
}
8315

    
8316
#define HAS_ARG 0x0001
8317

    
8318
enum {
8319
    QEMU_OPTION_h,
8320

    
8321
    QEMU_OPTION_M,
8322
    QEMU_OPTION_cpu,
8323
    QEMU_OPTION_fda,
8324
    QEMU_OPTION_fdb,
8325
    QEMU_OPTION_hda,
8326
    QEMU_OPTION_hdb,
8327
    QEMU_OPTION_hdc,
8328
    QEMU_OPTION_hdd,
8329
    QEMU_OPTION_drive,
8330
    QEMU_OPTION_cdrom,
8331
    QEMU_OPTION_mtdblock,
8332
    QEMU_OPTION_sd,
8333
    QEMU_OPTION_pflash,
8334
    QEMU_OPTION_boot,
8335
    QEMU_OPTION_snapshot,
8336
#ifdef TARGET_I386
8337
    QEMU_OPTION_no_fd_bootchk,
8338
#endif
8339
    QEMU_OPTION_m,
8340
    QEMU_OPTION_nographic,
8341
    QEMU_OPTION_portrait,
8342
#ifdef HAS_AUDIO
8343
    QEMU_OPTION_audio_help,
8344
    QEMU_OPTION_soundhw,
8345
#endif
8346

    
8347
    QEMU_OPTION_net,
8348
    QEMU_OPTION_tftp,
8349
    QEMU_OPTION_bootp,
8350
    QEMU_OPTION_smb,
8351
    QEMU_OPTION_redir,
8352

    
8353
    QEMU_OPTION_kernel,
8354
    QEMU_OPTION_append,
8355
    QEMU_OPTION_initrd,
8356

    
8357
    QEMU_OPTION_S,
8358
    QEMU_OPTION_s,
8359
    QEMU_OPTION_p,
8360
    QEMU_OPTION_d,
8361
    QEMU_OPTION_hdachs,
8362
    QEMU_OPTION_L,
8363
    QEMU_OPTION_bios,
8364
    QEMU_OPTION_k,
8365
    QEMU_OPTION_localtime,
8366
    QEMU_OPTION_g,
8367
    QEMU_OPTION_vga,
8368
    QEMU_OPTION_echr,
8369
    QEMU_OPTION_monitor,
8370
    QEMU_OPTION_serial,
8371
    QEMU_OPTION_parallel,
8372
    QEMU_OPTION_loadvm,
8373
    QEMU_OPTION_full_screen,
8374
    QEMU_OPTION_no_frame,
8375
    QEMU_OPTION_alt_grab,
8376
    QEMU_OPTION_no_quit,
8377
    QEMU_OPTION_pidfile,
8378
    QEMU_OPTION_no_kqemu,
8379
    QEMU_OPTION_kernel_kqemu,
8380
    QEMU_OPTION_win2k_hack,
8381
    QEMU_OPTION_usb,
8382
    QEMU_OPTION_usbdevice,
8383
    QEMU_OPTION_smp,
8384
    QEMU_OPTION_vnc,
8385
    QEMU_OPTION_no_acpi,
8386
    QEMU_OPTION_curses,
8387
    QEMU_OPTION_no_reboot,
8388
    QEMU_OPTION_no_shutdown,
8389
    QEMU_OPTION_show_cursor,
8390
    QEMU_OPTION_daemonize,
8391
    QEMU_OPTION_option_rom,
8392
    QEMU_OPTION_semihosting,
8393
    QEMU_OPTION_name,
8394
    QEMU_OPTION_prom_env,
8395
    QEMU_OPTION_old_param,
8396
    QEMU_OPTION_clock,
8397
    QEMU_OPTION_startdate,
8398
    QEMU_OPTION_tb_size,
8399
    QEMU_OPTION_icount,
8400
    QEMU_OPTION_uuid,
8401
    QEMU_OPTION_incoming,
8402
};
8403

    
8404
typedef struct QEMUOption {
8405
    const char *name;
8406
    int flags;
8407
    int index;
8408
} QEMUOption;
8409

    
8410
static const QEMUOption qemu_options[] = {
8411
    { "h", 0, QEMU_OPTION_h },
8412
    { "help", 0, QEMU_OPTION_h },
8413

    
8414
    { "M", HAS_ARG, QEMU_OPTION_M },
8415
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
8416
    { "fda", HAS_ARG, QEMU_OPTION_fda },
8417
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
8418
    { "hda", HAS_ARG, QEMU_OPTION_hda },
8419
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
8420
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
8421
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
8422
    { "drive", HAS_ARG, QEMU_OPTION_drive },
8423
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
8424
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
8425
    { "sd", HAS_ARG, QEMU_OPTION_sd },
8426
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
8427
    { "boot", HAS_ARG, QEMU_OPTION_boot },
8428
    { "snapshot", 0, QEMU_OPTION_snapshot },
8429
#ifdef TARGET_I386
8430
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
8431
#endif
8432
    { "m", HAS_ARG, QEMU_OPTION_m },
8433
    { "nographic", 0, QEMU_OPTION_nographic },
8434
    { "portrait", 0, QEMU_OPTION_portrait },
8435
    { "k", HAS_ARG, QEMU_OPTION_k },
8436
#ifdef HAS_AUDIO
8437
    { "audio-help", 0, QEMU_OPTION_audio_help },
8438
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
8439
#endif
8440

    
8441
    { "net", HAS_ARG, QEMU_OPTION_net},
8442
#ifdef CONFIG_SLIRP
8443
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
8444
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
8445
#ifndef _WIN32
8446
    { "smb", HAS_ARG, QEMU_OPTION_smb },
8447
#endif
8448
    { "redir", HAS_ARG, QEMU_OPTION_redir },
8449
#endif
8450

    
8451
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
8452
    { "append", HAS_ARG, QEMU_OPTION_append },
8453
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
8454

    
8455
    { "S", 0, QEMU_OPTION_S },
8456
    { "s", 0, QEMU_OPTION_s },
8457
    { "p", HAS_ARG, QEMU_OPTION_p },
8458
    { "d", HAS_ARG, QEMU_OPTION_d },
8459
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
8460
    { "L", HAS_ARG, QEMU_OPTION_L },
8461
    { "bios", HAS_ARG, QEMU_OPTION_bios },
8462
#ifdef USE_KQEMU
8463
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
8464
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
8465
#endif
8466
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
8467
    { "g", 1, QEMU_OPTION_g },
8468
#endif
8469
    { "localtime", 0, QEMU_OPTION_localtime },
8470
    { "vga", HAS_ARG, QEMU_OPTION_vga },
8471
    { "echr", HAS_ARG, QEMU_OPTION_echr },
8472
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
8473
    { "serial", HAS_ARG, QEMU_OPTION_serial },
8474
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
8475
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
8476
    { "full-screen", 0, QEMU_OPTION_full_screen },
8477
#ifdef CONFIG_SDL
8478
    { "no-frame", 0, QEMU_OPTION_no_frame },
8479
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
8480
    { "no-quit", 0, QEMU_OPTION_no_quit },
8481
#endif
8482
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
8483
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
8484
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
8485
    { "smp", HAS_ARG, QEMU_OPTION_smp },
8486
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
8487
#ifdef CONFIG_CURSES
8488
    { "curses", 0, QEMU_OPTION_curses },
8489
#endif
8490
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
8491

    
8492
    /* temporary options */
8493
    { "usb", 0, QEMU_OPTION_usb },
8494
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
8495
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
8496
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
8497
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
8498
    { "daemonize", 0, QEMU_OPTION_daemonize },
8499
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
8500
#if defined(TARGET_ARM) || defined(TARGET_M68K)
8501
    { "semihosting", 0, QEMU_OPTION_semihosting },
8502
#endif
8503
    { "name", HAS_ARG, QEMU_OPTION_name },
8504
#if defined(TARGET_SPARC)
8505
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
8506
#endif
8507
#if defined(TARGET_ARM)
8508
    { "old-param", 0, QEMU_OPTION_old_param },
8509
#endif
8510
    { "clock", HAS_ARG, QEMU_OPTION_clock },
8511
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8512
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
8513
    { "icount", HAS_ARG, QEMU_OPTION_icount },
8514
    { "incoming", HAS_ARG, QEMU_OPTION_incoming },
8515
    { NULL },
8516
};
8517

    
8518
/* password input */
8519

    
8520
int qemu_key_check(BlockDriverState *bs, const char *name)
8521
{
8522
    char password[256];
8523
    int i;
8524

    
8525
    if (!bdrv_is_encrypted(bs))
8526
        return 0;
8527

    
8528
    term_printf("%s is encrypted.\n", name);
8529
    for(i = 0; i < 3; i++) {
8530
        monitor_readline("Password: ", 1, password, sizeof(password));
8531
        if (bdrv_set_key(bs, password) == 0)
8532
            return 0;
8533
        term_printf("invalid password\n");
8534
    }
8535
    return -EPERM;
8536
}
8537

    
8538
static BlockDriverState *get_bdrv(int index)
8539
{
8540
    if (index > nb_drives)
8541
        return NULL;
8542
    return drives_table[index].bdrv;
8543
}
8544

    
8545
static void read_passwords(void)
8546
{
8547
    BlockDriverState *bs;
8548
    int i;
8549

    
8550
    for(i = 0; i < 6; i++) {
8551
        bs = get_bdrv(i);
8552
        if (bs)
8553
            qemu_key_check(bs, bdrv_get_device_name(bs));
8554
    }
8555
}
8556

    
8557
#ifdef HAS_AUDIO
8558
struct soundhw soundhw[] = {
8559
#ifdef HAS_AUDIO_CHOICE
8560
#if defined(TARGET_I386) || defined(TARGET_MIPS)
8561
    {
8562
        "pcspk",
8563
        "PC speaker",
8564
        0,
8565
        1,
8566
        { .init_isa = pcspk_audio_init }
8567
    },
8568
#endif
8569
    {
8570
        "sb16",
8571
        "Creative Sound Blaster 16",
8572
        0,
8573
        1,
8574
        { .init_isa = SB16_init }
8575
    },
8576

    
8577
#ifdef CONFIG_CS4231A
8578
    {
8579
        "cs4231a",
8580
        "CS4231A",
8581
        0,
8582
        1,
8583
        { .init_isa = cs4231a_init }
8584
    },
8585
#endif
8586

    
8587
#ifdef CONFIG_ADLIB
8588
    {
8589
        "adlib",
8590
#ifdef HAS_YMF262
8591
        "Yamaha YMF262 (OPL3)",
8592
#else
8593
        "Yamaha YM3812 (OPL2)",
8594
#endif
8595
        0,
8596
        1,
8597
        { .init_isa = Adlib_init }
8598
    },
8599
#endif
8600

    
8601
#ifdef CONFIG_GUS
8602
    {
8603
        "gus",
8604
        "Gravis Ultrasound GF1",
8605
        0,
8606
        1,
8607
        { .init_isa = GUS_init }
8608
    },
8609
#endif
8610

    
8611
#ifdef CONFIG_AC97
8612
    {
8613
        "ac97",
8614
        "Intel 82801AA AC97 Audio",
8615
        0,
8616
        0,
8617
        { .init_pci = ac97_init }
8618
    },
8619
#endif
8620

    
8621
    {
8622
        "es1370",
8623
        "ENSONIQ AudioPCI ES1370",
8624
        0,
8625
        0,
8626
        { .init_pci = es1370_init }
8627
    },
8628
#endif
8629

    
8630
    { NULL, NULL, 0, 0, { NULL } }
8631
};
8632

    
8633
static void select_soundhw (const char *optarg)
8634
{
8635
    struct soundhw *c;
8636

    
8637
    if (*optarg == '?') {
8638
    show_valid_cards:
8639

    
8640
        printf ("Valid sound card names (comma separated):\n");
8641
        for (c = soundhw; c->name; ++c) {
8642
            printf ("%-11s %s\n", c->name, c->descr);
8643
        }
8644
        printf ("\n-soundhw all will enable all of the above\n");
8645
        exit (*optarg != '?');
8646
    }
8647
    else {
8648
        size_t l;
8649
        const char *p;
8650
        char *e;
8651
        int bad_card = 0;
8652

    
8653
        if (!strcmp (optarg, "all")) {
8654
            for (c = soundhw; c->name; ++c) {
8655
                c->enabled = 1;
8656
            }
8657
            return;
8658
        }
8659

    
8660
        p = optarg;
8661
        while (*p) {
8662
            e = strchr (p, ',');
8663
            l = !e ? strlen (p) : (size_t) (e - p);
8664

    
8665
            for (c = soundhw; c->name; ++c) {
8666
                if (!strncmp (c->name, p, l)) {
8667
                    c->enabled = 1;
8668
                    break;
8669
                }
8670
            }
8671

    
8672
            if (!c->name) {
8673
                if (l > 80) {
8674
                    fprintf (stderr,
8675
                             "Unknown sound card name (too big to show)\n");
8676
                }
8677
                else {
8678
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
8679
                             (int) l, p);
8680
                }
8681
                bad_card = 1;
8682
            }
8683
            p += l + (e != NULL);
8684
        }
8685

    
8686
        if (bad_card)
8687
            goto show_valid_cards;
8688
    }
8689
}
8690
#endif
8691

    
8692
static void select_vgahw (const char *p)
8693
{
8694
    const char *opts;
8695

    
8696
    if (strstart(p, "std", &opts)) {
8697
        cirrus_vga_enabled = 0;
8698
        vmsvga_enabled = 0;
8699
    } else if (strstart(p, "cirrus", &opts)) {
8700
        cirrus_vga_enabled = 1;
8701
        vmsvga_enabled = 0;
8702
    } else if (strstart(p, "vmware", &opts)) {
8703
        cirrus_vga_enabled = 0;
8704
        vmsvga_enabled = 1;
8705
    } else {
8706
    invalid_vga:
8707
        fprintf(stderr, "Unknown vga type: %s\n", p);
8708
        exit(1);
8709
    }
8710
    while (*opts) {
8711
        const char *nextopt;
8712

    
8713
        if (strstart(opts, ",retrace=", &nextopt)) {
8714
            opts = nextopt;
8715
            if (strstart(opts, "dumb", &nextopt))
8716
                vga_retrace_method = VGA_RETRACE_DUMB;
8717
            else if (strstart(opts, "precise", &nextopt))
8718
                vga_retrace_method = VGA_RETRACE_PRECISE;
8719
            else goto invalid_vga;
8720
        } else goto invalid_vga;
8721
        opts = nextopt;
8722
    }
8723
}
8724

    
8725
#ifdef _WIN32
8726
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8727
{
8728
    exit(STATUS_CONTROL_C_EXIT);
8729
    return TRUE;
8730
}
8731
#endif
8732

    
8733
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
8734
{
8735
    int ret;
8736

    
8737
    if(strlen(str) != 36)
8738
        return -1;
8739

    
8740
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
8741
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
8742
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
8743

    
8744
    if(ret != 16)
8745
        return -1;
8746

    
8747
    return 0;
8748
}
8749

    
8750
#define MAX_NET_CLIENTS 32
8751

    
8752
#ifndef _WIN32
8753

    
8754
static void termsig_handler(int signal)
8755
{
8756
    qemu_system_shutdown_request();
8757
}
8758

    
8759
static void termsig_setup(void)
8760
{
8761
    struct sigaction act;
8762

    
8763
    memset(&act, 0, sizeof(act));
8764
    act.sa_handler = termsig_handler;
8765
    sigaction(SIGINT,  &act, NULL);
8766
    sigaction(SIGHUP,  &act, NULL);
8767
    sigaction(SIGTERM, &act, NULL);
8768
}
8769

    
8770
#endif
8771

    
8772
int main(int argc, char **argv)
8773
{
8774
#ifdef CONFIG_GDBSTUB
8775
    int use_gdbstub;
8776
    const char *gdbstub_port;
8777
#endif
8778
    uint32_t boot_devices_bitmap = 0;
8779
    int i;
8780
    int snapshot, linux_boot, net_boot;
8781
    const char *initrd_filename;
8782
    const char *kernel_filename, *kernel_cmdline;
8783
    const char *boot_devices = "";
8784
    DisplayState *ds = &display_state;
8785
    int cyls, heads, secs, translation;
8786
    const char *net_clients[MAX_NET_CLIENTS];
8787
    int nb_net_clients;
8788
    int hda_index;
8789
    int optind;
8790
    const char *r, *optarg;
8791
    CharDriverState *monitor_hd;
8792
    const char *monitor_device;
8793
    const char *serial_devices[MAX_SERIAL_PORTS];
8794
    int serial_device_index;
8795
    const char *parallel_devices[MAX_PARALLEL_PORTS];
8796
    int parallel_device_index;
8797
    const char *loadvm = NULL;
8798
    QEMUMachine *machine;
8799
    const char *cpu_model;
8800
    const char *usb_devices[MAX_USB_CMDLINE];
8801
    int usb_devices_index;
8802
    int fds[2];
8803
    int tb_size;
8804
    const char *pid_file = NULL;
8805
    VLANState *vlan;
8806
    int autostart;
8807
    const char *incoming = NULL;
8808

    
8809
    LIST_INIT (&vm_change_state_head);
8810
#ifndef _WIN32
8811
    {
8812
        struct sigaction act;
8813
        sigfillset(&act.sa_mask);
8814
        act.sa_flags = 0;
8815
        act.sa_handler = SIG_IGN;
8816
        sigaction(SIGPIPE, &act, NULL);
8817
    }
8818
#else
8819
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8820
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
8821
       QEMU to run on a single CPU */
8822
    {
8823
        HANDLE h;
8824
        DWORD mask, smask;
8825
        int i;
8826
        h = GetCurrentProcess();
8827
        if (GetProcessAffinityMask(h, &mask, &smask)) {
8828
            for(i = 0; i < 32; i++) {
8829
                if (mask & (1 << i))
8830
                    break;
8831
            }
8832
            if (i != 32) {
8833
                mask = 1 << i;
8834
                SetProcessAffinityMask(h, mask);
8835
            }
8836
        }
8837
    }
8838
#endif
8839

    
8840
    register_machines();
8841
    machine = first_machine;
8842
    cpu_model = NULL;
8843
    initrd_filename = NULL;
8844
    ram_size = 0;
8845
    vga_ram_size = VGA_RAM_SIZE;
8846
#ifdef CONFIG_GDBSTUB
8847
    use_gdbstub = 0;
8848
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
8849
#endif
8850
    snapshot = 0;
8851
    nographic = 0;
8852
    curses = 0;
8853
    kernel_filename = NULL;
8854
    kernel_cmdline = "";
8855
    cyls = heads = secs = 0;
8856
    translation = BIOS_ATA_TRANSLATION_AUTO;
8857
    monitor_device = "vc";
8858

    
8859
    serial_devices[0] = "vc:80Cx24C";
8860
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
8861
        serial_devices[i] = NULL;
8862
    serial_device_index = 0;
8863

    
8864
    parallel_devices[0] = "vc:640x480";
8865
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8866
        parallel_devices[i] = NULL;
8867
    parallel_device_index = 0;
8868

    
8869
    usb_devices_index = 0;
8870

    
8871
    nb_net_clients = 0;
8872
    nb_drives = 0;
8873
    nb_drives_opt = 0;
8874
    hda_index = -1;
8875

    
8876
    nb_nics = 0;
8877

    
8878
    tb_size = 0;
8879
    autostart= 1;
8880

    
8881
    optind = 1;
8882
    for(;;) {
8883
        if (optind >= argc)
8884
            break;
8885
        r = argv[optind];
8886
        if (r[0] != '-') {
8887
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8888
        } else {
8889
            const QEMUOption *popt;
8890

    
8891
            optind++;
8892
            /* Treat --foo the same as -foo.  */
8893
            if (r[1] == '-')
8894
                r++;
8895
            popt = qemu_options;
8896
            for(;;) {
8897
                if (!popt->name) {
8898
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
8899
                            argv[0], r);
8900
                    exit(1);
8901
                }
8902
                if (!strcmp(popt->name, r + 1))
8903
                    break;
8904
                popt++;
8905
            }
8906
            if (popt->flags & HAS_ARG) {
8907
                if (optind >= argc) {
8908
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
8909
                            argv[0], r);
8910
                    exit(1);
8911
                }
8912
                optarg = argv[optind++];
8913
            } else {
8914
                optarg = NULL;
8915
            }
8916

    
8917
            switch(popt->index) {
8918
            case QEMU_OPTION_M:
8919
                machine = find_machine(optarg);
8920
                if (!machine) {
8921
                    QEMUMachine *m;
8922
                    printf("Supported machines are:\n");
8923
                    for(m = first_machine; m != NULL; m = m->next) {
8924
                        printf("%-10s %s%s\n",
8925
                               m->name, m->desc,
8926
                               m == first_machine ? " (default)" : "");
8927
                    }
8928
                    exit(*optarg != '?');
8929
                }
8930
                break;
8931
            case QEMU_OPTION_cpu:
8932
                /* hw initialization will check this */
8933
                if (*optarg == '?') {
8934
/* XXX: implement xxx_cpu_list for targets that still miss it */
8935
#if defined(cpu_list)
8936
                    cpu_list(stdout, &fprintf);
8937
#endif
8938
                    exit(0);
8939
                } else {
8940
                    cpu_model = optarg;
8941
                }
8942
                break;
8943
            case QEMU_OPTION_initrd:
8944
                initrd_filename = optarg;
8945
                break;
8946
            case QEMU_OPTION_hda:
8947
                if (cyls == 0)
8948
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
8949
                else
8950
                    hda_index = drive_add(optarg, HD_ALIAS
8951
                             ",cyls=%d,heads=%d,secs=%d%s",
8952
                             0, cyls, heads, secs,
8953
                             translation == BIOS_ATA_TRANSLATION_LBA ?
8954
                                 ",trans=lba" :
8955
                             translation == BIOS_ATA_TRANSLATION_NONE ?
8956
                                 ",trans=none" : "");
8957
                 break;
8958
            case QEMU_OPTION_hdb:
8959
            case QEMU_OPTION_hdc:
8960
            case QEMU_OPTION_hdd:
8961
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8962
                break;
8963
            case QEMU_OPTION_drive:
8964
                drive_add(NULL, "%s", optarg);
8965
                break;
8966
            case QEMU_OPTION_mtdblock:
8967
                drive_add(optarg, MTD_ALIAS);
8968
                break;
8969
            case QEMU_OPTION_sd:
8970
                drive_add(optarg, SD_ALIAS);
8971
                break;
8972
            case QEMU_OPTION_pflash:
8973
                drive_add(optarg, PFLASH_ALIAS);
8974
                break;
8975
            case QEMU_OPTION_snapshot:
8976
                snapshot = 1;
8977
                break;
8978
            case QEMU_OPTION_hdachs:
8979
                {
8980
                    const char *p;
8981
                    p = optarg;
8982
                    cyls = strtol(p, (char **)&p, 0);
8983
                    if (cyls < 1 || cyls > 16383)
8984
                        goto chs_fail;
8985
                    if (*p != ',')
8986
                        goto chs_fail;
8987
                    p++;
8988
                    heads = strtol(p, (char **)&p, 0);
8989
                    if (heads < 1 || heads > 16)
8990
                        goto chs_fail;
8991
                    if (*p != ',')
8992
                        goto chs_fail;
8993
                    p++;
8994
                    secs = strtol(p, (char **)&p, 0);
8995
                    if (secs < 1 || secs > 63)
8996
                        goto chs_fail;
8997
                    if (*p == ',') {
8998
                        p++;
8999
                        if (!strcmp(p, "none"))
9000
                            translation = BIOS_ATA_TRANSLATION_NONE;
9001
                        else if (!strcmp(p, "lba"))
9002
                            translation = BIOS_ATA_TRANSLATION_LBA;
9003
                        else if (!strcmp(p, "auto"))
9004
                            translation = BIOS_ATA_TRANSLATION_AUTO;
9005
                        else
9006
                            goto chs_fail;
9007
                    } else if (*p != '\0') {
9008
                    chs_fail:
9009
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
9010
                        exit(1);
9011
                    }
9012
                    if (hda_index != -1)
9013
                        snprintf(drives_opt[hda_index].opt,
9014
                                 sizeof(drives_opt[hda_index].opt),
9015
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
9016
                                 0, cyls, heads, secs,
9017
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
9018
                                         ",trans=lba" :
9019
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
9020
                                     ",trans=none" : "");
9021
                }
9022
                break;
9023
            case QEMU_OPTION_nographic:
9024
                nographic = 1;
9025
                break;
9026
#ifdef CONFIG_CURSES
9027
            case QEMU_OPTION_curses:
9028
                curses = 1;
9029
                break;
9030
#endif
9031
            case QEMU_OPTION_portrait:
9032
                graphic_rotate = 1;
9033
                break;
9034
            case QEMU_OPTION_kernel:
9035
                kernel_filename = optarg;
9036
                break;
9037
            case QEMU_OPTION_append:
9038
                kernel_cmdline = optarg;
9039
                break;
9040
            case QEMU_OPTION_cdrom:
9041
                drive_add(optarg, CDROM_ALIAS);
9042
                break;
9043
            case QEMU_OPTION_boot:
9044
                boot_devices = optarg;
9045
                /* We just do some generic consistency checks */
9046
                {
9047
                    /* Could easily be extended to 64 devices if needed */
9048
                    const char *p;
9049
                    
9050
                    boot_devices_bitmap = 0;
9051
                    for (p = boot_devices; *p != '\0'; p++) {
9052
                        /* Allowed boot devices are:
9053
                         * a b     : floppy disk drives
9054
                         * c ... f : IDE disk drives
9055
                         * g ... m : machine implementation dependant drives
9056
                         * n ... p : network devices
9057
                         * It's up to each machine implementation to check
9058
                         * if the given boot devices match the actual hardware
9059
                         * implementation and firmware features.
9060
                         */
9061
                        if (*p < 'a' || *p > 'q') {
9062
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
9063
                            exit(1);
9064
                        }
9065
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
9066
                            fprintf(stderr,
9067
                                    "Boot device '%c' was given twice\n",*p);
9068
                            exit(1);
9069
                        }
9070
                        boot_devices_bitmap |= 1 << (*p - 'a');
9071
                    }
9072
                }
9073
                break;
9074
            case QEMU_OPTION_fda:
9075
            case QEMU_OPTION_fdb:
9076
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
9077
                break;
9078
#ifdef TARGET_I386
9079
            case QEMU_OPTION_no_fd_bootchk:
9080
                fd_bootchk = 0;
9081
                break;
9082
#endif
9083
            case QEMU_OPTION_net:
9084
                if (nb_net_clients >= MAX_NET_CLIENTS) {
9085
                    fprintf(stderr, "qemu: too many network clients\n");
9086
                    exit(1);
9087
                }
9088
                net_clients[nb_net_clients] = optarg;
9089
                nb_net_clients++;
9090
                break;
9091
#ifdef CONFIG_SLIRP
9092
            case QEMU_OPTION_tftp:
9093
                tftp_prefix = optarg;
9094
                break;
9095
            case QEMU_OPTION_bootp:
9096
                bootp_filename = optarg;
9097
                break;
9098
#ifndef _WIN32
9099
            case QEMU_OPTION_smb:
9100
                net_slirp_smb(optarg);
9101
                break;
9102
#endif
9103
            case QEMU_OPTION_redir:
9104
                net_slirp_redir(optarg);
9105
                break;
9106
#endif
9107
#ifdef HAS_AUDIO
9108
            case QEMU_OPTION_audio_help:
9109
                AUD_help ();
9110
                exit (0);
9111
                break;
9112
            case QEMU_OPTION_soundhw:
9113
                select_soundhw (optarg);
9114
                break;
9115
#endif
9116
            case QEMU_OPTION_h:
9117
                help(0);
9118
                break;
9119
            case QEMU_OPTION_m: {
9120
                uint64_t value;
9121
                char *ptr;
9122

    
9123
                value = strtoul(optarg, &ptr, 10);
9124
                switch (*ptr) {
9125
                case 0: case 'M': case 'm':
9126
                    value <<= 20;
9127
                    break;
9128
                case 'G': case 'g':
9129
                    value <<= 30;
9130
                    break;
9131
                default:
9132
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
9133
                    exit(1);
9134
                }
9135

    
9136
                /* On 32-bit hosts, QEMU is limited by virtual address space */
9137
                if (value > (2047 << 20)
9138
#ifndef USE_KQEMU
9139
                    && HOST_LONG_BITS == 32
9140
#endif
9141
                    ) {
9142
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
9143
                    exit(1);
9144
                }
9145
                if (value != (uint64_t)(ram_addr_t)value) {
9146
                    fprintf(stderr, "qemu: ram size too large\n");
9147
                    exit(1);
9148
                }
9149
                ram_size = value;
9150
                break;
9151
            }
9152
            case QEMU_OPTION_d:
9153
                {
9154
                    int mask;
9155
                    const CPULogItem *item;
9156

    
9157
                    mask = cpu_str_to_log_mask(optarg);
9158
                    if (!mask) {
9159
                        printf("Log items (comma separated):\n");
9160
                    for(item = cpu_log_items; item->mask != 0; item++) {
9161
                        printf("%-10s %s\n", item->name, item->help);
9162
                    }
9163
                    exit(1);
9164
                    }
9165
                    cpu_set_log(mask);
9166
                }
9167
                break;
9168
#ifdef CONFIG_GDBSTUB
9169
            case QEMU_OPTION_s:
9170
                use_gdbstub = 1;
9171
                break;
9172
            case QEMU_OPTION_p:
9173
                gdbstub_port = optarg;
9174
                break;
9175
#endif
9176
            case QEMU_OPTION_L:
9177
                bios_dir = optarg;
9178
                break;
9179
            case QEMU_OPTION_bios:
9180
                bios_name = optarg;
9181
                break;
9182
            case QEMU_OPTION_S:
9183
                autostart = 0;
9184
                break;
9185
            case QEMU_OPTION_k:
9186
                keyboard_layout = optarg;
9187
                break;
9188
            case QEMU_OPTION_localtime:
9189
                rtc_utc = 0;
9190
                break;
9191
            case QEMU_OPTION_vga:
9192
                select_vgahw (optarg);
9193
                break;
9194
            case QEMU_OPTION_g:
9195
                {
9196
                    const char *p;
9197
                    int w, h, depth;
9198
                    p = optarg;
9199
                    w = strtol(p, (char **)&p, 10);
9200
                    if (w <= 0) {
9201
                    graphic_error:
9202
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
9203
                        exit(1);
9204
                    }
9205
                    if (*p != 'x')
9206
                        goto graphic_error;
9207
                    p++;
9208
                    h = strtol(p, (char **)&p, 10);
9209
                    if (h <= 0)
9210
                        goto graphic_error;
9211
                    if (*p == 'x') {
9212
                        p++;
9213
                        depth = strtol(p, (char **)&p, 10);
9214
                        if (depth != 8 && depth != 15 && depth != 16 &&
9215
                            depth != 24 && depth != 32)
9216
                            goto graphic_error;
9217
                    } else if (*p == '\0') {
9218
                        depth = graphic_depth;
9219
                    } else {
9220
                        goto graphic_error;
9221
                    }
9222

    
9223
                    graphic_width = w;
9224
                    graphic_height = h;
9225
                    graphic_depth = depth;
9226
                }
9227
                break;
9228
            case QEMU_OPTION_echr:
9229
                {
9230
                    char *r;
9231
                    term_escape_char = strtol(optarg, &r, 0);
9232
                    if (r == optarg)
9233
                        printf("Bad argument to echr\n");
9234
                    break;
9235
                }
9236
            case QEMU_OPTION_monitor:
9237
                monitor_device = optarg;
9238
                break;
9239
            case QEMU_OPTION_serial:
9240
                if (serial_device_index >= MAX_SERIAL_PORTS) {
9241
                    fprintf(stderr, "qemu: too many serial ports\n");
9242
                    exit(1);
9243
                }
9244
                serial_devices[serial_device_index] = optarg;
9245
                serial_device_index++;
9246
                break;
9247
            case QEMU_OPTION_parallel:
9248
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
9249
                    fprintf(stderr, "qemu: too many parallel ports\n");
9250
                    exit(1);
9251
                }
9252
                parallel_devices[parallel_device_index] = optarg;
9253
                parallel_device_index++;
9254
                break;
9255
            case QEMU_OPTION_loadvm:
9256
                loadvm = optarg;
9257
                break;
9258
            case QEMU_OPTION_full_screen:
9259
                full_screen = 1;
9260
                break;
9261
#ifdef CONFIG_SDL
9262
            case QEMU_OPTION_no_frame:
9263
                no_frame = 1;
9264
                break;
9265
            case QEMU_OPTION_alt_grab:
9266
                alt_grab = 1;
9267
                break;
9268
            case QEMU_OPTION_no_quit:
9269
                no_quit = 1;
9270
                break;
9271
#endif
9272
            case QEMU_OPTION_pidfile:
9273
                pid_file = optarg;
9274
                break;
9275
#ifdef TARGET_I386
9276
            case QEMU_OPTION_win2k_hack:
9277
                win2k_install_hack = 1;
9278
                break;
9279
#endif
9280
#ifdef USE_KQEMU
9281
            case QEMU_OPTION_no_kqemu:
9282
                kqemu_allowed = 0;
9283
                break;
9284
            case QEMU_OPTION_kernel_kqemu:
9285
                kqemu_allowed = 2;
9286
                break;
9287
#endif
9288
            case QEMU_OPTION_usb:
9289
                usb_enabled = 1;
9290
                break;
9291
            case QEMU_OPTION_usbdevice:
9292
                usb_enabled = 1;
9293
                if (usb_devices_index >= MAX_USB_CMDLINE) {
9294
                    fprintf(stderr, "Too many USB devices\n");
9295
                    exit(1);
9296
                }
9297
                usb_devices[usb_devices_index] = optarg;
9298
                usb_devices_index++;
9299
                break;
9300
            case QEMU_OPTION_smp:
9301
                smp_cpus = atoi(optarg);
9302
                if (smp_cpus < 1) {
9303
                    fprintf(stderr, "Invalid number of CPUs\n");
9304
                    exit(1);
9305
                }
9306
                break;
9307
            case QEMU_OPTION_vnc:
9308
                vnc_display = optarg;
9309
                break;
9310
            case QEMU_OPTION_no_acpi:
9311
                acpi_enabled = 0;
9312
                break;
9313
            case QEMU_OPTION_no_reboot:
9314
                no_reboot = 1;
9315
                break;
9316
            case QEMU_OPTION_no_shutdown:
9317
                no_shutdown = 1;
9318
                break;
9319
            case QEMU_OPTION_show_cursor:
9320
                cursor_hide = 0;
9321
                break;
9322
            case QEMU_OPTION_uuid:
9323
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
9324
                    fprintf(stderr, "Fail to parse UUID string."
9325
                            " Wrong format.\n");
9326
                    exit(1);
9327
                }
9328
                break;
9329
            case QEMU_OPTION_daemonize:
9330
                daemonize = 1;
9331
                break;
9332
            case QEMU_OPTION_option_rom:
9333
                if (nb_option_roms >= MAX_OPTION_ROMS) {
9334
                    fprintf(stderr, "Too many option ROMs\n");
9335
                    exit(1);
9336
                }
9337
                option_rom[nb_option_roms] = optarg;
9338
                nb_option_roms++;
9339
                break;
9340
            case QEMU_OPTION_semihosting:
9341
                semihosting_enabled = 1;
9342
                break;
9343
            case QEMU_OPTION_name:
9344
                qemu_name = optarg;
9345
                break;
9346
#ifdef TARGET_SPARC
9347
            case QEMU_OPTION_prom_env:
9348
                if (nb_prom_envs >= MAX_PROM_ENVS) {
9349
                    fprintf(stderr, "Too many prom variables\n");
9350
                    exit(1);
9351
                }
9352
                prom_envs[nb_prom_envs] = optarg;
9353
                nb_prom_envs++;
9354
                break;
9355
#endif
9356
#ifdef TARGET_ARM
9357
            case QEMU_OPTION_old_param:
9358
                old_param = 1;
9359
                break;
9360
#endif
9361
            case QEMU_OPTION_clock:
9362
                configure_alarms(optarg);
9363
                break;
9364
            case QEMU_OPTION_startdate:
9365
                {
9366
                    struct tm tm;
9367
                    time_t rtc_start_date;
9368
                    if (!strcmp(optarg, "now")) {
9369
                        rtc_date_offset = -1;
9370
                    } else {
9371
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
9372
                               &tm.tm_year,
9373
                               &tm.tm_mon,
9374
                               &tm.tm_mday,
9375
                               &tm.tm_hour,
9376
                               &tm.tm_min,
9377
                               &tm.tm_sec) == 6) {
9378
                            /* OK */
9379
                        } else if (sscanf(optarg, "%d-%d-%d",
9380
                                          &tm.tm_year,
9381
                                          &tm.tm_mon,
9382
                                          &tm.tm_mday) == 3) {
9383
                            tm.tm_hour = 0;
9384
                            tm.tm_min = 0;
9385
                            tm.tm_sec = 0;
9386
                        } else {
9387
                            goto date_fail;
9388
                        }
9389
                        tm.tm_year -= 1900;
9390
                        tm.tm_mon--;
9391
                        rtc_start_date = mktimegm(&tm);
9392
                        if (rtc_start_date == -1) {
9393
                        date_fail:
9394
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
9395
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
9396
                            exit(1);
9397
                        }
9398
                        rtc_date_offset = time(NULL) - rtc_start_date;
9399
                    }
9400
                }
9401
                break;
9402
            case QEMU_OPTION_tb_size:
9403
                tb_size = strtol(optarg, NULL, 0);
9404
                if (tb_size < 0)
9405
                    tb_size = 0;
9406
                break;
9407
            case QEMU_OPTION_icount:
9408
                use_icount = 1;
9409
                if (strcmp(optarg, "auto") == 0) {
9410
                    icount_time_shift = -1;
9411
                } else {
9412
                    icount_time_shift = strtol(optarg, NULL, 0);
9413
                }
9414
                break;
9415
            case QEMU_OPTION_incoming:
9416
                incoming = optarg;
9417
                break;
9418
            }
9419
        }
9420
    }
9421

    
9422
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
9423
    if (smp_cpus > machine->max_cpus) {
9424
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
9425
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
9426
                machine->max_cpus);
9427
        exit(1);
9428
    }
9429

    
9430
    if (nographic) {
9431
       if (serial_device_index == 0)
9432
           serial_devices[0] = "stdio";
9433
       if (parallel_device_index == 0)
9434
           parallel_devices[0] = "null";
9435
       if (strncmp(monitor_device, "vc", 2) == 0)
9436
           monitor_device = "stdio";
9437
    }
9438

    
9439
#ifndef _WIN32
9440
    if (daemonize) {
9441
        pid_t pid;
9442

    
9443
        if (pipe(fds) == -1)
9444
            exit(1);
9445

    
9446
        pid = fork();
9447
        if (pid > 0) {
9448
            uint8_t status;
9449
            ssize_t len;
9450

    
9451
            close(fds[1]);
9452

    
9453
        again:
9454
            len = read(fds[0], &status, 1);
9455
            if (len == -1 && (errno == EINTR))
9456
                goto again;
9457

    
9458
            if (len != 1)
9459
                exit(1);
9460
            else if (status == 1) {
9461
                fprintf(stderr, "Could not acquire pidfile\n");
9462
                exit(1);
9463
            } else
9464
                exit(0);
9465
        } else if (pid < 0)
9466
            exit(1);
9467

    
9468
        setsid();
9469

    
9470
        pid = fork();
9471
        if (pid > 0)
9472
            exit(0);
9473
        else if (pid < 0)
9474
            exit(1);
9475

    
9476
        umask(027);
9477

    
9478
        signal(SIGTSTP, SIG_IGN);
9479
        signal(SIGTTOU, SIG_IGN);
9480
        signal(SIGTTIN, SIG_IGN);
9481
    }
9482
#endif
9483

    
9484
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
9485
        if (daemonize) {
9486
            uint8_t status = 1;
9487
            write(fds[1], &status, 1);
9488
        } else
9489
            fprintf(stderr, "Could not acquire pid file\n");
9490
        exit(1);
9491
    }
9492

    
9493
#ifdef USE_KQEMU
9494
    if (smp_cpus > 1)
9495
        kqemu_allowed = 0;
9496
#endif
9497
    linux_boot = (kernel_filename != NULL);
9498
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
9499

    
9500
    if (!linux_boot && net_boot == 0 &&
9501
        !machine->nodisk_ok && nb_drives_opt == 0)
9502
        help(1);
9503

    
9504
    if (!linux_boot && *kernel_cmdline != '\0') {
9505
        fprintf(stderr, "-append only allowed with -kernel option\n");
9506
        exit(1);
9507
    }
9508

    
9509
    if (!linux_boot && initrd_filename != NULL) {
9510
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
9511
        exit(1);
9512
    }
9513

    
9514
    /* boot to floppy or the default cd if no hard disk defined yet */
9515
    if (!boot_devices[0]) {
9516
        boot_devices = "cad";
9517
    }
9518
    setvbuf(stdout, NULL, _IOLBF, 0);
9519

    
9520
    init_timers();
9521
    init_timer_alarm();
9522
    if (use_icount && icount_time_shift < 0) {
9523
        use_icount = 2;
9524
        /* 125MIPS seems a reasonable initial guess at the guest speed.
9525
           It will be corrected fairly quickly anyway.  */
9526
        icount_time_shift = 3;
9527
        init_icount_adjust();
9528
    }
9529

    
9530
#ifdef _WIN32
9531
    socket_init();
9532
#endif
9533

    
9534
    /* init network clients */
9535
    if (nb_net_clients == 0) {
9536
        /* if no clients, we use a default config */
9537
        net_clients[nb_net_clients++] = "nic";
9538
#ifdef CONFIG_SLIRP
9539
        net_clients[nb_net_clients++] = "user";
9540
#endif
9541
    }
9542

    
9543
    for(i = 0;i < nb_net_clients; i++) {
9544
        if (net_client_parse(net_clients[i]) < 0)
9545
            exit(1);
9546
    }
9547
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9548
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
9549
            continue;
9550
        if (vlan->nb_guest_devs == 0)
9551
            fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
9552
        if (vlan->nb_host_devs == 0)
9553
            fprintf(stderr,
9554
                    "Warning: vlan %d is not connected to host network\n",
9555
                    vlan->id);
9556
    }
9557

    
9558
#ifdef TARGET_I386
9559
    /* XXX: this should be moved in the PC machine instantiation code */
9560
    if (net_boot != 0) {
9561
        int netroms = 0;
9562
        for (i = 0; i < nb_nics && i < 4; i++) {
9563
            const char *model = nd_table[i].model;
9564
            char buf[1024];
9565
            if (net_boot & (1 << i)) {
9566
                if (model == NULL)
9567
                    model = "ne2k_pci";
9568
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
9569
                if (get_image_size(buf) > 0) {
9570
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
9571
                        fprintf(stderr, "Too many option ROMs\n");
9572
                        exit(1);
9573
                    }
9574
                    option_rom[nb_option_roms] = strdup(buf);
9575
                    nb_option_roms++;
9576
                    netroms++;
9577
                }
9578
            }
9579
        }
9580
        if (netroms == 0) {
9581
            fprintf(stderr, "No valid PXE rom found for network device\n");
9582
            exit(1);
9583
        }
9584
    }
9585
#endif
9586

    
9587
    /* init the memory */
9588
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9589

    
9590
    if (machine->ram_require & RAMSIZE_FIXED) {
9591
        if (ram_size > 0) {
9592
            if (ram_size < phys_ram_size) {
9593
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9594
                                machine->name, (unsigned long long) phys_ram_size);
9595
                exit(-1);
9596
            }
9597

    
9598
            phys_ram_size = ram_size;
9599
        } else
9600
            ram_size = phys_ram_size;
9601
    } else {
9602
        if (ram_size == 0)
9603
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9604

    
9605
        phys_ram_size += ram_size;
9606
    }
9607

    
9608
    phys_ram_base = qemu_vmalloc(phys_ram_size);
9609
    if (!phys_ram_base) {
9610
        fprintf(stderr, "Could not allocate physical memory\n");
9611
        exit(1);
9612
    }
9613

    
9614
    /* init the dynamic translator */
9615
    cpu_exec_init_all(tb_size * 1024 * 1024);
9616

    
9617
    bdrv_init();
9618

    
9619
    /* we always create the cdrom drive, even if no disk is there */
9620

    
9621
    if (nb_drives_opt < MAX_DRIVES)
9622
        drive_add(NULL, CDROM_ALIAS);
9623

    
9624
    /* we always create at least one floppy */
9625

    
9626
    if (nb_drives_opt < MAX_DRIVES)
9627
        drive_add(NULL, FD_ALIAS, 0);
9628

    
9629
    /* we always create one sd slot, even if no card is in it */
9630

    
9631
    if (nb_drives_opt < MAX_DRIVES)
9632
        drive_add(NULL, SD_ALIAS);
9633

    
9634
    /* open the virtual block devices */
9635

    
9636
    for(i = 0; i < nb_drives_opt; i++)
9637
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9638
            exit(1);
9639

    
9640
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9641
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
9642

    
9643
    /* terminal init */
9644
    memset(&display_state, 0, sizeof(display_state));
9645
    if (nographic) {
9646
        if (curses) {
9647
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9648
            exit(1);
9649
        }
9650
        /* nearly nothing to do */
9651
        dumb_display_init(ds);
9652
    } else if (vnc_display != NULL) {
9653
        vnc_display_init(ds);
9654
        if (vnc_display_open(ds, vnc_display) < 0)
9655
            exit(1);
9656
    } else
9657
#if defined(CONFIG_CURSES)
9658
    if (curses) {
9659
        curses_display_init(ds, full_screen);
9660
    } else
9661
#endif
9662
    {
9663
#if defined(CONFIG_SDL)
9664
        sdl_display_init(ds, full_screen, no_frame);
9665
#elif defined(CONFIG_COCOA)
9666
        cocoa_display_init(ds, full_screen);
9667
#else
9668
        dumb_display_init(ds);
9669
#endif
9670
    }
9671

    
9672
#ifndef _WIN32
9673
    /* must be after terminal init, SDL library changes signal handlers */
9674
    termsig_setup();
9675
#endif
9676

    
9677
    /* Maintain compatibility with multiple stdio monitors */
9678
    if (!strcmp(monitor_device,"stdio")) {
9679
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9680
            const char *devname = serial_devices[i];
9681
            if (devname && !strcmp(devname,"mon:stdio")) {
9682
                monitor_device = NULL;
9683
                break;
9684
            } else if (devname && !strcmp(devname,"stdio")) {
9685
                monitor_device = NULL;
9686
                serial_devices[i] = "mon:stdio";
9687
                break;
9688
            }
9689
        }
9690
    }
9691
    if (monitor_device) {
9692
        monitor_hd = qemu_chr_open(monitor_device);
9693
        if (!monitor_hd) {
9694
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9695
            exit(1);
9696
        }
9697
        monitor_init(monitor_hd, !nographic);
9698
    }
9699

    
9700
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9701
        const char *devname = serial_devices[i];
9702
        if (devname && strcmp(devname, "none")) {
9703
            serial_hds[i] = qemu_chr_open(devname);
9704
            if (!serial_hds[i]) {
9705
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
9706
                        devname);
9707
                exit(1);
9708
            }
9709
            if (strstart(devname, "vc", 0))
9710
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9711
        }
9712
    }
9713

    
9714
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9715
        const char *devname = parallel_devices[i];
9716
        if (devname && strcmp(devname, "none")) {
9717
            parallel_hds[i] = qemu_chr_open(devname);
9718
            if (!parallel_hds[i]) {
9719
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9720
                        devname);
9721
                exit(1);
9722
            }
9723
            if (strstart(devname, "vc", 0))
9724
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9725
        }
9726
    }
9727

    
9728
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
9729
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9730

    
9731
    /* init USB devices */
9732
    if (usb_enabled) {
9733
        for(i = 0; i < usb_devices_index; i++) {
9734
            if (usb_device_add(usb_devices[i]) < 0) {
9735
                fprintf(stderr, "Warning: could not add USB device %s\n",
9736
                        usb_devices[i]);
9737
            }
9738
        }
9739
    }
9740

    
9741
    if (display_state.dpy_refresh) {
9742
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9743
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9744
    }
9745

    
9746
#ifdef CONFIG_GDBSTUB
9747
    if (use_gdbstub) {
9748
        /* XXX: use standard host:port notation and modify options
9749
           accordingly. */
9750
        if (gdbserver_start(gdbstub_port) < 0) {
9751
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9752
                    gdbstub_port);
9753
            exit(1);
9754
        }
9755
    }
9756
#endif
9757

    
9758
    if (loadvm)
9759
        do_loadvm(loadvm);
9760

    
9761
    if (incoming) {
9762
        autostart = 0; /* fixme how to deal with -daemonize */
9763
        qemu_start_incoming_migration(incoming);
9764
    }
9765

    
9766
    {
9767
        /* XXX: simplify init */
9768
        read_passwords();
9769
        if (autostart) {
9770
            vm_start();
9771
        }
9772
    }
9773

    
9774
    if (daemonize) {
9775
        uint8_t status = 0;
9776
        ssize_t len;
9777
        int fd;
9778

    
9779
    again1:
9780
        len = write(fds[1], &status, 1);
9781
        if (len == -1 && (errno == EINTR))
9782
            goto again1;
9783

    
9784
        if (len != 1)
9785
            exit(1);
9786

    
9787
        chdir("/");
9788
        TFR(fd = open("/dev/null", O_RDWR));
9789
        if (fd == -1)
9790
            exit(1);
9791

    
9792
        dup2(fd, 0);
9793
        dup2(fd, 1);
9794
        dup2(fd, 2);
9795

    
9796
        close(fd);
9797
    }
9798

    
9799
    main_loop();
9800
    quit_timers();
9801

    
9802
#if !defined(_WIN32)
9803
    /* close network clients */
9804
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9805
        VLANClientState *vc;
9806

    
9807
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9808
            if (vc->fd_read == tap_receive) {
9809
                char ifname[64];
9810
                TAPState *s = vc->opaque;
9811

    
9812
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9813
                    s->down_script[0])
9814
                    launch_script(s->down_script, ifname, s->fd);
9815
            }
9816
#if defined(CONFIG_VDE)
9817
            if (vc->fd_read == vde_from_qemu) {
9818
                VDEState *s = vc->opaque;
9819
                vde_close(s->vde);
9820
            }
9821
#endif
9822
        }
9823
    }
9824
#endif
9825
    return 0;
9826
}