Statistics
| Branch: | Revision:

root / hw / timer / cadence_ttc.c @ 49ab747f

History | View | Annotate | Download (12.2 kB)

1
/*
2
 * Xilinx Zynq cadence TTC model
3
 *
4
 * Copyright (c) 2011 Xilinx Inc.
5
 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6
 * Copyright (c) 2012 PetaLogix Pty Ltd.
7
 * Written By Haibing Ma
8
 *            M. Habib
9
 *
10
 * This program is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU General Public License
12
 * as published by the Free Software Foundation; either version
13
 * 2 of the License, or (at your option) any later version.
14
 *
15
 * You should have received a copy of the GNU General Public License along
16
 * with this program; if not, see <http://www.gnu.org/licenses/>.
17
 */
18

    
19
#include "hw/sysbus.h"
20
#include "qemu/timer.h"
21

    
22
#ifdef CADENCE_TTC_ERR_DEBUG
23
#define DB_PRINT(...) do { \
24
    fprintf(stderr,  ": %s: ", __func__); \
25
    fprintf(stderr, ## __VA_ARGS__); \
26
    } while (0);
27
#else
28
    #define DB_PRINT(...)
29
#endif
30

    
31
#define COUNTER_INTR_IV     0x00000001
32
#define COUNTER_INTR_M1     0x00000002
33
#define COUNTER_INTR_M2     0x00000004
34
#define COUNTER_INTR_M3     0x00000008
35
#define COUNTER_INTR_OV     0x00000010
36
#define COUNTER_INTR_EV     0x00000020
37

    
38
#define COUNTER_CTRL_DIS    0x00000001
39
#define COUNTER_CTRL_INT    0x00000002
40
#define COUNTER_CTRL_DEC    0x00000004
41
#define COUNTER_CTRL_MATCH  0x00000008
42
#define COUNTER_CTRL_RST    0x00000010
43

    
44
#define CLOCK_CTRL_PS_EN    0x00000001
45
#define CLOCK_CTRL_PS_V     0x0000001e
46

    
47
typedef struct {
48
    QEMUTimer *timer;
49
    int freq;
50

    
51
    uint32_t reg_clock;
52
    uint32_t reg_count;
53
    uint32_t reg_value;
54
    uint16_t reg_interval;
55
    uint16_t reg_match[3];
56
    uint32_t reg_intr;
57
    uint32_t reg_intr_en;
58
    uint32_t reg_event_ctrl;
59
    uint32_t reg_event;
60

    
61
    uint64_t cpu_time;
62
    unsigned int cpu_time_valid;
63

    
64
    qemu_irq irq;
65
} CadenceTimerState;
66

    
67
typedef struct {
68
    SysBusDevice busdev;
69
    MemoryRegion iomem;
70
    CadenceTimerState timer[3];
71
} CadenceTTCState;
72

    
73
static void cadence_timer_update(CadenceTimerState *s)
74
{
75
    qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
76
}
77

    
78
static CadenceTimerState *cadence_timer_from_addr(void *opaque,
79
                                        hwaddr offset)
80
{
81
    unsigned int index;
82
    CadenceTTCState *s = (CadenceTTCState *)opaque;
83

    
84
    index = (offset >> 2) % 3;
85

    
86
    return &s->timer[index];
87
}
88

    
89
static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
90
{
91
    /* timer_steps has max value of 0x100000000. double check it
92
     * (or overflow can happen below) */
93
    assert(timer_steps <= 1ULL << 32);
94

    
95
    uint64_t r = timer_steps * 1000000000ULL;
96
    if (s->reg_clock & CLOCK_CTRL_PS_EN) {
97
        r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
98
    } else {
99
        r >>= 16;
100
    }
101
    r /= (uint64_t)s->freq;
102
    return r;
103
}
104

    
105
static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
106
{
107
    uint64_t to_divide = 1000000000ULL;
108

    
109
    uint64_t r = ns;
110
     /* for very large intervals (> 8s) do some division first to stop
111
      * overflow (costs some prescision) */
112
    while (r >= 8ULL << 30 && to_divide > 1) {
113
        r /= 1000;
114
        to_divide /= 1000;
115
    }
116
    r <<= 16;
117
    /* keep early-dividing as needed */
118
    while (r >= 8ULL << 30 && to_divide > 1) {
119
        r /= 1000;
120
        to_divide /= 1000;
121
    }
122
    r *= (uint64_t)s->freq;
123
    if (s->reg_clock & CLOCK_CTRL_PS_EN) {
124
        r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
125
    }
126

    
127
    r /= to_divide;
128
    return r;
129
}
130

    
131
/* determine if x is in between a and b, exclusive of a, inclusive of b */
132

    
133
static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
134
{
135
    if (a < b) {
136
        return x > a && x <= b;
137
    }
138
    return x < a && x >= b;
139
}
140

    
141
static void cadence_timer_run(CadenceTimerState *s)
142
{
143
    int i;
144
    int64_t event_interval, next_value;
145

    
146
    assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
147

    
148
    if (s->reg_count & COUNTER_CTRL_DIS) {
149
        s->cpu_time_valid = 0;
150
        return;
151
    }
152

    
153
    { /* figure out what's going to happen next (rollover or match) */
154
        int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
155
                (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
156
        next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
157
        for (i = 0; i < 3; ++i) {
158
            int64_t cand = (uint64_t)s->reg_match[i] << 16;
159
            if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
160
                next_value = cand;
161
            }
162
        }
163
    }
164
    DB_PRINT("next timer event value: %09llx\n",
165
            (unsigned long long)next_value);
166

    
167
    event_interval = next_value - (int64_t)s->reg_value;
168
    event_interval = (event_interval < 0) ? -event_interval : event_interval;
169

    
170
    qemu_mod_timer(s->timer, s->cpu_time +
171
                cadence_timer_get_ns(s, event_interval));
172
}
173

    
174
static void cadence_timer_sync(CadenceTimerState *s)
175
{
176
    int i;
177
    int64_t r, x;
178
    int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
179
            (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
180
    uint64_t old_time = s->cpu_time;
181

    
182
    s->cpu_time = qemu_get_clock_ns(vm_clock);
183
    DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
184

    
185
    if (!s->cpu_time_valid || old_time == s->cpu_time) {
186
        s->cpu_time_valid = 1;
187
        return;
188
    }
189

    
190
    r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
191
    x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
192

    
193
    for (i = 0; i < 3; ++i) {
194
        int64_t m = (int64_t)s->reg_match[i] << 16;
195
        if (m > interval) {
196
            continue;
197
        }
198
        /* check to see if match event has occurred. check m +/- interval
199
         * to account for match events in wrap around cases */
200
        if (is_between(m, s->reg_value, x) ||
201
            is_between(m + interval, s->reg_value, x) ||
202
            is_between(m - interval, s->reg_value, x)) {
203
            s->reg_intr |= (2 << i);
204
        }
205
    }
206
    while (x < 0) {
207
        x += interval;
208
    }
209
    s->reg_value = (uint32_t)(x % interval);
210

    
211
    if (s->reg_value != x) {
212
        s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
213
            COUNTER_INTR_IV : COUNTER_INTR_OV;
214
    }
215
    cadence_timer_update(s);
216
}
217

    
218
static void cadence_timer_tick(void *opaque)
219
{
220
    CadenceTimerState *s = opaque;
221

    
222
    DB_PRINT("\n");
223
    cadence_timer_sync(s);
224
    cadence_timer_run(s);
225
}
226

    
227
static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
228
{
229
    CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
230
    uint32_t value;
231

    
232
    cadence_timer_sync(s);
233
    cadence_timer_run(s);
234

    
235
    switch (offset) {
236
    case 0x00: /* clock control */
237
    case 0x04:
238
    case 0x08:
239
        return s->reg_clock;
240

    
241
    case 0x0c: /* counter control */
242
    case 0x10:
243
    case 0x14:
244
        return s->reg_count;
245

    
246
    case 0x18: /* counter value */
247
    case 0x1c:
248
    case 0x20:
249
        return (uint16_t)(s->reg_value >> 16);
250

    
251
    case 0x24: /* reg_interval counter */
252
    case 0x28:
253
    case 0x2c:
254
        return s->reg_interval;
255

    
256
    case 0x30: /* match 1 counter */
257
    case 0x34:
258
    case 0x38:
259
        return s->reg_match[0];
260

    
261
    case 0x3c: /* match 2 counter */
262
    case 0x40:
263
    case 0x44:
264
        return s->reg_match[1];
265

    
266
    case 0x48: /* match 3 counter */
267
    case 0x4c:
268
    case 0x50:
269
        return s->reg_match[2];
270

    
271
    case 0x54: /* interrupt register */
272
    case 0x58:
273
    case 0x5c:
274
        /* cleared after read */
275
        value = s->reg_intr;
276
        s->reg_intr = 0;
277
        cadence_timer_update(s);
278
        return value;
279

    
280
    case 0x60: /* interrupt enable */
281
    case 0x64:
282
    case 0x68:
283
        return s->reg_intr_en;
284

    
285
    case 0x6c:
286
    case 0x70:
287
    case 0x74:
288
        return s->reg_event_ctrl;
289

    
290
    case 0x78:
291
    case 0x7c:
292
    case 0x80:
293
        return s->reg_event;
294

    
295
    default:
296
        return 0;
297
    }
298
}
299

    
300
static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
301
    unsigned size)
302
{
303
    uint32_t ret = cadence_ttc_read_imp(opaque, offset);
304

    
305
    DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
306
    return ret;
307
}
308

    
309
static void cadence_ttc_write(void *opaque, hwaddr offset,
310
        uint64_t value, unsigned size)
311
{
312
    CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
313

    
314
    DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
315

    
316
    cadence_timer_sync(s);
317

    
318
    switch (offset) {
319
    case 0x00: /* clock control */
320
    case 0x04:
321
    case 0x08:
322
        s->reg_clock = value & 0x3F;
323
        break;
324

    
325
    case 0x0c: /* counter control */
326
    case 0x10:
327
    case 0x14:
328
        if (value & COUNTER_CTRL_RST) {
329
            s->reg_value = 0;
330
        }
331
        s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
332
        break;
333

    
334
    case 0x24: /* interval register */
335
    case 0x28:
336
    case 0x2c:
337
        s->reg_interval = value & 0xffff;
338
        break;
339

    
340
    case 0x30: /* match register */
341
    case 0x34:
342
    case 0x38:
343
        s->reg_match[0] = value & 0xffff;
344

    
345
    case 0x3c: /* match register */
346
    case 0x40:
347
    case 0x44:
348
        s->reg_match[1] = value & 0xffff;
349

    
350
    case 0x48: /* match register */
351
    case 0x4c:
352
    case 0x50:
353
        s->reg_match[2] = value & 0xffff;
354
        break;
355

    
356
    case 0x54: /* interrupt register */
357
    case 0x58:
358
    case 0x5c:
359
        break;
360

    
361
    case 0x60: /* interrupt enable */
362
    case 0x64:
363
    case 0x68:
364
        s->reg_intr_en = value & 0x3f;
365
        break;
366

    
367
    case 0x6c: /* event control */
368
    case 0x70:
369
    case 0x74:
370
        s->reg_event_ctrl = value & 0x07;
371
        break;
372

    
373
    default:
374
        return;
375
    }
376

    
377
    cadence_timer_run(s);
378
    cadence_timer_update(s);
379
}
380

    
381
static const MemoryRegionOps cadence_ttc_ops = {
382
    .read = cadence_ttc_read,
383
    .write = cadence_ttc_write,
384
    .endianness = DEVICE_NATIVE_ENDIAN,
385
};
386

    
387
static void cadence_timer_reset(CadenceTimerState *s)
388
{
389
   s->reg_count = 0x21;
390
}
391

    
392
static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
393
{
394
    memset(s, 0, sizeof(CadenceTimerState));
395
    s->freq = freq;
396

    
397
    cadence_timer_reset(s);
398

    
399
    s->timer = qemu_new_timer_ns(vm_clock, cadence_timer_tick, s);
400
}
401

    
402
static int cadence_ttc_init(SysBusDevice *dev)
403
{
404
    CadenceTTCState *s = FROM_SYSBUS(CadenceTTCState, dev);
405
    int i;
406

    
407
    for (i = 0; i < 3; ++i) {
408
        cadence_timer_init(133000000, &s->timer[i]);
409
        sysbus_init_irq(dev, &s->timer[i].irq);
410
    }
411

    
412
    memory_region_init_io(&s->iomem, &cadence_ttc_ops, s, "timer", 0x1000);
413
    sysbus_init_mmio(dev, &s->iomem);
414

    
415
    return 0;
416
}
417

    
418
static void cadence_timer_pre_save(void *opaque)
419
{
420
    cadence_timer_sync((CadenceTimerState *)opaque);
421
}
422

    
423
static int cadence_timer_post_load(void *opaque, int version_id)
424
{
425
    CadenceTimerState *s = opaque;
426

    
427
    s->cpu_time_valid = 0;
428
    cadence_timer_sync(s);
429
    cadence_timer_run(s);
430
    cadence_timer_update(s);
431
    return 0;
432
}
433

    
434
static const VMStateDescription vmstate_cadence_timer = {
435
    .name = "cadence_timer",
436
    .version_id = 1,
437
    .minimum_version_id = 1,
438
    .minimum_version_id_old = 1,
439
    .pre_save = cadence_timer_pre_save,
440
    .post_load = cadence_timer_post_load,
441
    .fields = (VMStateField[]) {
442
        VMSTATE_UINT32(reg_clock, CadenceTimerState),
443
        VMSTATE_UINT32(reg_count, CadenceTimerState),
444
        VMSTATE_UINT32(reg_value, CadenceTimerState),
445
        VMSTATE_UINT16(reg_interval, CadenceTimerState),
446
        VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
447
        VMSTATE_UINT32(reg_intr, CadenceTimerState),
448
        VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
449
        VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
450
        VMSTATE_UINT32(reg_event, CadenceTimerState),
451
        VMSTATE_END_OF_LIST()
452
    }
453
};
454

    
455
static const VMStateDescription vmstate_cadence_ttc = {
456
    .name = "cadence_TTC",
457
    .version_id = 1,
458
    .minimum_version_id = 1,
459
    .minimum_version_id_old = 1,
460
    .fields = (VMStateField[]) {
461
        VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
462
                            vmstate_cadence_timer,
463
                            CadenceTimerState),
464
        VMSTATE_END_OF_LIST()
465
    }
466
};
467

    
468
static void cadence_ttc_class_init(ObjectClass *klass, void *data)
469
{
470
    DeviceClass *dc = DEVICE_CLASS(klass);
471
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
472

    
473
    sdc->init = cadence_ttc_init;
474
    dc->vmsd = &vmstate_cadence_ttc;
475
}
476

    
477
static const TypeInfo cadence_ttc_info = {
478
    .name  = "cadence_ttc",
479
    .parent = TYPE_SYS_BUS_DEVICE,
480
    .instance_size  = sizeof(CadenceTTCState),
481
    .class_init = cadence_ttc_class_init,
482
};
483

    
484
static void cadence_ttc_register_types(void)
485
{
486
    type_register_static(&cadence_ttc_info);
487
}
488

    
489
type_init(cadence_ttc_register_types)