Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 4af39611

History | View | Annotate | Download (76.3 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@item Syborg SVP base model (ARM Cortex-A8).
95
@end itemize
96

    
97
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
98

    
99
@node Installation
100
@chapter Installation
101

    
102
If you want to compile QEMU yourself, see @ref{compilation}.
103

    
104
@menu
105
* install_linux::   Linux
106
* install_windows:: Windows
107
* install_mac::     Macintosh
108
@end menu
109

    
110
@node install_linux
111
@section Linux
112

    
113
If a precompiled package is available for your distribution - you just
114
have to install it. Otherwise, see @ref{compilation}.
115

    
116
@node install_windows
117
@section Windows
118

    
119
Download the experimental binary installer at
120
@url{http://www.free.oszoo.org/@/download.html}.
121

    
122
@node install_mac
123
@section Mac OS X
124

    
125
Download the experimental binary installer at
126
@url{http://www.free.oszoo.org/@/download.html}.
127

    
128
@node QEMU PC System emulator
129
@chapter QEMU PC System emulator
130

    
131
@menu
132
* pcsys_introduction:: Introduction
133
* pcsys_quickstart::   Quick Start
134
* sec_invocation::     Invocation
135
* pcsys_keys::         Keys
136
* pcsys_monitor::      QEMU Monitor
137
* disk_images::        Disk Images
138
* pcsys_network::      Network emulation
139
* direct_linux_boot::  Direct Linux Boot
140
* pcsys_usb::          USB emulation
141
* vnc_security::       VNC security
142
* gdb_usage::          GDB usage
143
* pcsys_os_specific::  Target OS specific information
144
@end menu
145

    
146
@node pcsys_introduction
147
@section Introduction
148

    
149
@c man begin DESCRIPTION
150

    
151
The QEMU PC System emulator simulates the
152
following peripherals:
153

    
154
@itemize @minus
155
@item
156
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
157
@item
158
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
159
extensions (hardware level, including all non standard modes).
160
@item
161
PS/2 mouse and keyboard
162
@item
163
2 PCI IDE interfaces with hard disk and CD-ROM support
164
@item
165
Floppy disk
166
@item
167
PCI/ISA PCI network adapters
168
@item
169
Serial ports
170
@item
171
Creative SoundBlaster 16 sound card
172
@item
173
ENSONIQ AudioPCI ES1370 sound card
174
@item
175
Intel 82801AA AC97 Audio compatible sound card
176
@item
177
Adlib(OPL2) - Yamaha YM3812 compatible chip
178
@item
179
Gravis Ultrasound GF1 sound card
180
@item
181
CS4231A compatible sound card
182
@item
183
PCI UHCI USB controller and a virtual USB hub.
184
@end itemize
185

    
186
SMP is supported with up to 255 CPUs.
187

    
188
Note that adlib, gus and cs4231a are only available when QEMU was
189
configured with --audio-card-list option containing the name(s) of
190
required card(s).
191

    
192
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
193
VGA BIOS.
194

    
195
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
196

    
197
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
198
by Tibor "TS" Sch?tz.
199

    
200
CS4231A is the chip used in Windows Sound System and GUSMAX products
201

    
202
@c man end
203

    
204
@node pcsys_quickstart
205
@section Quick Start
206

    
207
Download and uncompress the linux image (@file{linux.img}) and type:
208

    
209
@example
210
qemu linux.img
211
@end example
212

    
213
Linux should boot and give you a prompt.
214

    
215
@node sec_invocation
216
@section Invocation
217

    
218
@example
219
@c man begin SYNOPSIS
220
usage: qemu [options] [@var{disk_image}]
221
@c man end
222
@end example
223

    
224
@c man begin OPTIONS
225
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
226
targets do not need a disk image.
227

    
228
@include qemu-options.texi
229

    
230
@c man end
231

    
232
@node pcsys_keys
233
@section Keys
234

    
235
@c man begin OPTIONS
236

    
237
During the graphical emulation, you can use the following keys:
238
@table @key
239
@item Ctrl-Alt-f
240
Toggle full screen
241

    
242
@item Ctrl-Alt-n
243
Switch to virtual console 'n'. Standard console mappings are:
244
@table @emph
245
@item 1
246
Target system display
247
@item 2
248
Monitor
249
@item 3
250
Serial port
251
@end table
252

    
253
@item Ctrl-Alt
254
Toggle mouse and keyboard grab.
255
@end table
256

    
257
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
258
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
259

    
260
During emulation, if you are using the @option{-nographic} option, use
261
@key{Ctrl-a h} to get terminal commands:
262

    
263
@table @key
264
@item Ctrl-a h
265
@item Ctrl-a ?
266
Print this help
267
@item Ctrl-a x
268
Exit emulator
269
@item Ctrl-a s
270
Save disk data back to file (if -snapshot)
271
@item Ctrl-a t
272
Toggle console timestamps
273
@item Ctrl-a b
274
Send break (magic sysrq in Linux)
275
@item Ctrl-a c
276
Switch between console and monitor
277
@item Ctrl-a Ctrl-a
278
Send Ctrl-a
279
@end table
280
@c man end
281

    
282
@ignore
283

    
284
@c man begin SEEALSO
285
The HTML documentation of QEMU for more precise information and Linux
286
user mode emulator invocation.
287
@c man end
288

    
289
@c man begin AUTHOR
290
Fabrice Bellard
291
@c man end
292

    
293
@end ignore
294

    
295
@node pcsys_monitor
296
@section QEMU Monitor
297

    
298
The QEMU monitor is used to give complex commands to the QEMU
299
emulator. You can use it to:
300

    
301
@itemize @minus
302

    
303
@item
304
Remove or insert removable media images
305
(such as CD-ROM or floppies).
306

    
307
@item
308
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
309
from a disk file.
310

    
311
@item Inspect the VM state without an external debugger.
312

    
313
@end itemize
314

    
315
@subsection Commands
316

    
317
The following commands are available:
318

    
319
@table @option
320

    
321
@item help or ? [@var{cmd}]
322
Show the help for all commands or just for command @var{cmd}.
323

    
324
@item commit
325
Commit changes to the disk images (if -snapshot is used).
326

    
327
@item info @var{subcommand}
328
Show various information about the system state.
329

    
330
@table @option
331
@item info version
332
show the version of QEMU
333
@item info network
334
show the various VLANs and the associated devices
335
@item info chardev
336
show the character devices
337
@item info block
338
show the block devices
339
@item info block
340
show block device statistics
341
@item info registers
342
show the cpu registers
343
@item info cpus
344
show infos for each CPU
345
@item info history
346
show the command line history
347
@item info irq
348
show the interrupts statistics (if available)
349
@item info pic
350
show i8259 (PIC) state
351
@item info pci
352
show emulated PCI device info
353
@item info tlb
354
show virtual to physical memory mappings (i386 only)
355
@item info mem
356
show the active virtual memory mappings (i386 only)
357
@item info hpet
358
show state of HPET (i386 only)
359
@item info kqemu
360
show KQEMU information
361
@item info kvm
362
show KVM information
363
@item info usb
364
show USB devices plugged on the virtual USB hub
365
@item info usbhost
366
show all USB host devices
367
@item info profile
368
show profiling information
369
@item info capture
370
show information about active capturing
371
@item info snapshots
372
show list of VM snapshots
373
@item info status
374
show the current VM status (running|paused)
375
@item info pcmcia
376
show guest PCMCIA status
377
@item info mice
378
show which guest mouse is receiving events
379
@item info vnc
380
show the vnc server status
381
@item info name
382
show the current VM name
383
@item info uuid
384
show the current VM UUID
385
@item info cpustats
386
show CPU statistics
387
@item info slirp
388
show SLIRP statistics (if available)
389
@item info migrate
390
show migration status
391
@item info balloon
392
show balloon information
393
@end table
394

    
395
@item q or quit
396
Quit the emulator.
397

    
398
@item eject [-f] @var{device}
399
Eject a removable medium (use -f to force it).
400

    
401
@item change @var{device} @var{setting}
402

    
403
Change the configuration of a device.
404

    
405
@table @option
406
@item change @var{diskdevice} @var{filename} [@var{format}]
407
Change the medium for a removable disk device to point to @var{filename}. eg
408

    
409
@example
410
(qemu) change ide1-cd0 /path/to/some.iso
411
@end example
412

    
413
@var{format} is optional.
414

    
415
@item change vnc @var{display},@var{options}
416
Change the configuration of the VNC server. The valid syntax for @var{display}
417
and @var{options} are described at @ref{sec_invocation}. eg
418

    
419
@example
420
(qemu) change vnc localhost:1
421
@end example
422

    
423
@item change vnc password [@var{password}]
424

    
425
Change the password associated with the VNC server. If the new password is not
426
supplied, the monitor will prompt for it to be entered. VNC passwords are only
427
significant up to 8 letters. eg
428

    
429
@example
430
(qemu) change vnc password
431
Password: ********
432
@end example
433

    
434
@end table
435

    
436
@item acl @var{subcommand} @var{aclname} @var{match} @var{index}
437

    
438
Manage access control lists for network services. There are currently
439
two named access control lists, @var{vnc.x509dname} and @var{vnc.username}
440
matching on the x509 client certificate distinguished name, and SASL
441
username respectively.
442

    
443
@table @option
444
@item acl show <aclname>
445
list all the match rules in the access control list, and the default
446
policy
447
@item acl policy <aclname> @code{allow|deny}
448
set the default access control list policy, used in the event that
449
none of the explicit rules match. The default policy at startup is
450
always @code{deny}
451
@item acl allow <aclname> <match> [<index>]
452
add a match to the access control list, allowing access. The match will
453
normally be an exact username or x509 distinguished name, but can
454
optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
455
all users in the @code{EXAMPLE.COM} kerberos realm. The match will
456
normally be appended to the end of the ACL, but can be inserted
457
earlier in the list if the optional @code{index} parameter is supplied.
458
@item acl deny <aclname> <match> [<index>]
459
add a match to the access control list, denying access. The match will
460
normally be an exact username or x509 distinguished name, but can
461
optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
462
all users in the @code{EXAMPLE.COM} kerberos realm. The match will
463
normally be appended to the end of the ACL, but can be inserted
464
earlier in the list if the optional @code{index} parameter is supplied.
465
@item acl remove <aclname> <match>
466
remove the specified match rule from the access control list.
467
@item acl reset <aclname>
468
remove all matches from the access control list, and set the default
469
policy back to @code{deny}.
470
@end table
471

    
472
@item screendump @var{filename}
473
Save screen into PPM image @var{filename}.
474

    
475
@item logfile @var{filename}
476
Output logs to @var{filename}.
477

    
478
@item log @var{item1}[,...]
479
Activate logging of the specified items to @file{/tmp/qemu.log}.
480

    
481
@item savevm [@var{tag}|@var{id}]
482
Create a snapshot of the whole virtual machine. If @var{tag} is
483
provided, it is used as human readable identifier. If there is already
484
a snapshot with the same tag or ID, it is replaced. More info at
485
@ref{vm_snapshots}.
486

    
487
@item loadvm @var{tag}|@var{id}
488
Set the whole virtual machine to the snapshot identified by the tag
489
@var{tag} or the unique snapshot ID @var{id}.
490

    
491
@item delvm @var{tag}|@var{id}
492
Delete the snapshot identified by @var{tag} or @var{id}.
493

    
494
@item singlestep [off]
495
Run the emulation in single step mode.
496
If called with option off, the emulation returns to normal mode.
497

    
498
@item stop
499
Stop emulation.
500

    
501
@item c or cont
502
Resume emulation.
503

    
504
@item gdbserver [@var{port}]
505
Start gdbserver session (default @var{port}=1234)
506

    
507
@item x/fmt @var{addr}
508
Virtual memory dump starting at @var{addr}.
509

    
510
@item xp /@var{fmt} @var{addr}
511
Physical memory dump starting at @var{addr}.
512

    
513
@var{fmt} is a format which tells the command how to format the
514
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
515

    
516
@table @var
517
@item count
518
is the number of items to be dumped.
519

    
520
@item format
521
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
522
c (char) or i (asm instruction).
523

    
524
@item size
525
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
526
@code{h} or @code{w} can be specified with the @code{i} format to
527
respectively select 16 or 32 bit code instruction size.
528

    
529
@end table
530

    
531
Examples:
532
@itemize
533
@item
534
Dump 10 instructions at the current instruction pointer:
535
@example
536
(qemu) x/10i $eip
537
0x90107063:  ret
538
0x90107064:  sti
539
0x90107065:  lea    0x0(%esi,1),%esi
540
0x90107069:  lea    0x0(%edi,1),%edi
541
0x90107070:  ret
542
0x90107071:  jmp    0x90107080
543
0x90107073:  nop
544
0x90107074:  nop
545
0x90107075:  nop
546
0x90107076:  nop
547
@end example
548

    
549
@item
550
Dump 80 16 bit values at the start of the video memory.
551
@smallexample
552
(qemu) xp/80hx 0xb8000
553
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
554
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
555
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
556
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
557
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
558
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
559
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
560
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
561
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
562
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
563
@end smallexample
564
@end itemize
565

    
566
@item p or print/@var{fmt} @var{expr}
567

    
568
Print expression value. Only the @var{format} part of @var{fmt} is
569
used.
570

    
571
@item sendkey @var{keys}
572

    
573
Send @var{keys} to the emulator. @var{keys} could be the name of the
574
key or @code{#} followed by the raw value in either decimal or hexadecimal
575
format. Use @code{-} to press several keys simultaneously. Example:
576
@example
577
sendkey ctrl-alt-f1
578
@end example
579

    
580
This command is useful to send keys that your graphical user interface
581
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
582

    
583
@item system_reset
584

    
585
Reset the system.
586

    
587
@item system_powerdown
588

    
589
Power down the system (if supported).
590

    
591
@item sum @var{addr} @var{size}
592

    
593
Compute the checksum of a memory region.
594

    
595
@item usb_add @var{devname}
596

    
597
Add the USB device @var{devname}.  For details of available devices see
598
@ref{usb_devices}
599

    
600
@item usb_del @var{devname}
601

    
602
Remove the USB device @var{devname} from the QEMU virtual USB
603
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
604
command @code{info usb} to see the devices you can remove.
605

    
606
@item mouse_move @var{dx} @var{dy} [@var{dz}]
607
Move the active mouse to the specified coordinates @var{dx} @var{dy}
608
with optional scroll axis @var{dz}.
609

    
610
@item mouse_button @var{val}
611
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
612

    
613
@item mouse_set @var{index}
614
Set which mouse device receives events at given @var{index}, index
615
can be obtained with
616
@example
617
info mice
618
@end example
619

    
620
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
621
Capture audio into @var{filename}. Using sample rate @var{frequency}
622
bits per sample @var{bits} and number of channels @var{channels}.
623

    
624
Defaults:
625
@itemize @minus
626
@item Sample rate = 44100 Hz - CD quality
627
@item Bits = 16
628
@item Number of channels = 2 - Stereo
629
@end itemize
630

    
631
@item stopcapture @var{index}
632
Stop capture with a given @var{index}, index can be obtained with
633
@example
634
info capture
635
@end example
636

    
637
@item memsave @var{addr} @var{size} @var{file}
638
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
639

    
640
@item pmemsave @var{addr} @var{size} @var{file}
641
save to disk physical memory dump starting at @var{addr} of size @var{size}.
642

    
643
@item boot_set @var{bootdevicelist}
644

    
645
Define new values for the boot device list. Those values will override
646
the values specified on the command line through the @code{-boot} option.
647

    
648
The values that can be specified here depend on the machine type, but are
649
the same that can be specified in the @code{-boot} command line option.
650

    
651
@item nmi @var{cpu}
652
Inject an NMI on the given CPU.
653

    
654
@item migrate [-d] @var{uri}
655
Migrate to @var{uri} (using -d to not wait for completion).
656

    
657
@item migrate_cancel
658
Cancel the current VM migration.
659

    
660
@item migrate_set_speed @var{value}
661
Set maximum speed to @var{value} (in bytes) for migrations.
662

    
663
@item balloon @var{value}
664
Request VM to change its memory allocation to @var{value} (in MB).
665

    
666
@item set_link @var{name} [up|down]
667
Set link @var{name} up or down.
668

    
669
@end table
670

    
671
@subsection Integer expressions
672

    
673
The monitor understands integers expressions for every integer
674
argument. You can use register names to get the value of specifics
675
CPU registers by prefixing them with @emph{$}.
676

    
677
@node disk_images
678
@section Disk Images
679

    
680
Since version 0.6.1, QEMU supports many disk image formats, including
681
growable disk images (their size increase as non empty sectors are
682
written), compressed and encrypted disk images. Version 0.8.3 added
683
the new qcow2 disk image format which is essential to support VM
684
snapshots.
685

    
686
@menu
687
* disk_images_quickstart::    Quick start for disk image creation
688
* disk_images_snapshot_mode:: Snapshot mode
689
* vm_snapshots::              VM snapshots
690
* qemu_img_invocation::       qemu-img Invocation
691
* qemu_nbd_invocation::       qemu-nbd Invocation
692
* host_drives::               Using host drives
693
* disk_images_fat_images::    Virtual FAT disk images
694
* disk_images_nbd::           NBD access
695
@end menu
696

    
697
@node disk_images_quickstart
698
@subsection Quick start for disk image creation
699

    
700
You can create a disk image with the command:
701
@example
702
qemu-img create myimage.img mysize
703
@end example
704
where @var{myimage.img} is the disk image filename and @var{mysize} is its
705
size in kilobytes. You can add an @code{M} suffix to give the size in
706
megabytes and a @code{G} suffix for gigabytes.
707

    
708
See @ref{qemu_img_invocation} for more information.
709

    
710
@node disk_images_snapshot_mode
711
@subsection Snapshot mode
712

    
713
If you use the option @option{-snapshot}, all disk images are
714
considered as read only. When sectors in written, they are written in
715
a temporary file created in @file{/tmp}. You can however force the
716
write back to the raw disk images by using the @code{commit} monitor
717
command (or @key{C-a s} in the serial console).
718

    
719
@node vm_snapshots
720
@subsection VM snapshots
721

    
722
VM snapshots are snapshots of the complete virtual machine including
723
CPU state, RAM, device state and the content of all the writable
724
disks. In order to use VM snapshots, you must have at least one non
725
removable and writable block device using the @code{qcow2} disk image
726
format. Normally this device is the first virtual hard drive.
727

    
728
Use the monitor command @code{savevm} to create a new VM snapshot or
729
replace an existing one. A human readable name can be assigned to each
730
snapshot in addition to its numerical ID.
731

    
732
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
733
a VM snapshot. @code{info snapshots} lists the available snapshots
734
with their associated information:
735

    
736
@example
737
(qemu) info snapshots
738
Snapshot devices: hda
739
Snapshot list (from hda):
740
ID        TAG                 VM SIZE                DATE       VM CLOCK
741
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
742
2                                 40M 2006-08-06 12:43:29   00:00:18.633
743
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
744
@end example
745

    
746
A VM snapshot is made of a VM state info (its size is shown in
747
@code{info snapshots}) and a snapshot of every writable disk image.
748
The VM state info is stored in the first @code{qcow2} non removable
749
and writable block device. The disk image snapshots are stored in
750
every disk image. The size of a snapshot in a disk image is difficult
751
to evaluate and is not shown by @code{info snapshots} because the
752
associated disk sectors are shared among all the snapshots to save
753
disk space (otherwise each snapshot would need a full copy of all the
754
disk images).
755

    
756
When using the (unrelated) @code{-snapshot} option
757
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
758
but they are deleted as soon as you exit QEMU.
759

    
760
VM snapshots currently have the following known limitations:
761
@itemize
762
@item
763
They cannot cope with removable devices if they are removed or
764
inserted after a snapshot is done.
765
@item
766
A few device drivers still have incomplete snapshot support so their
767
state is not saved or restored properly (in particular USB).
768
@end itemize
769

    
770
@node qemu_img_invocation
771
@subsection @code{qemu-img} Invocation
772

    
773
@include qemu-img.texi
774

    
775
@node qemu_nbd_invocation
776
@subsection @code{qemu-nbd} Invocation
777

    
778
@include qemu-nbd.texi
779

    
780
@node host_drives
781
@subsection Using host drives
782

    
783
In addition to disk image files, QEMU can directly access host
784
devices. We describe here the usage for QEMU version >= 0.8.3.
785

    
786
@subsubsection Linux
787

    
788
On Linux, you can directly use the host device filename instead of a
789
disk image filename provided you have enough privileges to access
790
it. For example, use @file{/dev/cdrom} to access to the CDROM or
791
@file{/dev/fd0} for the floppy.
792

    
793
@table @code
794
@item CD
795
You can specify a CDROM device even if no CDROM is loaded. QEMU has
796
specific code to detect CDROM insertion or removal. CDROM ejection by
797
the guest OS is supported. Currently only data CDs are supported.
798
@item Floppy
799
You can specify a floppy device even if no floppy is loaded. Floppy
800
removal is currently not detected accurately (if you change floppy
801
without doing floppy access while the floppy is not loaded, the guest
802
OS will think that the same floppy is loaded).
803
@item Hard disks
804
Hard disks can be used. Normally you must specify the whole disk
805
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
806
see it as a partitioned disk. WARNING: unless you know what you do, it
807
is better to only make READ-ONLY accesses to the hard disk otherwise
808
you may corrupt your host data (use the @option{-snapshot} command
809
line option or modify the device permissions accordingly).
810
@end table
811

    
812
@subsubsection Windows
813

    
814
@table @code
815
@item CD
816
The preferred syntax is the drive letter (e.g. @file{d:}). The
817
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
818
supported as an alias to the first CDROM drive.
819

    
820
Currently there is no specific code to handle removable media, so it
821
is better to use the @code{change} or @code{eject} monitor commands to
822
change or eject media.
823
@item Hard disks
824
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
825
where @var{N} is the drive number (0 is the first hard disk).
826

    
827
WARNING: unless you know what you do, it is better to only make
828
READ-ONLY accesses to the hard disk otherwise you may corrupt your
829
host data (use the @option{-snapshot} command line so that the
830
modifications are written in a temporary file).
831
@end table
832

    
833

    
834
@subsubsection Mac OS X
835

    
836
@file{/dev/cdrom} is an alias to the first CDROM.
837

    
838
Currently there is no specific code to handle removable media, so it
839
is better to use the @code{change} or @code{eject} monitor commands to
840
change or eject media.
841

    
842
@node disk_images_fat_images
843
@subsection Virtual FAT disk images
844

    
845
QEMU can automatically create a virtual FAT disk image from a
846
directory tree. In order to use it, just type:
847

    
848
@example
849
qemu linux.img -hdb fat:/my_directory
850
@end example
851

    
852
Then you access access to all the files in the @file{/my_directory}
853
directory without having to copy them in a disk image or to export
854
them via SAMBA or NFS. The default access is @emph{read-only}.
855

    
856
Floppies can be emulated with the @code{:floppy:} option:
857

    
858
@example
859
qemu linux.img -fda fat:floppy:/my_directory
860
@end example
861

    
862
A read/write support is available for testing (beta stage) with the
863
@code{:rw:} option:
864

    
865
@example
866
qemu linux.img -fda fat:floppy:rw:/my_directory
867
@end example
868

    
869
What you should @emph{never} do:
870
@itemize
871
@item use non-ASCII filenames ;
872
@item use "-snapshot" together with ":rw:" ;
873
@item expect it to work when loadvm'ing ;
874
@item write to the FAT directory on the host system while accessing it with the guest system.
875
@end itemize
876

    
877
@node disk_images_nbd
878
@subsection NBD access
879

    
880
QEMU can access directly to block device exported using the Network Block Device
881
protocol.
882

    
883
@example
884
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
885
@end example
886

    
887
If the NBD server is located on the same host, you can use an unix socket instead
888
of an inet socket:
889

    
890
@example
891
qemu linux.img -hdb nbd:unix:/tmp/my_socket
892
@end example
893

    
894
In this case, the block device must be exported using qemu-nbd:
895

    
896
@example
897
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
898
@end example
899

    
900
The use of qemu-nbd allows to share a disk between several guests:
901
@example
902
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
903
@end example
904

    
905
and then you can use it with two guests:
906
@example
907
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
908
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
909
@end example
910

    
911
@node pcsys_network
912
@section Network emulation
913

    
914
QEMU can simulate several network cards (PCI or ISA cards on the PC
915
target) and can connect them to an arbitrary number of Virtual Local
916
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
917
VLAN. VLAN can be connected between separate instances of QEMU to
918
simulate large networks. For simpler usage, a non privileged user mode
919
network stack can replace the TAP device to have a basic network
920
connection.
921

    
922
@subsection VLANs
923

    
924
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
925
connection between several network devices. These devices can be for
926
example QEMU virtual Ethernet cards or virtual Host ethernet devices
927
(TAP devices).
928

    
929
@subsection Using TAP network interfaces
930

    
931
This is the standard way to connect QEMU to a real network. QEMU adds
932
a virtual network device on your host (called @code{tapN}), and you
933
can then configure it as if it was a real ethernet card.
934

    
935
@subsubsection Linux host
936

    
937
As an example, you can download the @file{linux-test-xxx.tar.gz}
938
archive and copy the script @file{qemu-ifup} in @file{/etc} and
939
configure properly @code{sudo} so that the command @code{ifconfig}
940
contained in @file{qemu-ifup} can be executed as root. You must verify
941
that your host kernel supports the TAP network interfaces: the
942
device @file{/dev/net/tun} must be present.
943

    
944
See @ref{sec_invocation} to have examples of command lines using the
945
TAP network interfaces.
946

    
947
@subsubsection Windows host
948

    
949
There is a virtual ethernet driver for Windows 2000/XP systems, called
950
TAP-Win32. But it is not included in standard QEMU for Windows,
951
so you will need to get it separately. It is part of OpenVPN package,
952
so download OpenVPN from : @url{http://openvpn.net/}.
953

    
954
@subsection Using the user mode network stack
955

    
956
By using the option @option{-net user} (default configuration if no
957
@option{-net} option is specified), QEMU uses a completely user mode
958
network stack (you don't need root privilege to use the virtual
959
network). The virtual network configuration is the following:
960

    
961
@example
962

    
963
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
964
                           |          (10.0.2.2)
965
                           |
966
                           ---->  DNS server (10.0.2.3)
967
                           |
968
                           ---->  SMB server (10.0.2.4)
969
@end example
970

    
971
The QEMU VM behaves as if it was behind a firewall which blocks all
972
incoming connections. You can use a DHCP client to automatically
973
configure the network in the QEMU VM. The DHCP server assign addresses
974
to the hosts starting from 10.0.2.15.
975

    
976
In order to check that the user mode network is working, you can ping
977
the address 10.0.2.2 and verify that you got an address in the range
978
10.0.2.x from the QEMU virtual DHCP server.
979

    
980
Note that @code{ping} is not supported reliably to the internet as it
981
would require root privileges. It means you can only ping the local
982
router (10.0.2.2).
983

    
984
When using the built-in TFTP server, the router is also the TFTP
985
server.
986

    
987
When using the @option{-redir} option, TCP or UDP connections can be
988
redirected from the host to the guest. It allows for example to
989
redirect X11, telnet or SSH connections.
990

    
991
@subsection Connecting VLANs between QEMU instances
992

    
993
Using the @option{-net socket} option, it is possible to make VLANs
994
that span several QEMU instances. See @ref{sec_invocation} to have a
995
basic example.
996

    
997
@node direct_linux_boot
998
@section Direct Linux Boot
999

    
1000
This section explains how to launch a Linux kernel inside QEMU without
1001
having to make a full bootable image. It is very useful for fast Linux
1002
kernel testing.
1003

    
1004
The syntax is:
1005
@example
1006
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1007
@end example
1008

    
1009
Use @option{-kernel} to provide the Linux kernel image and
1010
@option{-append} to give the kernel command line arguments. The
1011
@option{-initrd} option can be used to provide an INITRD image.
1012

    
1013
When using the direct Linux boot, a disk image for the first hard disk
1014
@file{hda} is required because its boot sector is used to launch the
1015
Linux kernel.
1016

    
1017
If you do not need graphical output, you can disable it and redirect
1018
the virtual serial port and the QEMU monitor to the console with the
1019
@option{-nographic} option. The typical command line is:
1020
@example
1021
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1022
     -append "root=/dev/hda console=ttyS0" -nographic
1023
@end example
1024

    
1025
Use @key{Ctrl-a c} to switch between the serial console and the
1026
monitor (@pxref{pcsys_keys}).
1027

    
1028
@node pcsys_usb
1029
@section USB emulation
1030

    
1031
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1032
virtual USB devices or real host USB devices (experimental, works only
1033
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1034
as necessary to connect multiple USB devices.
1035

    
1036
@menu
1037
* usb_devices::
1038
* host_usb_devices::
1039
@end menu
1040
@node usb_devices
1041
@subsection Connecting USB devices
1042

    
1043
USB devices can be connected with the @option{-usbdevice} commandline option
1044
or the @code{usb_add} monitor command.  Available devices are:
1045

    
1046
@table @code
1047
@item mouse
1048
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1049
@item tablet
1050
Pointer device that uses absolute coordinates (like a touchscreen).
1051
This means qemu is able to report the mouse position without having
1052
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1053
@item disk:@var{file}
1054
Mass storage device based on @var{file} (@pxref{disk_images})
1055
@item host:@var{bus.addr}
1056
Pass through the host device identified by @var{bus.addr}
1057
(Linux only)
1058
@item host:@var{vendor_id:product_id}
1059
Pass through the host device identified by @var{vendor_id:product_id}
1060
(Linux only)
1061
@item wacom-tablet
1062
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1063
above but it can be used with the tslib library because in addition to touch
1064
coordinates it reports touch pressure.
1065
@item keyboard
1066
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1067
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1068
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1069
device @var{dev}. The available character devices are the same as for the
1070
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1071
used to override the default 0403:6001. For instance, 
1072
@example
1073
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1074
@end example
1075
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1076
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1077
@item braille
1078
Braille device.  This will use BrlAPI to display the braille output on a real
1079
or fake device.
1080
@item net:@var{options}
1081
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1082
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1083
For instance, user-mode networking can be used with
1084
@example
1085
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1086
@end example
1087
Currently this cannot be used in machines that support PCI NICs.
1088
@item bt[:@var{hci-type}]
1089
Bluetooth dongle whose type is specified in the same format as with
1090
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1091
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1092
This USB device implements the USB Transport Layer of HCI.  Example
1093
usage:
1094
@example
1095
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1096
@end example
1097
@end table
1098

    
1099
@node host_usb_devices
1100
@subsection Using host USB devices on a Linux host
1101

    
1102
WARNING: this is an experimental feature. QEMU will slow down when
1103
using it. USB devices requiring real time streaming (i.e. USB Video
1104
Cameras) are not supported yet.
1105

    
1106
@enumerate
1107
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1108
is actually using the USB device. A simple way to do that is simply to
1109
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1110
to @file{mydriver.o.disabled}.
1111

    
1112
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1113
@example
1114
ls /proc/bus/usb
1115
001  devices  drivers
1116
@end example
1117

    
1118
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1119
@example
1120
chown -R myuid /proc/bus/usb
1121
@end example
1122

    
1123
@item Launch QEMU and do in the monitor:
1124
@example
1125
info usbhost
1126
  Device 1.2, speed 480 Mb/s
1127
    Class 00: USB device 1234:5678, USB DISK
1128
@end example
1129
You should see the list of the devices you can use (Never try to use
1130
hubs, it won't work).
1131

    
1132
@item Add the device in QEMU by using:
1133
@example
1134
usb_add host:1234:5678
1135
@end example
1136

    
1137
Normally the guest OS should report that a new USB device is
1138
plugged. You can use the option @option{-usbdevice} to do the same.
1139

    
1140
@item Now you can try to use the host USB device in QEMU.
1141

    
1142
@end enumerate
1143

    
1144
When relaunching QEMU, you may have to unplug and plug again the USB
1145
device to make it work again (this is a bug).
1146

    
1147
@node vnc_security
1148
@section VNC security
1149

    
1150
The VNC server capability provides access to the graphical console
1151
of the guest VM across the network. This has a number of security
1152
considerations depending on the deployment scenarios.
1153

    
1154
@menu
1155
* vnc_sec_none::
1156
* vnc_sec_password::
1157
* vnc_sec_certificate::
1158
* vnc_sec_certificate_verify::
1159
* vnc_sec_certificate_pw::
1160
* vnc_sec_sasl::
1161
* vnc_sec_certificate_sasl::
1162
* vnc_generate_cert::
1163
* vnc_setup_sasl::
1164
@end menu
1165
@node vnc_sec_none
1166
@subsection Without passwords
1167

    
1168
The simplest VNC server setup does not include any form of authentication.
1169
For this setup it is recommended to restrict it to listen on a UNIX domain
1170
socket only. For example
1171

    
1172
@example
1173
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1174
@end example
1175

    
1176
This ensures that only users on local box with read/write access to that
1177
path can access the VNC server. To securely access the VNC server from a
1178
remote machine, a combination of netcat+ssh can be used to provide a secure
1179
tunnel.
1180

    
1181
@node vnc_sec_password
1182
@subsection With passwords
1183

    
1184
The VNC protocol has limited support for password based authentication. Since
1185
the protocol limits passwords to 8 characters it should not be considered
1186
to provide high security. The password can be fairly easily brute-forced by
1187
a client making repeat connections. For this reason, a VNC server using password
1188
authentication should be restricted to only listen on the loopback interface
1189
or UNIX domain sockets. Password authentication is requested with the @code{password}
1190
option, and then once QEMU is running the password is set with the monitor. Until
1191
the monitor is used to set the password all clients will be rejected.
1192

    
1193
@example
1194
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1195
(qemu) change vnc password
1196
Password: ********
1197
(qemu)
1198
@end example
1199

    
1200
@node vnc_sec_certificate
1201
@subsection With x509 certificates
1202

    
1203
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1204
TLS for encryption of the session, and x509 certificates for authentication.
1205
The use of x509 certificates is strongly recommended, because TLS on its
1206
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1207
support provides a secure session, but no authentication. This allows any
1208
client to connect, and provides an encrypted session.
1209

    
1210
@example
1211
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1212
@end example
1213

    
1214
In the above example @code{/etc/pki/qemu} should contain at least three files,
1215
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1216
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1217
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1218
only be readable by the user owning it.
1219

    
1220
@node vnc_sec_certificate_verify
1221
@subsection With x509 certificates and client verification
1222

    
1223
Certificates can also provide a means to authenticate the client connecting.
1224
The server will request that the client provide a certificate, which it will
1225
then validate against the CA certificate. This is a good choice if deploying
1226
in an environment with a private internal certificate authority.
1227

    
1228
@example
1229
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1230
@end example
1231

    
1232

    
1233
@node vnc_sec_certificate_pw
1234
@subsection With x509 certificates, client verification and passwords
1235

    
1236
Finally, the previous method can be combined with VNC password authentication
1237
to provide two layers of authentication for clients.
1238

    
1239
@example
1240
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1241
(qemu) change vnc password
1242
Password: ********
1243
(qemu)
1244
@end example
1245

    
1246

    
1247
@node vnc_sec_sasl
1248
@subsection With SASL authentication
1249

    
1250
The SASL authentication method is a VNC extension, that provides an
1251
easily extendable, pluggable authentication method. This allows for
1252
integration with a wide range of authentication mechanisms, such as
1253
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1254
The strength of the authentication depends on the exact mechanism
1255
configured. If the chosen mechanism also provides a SSF layer, then
1256
it will encrypt the datastream as well.
1257

    
1258
Refer to the later docs on how to choose the exact SASL mechanism
1259
used for authentication, but assuming use of one supporting SSF,
1260
then QEMU can be launched with:
1261

    
1262
@example
1263
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1264
@end example
1265

    
1266
@node vnc_sec_certificate_sasl
1267
@subsection With x509 certificates and SASL authentication
1268

    
1269
If the desired SASL authentication mechanism does not supported
1270
SSF layers, then it is strongly advised to run it in combination
1271
with TLS and x509 certificates. This provides securely encrypted
1272
data stream, avoiding risk of compromising of the security
1273
credentials. This can be enabled, by combining the 'sasl' option
1274
with the aforementioned TLS + x509 options:
1275

    
1276
@example
1277
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1278
@end example
1279

    
1280

    
1281
@node vnc_generate_cert
1282
@subsection Generating certificates for VNC
1283

    
1284
The GNU TLS packages provides a command called @code{certtool} which can
1285
be used to generate certificates and keys in PEM format. At a minimum it
1286
is neccessary to setup a certificate authority, and issue certificates to
1287
each server. If using certificates for authentication, then each client
1288
will also need to be issued a certificate. The recommendation is for the
1289
server to keep its certificates in either @code{/etc/pki/qemu} or for
1290
unprivileged users in @code{$HOME/.pki/qemu}.
1291

    
1292
@menu
1293
* vnc_generate_ca::
1294
* vnc_generate_server::
1295
* vnc_generate_client::
1296
@end menu
1297
@node vnc_generate_ca
1298
@subsubsection Setup the Certificate Authority
1299

    
1300
This step only needs to be performed once per organization / organizational
1301
unit. First the CA needs a private key. This key must be kept VERY secret
1302
and secure. If this key is compromised the entire trust chain of the certificates
1303
issued with it is lost.
1304

    
1305
@example
1306
# certtool --generate-privkey > ca-key.pem
1307
@end example
1308

    
1309
A CA needs to have a public certificate. For simplicity it can be a self-signed
1310
certificate, or one issue by a commercial certificate issuing authority. To
1311
generate a self-signed certificate requires one core piece of information, the
1312
name of the organization.
1313

    
1314
@example
1315
# cat > ca.info <<EOF
1316
cn = Name of your organization
1317
ca
1318
cert_signing_key
1319
EOF
1320
# certtool --generate-self-signed \
1321
           --load-privkey ca-key.pem
1322
           --template ca.info \
1323
           --outfile ca-cert.pem
1324
@end example
1325

    
1326
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1327
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1328

    
1329
@node vnc_generate_server
1330
@subsubsection Issuing server certificates
1331

    
1332
Each server (or host) needs to be issued with a key and certificate. When connecting
1333
the certificate is sent to the client which validates it against the CA certificate.
1334
The core piece of information for a server certificate is the hostname. This should
1335
be the fully qualified hostname that the client will connect with, since the client
1336
will typically also verify the hostname in the certificate. On the host holding the
1337
secure CA private key:
1338

    
1339
@example
1340
# cat > server.info <<EOF
1341
organization = Name  of your organization
1342
cn = server.foo.example.com
1343
tls_www_server
1344
encryption_key
1345
signing_key
1346
EOF
1347
# certtool --generate-privkey > server-key.pem
1348
# certtool --generate-certificate \
1349
           --load-ca-certificate ca-cert.pem \
1350
           --load-ca-privkey ca-key.pem \
1351
           --load-privkey server server-key.pem \
1352
           --template server.info \
1353
           --outfile server-cert.pem
1354
@end example
1355

    
1356
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1357
to the server for which they were generated. The @code{server-key.pem} is security
1358
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1359

    
1360
@node vnc_generate_client
1361
@subsubsection Issuing client certificates
1362

    
1363
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1364
certificates as its authentication mechanism, each client also needs to be issued
1365
a certificate. The client certificate contains enough metadata to uniquely identify
1366
the client, typically organization, state, city, building, etc. On the host holding
1367
the secure CA private key:
1368

    
1369
@example
1370
# cat > client.info <<EOF
1371
country = GB
1372
state = London
1373
locality = London
1374
organiazation = Name of your organization
1375
cn = client.foo.example.com
1376
tls_www_client
1377
encryption_key
1378
signing_key
1379
EOF
1380
# certtool --generate-privkey > client-key.pem
1381
# certtool --generate-certificate \
1382
           --load-ca-certificate ca-cert.pem \
1383
           --load-ca-privkey ca-key.pem \
1384
           --load-privkey client-key.pem \
1385
           --template client.info \
1386
           --outfile client-cert.pem
1387
@end example
1388

    
1389
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1390
copied to the client for which they were generated.
1391

    
1392

    
1393
@node vnc_setup_sasl
1394

    
1395
@subsection Configuring SASL mechanisms
1396

    
1397
The following documentation assumes use of the Cyrus SASL implementation on a
1398
Linux host, but the principals should apply to any other SASL impl. When SASL
1399
is enabled, the mechanism configuration will be loaded from system default
1400
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1401
unprivileged user, an environment variable SASL_CONF_PATH can be used
1402
to make it search alternate locations for the service config.
1403

    
1404
The default configuration might contain
1405

    
1406
@example
1407
mech_list: digest-md5
1408
sasldb_path: /etc/qemu/passwd.db
1409
@end example
1410

    
1411
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1412
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1413
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1414
command. While this mechanism is easy to configure and use, it is not
1415
considered secure by modern standards, so only suitable for developers /
1416
ad-hoc testing.
1417

    
1418
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1419
mechanism
1420

    
1421
@example
1422
mech_list: gssapi
1423
keytab: /etc/qemu/krb5.tab
1424
@end example
1425

    
1426
For this to work the administrator of your KDC must generate a Kerberos
1427
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1428
replacing 'somehost.example.com' with the fully qualified host name of the
1429
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1430

    
1431
Other configurations will be left as an exercise for the reader. It should
1432
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1433
encryption. For all other mechanisms, VNC should always be configured to
1434
use TLS and x509 certificates to protect security credentials from snooping.
1435

    
1436
@node gdb_usage
1437
@section GDB usage
1438

    
1439
QEMU has a primitive support to work with gdb, so that you can do
1440
'Ctrl-C' while the virtual machine is running and inspect its state.
1441

    
1442
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1443
gdb connection:
1444
@example
1445
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1446
       -append "root=/dev/hda"
1447
Connected to host network interface: tun0
1448
Waiting gdb connection on port 1234
1449
@end example
1450

    
1451
Then launch gdb on the 'vmlinux' executable:
1452
@example
1453
> gdb vmlinux
1454
@end example
1455

    
1456
In gdb, connect to QEMU:
1457
@example
1458
(gdb) target remote localhost:1234
1459
@end example
1460

    
1461
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1462
@example
1463
(gdb) c
1464
@end example
1465

    
1466
Here are some useful tips in order to use gdb on system code:
1467

    
1468
@enumerate
1469
@item
1470
Use @code{info reg} to display all the CPU registers.
1471
@item
1472
Use @code{x/10i $eip} to display the code at the PC position.
1473
@item
1474
Use @code{set architecture i8086} to dump 16 bit code. Then use
1475
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1476
@end enumerate
1477

    
1478
Advanced debugging options:
1479

    
1480
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1481
@table @code
1482
@item maintenance packet qqemu.sstepbits
1483

    
1484
This will display the MASK bits used to control the single stepping IE:
1485
@example
1486
(gdb) maintenance packet qqemu.sstepbits
1487
sending: "qqemu.sstepbits"
1488
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1489
@end example
1490
@item maintenance packet qqemu.sstep
1491

    
1492
This will display the current value of the mask used when single stepping IE:
1493
@example
1494
(gdb) maintenance packet qqemu.sstep
1495
sending: "qqemu.sstep"
1496
received: "0x7"
1497
@end example
1498
@item maintenance packet Qqemu.sstep=HEX_VALUE
1499

    
1500
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1501
@example
1502
(gdb) maintenance packet Qqemu.sstep=0x5
1503
sending: "qemu.sstep=0x5"
1504
received: "OK"
1505
@end example
1506
@end table
1507

    
1508
@node pcsys_os_specific
1509
@section Target OS specific information
1510

    
1511
@subsection Linux
1512

    
1513
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1514
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1515
color depth in the guest and the host OS.
1516

    
1517
When using a 2.6 guest Linux kernel, you should add the option
1518
@code{clock=pit} on the kernel command line because the 2.6 Linux
1519
kernels make very strict real time clock checks by default that QEMU
1520
cannot simulate exactly.
1521

    
1522
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1523
not activated because QEMU is slower with this patch. The QEMU
1524
Accelerator Module is also much slower in this case. Earlier Fedora
1525
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1526
patch by default. Newer kernels don't have it.
1527

    
1528
@subsection Windows
1529

    
1530
If you have a slow host, using Windows 95 is better as it gives the
1531
best speed. Windows 2000 is also a good choice.
1532

    
1533
@subsubsection SVGA graphic modes support
1534

    
1535
QEMU emulates a Cirrus Logic GD5446 Video
1536
card. All Windows versions starting from Windows 95 should recognize
1537
and use this graphic card. For optimal performances, use 16 bit color
1538
depth in the guest and the host OS.
1539

    
1540
If you are using Windows XP as guest OS and if you want to use high
1541
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1542
1280x1024x16), then you should use the VESA VBE virtual graphic card
1543
(option @option{-std-vga}).
1544

    
1545
@subsubsection CPU usage reduction
1546

    
1547
Windows 9x does not correctly use the CPU HLT
1548
instruction. The result is that it takes host CPU cycles even when
1549
idle. You can install the utility from
1550
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1551
problem. Note that no such tool is needed for NT, 2000 or XP.
1552

    
1553
@subsubsection Windows 2000 disk full problem
1554

    
1555
Windows 2000 has a bug which gives a disk full problem during its
1556
installation. When installing it, use the @option{-win2k-hack} QEMU
1557
option to enable a specific workaround. After Windows 2000 is
1558
installed, you no longer need this option (this option slows down the
1559
IDE transfers).
1560

    
1561
@subsubsection Windows 2000 shutdown
1562

    
1563
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1564
can. It comes from the fact that Windows 2000 does not automatically
1565
use the APM driver provided by the BIOS.
1566

    
1567
In order to correct that, do the following (thanks to Struan
1568
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1569
Add/Troubleshoot a device => Add a new device & Next => No, select the
1570
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1571
(again) a few times. Now the driver is installed and Windows 2000 now
1572
correctly instructs QEMU to shutdown at the appropriate moment.
1573

    
1574
@subsubsection Share a directory between Unix and Windows
1575

    
1576
See @ref{sec_invocation} about the help of the option @option{-smb}.
1577

    
1578
@subsubsection Windows XP security problem
1579

    
1580
Some releases of Windows XP install correctly but give a security
1581
error when booting:
1582
@example
1583
A problem is preventing Windows from accurately checking the
1584
license for this computer. Error code: 0x800703e6.
1585
@end example
1586

    
1587
The workaround is to install a service pack for XP after a boot in safe
1588
mode. Then reboot, and the problem should go away. Since there is no
1589
network while in safe mode, its recommended to download the full
1590
installation of SP1 or SP2 and transfer that via an ISO or using the
1591
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1592

    
1593
@subsection MS-DOS and FreeDOS
1594

    
1595
@subsubsection CPU usage reduction
1596

    
1597
DOS does not correctly use the CPU HLT instruction. The result is that
1598
it takes host CPU cycles even when idle. You can install the utility
1599
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1600
problem.
1601

    
1602
@node QEMU System emulator for non PC targets
1603
@chapter QEMU System emulator for non PC targets
1604

    
1605
QEMU is a generic emulator and it emulates many non PC
1606
machines. Most of the options are similar to the PC emulator. The
1607
differences are mentioned in the following sections.
1608

    
1609
@menu
1610
* QEMU PowerPC System emulator::
1611
* Sparc32 System emulator::
1612
* Sparc64 System emulator::
1613
* MIPS System emulator::
1614
* ARM System emulator::
1615
* ColdFire System emulator::
1616
@end menu
1617

    
1618
@node QEMU PowerPC System emulator
1619
@section QEMU PowerPC System emulator
1620

    
1621
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1622
or PowerMac PowerPC system.
1623

    
1624
QEMU emulates the following PowerMac peripherals:
1625

    
1626
@itemize @minus
1627
@item
1628
UniNorth or Grackle PCI Bridge
1629
@item
1630
PCI VGA compatible card with VESA Bochs Extensions
1631
@item
1632
2 PMAC IDE interfaces with hard disk and CD-ROM support
1633
@item
1634
NE2000 PCI adapters
1635
@item
1636
Non Volatile RAM
1637
@item
1638
VIA-CUDA with ADB keyboard and mouse.
1639
@end itemize
1640

    
1641
QEMU emulates the following PREP peripherals:
1642

    
1643
@itemize @minus
1644
@item
1645
PCI Bridge
1646
@item
1647
PCI VGA compatible card with VESA Bochs Extensions
1648
@item
1649
2 IDE interfaces with hard disk and CD-ROM support
1650
@item
1651
Floppy disk
1652
@item
1653
NE2000 network adapters
1654
@item
1655
Serial port
1656
@item
1657
PREP Non Volatile RAM
1658
@item
1659
PC compatible keyboard and mouse.
1660
@end itemize
1661

    
1662
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1663
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1664

    
1665
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1666
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1667
v2) portable firmware implementation. The goal is to implement a 100%
1668
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1669

    
1670
@c man begin OPTIONS
1671

    
1672
The following options are specific to the PowerPC emulation:
1673

    
1674
@table @option
1675

    
1676
@item -g WxH[xDEPTH]
1677

    
1678
Set the initial VGA graphic mode. The default is 800x600x15.
1679

    
1680
@item -prom-env string
1681

    
1682
Set OpenBIOS variables in NVRAM, for example:
1683

    
1684
@example
1685
qemu-system-ppc -prom-env 'auto-boot?=false' \
1686
 -prom-env 'boot-device=hd:2,\yaboot' \
1687
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1688
@end example
1689

    
1690
These variables are not used by Open Hack'Ware.
1691

    
1692
@end table
1693

    
1694
@c man end
1695

    
1696

    
1697
More information is available at
1698
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1699

    
1700
@node Sparc32 System emulator
1701
@section Sparc32 System emulator
1702

    
1703
Use the executable @file{qemu-system-sparc} to simulate the following
1704
Sun4m architecture machines:
1705
@itemize @minus
1706
@item
1707
SPARCstation 4
1708
@item
1709
SPARCstation 5
1710
@item
1711
SPARCstation 10
1712
@item
1713
SPARCstation 20
1714
@item
1715
SPARCserver 600MP
1716
@item
1717
SPARCstation LX
1718
@item
1719
SPARCstation Voyager
1720
@item
1721
SPARCclassic
1722
@item
1723
SPARCbook
1724
@end itemize
1725

    
1726
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1727
but Linux limits the number of usable CPUs to 4.
1728

    
1729
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1730
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1731
emulators are not usable yet.
1732

    
1733
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1734

    
1735
@itemize @minus
1736
@item
1737
IOMMU or IO-UNITs
1738
@item
1739
TCX Frame buffer
1740
@item
1741
Lance (Am7990) Ethernet
1742
@item
1743
Non Volatile RAM M48T02/M48T08
1744
@item
1745
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1746
and power/reset logic
1747
@item
1748
ESP SCSI controller with hard disk and CD-ROM support
1749
@item
1750
Floppy drive (not on SS-600MP)
1751
@item
1752
CS4231 sound device (only on SS-5, not working yet)
1753
@end itemize
1754

    
1755
The number of peripherals is fixed in the architecture.  Maximum
1756
memory size depends on the machine type, for SS-5 it is 256MB and for
1757
others 2047MB.
1758

    
1759
Since version 0.8.2, QEMU uses OpenBIOS
1760
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1761
firmware implementation. The goal is to implement a 100% IEEE
1762
1275-1994 (referred to as Open Firmware) compliant firmware.
1763

    
1764
A sample Linux 2.6 series kernel and ram disk image are available on
1765
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1766
some kernel versions work. Please note that currently Solaris kernels
1767
don't work probably due to interface issues between OpenBIOS and
1768
Solaris.
1769

    
1770
@c man begin OPTIONS
1771

    
1772
The following options are specific to the Sparc32 emulation:
1773

    
1774
@table @option
1775

    
1776
@item -g WxHx[xDEPTH]
1777

    
1778
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1779
the only other possible mode is 1024x768x24.
1780

    
1781
@item -prom-env string
1782

    
1783
Set OpenBIOS variables in NVRAM, for example:
1784

    
1785
@example
1786
qemu-system-sparc -prom-env 'auto-boot?=false' \
1787
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1788
@end example
1789

    
1790
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1791

    
1792
Set the emulated machine type. Default is SS-5.
1793

    
1794
@end table
1795

    
1796
@c man end
1797

    
1798
@node Sparc64 System emulator
1799
@section Sparc64 System emulator
1800

    
1801
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1802
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1803
Niagara (T1) machine. The emulator is not usable for anything yet, but
1804
it can launch some kernels.
1805

    
1806
QEMU emulates the following peripherals:
1807

    
1808
@itemize @minus
1809
@item
1810
UltraSparc IIi APB PCI Bridge
1811
@item
1812
PCI VGA compatible card with VESA Bochs Extensions
1813
@item
1814
PS/2 mouse and keyboard
1815
@item
1816
Non Volatile RAM M48T59
1817
@item
1818
PC-compatible serial ports
1819
@item
1820
2 PCI IDE interfaces with hard disk and CD-ROM support
1821
@item
1822
Floppy disk
1823
@end itemize
1824

    
1825
@c man begin OPTIONS
1826

    
1827
The following options are specific to the Sparc64 emulation:
1828

    
1829
@table @option
1830

    
1831
@item -prom-env string
1832

    
1833
Set OpenBIOS variables in NVRAM, for example:
1834

    
1835
@example
1836
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1837
@end example
1838

    
1839
@item -M [sun4u|sun4v|Niagara]
1840

    
1841
Set the emulated machine type. The default is sun4u.
1842

    
1843
@end table
1844

    
1845
@c man end
1846

    
1847
@node MIPS System emulator
1848
@section MIPS System emulator
1849

    
1850
Four executables cover simulation of 32 and 64-bit MIPS systems in
1851
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1852
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1853
Five different machine types are emulated:
1854

    
1855
@itemize @minus
1856
@item
1857
A generic ISA PC-like machine "mips"
1858
@item
1859
The MIPS Malta prototype board "malta"
1860
@item
1861
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1862
@item
1863
MIPS emulator pseudo board "mipssim"
1864
@item
1865
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1866
@end itemize
1867

    
1868
The generic emulation is supported by Debian 'Etch' and is able to
1869
install Debian into a virtual disk image. The following devices are
1870
emulated:
1871

    
1872
@itemize @minus
1873
@item
1874
A range of MIPS CPUs, default is the 24Kf
1875
@item
1876
PC style serial port
1877
@item
1878
PC style IDE disk
1879
@item
1880
NE2000 network card
1881
@end itemize
1882

    
1883
The Malta emulation supports the following devices:
1884

    
1885
@itemize @minus
1886
@item
1887
Core board with MIPS 24Kf CPU and Galileo system controller
1888
@item
1889
PIIX4 PCI/USB/SMbus controller
1890
@item
1891
The Multi-I/O chip's serial device
1892
@item
1893
PCnet32 PCI network card
1894
@item
1895
Malta FPGA serial device
1896
@item
1897
Cirrus (default) or any other PCI VGA graphics card
1898
@end itemize
1899

    
1900
The ACER Pica emulation supports:
1901

    
1902
@itemize @minus
1903
@item
1904
MIPS R4000 CPU
1905
@item
1906
PC-style IRQ and DMA controllers
1907
@item
1908
PC Keyboard
1909
@item
1910
IDE controller
1911
@end itemize
1912

    
1913
The mipssim pseudo board emulation provides an environment similiar
1914
to what the proprietary MIPS emulator uses for running Linux.
1915
It supports:
1916

    
1917
@itemize @minus
1918
@item
1919
A range of MIPS CPUs, default is the 24Kf
1920
@item
1921
PC style serial port
1922
@item
1923
MIPSnet network emulation
1924
@end itemize
1925

    
1926
The MIPS Magnum R4000 emulation supports:
1927

    
1928
@itemize @minus
1929
@item
1930
MIPS R4000 CPU
1931
@item
1932
PC-style IRQ controller
1933
@item
1934
PC Keyboard
1935
@item
1936
SCSI controller
1937
@item
1938
G364 framebuffer
1939
@end itemize
1940

    
1941

    
1942
@node ARM System emulator
1943
@section ARM System emulator
1944

    
1945
Use the executable @file{qemu-system-arm} to simulate a ARM
1946
machine. The ARM Integrator/CP board is emulated with the following
1947
devices:
1948

    
1949
@itemize @minus
1950
@item
1951
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1952
@item
1953
Two PL011 UARTs
1954
@item
1955
SMC 91c111 Ethernet adapter
1956
@item
1957
PL110 LCD controller
1958
@item
1959
PL050 KMI with PS/2 keyboard and mouse.
1960
@item
1961
PL181 MultiMedia Card Interface with SD card.
1962
@end itemize
1963

    
1964
The ARM Versatile baseboard is emulated with the following devices:
1965

    
1966
@itemize @minus
1967
@item
1968
ARM926E, ARM1136 or Cortex-A8 CPU
1969
@item
1970
PL190 Vectored Interrupt Controller
1971
@item
1972
Four PL011 UARTs
1973
@item
1974
SMC 91c111 Ethernet adapter
1975
@item
1976
PL110 LCD controller
1977
@item
1978
PL050 KMI with PS/2 keyboard and mouse.
1979
@item
1980
PCI host bridge.  Note the emulated PCI bridge only provides access to
1981
PCI memory space.  It does not provide access to PCI IO space.
1982
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1983
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1984
mapped control registers.
1985
@item
1986
PCI OHCI USB controller.
1987
@item
1988
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1989
@item
1990
PL181 MultiMedia Card Interface with SD card.
1991
@end itemize
1992

    
1993
The ARM RealView Emulation baseboard is emulated with the following devices:
1994

    
1995
@itemize @minus
1996
@item
1997
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
1998
@item
1999
ARM AMBA Generic/Distributed Interrupt Controller
2000
@item
2001
Four PL011 UARTs
2002
@item
2003
SMC 91c111 Ethernet adapter
2004
@item
2005
PL110 LCD controller
2006
@item
2007
PL050 KMI with PS/2 keyboard and mouse
2008
@item
2009
PCI host bridge
2010
@item
2011
PCI OHCI USB controller
2012
@item
2013
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2014
@item
2015
PL181 MultiMedia Card Interface with SD card.
2016
@end itemize
2017

    
2018
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2019
and "Terrier") emulation includes the following peripherals:
2020

    
2021
@itemize @minus
2022
@item
2023
Intel PXA270 System-on-chip (ARM V5TE core)
2024
@item
2025
NAND Flash memory
2026
@item
2027
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2028
@item
2029
On-chip OHCI USB controller
2030
@item
2031
On-chip LCD controller
2032
@item
2033
On-chip Real Time Clock
2034
@item
2035
TI ADS7846 touchscreen controller on SSP bus
2036
@item
2037
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2038
@item
2039
GPIO-connected keyboard controller and LEDs
2040
@item
2041
Secure Digital card connected to PXA MMC/SD host
2042
@item
2043
Three on-chip UARTs
2044
@item
2045
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2046
@end itemize
2047

    
2048
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2049
following elements:
2050

    
2051
@itemize @minus
2052
@item
2053
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2054
@item
2055
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2056
@item
2057
On-chip LCD controller
2058
@item
2059
On-chip Real Time Clock
2060
@item
2061
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2062
CODEC, connected through MicroWire and I@math{^2}S busses
2063
@item
2064
GPIO-connected matrix keypad
2065
@item
2066
Secure Digital card connected to OMAP MMC/SD host
2067
@item
2068
Three on-chip UARTs
2069
@end itemize
2070

    
2071
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2072
emulation supports the following elements:
2073

    
2074
@itemize @minus
2075
@item
2076
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2077
@item
2078
RAM and non-volatile OneNAND Flash memories
2079
@item
2080
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2081
display controller and a LS041y3 MIPI DBI-C controller
2082
@item
2083
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2084
driven through SPI bus
2085
@item
2086
National Semiconductor LM8323-controlled qwerty keyboard driven
2087
through I@math{^2}C bus
2088
@item
2089
Secure Digital card connected to OMAP MMC/SD host
2090
@item
2091
Three OMAP on-chip UARTs and on-chip STI debugging console
2092
@item
2093
A Bluetooth(R) transciever and HCI connected to an UART
2094
@item
2095
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2096
TUSB6010 chip - only USB host mode is supported
2097
@item
2098
TI TMP105 temperature sensor driven through I@math{^2}C bus
2099
@item
2100
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2101
@item
2102
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2103
through CBUS
2104
@end itemize
2105

    
2106
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2107
devices:
2108

    
2109
@itemize @minus
2110
@item
2111
Cortex-M3 CPU core.
2112
@item
2113
64k Flash and 8k SRAM.
2114
@item
2115
Timers, UARTs, ADC and I@math{^2}C interface.
2116
@item
2117
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2118
@end itemize
2119

    
2120
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2121
devices:
2122

    
2123
@itemize @minus
2124
@item
2125
Cortex-M3 CPU core.
2126
@item
2127
256k Flash and 64k SRAM.
2128
@item
2129
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2130
@item
2131
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2132
@end itemize
2133

    
2134
The Freecom MusicPal internet radio emulation includes the following
2135
elements:
2136

    
2137
@itemize @minus
2138
@item
2139
Marvell MV88W8618 ARM core.
2140
@item
2141
32 MB RAM, 256 KB SRAM, 8 MB flash.
2142
@item
2143
Up to 2 16550 UARTs
2144
@item
2145
MV88W8xx8 Ethernet controller
2146
@item
2147
MV88W8618 audio controller, WM8750 CODEC and mixer
2148
@item
2149
128?64 display with brightness control
2150
@item
2151
2 buttons, 2 navigation wheels with button function
2152
@end itemize
2153

    
2154
The Siemens SX1 models v1 and v2 (default) basic emulation.
2155
The emulaton includes the following elements:
2156

    
2157
@itemize @minus
2158
@item
2159
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2160
@item
2161
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2162
V1
2163
1 Flash of 16MB and 1 Flash of 8MB
2164
V2
2165
1 Flash of 32MB
2166
@item
2167
On-chip LCD controller
2168
@item
2169
On-chip Real Time Clock
2170
@item
2171
Secure Digital card connected to OMAP MMC/SD host
2172
@item
2173
Three on-chip UARTs
2174
@end itemize
2175

    
2176
The "Syborg" Symbian Virtual Platform base model includes the following
2177
elements:
2178

    
2179
@itemize @minus
2180
@item
2181
ARM Cortex-A8 CPU
2182
@item
2183
Interrupt controller
2184
@item
2185
Timer
2186
@item
2187
Real Time Clock
2188
@item
2189
Keyboard
2190
@item
2191
Framebuffer
2192
@item
2193
Touchscreen
2194
@item
2195
UARTs
2196
@end itemize
2197

    
2198
A Linux 2.6 test image is available on the QEMU web site. More
2199
information is available in the QEMU mailing-list archive.
2200

    
2201
@c man begin OPTIONS
2202

    
2203
The following options are specific to the ARM emulation:
2204

    
2205
@table @option
2206

    
2207
@item -semihosting
2208
Enable semihosting syscall emulation.
2209

    
2210
On ARM this implements the "Angel" interface.
2211

    
2212
Note that this allows guest direct access to the host filesystem,
2213
so should only be used with trusted guest OS.
2214

    
2215
@end table
2216

    
2217
@node ColdFire System emulator
2218
@section ColdFire System emulator
2219

    
2220
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2221
The emulator is able to boot a uClinux kernel.
2222

    
2223
The M5208EVB emulation includes the following devices:
2224

    
2225
@itemize @minus
2226
@item
2227
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2228
@item
2229
Three Two on-chip UARTs.
2230
@item
2231
Fast Ethernet Controller (FEC)
2232
@end itemize
2233

    
2234
The AN5206 emulation includes the following devices:
2235

    
2236
@itemize @minus
2237
@item
2238
MCF5206 ColdFire V2 Microprocessor.
2239
@item
2240
Two on-chip UARTs.
2241
@end itemize
2242

    
2243
@c man begin OPTIONS
2244

    
2245
The following options are specific to the ARM emulation:
2246

    
2247
@table @option
2248

    
2249
@item -semihosting
2250
Enable semihosting syscall emulation.
2251

    
2252
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2253

    
2254
Note that this allows guest direct access to the host filesystem,
2255
so should only be used with trusted guest OS.
2256

    
2257
@end table
2258

    
2259
@node QEMU User space emulator
2260
@chapter QEMU User space emulator
2261

    
2262
@menu
2263
* Supported Operating Systems ::
2264
* Linux User space emulator::
2265
* Mac OS X/Darwin User space emulator ::
2266
* BSD User space emulator ::
2267
@end menu
2268

    
2269
@node Supported Operating Systems
2270
@section Supported Operating Systems
2271

    
2272
The following OS are supported in user space emulation:
2273

    
2274
@itemize @minus
2275
@item
2276
Linux (referred as qemu-linux-user)
2277
@item
2278
Mac OS X/Darwin (referred as qemu-darwin-user)
2279
@item
2280
BSD (referred as qemu-bsd-user)
2281
@end itemize
2282

    
2283
@node Linux User space emulator
2284
@section Linux User space emulator
2285

    
2286
@menu
2287
* Quick Start::
2288
* Wine launch::
2289
* Command line options::
2290
* Other binaries::
2291
@end menu
2292

    
2293
@node Quick Start
2294
@subsection Quick Start
2295

    
2296
In order to launch a Linux process, QEMU needs the process executable
2297
itself and all the target (x86) dynamic libraries used by it.
2298

    
2299
@itemize
2300

    
2301
@item On x86, you can just try to launch any process by using the native
2302
libraries:
2303

    
2304
@example
2305
qemu-i386 -L / /bin/ls
2306
@end example
2307

    
2308
@code{-L /} tells that the x86 dynamic linker must be searched with a
2309
@file{/} prefix.
2310

    
2311
@item Since QEMU is also a linux process, you can launch qemu with
2312
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2313

    
2314
@example
2315
qemu-i386 -L / qemu-i386 -L / /bin/ls
2316
@end example
2317

    
2318
@item On non x86 CPUs, you need first to download at least an x86 glibc
2319
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2320
@code{LD_LIBRARY_PATH} is not set:
2321

    
2322
@example
2323
unset LD_LIBRARY_PATH
2324
@end example
2325

    
2326
Then you can launch the precompiled @file{ls} x86 executable:
2327

    
2328
@example
2329
qemu-i386 tests/i386/ls
2330
@end example
2331
You can look at @file{qemu-binfmt-conf.sh} so that
2332
QEMU is automatically launched by the Linux kernel when you try to
2333
launch x86 executables. It requires the @code{binfmt_misc} module in the
2334
Linux kernel.
2335

    
2336
@item The x86 version of QEMU is also included. You can try weird things such as:
2337
@example
2338
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2339
          /usr/local/qemu-i386/bin/ls-i386
2340
@end example
2341

    
2342
@end itemize
2343

    
2344
@node Wine launch
2345
@subsection Wine launch
2346

    
2347
@itemize
2348

    
2349
@item Ensure that you have a working QEMU with the x86 glibc
2350
distribution (see previous section). In order to verify it, you must be
2351
able to do:
2352

    
2353
@example
2354
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2355
@end example
2356

    
2357
@item Download the binary x86 Wine install
2358
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2359

    
2360
@item Configure Wine on your account. Look at the provided script
2361
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2362
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2363

    
2364
@item Then you can try the example @file{putty.exe}:
2365

    
2366
@example
2367
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2368
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2369
@end example
2370

    
2371
@end itemize
2372

    
2373
@node Command line options
2374
@subsection Command line options
2375

    
2376
@example
2377
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2378
@end example
2379

    
2380
@table @option
2381
@item -h
2382
Print the help
2383
@item -L path
2384
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2385
@item -s size
2386
Set the x86 stack size in bytes (default=524288)
2387
@item -cpu model
2388
Select CPU model (-cpu ? for list and additional feature selection)
2389
@end table
2390

    
2391
Debug options:
2392

    
2393
@table @option
2394
@item -d
2395
Activate log (logfile=/tmp/qemu.log)
2396
@item -p pagesize
2397
Act as if the host page size was 'pagesize' bytes
2398
@item -g port
2399
Wait gdb connection to port
2400
@item -singlestep
2401
Run the emulation in single step mode.
2402
@end table
2403

    
2404
Environment variables:
2405

    
2406
@table @env
2407
@item QEMU_STRACE
2408
Print system calls and arguments similar to the 'strace' program
2409
(NOTE: the actual 'strace' program will not work because the user
2410
space emulator hasn't implemented ptrace).  At the moment this is
2411
incomplete.  All system calls that don't have a specific argument
2412
format are printed with information for six arguments.  Many
2413
flag-style arguments don't have decoders and will show up as numbers.
2414
@end table
2415

    
2416
@node Other binaries
2417
@subsection Other binaries
2418

    
2419
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2420
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2421
configurations), and arm-uclinux bFLT format binaries.
2422

    
2423
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2424
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2425
coldfire uClinux bFLT format binaries.
2426

    
2427
The binary format is detected automatically.
2428

    
2429
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2430

    
2431
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2432
(Sparc64 CPU, 32 bit ABI).
2433

    
2434
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2435
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2436

    
2437
@node Mac OS X/Darwin User space emulator
2438
@section Mac OS X/Darwin User space emulator
2439

    
2440
@menu
2441
* Mac OS X/Darwin Status::
2442
* Mac OS X/Darwin Quick Start::
2443
* Mac OS X/Darwin Command line options::
2444
@end menu
2445

    
2446
@node Mac OS X/Darwin Status
2447
@subsection Mac OS X/Darwin Status
2448

    
2449
@itemize @minus
2450
@item
2451
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2452
@item
2453
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2454
@item
2455
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2456
@item
2457
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2458
@end itemize
2459

    
2460
[1] If you're host commpage can be executed by qemu.
2461

    
2462
@node Mac OS X/Darwin Quick Start
2463
@subsection Quick Start
2464

    
2465
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2466
itself and all the target dynamic libraries used by it. If you don't have the FAT
2467
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2468
CD or compile them by hand.
2469

    
2470
@itemize
2471

    
2472
@item On x86, you can just try to launch any process by using the native
2473
libraries:
2474

    
2475
@example
2476
qemu-i386 /bin/ls
2477
@end example
2478

    
2479
or to run the ppc version of the executable:
2480

    
2481
@example
2482
qemu-ppc /bin/ls
2483
@end example
2484

    
2485
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2486
are installed:
2487

    
2488
@example
2489
qemu-i386 -L /opt/x86_root/ /bin/ls
2490
@end example
2491

    
2492
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2493
@file{/opt/x86_root/usr/bin/dyld}.
2494

    
2495
@end itemize
2496

    
2497
@node Mac OS X/Darwin Command line options
2498
@subsection Command line options
2499

    
2500
@example
2501
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2502
@end example
2503

    
2504
@table @option
2505
@item -h
2506
Print the help
2507
@item -L path
2508
Set the library root path (default=/)
2509
@item -s size
2510
Set the stack size in bytes (default=524288)
2511
@end table
2512

    
2513
Debug options:
2514

    
2515
@table @option
2516
@item -d
2517
Activate log (logfile=/tmp/qemu.log)
2518
@item -p pagesize
2519
Act as if the host page size was 'pagesize' bytes
2520
@item -singlestep
2521
Run the emulation in single step mode.
2522
@end table
2523

    
2524
@node BSD User space emulator
2525
@section BSD User space emulator
2526

    
2527
@menu
2528
* BSD Status::
2529
* BSD Quick Start::
2530
* BSD Command line options::
2531
@end menu
2532

    
2533
@node BSD Status
2534
@subsection BSD Status
2535

    
2536
@itemize @minus
2537
@item
2538
target Sparc64 on Sparc64: Some trivial programs work.
2539
@end itemize
2540

    
2541
@node BSD Quick Start
2542
@subsection Quick Start
2543

    
2544
In order to launch a BSD process, QEMU needs the process executable
2545
itself and all the target dynamic libraries used by it.
2546

    
2547
@itemize
2548

    
2549
@item On Sparc64, you can just try to launch any process by using the native
2550
libraries:
2551

    
2552
@example
2553
qemu-sparc64 /bin/ls
2554
@end example
2555

    
2556
@end itemize
2557

    
2558
@node BSD Command line options
2559
@subsection Command line options
2560

    
2561
@example
2562
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2563
@end example
2564

    
2565
@table @option
2566
@item -h
2567
Print the help
2568
@item -L path
2569
Set the library root path (default=/)
2570
@item -s size
2571
Set the stack size in bytes (default=524288)
2572
@item -bsd type
2573
Set the type of the emulated BSD Operating system. Valid values are
2574
FreeBSD, NetBSD and OpenBSD (default).
2575
@end table
2576

    
2577
Debug options:
2578

    
2579
@table @option
2580
@item -d
2581
Activate log (logfile=/tmp/qemu.log)
2582
@item -p pagesize
2583
Act as if the host page size was 'pagesize' bytes
2584
@item -singlestep
2585
Run the emulation in single step mode.
2586
@end table
2587

    
2588
@node compilation
2589
@chapter Compilation from the sources
2590

    
2591
@menu
2592
* Linux/Unix::
2593
* Windows::
2594
* Cross compilation for Windows with Linux::
2595
* Mac OS X::
2596
@end menu
2597

    
2598
@node Linux/Unix
2599
@section Linux/Unix
2600

    
2601
@subsection Compilation
2602

    
2603
First you must decompress the sources:
2604
@example
2605
cd /tmp
2606
tar zxvf qemu-x.y.z.tar.gz
2607
cd qemu-x.y.z
2608
@end example
2609

    
2610
Then you configure QEMU and build it (usually no options are needed):
2611
@example
2612
./configure
2613
make
2614
@end example
2615

    
2616
Then type as root user:
2617
@example
2618
make install
2619
@end example
2620
to install QEMU in @file{/usr/local}.
2621

    
2622
@subsection GCC version
2623

    
2624
In order to compile QEMU successfully, it is very important that you
2625
have the right tools. The most important one is gcc. On most hosts and
2626
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2627
Linux distribution includes a gcc 4.x compiler, you can usually
2628
install an older version (it is invoked by @code{gcc32} or
2629
@code{gcc34}). The QEMU configure script automatically probes for
2630
these older versions so that usually you don't have to do anything.
2631

    
2632
@node Windows
2633
@section Windows
2634

    
2635
@itemize
2636
@item Install the current versions of MSYS and MinGW from
2637
@url{http://www.mingw.org/}. You can find detailed installation
2638
instructions in the download section and the FAQ.
2639

    
2640
@item Download
2641
the MinGW development library of SDL 1.2.x
2642
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2643
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2644
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2645
directory. Edit the @file{sdl-config} script so that it gives the
2646
correct SDL directory when invoked.
2647

    
2648
@item Extract the current version of QEMU.
2649

    
2650
@item Start the MSYS shell (file @file{msys.bat}).
2651

    
2652
@item Change to the QEMU directory. Launch @file{./configure} and
2653
@file{make}.  If you have problems using SDL, verify that
2654
@file{sdl-config} can be launched from the MSYS command line.
2655

    
2656
@item You can install QEMU in @file{Program Files/Qemu} by typing
2657
@file{make install}. Don't forget to copy @file{SDL.dll} in
2658
@file{Program Files/Qemu}.
2659

    
2660
@end itemize
2661

    
2662
@node Cross compilation for Windows with Linux
2663
@section Cross compilation for Windows with Linux
2664

    
2665
@itemize
2666
@item
2667
Install the MinGW cross compilation tools available at
2668
@url{http://www.mingw.org/}.
2669

    
2670
@item
2671
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2672
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2673
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2674
the QEMU configuration script.
2675

    
2676
@item
2677
Configure QEMU for Windows cross compilation:
2678
@example
2679
./configure --enable-mingw32
2680
@end example
2681
If necessary, you can change the cross-prefix according to the prefix
2682
chosen for the MinGW tools with --cross-prefix. You can also use
2683
--prefix to set the Win32 install path.
2684

    
2685
@item You can install QEMU in the installation directory by typing
2686
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2687
installation directory.
2688

    
2689
@end itemize
2690

    
2691
Note: Currently, Wine does not seem able to launch
2692
QEMU for Win32.
2693

    
2694
@node Mac OS X
2695
@section Mac OS X
2696

    
2697
The Mac OS X patches are not fully merged in QEMU, so you should look
2698
at the QEMU mailing list archive to have all the necessary
2699
information.
2700

    
2701
@node Index
2702
@chapter Index
2703
@printindex cp
2704

    
2705
@bye