Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 4c3b5a48

History | View | Annotate | Download (74.7 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4

    
5
@documentlanguage en
6
@documentencoding UTF-8
7

    
8
@settitle QEMU Emulator User Documentation
9
@exampleindent 0
10
@paragraphindent 0
11
@c %**end of header
12

    
13
@ifinfo
14
@direntry
15
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16
@end direntry
17
@end ifinfo
18

    
19
@iftex
20
@titlepage
21
@sp 7
22
@center @titlefont{QEMU Emulator}
23
@sp 1
24
@center @titlefont{User Documentation}
25
@sp 3
26
@end titlepage
27
@end iftex
28

    
29
@ifnottex
30
@node Top
31
@top
32

    
33
@menu
34
* Introduction::
35
* Installation::
36
* QEMU PC System emulator::
37
* QEMU System emulator for non PC targets::
38
* QEMU User space emulator::
39
* compilation:: Compilation from the sources
40
* License::
41
* Index::
42
@end menu
43
@end ifnottex
44

    
45
@contents
46

    
47
@node Introduction
48
@chapter Introduction
49

    
50
@menu
51
* intro_features:: Features
52
@end menu
53

    
54
@node intro_features
55
@section Features
56

    
57
QEMU is a FAST! processor emulator using dynamic translation to
58
achieve good emulation speed.
59

    
60
QEMU has two operating modes:
61

    
62
@itemize
63
@cindex operating modes
64

    
65
@item
66
@cindex system emulation
67
Full system emulation. In this mode, QEMU emulates a full system (for
68
example a PC), including one or several processors and various
69
peripherals. It can be used to launch different Operating Systems
70
without rebooting the PC or to debug system code.
71

    
72
@item
73
@cindex user mode emulation
74
User mode emulation. In this mode, QEMU can launch
75
processes compiled for one CPU on another CPU. It can be used to
76
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77
to ease cross-compilation and cross-debugging.
78

    
79
@end itemize
80

    
81
QEMU can run without an host kernel driver and yet gives acceptable
82
performance.
83

    
84
For system emulation, the following hardware targets are supported:
85
@itemize
86
@cindex emulated target systems
87
@cindex supported target systems
88
@item PC (x86 or x86_64 processor)
89
@item ISA PC (old style PC without PCI bus)
90
@item PREP (PowerPC processor)
91
@item G3 Beige PowerMac (PowerPC processor)
92
@item Mac99 PowerMac (PowerPC processor, in progress)
93
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95
@item Malta board (32-bit and 64-bit MIPS processors)
96
@item MIPS Magnum (64-bit MIPS processor)
97
@item ARM Integrator/CP (ARM)
98
@item ARM Versatile baseboard (ARM)
99
@item ARM RealView Emulation/Platform baseboard (ARM)
100
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103
@item Freescale MCF5208EVB (ColdFire V2).
104
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105
@item Palm Tungsten|E PDA (OMAP310 processor)
106
@item N800 and N810 tablets (OMAP2420 processor)
107
@item MusicPal (MV88W8618 ARM processor)
108
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109
@item Siemens SX1 smartphone (OMAP310 processor)
110
@item Syborg SVP base model (ARM Cortex-A8).
111
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113
@end itemize
114

    
115
@cindex supported user mode targets
116
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119

    
120
@node Installation
121
@chapter Installation
122

    
123
If you want to compile QEMU yourself, see @ref{compilation}.
124

    
125
@menu
126
* install_linux::   Linux
127
* install_windows:: Windows
128
* install_mac::     Macintosh
129
@end menu
130

    
131
@node install_linux
132
@section Linux
133
@cindex installation (Linux)
134

    
135
If a precompiled package is available for your distribution - you just
136
have to install it. Otherwise, see @ref{compilation}.
137

    
138
@node install_windows
139
@section Windows
140
@cindex installation (Windows)
141

    
142
Download the experimental binary installer at
143
@url{http://www.free.oszoo.org/@/download.html}.
144
TODO (no longer available)
145

    
146
@node install_mac
147
@section Mac OS X
148

    
149
Download the experimental binary installer at
150
@url{http://www.free.oszoo.org/@/download.html}.
151
TODO (no longer available)
152

    
153
@node QEMU PC System emulator
154
@chapter QEMU PC System emulator
155
@cindex system emulation (PC)
156

    
157
@menu
158
* pcsys_introduction:: Introduction
159
* pcsys_quickstart::   Quick Start
160
* sec_invocation::     Invocation
161
* pcsys_keys::         Keys
162
* pcsys_monitor::      QEMU Monitor
163
* disk_images::        Disk Images
164
* pcsys_network::      Network emulation
165
* pcsys_other_devs::   Other Devices
166
* direct_linux_boot::  Direct Linux Boot
167
* pcsys_usb::          USB emulation
168
* vnc_security::       VNC security
169
* gdb_usage::          GDB usage
170
* pcsys_os_specific::  Target OS specific information
171
@end menu
172

    
173
@node pcsys_introduction
174
@section Introduction
175

    
176
@c man begin DESCRIPTION
177

    
178
The QEMU PC System emulator simulates the
179
following peripherals:
180

    
181
@itemize @minus
182
@item
183
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184
@item
185
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186
extensions (hardware level, including all non standard modes).
187
@item
188
PS/2 mouse and keyboard
189
@item
190
2 PCI IDE interfaces with hard disk and CD-ROM support
191
@item
192
Floppy disk
193
@item
194
PCI and ISA network adapters
195
@item
196
Serial ports
197
@item
198
Creative SoundBlaster 16 sound card
199
@item
200
ENSONIQ AudioPCI ES1370 sound card
201
@item
202
Intel 82801AA AC97 Audio compatible sound card
203
@item
204
Intel HD Audio Controller and HDA codec
205
@item
206
Adlib (OPL2) - Yamaha YM3812 compatible chip
207
@item
208
Gravis Ultrasound GF1 sound card
209
@item
210
CS4231A compatible sound card
211
@item
212
PCI UHCI USB controller and a virtual USB hub.
213
@end itemize
214

    
215
SMP is supported with up to 255 CPUs.
216

    
217
Note that adlib, gus and cs4231a are only available when QEMU was
218
configured with --audio-card-list option containing the name(s) of
219
required card(s).
220

    
221
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222
VGA BIOS.
223

    
224
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225

    
226
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227
by Tibor "TS" Schütz.
228

    
229
Not that, by default, GUS shares IRQ(7) with parallel ports and so
230
qemu must be told to not have parallel ports to have working GUS
231

    
232
@example
233
qemu dos.img -soundhw gus -parallel none
234
@end example
235

    
236
Alternatively:
237
@example
238
qemu dos.img -device gus,irq=5
239
@end example
240

    
241
Or some other unclaimed IRQ.
242

    
243
CS4231A is the chip used in Windows Sound System and GUSMAX products
244

    
245
@c man end
246

    
247
@node pcsys_quickstart
248
@section Quick Start
249
@cindex quick start
250

    
251
Download and uncompress the linux image (@file{linux.img}) and type:
252

    
253
@example
254
qemu linux.img
255
@end example
256

    
257
Linux should boot and give you a prompt.
258

    
259
@node sec_invocation
260
@section Invocation
261

    
262
@example
263
@c man begin SYNOPSIS
264
usage: qemu [options] [@var{disk_image}]
265
@c man end
266
@end example
267

    
268
@c man begin OPTIONS
269
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270
targets do not need a disk image.
271

    
272
@include qemu-options.texi
273

    
274
@c man end
275

    
276
@node pcsys_keys
277
@section Keys
278

    
279
@c man begin OPTIONS
280

    
281
During the graphical emulation, you can use the following keys:
282
@table @key
283
@item Ctrl-Alt-f
284
@kindex Ctrl-Alt-f
285
Toggle full screen
286

    
287
@item Ctrl-Alt-u
288
@kindex Ctrl-Alt-u
289
Restore the screen's un-scaled dimensions
290

    
291
@item Ctrl-Alt-n
292
@kindex Ctrl-Alt-n
293
Switch to virtual console 'n'. Standard console mappings are:
294
@table @emph
295
@item 1
296
Target system display
297
@item 2
298
Monitor
299
@item 3
300
Serial port
301
@end table
302

    
303
@item Ctrl-Alt
304
@kindex Ctrl-Alt
305
Toggle mouse and keyboard grab.
306
@end table
307

    
308
@kindex Ctrl-Up
309
@kindex Ctrl-Down
310
@kindex Ctrl-PageUp
311
@kindex Ctrl-PageDown
312
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
313
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
314

    
315
@kindex Ctrl-a h
316
During emulation, if you are using the @option{-nographic} option, use
317
@key{Ctrl-a h} to get terminal commands:
318

    
319
@table @key
320
@item Ctrl-a h
321
@kindex Ctrl-a h
322
@item Ctrl-a ?
323
@kindex Ctrl-a ?
324
Print this help
325
@item Ctrl-a x
326
@kindex Ctrl-a x
327
Exit emulator
328
@item Ctrl-a s
329
@kindex Ctrl-a s
330
Save disk data back to file (if -snapshot)
331
@item Ctrl-a t
332
@kindex Ctrl-a t
333
Toggle console timestamps
334
@item Ctrl-a b
335
@kindex Ctrl-a b
336
Send break (magic sysrq in Linux)
337
@item Ctrl-a c
338
@kindex Ctrl-a c
339
Switch between console and monitor
340
@item Ctrl-a Ctrl-a
341
@kindex Ctrl-a a
342
Send Ctrl-a
343
@end table
344
@c man end
345

    
346
@ignore
347

    
348
@c man begin SEEALSO
349
The HTML documentation of QEMU for more precise information and Linux
350
user mode emulator invocation.
351
@c man end
352

    
353
@c man begin AUTHOR
354
Fabrice Bellard
355
@c man end
356

    
357
@end ignore
358

    
359
@node pcsys_monitor
360
@section QEMU Monitor
361
@cindex QEMU monitor
362

    
363
The QEMU monitor is used to give complex commands to the QEMU
364
emulator. You can use it to:
365

    
366
@itemize @minus
367

    
368
@item
369
Remove or insert removable media images
370
(such as CD-ROM or floppies).
371

    
372
@item
373
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
374
from a disk file.
375

    
376
@item Inspect the VM state without an external debugger.
377

    
378
@end itemize
379

    
380
@subsection Commands
381

    
382
The following commands are available:
383

    
384
@include qemu-monitor.texi
385

    
386
@subsection Integer expressions
387

    
388
The monitor understands integers expressions for every integer
389
argument. You can use register names to get the value of specifics
390
CPU registers by prefixing them with @emph{$}.
391

    
392
@node disk_images
393
@section Disk Images
394

    
395
Since version 0.6.1, QEMU supports many disk image formats, including
396
growable disk images (their size increase as non empty sectors are
397
written), compressed and encrypted disk images. Version 0.8.3 added
398
the new qcow2 disk image format which is essential to support VM
399
snapshots.
400

    
401
@menu
402
* disk_images_quickstart::    Quick start for disk image creation
403
* disk_images_snapshot_mode:: Snapshot mode
404
* vm_snapshots::              VM snapshots
405
* qemu_img_invocation::       qemu-img Invocation
406
* qemu_nbd_invocation::       qemu-nbd Invocation
407
* host_drives::               Using host drives
408
* disk_images_fat_images::    Virtual FAT disk images
409
* disk_images_nbd::           NBD access
410
@end menu
411

    
412
@node disk_images_quickstart
413
@subsection Quick start for disk image creation
414

    
415
You can create a disk image with the command:
416
@example
417
qemu-img create myimage.img mysize
418
@end example
419
where @var{myimage.img} is the disk image filename and @var{mysize} is its
420
size in kilobytes. You can add an @code{M} suffix to give the size in
421
megabytes and a @code{G} suffix for gigabytes.
422

    
423
See @ref{qemu_img_invocation} for more information.
424

    
425
@node disk_images_snapshot_mode
426
@subsection Snapshot mode
427

    
428
If you use the option @option{-snapshot}, all disk images are
429
considered as read only. When sectors in written, they are written in
430
a temporary file created in @file{/tmp}. You can however force the
431
write back to the raw disk images by using the @code{commit} monitor
432
command (or @key{C-a s} in the serial console).
433

    
434
@node vm_snapshots
435
@subsection VM snapshots
436

    
437
VM snapshots are snapshots of the complete virtual machine including
438
CPU state, RAM, device state and the content of all the writable
439
disks. In order to use VM snapshots, you must have at least one non
440
removable and writable block device using the @code{qcow2} disk image
441
format. Normally this device is the first virtual hard drive.
442

    
443
Use the monitor command @code{savevm} to create a new VM snapshot or
444
replace an existing one. A human readable name can be assigned to each
445
snapshot in addition to its numerical ID.
446

    
447
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
448
a VM snapshot. @code{info snapshots} lists the available snapshots
449
with their associated information:
450

    
451
@example
452
(qemu) info snapshots
453
Snapshot devices: hda
454
Snapshot list (from hda):
455
ID        TAG                 VM SIZE                DATE       VM CLOCK
456
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
457
2                                 40M 2006-08-06 12:43:29   00:00:18.633
458
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
459
@end example
460

    
461
A VM snapshot is made of a VM state info (its size is shown in
462
@code{info snapshots}) and a snapshot of every writable disk image.
463
The VM state info is stored in the first @code{qcow2} non removable
464
and writable block device. The disk image snapshots are stored in
465
every disk image. The size of a snapshot in a disk image is difficult
466
to evaluate and is not shown by @code{info snapshots} because the
467
associated disk sectors are shared among all the snapshots to save
468
disk space (otherwise each snapshot would need a full copy of all the
469
disk images).
470

    
471
When using the (unrelated) @code{-snapshot} option
472
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
473
but they are deleted as soon as you exit QEMU.
474

    
475
VM snapshots currently have the following known limitations:
476
@itemize
477
@item
478
They cannot cope with removable devices if they are removed or
479
inserted after a snapshot is done.
480
@item
481
A few device drivers still have incomplete snapshot support so their
482
state is not saved or restored properly (in particular USB).
483
@end itemize
484

    
485
@node qemu_img_invocation
486
@subsection @code{qemu-img} Invocation
487

    
488
@include qemu-img.texi
489

    
490
@node qemu_nbd_invocation
491
@subsection @code{qemu-nbd} Invocation
492

    
493
@include qemu-nbd.texi
494

    
495
@node host_drives
496
@subsection Using host drives
497

    
498
In addition to disk image files, QEMU can directly access host
499
devices. We describe here the usage for QEMU version >= 0.8.3.
500

    
501
@subsubsection Linux
502

    
503
On Linux, you can directly use the host device filename instead of a
504
disk image filename provided you have enough privileges to access
505
it. For example, use @file{/dev/cdrom} to access to the CDROM or
506
@file{/dev/fd0} for the floppy.
507

    
508
@table @code
509
@item CD
510
You can specify a CDROM device even if no CDROM is loaded. QEMU has
511
specific code to detect CDROM insertion or removal. CDROM ejection by
512
the guest OS is supported. Currently only data CDs are supported.
513
@item Floppy
514
You can specify a floppy device even if no floppy is loaded. Floppy
515
removal is currently not detected accurately (if you change floppy
516
without doing floppy access while the floppy is not loaded, the guest
517
OS will think that the same floppy is loaded).
518
@item Hard disks
519
Hard disks can be used. Normally you must specify the whole disk
520
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
521
see it as a partitioned disk. WARNING: unless you know what you do, it
522
is better to only make READ-ONLY accesses to the hard disk otherwise
523
you may corrupt your host data (use the @option{-snapshot} command
524
line option or modify the device permissions accordingly).
525
@end table
526

    
527
@subsubsection Windows
528

    
529
@table @code
530
@item CD
531
The preferred syntax is the drive letter (e.g. @file{d:}). The
532
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
533
supported as an alias to the first CDROM drive.
534

    
535
Currently there is no specific code to handle removable media, so it
536
is better to use the @code{change} or @code{eject} monitor commands to
537
change or eject media.
538
@item Hard disks
539
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
540
where @var{N} is the drive number (0 is the first hard disk).
541

    
542
WARNING: unless you know what you do, it is better to only make
543
READ-ONLY accesses to the hard disk otherwise you may corrupt your
544
host data (use the @option{-snapshot} command line so that the
545
modifications are written in a temporary file).
546
@end table
547

    
548

    
549
@subsubsection Mac OS X
550

    
551
@file{/dev/cdrom} is an alias to the first CDROM.
552

    
553
Currently there is no specific code to handle removable media, so it
554
is better to use the @code{change} or @code{eject} monitor commands to
555
change or eject media.
556

    
557
@node disk_images_fat_images
558
@subsection Virtual FAT disk images
559

    
560
QEMU can automatically create a virtual FAT disk image from a
561
directory tree. In order to use it, just type:
562

    
563
@example
564
qemu linux.img -hdb fat:/my_directory
565
@end example
566

    
567
Then you access access to all the files in the @file{/my_directory}
568
directory without having to copy them in a disk image or to export
569
them via SAMBA or NFS. The default access is @emph{read-only}.
570

    
571
Floppies can be emulated with the @code{:floppy:} option:
572

    
573
@example
574
qemu linux.img -fda fat:floppy:/my_directory
575
@end example
576

    
577
A read/write support is available for testing (beta stage) with the
578
@code{:rw:} option:
579

    
580
@example
581
qemu linux.img -fda fat:floppy:rw:/my_directory
582
@end example
583

    
584
What you should @emph{never} do:
585
@itemize
586
@item use non-ASCII filenames ;
587
@item use "-snapshot" together with ":rw:" ;
588
@item expect it to work when loadvm'ing ;
589
@item write to the FAT directory on the host system while accessing it with the guest system.
590
@end itemize
591

    
592
@node disk_images_nbd
593
@subsection NBD access
594

    
595
QEMU can access directly to block device exported using the Network Block Device
596
protocol.
597

    
598
@example
599
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
600
@end example
601

    
602
If the NBD server is located on the same host, you can use an unix socket instead
603
of an inet socket:
604

    
605
@example
606
qemu linux.img -hdb nbd:unix:/tmp/my_socket
607
@end example
608

    
609
In this case, the block device must be exported using qemu-nbd:
610

    
611
@example
612
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
613
@end example
614

    
615
The use of qemu-nbd allows to share a disk between several guests:
616
@example
617
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
618
@end example
619

    
620
and then you can use it with two guests:
621
@example
622
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
623
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
624
@end example
625

    
626
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
627
"exportname" option:
628
@example
629
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
630
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
631
@end example
632

    
633
@node pcsys_network
634
@section Network emulation
635

    
636
QEMU can simulate several network cards (PCI or ISA cards on the PC
637
target) and can connect them to an arbitrary number of Virtual Local
638
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
639
VLAN. VLAN can be connected between separate instances of QEMU to
640
simulate large networks. For simpler usage, a non privileged user mode
641
network stack can replace the TAP device to have a basic network
642
connection.
643

    
644
@subsection VLANs
645

    
646
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
647
connection between several network devices. These devices can be for
648
example QEMU virtual Ethernet cards or virtual Host ethernet devices
649
(TAP devices).
650

    
651
@subsection Using TAP network interfaces
652

    
653
This is the standard way to connect QEMU to a real network. QEMU adds
654
a virtual network device on your host (called @code{tapN}), and you
655
can then configure it as if it was a real ethernet card.
656

    
657
@subsubsection Linux host
658

    
659
As an example, you can download the @file{linux-test-xxx.tar.gz}
660
archive and copy the script @file{qemu-ifup} in @file{/etc} and
661
configure properly @code{sudo} so that the command @code{ifconfig}
662
contained in @file{qemu-ifup} can be executed as root. You must verify
663
that your host kernel supports the TAP network interfaces: the
664
device @file{/dev/net/tun} must be present.
665

    
666
See @ref{sec_invocation} to have examples of command lines using the
667
TAP network interfaces.
668

    
669
@subsubsection Windows host
670

    
671
There is a virtual ethernet driver for Windows 2000/XP systems, called
672
TAP-Win32. But it is not included in standard QEMU for Windows,
673
so you will need to get it separately. It is part of OpenVPN package,
674
so download OpenVPN from : @url{http://openvpn.net/}.
675

    
676
@subsection Using the user mode network stack
677

    
678
By using the option @option{-net user} (default configuration if no
679
@option{-net} option is specified), QEMU uses a completely user mode
680
network stack (you don't need root privilege to use the virtual
681
network). The virtual network configuration is the following:
682

    
683
@example
684

    
685
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
686
                           |          (10.0.2.2)
687
                           |
688
                           ---->  DNS server (10.0.2.3)
689
                           |
690
                           ---->  SMB server (10.0.2.4)
691
@end example
692

    
693
The QEMU VM behaves as if it was behind a firewall which blocks all
694
incoming connections. You can use a DHCP client to automatically
695
configure the network in the QEMU VM. The DHCP server assign addresses
696
to the hosts starting from 10.0.2.15.
697

    
698
In order to check that the user mode network is working, you can ping
699
the address 10.0.2.2 and verify that you got an address in the range
700
10.0.2.x from the QEMU virtual DHCP server.
701

    
702
Note that @code{ping} is not supported reliably to the internet as it
703
would require root privileges. It means you can only ping the local
704
router (10.0.2.2).
705

    
706
When using the built-in TFTP server, the router is also the TFTP
707
server.
708

    
709
When using the @option{-redir} option, TCP or UDP connections can be
710
redirected from the host to the guest. It allows for example to
711
redirect X11, telnet or SSH connections.
712

    
713
@subsection Connecting VLANs between QEMU instances
714

    
715
Using the @option{-net socket} option, it is possible to make VLANs
716
that span several QEMU instances. See @ref{sec_invocation} to have a
717
basic example.
718

    
719
@node pcsys_other_devs
720
@section Other Devices
721

    
722
@subsection Inter-VM Shared Memory device
723

    
724
With KVM enabled on a Linux host, a shared memory device is available.  Guests
725
map a POSIX shared memory region into the guest as a PCI device that enables
726
zero-copy communication to the application level of the guests.  The basic
727
syntax is:
728

    
729
@example
730
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
731
@end example
732

    
733
If desired, interrupts can be sent between guest VMs accessing the same shared
734
memory region.  Interrupt support requires using a shared memory server and
735
using a chardev socket to connect to it.  The code for the shared memory server
736
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
737
memory server is:
738

    
739
@example
740
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
741
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
742
qemu -chardev socket,path=<path>,id=<id>
743
@end example
744

    
745
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
746
using the same server to communicate via interrupts.  Guests can read their
747
VM ID from a device register (see example code).  Since receiving the shared
748
memory region from the server is asynchronous, there is a (small) chance the
749
guest may boot before the shared memory is attached.  To allow an application
750
to ensure shared memory is attached, the VM ID register will return -1 (an
751
invalid VM ID) until the memory is attached.  Once the shared memory is
752
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
753
the guest application can check to ensure the shared memory is attached to the
754
guest before proceeding.
755

    
756
The @option{role} argument can be set to either master or peer and will affect
757
how the shared memory is migrated.  With @option{role=master}, the guest will
758
copy the shared memory on migration to the destination host.  With
759
@option{role=peer}, the guest will not be able to migrate with the device attached.
760
With the @option{peer} case, the device should be detached and then reattached
761
after migration using the PCI hotplug support.
762

    
763
@node direct_linux_boot
764
@section Direct Linux Boot
765

    
766
This section explains how to launch a Linux kernel inside QEMU without
767
having to make a full bootable image. It is very useful for fast Linux
768
kernel testing.
769

    
770
The syntax is:
771
@example
772
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
773
@end example
774

    
775
Use @option{-kernel} to provide the Linux kernel image and
776
@option{-append} to give the kernel command line arguments. The
777
@option{-initrd} option can be used to provide an INITRD image.
778

    
779
When using the direct Linux boot, a disk image for the first hard disk
780
@file{hda} is required because its boot sector is used to launch the
781
Linux kernel.
782

    
783
If you do not need graphical output, you can disable it and redirect
784
the virtual serial port and the QEMU monitor to the console with the
785
@option{-nographic} option. The typical command line is:
786
@example
787
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
788
     -append "root=/dev/hda console=ttyS0" -nographic
789
@end example
790

    
791
Use @key{Ctrl-a c} to switch between the serial console and the
792
monitor (@pxref{pcsys_keys}).
793

    
794
@node pcsys_usb
795
@section USB emulation
796

    
797
QEMU emulates a PCI UHCI USB controller. You can virtually plug
798
virtual USB devices or real host USB devices (experimental, works only
799
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
800
as necessary to connect multiple USB devices.
801

    
802
@menu
803
* usb_devices::
804
* host_usb_devices::
805
@end menu
806
@node usb_devices
807
@subsection Connecting USB devices
808

    
809
USB devices can be connected with the @option{-usbdevice} commandline option
810
or the @code{usb_add} monitor command.  Available devices are:
811

    
812
@table @code
813
@item mouse
814
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
815
@item tablet
816
Pointer device that uses absolute coordinates (like a touchscreen).
817
This means qemu is able to report the mouse position without having
818
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
819
@item disk:@var{file}
820
Mass storage device based on @var{file} (@pxref{disk_images})
821
@item host:@var{bus.addr}
822
Pass through the host device identified by @var{bus.addr}
823
(Linux only)
824
@item host:@var{vendor_id:product_id}
825
Pass through the host device identified by @var{vendor_id:product_id}
826
(Linux only)
827
@item wacom-tablet
828
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
829
above but it can be used with the tslib library because in addition to touch
830
coordinates it reports touch pressure.
831
@item keyboard
832
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
833
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
834
Serial converter. This emulates an FTDI FT232BM chip connected to host character
835
device @var{dev}. The available character devices are the same as for the
836
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
837
used to override the default 0403:6001. For instance,
838
@example
839
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
840
@end example
841
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
842
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
843
@item braille
844
Braille device.  This will use BrlAPI to display the braille output on a real
845
or fake device.
846
@item net:@var{options}
847
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
848
specifies NIC options as with @code{-net nic,}@var{options} (see description).
849
For instance, user-mode networking can be used with
850
@example
851
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
852
@end example
853
Currently this cannot be used in machines that support PCI NICs.
854
@item bt[:@var{hci-type}]
855
Bluetooth dongle whose type is specified in the same format as with
856
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
857
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
858
This USB device implements the USB Transport Layer of HCI.  Example
859
usage:
860
@example
861
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
862
@end example
863
@end table
864

    
865
@node host_usb_devices
866
@subsection Using host USB devices on a Linux host
867

    
868
WARNING: this is an experimental feature. QEMU will slow down when
869
using it. USB devices requiring real time streaming (i.e. USB Video
870
Cameras) are not supported yet.
871

    
872
@enumerate
873
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
874
is actually using the USB device. A simple way to do that is simply to
875
disable the corresponding kernel module by renaming it from @file{mydriver.o}
876
to @file{mydriver.o.disabled}.
877

    
878
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
879
@example
880
ls /proc/bus/usb
881
001  devices  drivers
882
@end example
883

    
884
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
885
@example
886
chown -R myuid /proc/bus/usb
887
@end example
888

    
889
@item Launch QEMU and do in the monitor:
890
@example
891
info usbhost
892
  Device 1.2, speed 480 Mb/s
893
    Class 00: USB device 1234:5678, USB DISK
894
@end example
895
You should see the list of the devices you can use (Never try to use
896
hubs, it won't work).
897

    
898
@item Add the device in QEMU by using:
899
@example
900
usb_add host:1234:5678
901
@end example
902

    
903
Normally the guest OS should report that a new USB device is
904
plugged. You can use the option @option{-usbdevice} to do the same.
905

    
906
@item Now you can try to use the host USB device in QEMU.
907

    
908
@end enumerate
909

    
910
When relaunching QEMU, you may have to unplug and plug again the USB
911
device to make it work again (this is a bug).
912

    
913
@node vnc_security
914
@section VNC security
915

    
916
The VNC server capability provides access to the graphical console
917
of the guest VM across the network. This has a number of security
918
considerations depending on the deployment scenarios.
919

    
920
@menu
921
* vnc_sec_none::
922
* vnc_sec_password::
923
* vnc_sec_certificate::
924
* vnc_sec_certificate_verify::
925
* vnc_sec_certificate_pw::
926
* vnc_sec_sasl::
927
* vnc_sec_certificate_sasl::
928
* vnc_generate_cert::
929
* vnc_setup_sasl::
930
@end menu
931
@node vnc_sec_none
932
@subsection Without passwords
933

    
934
The simplest VNC server setup does not include any form of authentication.
935
For this setup it is recommended to restrict it to listen on a UNIX domain
936
socket only. For example
937

    
938
@example
939
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
940
@end example
941

    
942
This ensures that only users on local box with read/write access to that
943
path can access the VNC server. To securely access the VNC server from a
944
remote machine, a combination of netcat+ssh can be used to provide a secure
945
tunnel.
946

    
947
@node vnc_sec_password
948
@subsection With passwords
949

    
950
The VNC protocol has limited support for password based authentication. Since
951
the protocol limits passwords to 8 characters it should not be considered
952
to provide high security. The password can be fairly easily brute-forced by
953
a client making repeat connections. For this reason, a VNC server using password
954
authentication should be restricted to only listen on the loopback interface
955
or UNIX domain sockets. Password authentication is requested with the @code{password}
956
option, and then once QEMU is running the password is set with the monitor. Until
957
the monitor is used to set the password all clients will be rejected.
958

    
959
@example
960
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
961
(qemu) change vnc password
962
Password: ********
963
(qemu)
964
@end example
965

    
966
@node vnc_sec_certificate
967
@subsection With x509 certificates
968

    
969
The QEMU VNC server also implements the VeNCrypt extension allowing use of
970
TLS for encryption of the session, and x509 certificates for authentication.
971
The use of x509 certificates is strongly recommended, because TLS on its
972
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
973
support provides a secure session, but no authentication. This allows any
974
client to connect, and provides an encrypted session.
975

    
976
@example
977
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
978
@end example
979

    
980
In the above example @code{/etc/pki/qemu} should contain at least three files,
981
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
982
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
983
NB the @code{server-key.pem} file should be protected with file mode 0600 to
984
only be readable by the user owning it.
985

    
986
@node vnc_sec_certificate_verify
987
@subsection With x509 certificates and client verification
988

    
989
Certificates can also provide a means to authenticate the client connecting.
990
The server will request that the client provide a certificate, which it will
991
then validate against the CA certificate. This is a good choice if deploying
992
in an environment with a private internal certificate authority.
993

    
994
@example
995
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
996
@end example
997

    
998

    
999
@node vnc_sec_certificate_pw
1000
@subsection With x509 certificates, client verification and passwords
1001

    
1002
Finally, the previous method can be combined with VNC password authentication
1003
to provide two layers of authentication for clients.
1004

    
1005
@example
1006
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1007
(qemu) change vnc password
1008
Password: ********
1009
(qemu)
1010
@end example
1011

    
1012

    
1013
@node vnc_sec_sasl
1014
@subsection With SASL authentication
1015

    
1016
The SASL authentication method is a VNC extension, that provides an
1017
easily extendable, pluggable authentication method. This allows for
1018
integration with a wide range of authentication mechanisms, such as
1019
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1020
The strength of the authentication depends on the exact mechanism
1021
configured. If the chosen mechanism also provides a SSF layer, then
1022
it will encrypt the datastream as well.
1023

    
1024
Refer to the later docs on how to choose the exact SASL mechanism
1025
used for authentication, but assuming use of one supporting SSF,
1026
then QEMU can be launched with:
1027

    
1028
@example
1029
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1030
@end example
1031

    
1032
@node vnc_sec_certificate_sasl
1033
@subsection With x509 certificates and SASL authentication
1034

    
1035
If the desired SASL authentication mechanism does not supported
1036
SSF layers, then it is strongly advised to run it in combination
1037
with TLS and x509 certificates. This provides securely encrypted
1038
data stream, avoiding risk of compromising of the security
1039
credentials. This can be enabled, by combining the 'sasl' option
1040
with the aforementioned TLS + x509 options:
1041

    
1042
@example
1043
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1044
@end example
1045

    
1046

    
1047
@node vnc_generate_cert
1048
@subsection Generating certificates for VNC
1049

    
1050
The GNU TLS packages provides a command called @code{certtool} which can
1051
be used to generate certificates and keys in PEM format. At a minimum it
1052
is necessary to setup a certificate authority, and issue certificates to
1053
each server. If using certificates for authentication, then each client
1054
will also need to be issued a certificate. The recommendation is for the
1055
server to keep its certificates in either @code{/etc/pki/qemu} or for
1056
unprivileged users in @code{$HOME/.pki/qemu}.
1057

    
1058
@menu
1059
* vnc_generate_ca::
1060
* vnc_generate_server::
1061
* vnc_generate_client::
1062
@end menu
1063
@node vnc_generate_ca
1064
@subsubsection Setup the Certificate Authority
1065

    
1066
This step only needs to be performed once per organization / organizational
1067
unit. First the CA needs a private key. This key must be kept VERY secret
1068
and secure. If this key is compromised the entire trust chain of the certificates
1069
issued with it is lost.
1070

    
1071
@example
1072
# certtool --generate-privkey > ca-key.pem
1073
@end example
1074

    
1075
A CA needs to have a public certificate. For simplicity it can be a self-signed
1076
certificate, or one issue by a commercial certificate issuing authority. To
1077
generate a self-signed certificate requires one core piece of information, the
1078
name of the organization.
1079

    
1080
@example
1081
# cat > ca.info <<EOF
1082
cn = Name of your organization
1083
ca
1084
cert_signing_key
1085
EOF
1086
# certtool --generate-self-signed \
1087
           --load-privkey ca-key.pem
1088
           --template ca.info \
1089
           --outfile ca-cert.pem
1090
@end example
1091

    
1092
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1093
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1094

    
1095
@node vnc_generate_server
1096
@subsubsection Issuing server certificates
1097

    
1098
Each server (or host) needs to be issued with a key and certificate. When connecting
1099
the certificate is sent to the client which validates it against the CA certificate.
1100
The core piece of information for a server certificate is the hostname. This should
1101
be the fully qualified hostname that the client will connect with, since the client
1102
will typically also verify the hostname in the certificate. On the host holding the
1103
secure CA private key:
1104

    
1105
@example
1106
# cat > server.info <<EOF
1107
organization = Name  of your organization
1108
cn = server.foo.example.com
1109
tls_www_server
1110
encryption_key
1111
signing_key
1112
EOF
1113
# certtool --generate-privkey > server-key.pem
1114
# certtool --generate-certificate \
1115
           --load-ca-certificate ca-cert.pem \
1116
           --load-ca-privkey ca-key.pem \
1117
           --load-privkey server server-key.pem \
1118
           --template server.info \
1119
           --outfile server-cert.pem
1120
@end example
1121

    
1122
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1123
to the server for which they were generated. The @code{server-key.pem} is security
1124
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1125

    
1126
@node vnc_generate_client
1127
@subsubsection Issuing client certificates
1128

    
1129
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1130
certificates as its authentication mechanism, each client also needs to be issued
1131
a certificate. The client certificate contains enough metadata to uniquely identify
1132
the client, typically organization, state, city, building, etc. On the host holding
1133
the secure CA private key:
1134

    
1135
@example
1136
# cat > client.info <<EOF
1137
country = GB
1138
state = London
1139
locality = London
1140
organiazation = Name of your organization
1141
cn = client.foo.example.com
1142
tls_www_client
1143
encryption_key
1144
signing_key
1145
EOF
1146
# certtool --generate-privkey > client-key.pem
1147
# certtool --generate-certificate \
1148
           --load-ca-certificate ca-cert.pem \
1149
           --load-ca-privkey ca-key.pem \
1150
           --load-privkey client-key.pem \
1151
           --template client.info \
1152
           --outfile client-cert.pem
1153
@end example
1154

    
1155
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1156
copied to the client for which they were generated.
1157

    
1158

    
1159
@node vnc_setup_sasl
1160

    
1161
@subsection Configuring SASL mechanisms
1162

    
1163
The following documentation assumes use of the Cyrus SASL implementation on a
1164
Linux host, but the principals should apply to any other SASL impl. When SASL
1165
is enabled, the mechanism configuration will be loaded from system default
1166
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1167
unprivileged user, an environment variable SASL_CONF_PATH can be used
1168
to make it search alternate locations for the service config.
1169

    
1170
The default configuration might contain
1171

    
1172
@example
1173
mech_list: digest-md5
1174
sasldb_path: /etc/qemu/passwd.db
1175
@end example
1176

    
1177
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1178
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1179
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1180
command. While this mechanism is easy to configure and use, it is not
1181
considered secure by modern standards, so only suitable for developers /
1182
ad-hoc testing.
1183

    
1184
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1185
mechanism
1186

    
1187
@example
1188
mech_list: gssapi
1189
keytab: /etc/qemu/krb5.tab
1190
@end example
1191

    
1192
For this to work the administrator of your KDC must generate a Kerberos
1193
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1194
replacing 'somehost.example.com' with the fully qualified host name of the
1195
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1196

    
1197
Other configurations will be left as an exercise for the reader. It should
1198
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1199
encryption. For all other mechanisms, VNC should always be configured to
1200
use TLS and x509 certificates to protect security credentials from snooping.
1201

    
1202
@node gdb_usage
1203
@section GDB usage
1204

    
1205
QEMU has a primitive support to work with gdb, so that you can do
1206
'Ctrl-C' while the virtual machine is running and inspect its state.
1207

    
1208
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1209
gdb connection:
1210
@example
1211
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1212
       -append "root=/dev/hda"
1213
Connected to host network interface: tun0
1214
Waiting gdb connection on port 1234
1215
@end example
1216

    
1217
Then launch gdb on the 'vmlinux' executable:
1218
@example
1219
> gdb vmlinux
1220
@end example
1221

    
1222
In gdb, connect to QEMU:
1223
@example
1224
(gdb) target remote localhost:1234
1225
@end example
1226

    
1227
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1228
@example
1229
(gdb) c
1230
@end example
1231

    
1232
Here are some useful tips in order to use gdb on system code:
1233

    
1234
@enumerate
1235
@item
1236
Use @code{info reg} to display all the CPU registers.
1237
@item
1238
Use @code{x/10i $eip} to display the code at the PC position.
1239
@item
1240
Use @code{set architecture i8086} to dump 16 bit code. Then use
1241
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1242
@end enumerate
1243

    
1244
Advanced debugging options:
1245

    
1246
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1247
@table @code
1248
@item maintenance packet qqemu.sstepbits
1249

    
1250
This will display the MASK bits used to control the single stepping IE:
1251
@example
1252
(gdb) maintenance packet qqemu.sstepbits
1253
sending: "qqemu.sstepbits"
1254
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1255
@end example
1256
@item maintenance packet qqemu.sstep
1257

    
1258
This will display the current value of the mask used when single stepping IE:
1259
@example
1260
(gdb) maintenance packet qqemu.sstep
1261
sending: "qqemu.sstep"
1262
received: "0x7"
1263
@end example
1264
@item maintenance packet Qqemu.sstep=HEX_VALUE
1265

    
1266
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1267
@example
1268
(gdb) maintenance packet Qqemu.sstep=0x5
1269
sending: "qemu.sstep=0x5"
1270
received: "OK"
1271
@end example
1272
@end table
1273

    
1274
@node pcsys_os_specific
1275
@section Target OS specific information
1276

    
1277
@subsection Linux
1278

    
1279
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1280
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1281
color depth in the guest and the host OS.
1282

    
1283
When using a 2.6 guest Linux kernel, you should add the option
1284
@code{clock=pit} on the kernel command line because the 2.6 Linux
1285
kernels make very strict real time clock checks by default that QEMU
1286
cannot simulate exactly.
1287

    
1288
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1289
not activated because QEMU is slower with this patch. The QEMU
1290
Accelerator Module is also much slower in this case. Earlier Fedora
1291
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1292
patch by default. Newer kernels don't have it.
1293

    
1294
@subsection Windows
1295

    
1296
If you have a slow host, using Windows 95 is better as it gives the
1297
best speed. Windows 2000 is also a good choice.
1298

    
1299
@subsubsection SVGA graphic modes support
1300

    
1301
QEMU emulates a Cirrus Logic GD5446 Video
1302
card. All Windows versions starting from Windows 95 should recognize
1303
and use this graphic card. For optimal performances, use 16 bit color
1304
depth in the guest and the host OS.
1305

    
1306
If you are using Windows XP as guest OS and if you want to use high
1307
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1308
1280x1024x16), then you should use the VESA VBE virtual graphic card
1309
(option @option{-std-vga}).
1310

    
1311
@subsubsection CPU usage reduction
1312

    
1313
Windows 9x does not correctly use the CPU HLT
1314
instruction. The result is that it takes host CPU cycles even when
1315
idle. You can install the utility from
1316
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1317
problem. Note that no such tool is needed for NT, 2000 or XP.
1318

    
1319
@subsubsection Windows 2000 disk full problem
1320

    
1321
Windows 2000 has a bug which gives a disk full problem during its
1322
installation. When installing it, use the @option{-win2k-hack} QEMU
1323
option to enable a specific workaround. After Windows 2000 is
1324
installed, you no longer need this option (this option slows down the
1325
IDE transfers).
1326

    
1327
@subsubsection Windows 2000 shutdown
1328

    
1329
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1330
can. It comes from the fact that Windows 2000 does not automatically
1331
use the APM driver provided by the BIOS.
1332

    
1333
In order to correct that, do the following (thanks to Struan
1334
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1335
Add/Troubleshoot a device => Add a new device & Next => No, select the
1336
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1337
(again) a few times. Now the driver is installed and Windows 2000 now
1338
correctly instructs QEMU to shutdown at the appropriate moment.
1339

    
1340
@subsubsection Share a directory between Unix and Windows
1341

    
1342
See @ref{sec_invocation} about the help of the option @option{-smb}.
1343

    
1344
@subsubsection Windows XP security problem
1345

    
1346
Some releases of Windows XP install correctly but give a security
1347
error when booting:
1348
@example
1349
A problem is preventing Windows from accurately checking the
1350
license for this computer. Error code: 0x800703e6.
1351
@end example
1352

    
1353
The workaround is to install a service pack for XP after a boot in safe
1354
mode. Then reboot, and the problem should go away. Since there is no
1355
network while in safe mode, its recommended to download the full
1356
installation of SP1 or SP2 and transfer that via an ISO or using the
1357
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1358

    
1359
@subsection MS-DOS and FreeDOS
1360

    
1361
@subsubsection CPU usage reduction
1362

    
1363
DOS does not correctly use the CPU HLT instruction. The result is that
1364
it takes host CPU cycles even when idle. You can install the utility
1365
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1366
problem.
1367

    
1368
@node QEMU System emulator for non PC targets
1369
@chapter QEMU System emulator for non PC targets
1370

    
1371
QEMU is a generic emulator and it emulates many non PC
1372
machines. Most of the options are similar to the PC emulator. The
1373
differences are mentioned in the following sections.
1374

    
1375
@menu
1376
* PowerPC System emulator::
1377
* Sparc32 System emulator::
1378
* Sparc64 System emulator::
1379
* MIPS System emulator::
1380
* ARM System emulator::
1381
* ColdFire System emulator::
1382
* Cris System emulator::
1383
* Microblaze System emulator::
1384
* SH4 System emulator::
1385
@end menu
1386

    
1387
@node PowerPC System emulator
1388
@section PowerPC System emulator
1389
@cindex system emulation (PowerPC)
1390

    
1391
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1392
or PowerMac PowerPC system.
1393

    
1394
QEMU emulates the following PowerMac peripherals:
1395

    
1396
@itemize @minus
1397
@item
1398
UniNorth or Grackle PCI Bridge
1399
@item
1400
PCI VGA compatible card with VESA Bochs Extensions
1401
@item
1402
2 PMAC IDE interfaces with hard disk and CD-ROM support
1403
@item
1404
NE2000 PCI adapters
1405
@item
1406
Non Volatile RAM
1407
@item
1408
VIA-CUDA with ADB keyboard and mouse.
1409
@end itemize
1410

    
1411
QEMU emulates the following PREP peripherals:
1412

    
1413
@itemize @minus
1414
@item
1415
PCI Bridge
1416
@item
1417
PCI VGA compatible card with VESA Bochs Extensions
1418
@item
1419
2 IDE interfaces with hard disk and CD-ROM support
1420
@item
1421
Floppy disk
1422
@item
1423
NE2000 network adapters
1424
@item
1425
Serial port
1426
@item
1427
PREP Non Volatile RAM
1428
@item
1429
PC compatible keyboard and mouse.
1430
@end itemize
1431

    
1432
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1433
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1434

    
1435
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1436
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1437
v2) portable firmware implementation. The goal is to implement a 100%
1438
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1439

    
1440
@c man begin OPTIONS
1441

    
1442
The following options are specific to the PowerPC emulation:
1443

    
1444
@table @option
1445

    
1446
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1447

    
1448
Set the initial VGA graphic mode. The default is 800x600x15.
1449

    
1450
@item -prom-env @var{string}
1451

    
1452
Set OpenBIOS variables in NVRAM, for example:
1453

    
1454
@example
1455
qemu-system-ppc -prom-env 'auto-boot?=false' \
1456
 -prom-env 'boot-device=hd:2,\yaboot' \
1457
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1458
@end example
1459

    
1460
These variables are not used by Open Hack'Ware.
1461

    
1462
@end table
1463

    
1464
@c man end
1465

    
1466

    
1467
More information is available at
1468
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1469

    
1470
@node Sparc32 System emulator
1471
@section Sparc32 System emulator
1472
@cindex system emulation (Sparc32)
1473

    
1474
Use the executable @file{qemu-system-sparc} to simulate the following
1475
Sun4m architecture machines:
1476
@itemize @minus
1477
@item
1478
SPARCstation 4
1479
@item
1480
SPARCstation 5
1481
@item
1482
SPARCstation 10
1483
@item
1484
SPARCstation 20
1485
@item
1486
SPARCserver 600MP
1487
@item
1488
SPARCstation LX
1489
@item
1490
SPARCstation Voyager
1491
@item
1492
SPARCclassic
1493
@item
1494
SPARCbook
1495
@end itemize
1496

    
1497
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1498
but Linux limits the number of usable CPUs to 4.
1499

    
1500
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1501
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1502
emulators are not usable yet.
1503

    
1504
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1505

    
1506
@itemize @minus
1507
@item
1508
IOMMU or IO-UNITs
1509
@item
1510
TCX Frame buffer
1511
@item
1512
Lance (Am7990) Ethernet
1513
@item
1514
Non Volatile RAM M48T02/M48T08
1515
@item
1516
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1517
and power/reset logic
1518
@item
1519
ESP SCSI controller with hard disk and CD-ROM support
1520
@item
1521
Floppy drive (not on SS-600MP)
1522
@item
1523
CS4231 sound device (only on SS-5, not working yet)
1524
@end itemize
1525

    
1526
The number of peripherals is fixed in the architecture.  Maximum
1527
memory size depends on the machine type, for SS-5 it is 256MB and for
1528
others 2047MB.
1529

    
1530
Since version 0.8.2, QEMU uses OpenBIOS
1531
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1532
firmware implementation. The goal is to implement a 100% IEEE
1533
1275-1994 (referred to as Open Firmware) compliant firmware.
1534

    
1535
A sample Linux 2.6 series kernel and ram disk image are available on
1536
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1537
some kernel versions work. Please note that currently Solaris kernels
1538
don't work probably due to interface issues between OpenBIOS and
1539
Solaris.
1540

    
1541
@c man begin OPTIONS
1542

    
1543
The following options are specific to the Sparc32 emulation:
1544

    
1545
@table @option
1546

    
1547
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1548

    
1549
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1550
the only other possible mode is 1024x768x24.
1551

    
1552
@item -prom-env @var{string}
1553

    
1554
Set OpenBIOS variables in NVRAM, for example:
1555

    
1556
@example
1557
qemu-system-sparc -prom-env 'auto-boot?=false' \
1558
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1559
@end example
1560

    
1561
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1562

    
1563
Set the emulated machine type. Default is SS-5.
1564

    
1565
@end table
1566

    
1567
@c man end
1568

    
1569
@node Sparc64 System emulator
1570
@section Sparc64 System emulator
1571
@cindex system emulation (Sparc64)
1572

    
1573
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1574
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1575
Niagara (T1) machine. The emulator is not usable for anything yet, but
1576
it can launch some kernels.
1577

    
1578
QEMU emulates the following peripherals:
1579

    
1580
@itemize @minus
1581
@item
1582
UltraSparc IIi APB PCI Bridge
1583
@item
1584
PCI VGA compatible card with VESA Bochs Extensions
1585
@item
1586
PS/2 mouse and keyboard
1587
@item
1588
Non Volatile RAM M48T59
1589
@item
1590
PC-compatible serial ports
1591
@item
1592
2 PCI IDE interfaces with hard disk and CD-ROM support
1593
@item
1594
Floppy disk
1595
@end itemize
1596

    
1597
@c man begin OPTIONS
1598

    
1599
The following options are specific to the Sparc64 emulation:
1600

    
1601
@table @option
1602

    
1603
@item -prom-env @var{string}
1604

    
1605
Set OpenBIOS variables in NVRAM, for example:
1606

    
1607
@example
1608
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1609
@end example
1610

    
1611
@item -M [sun4u|sun4v|Niagara]
1612

    
1613
Set the emulated machine type. The default is sun4u.
1614

    
1615
@end table
1616

    
1617
@c man end
1618

    
1619
@node MIPS System emulator
1620
@section MIPS System emulator
1621
@cindex system emulation (MIPS)
1622

    
1623
Four executables cover simulation of 32 and 64-bit MIPS systems in
1624
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1625
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1626
Five different machine types are emulated:
1627

    
1628
@itemize @minus
1629
@item
1630
A generic ISA PC-like machine "mips"
1631
@item
1632
The MIPS Malta prototype board "malta"
1633
@item
1634
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1635
@item
1636
MIPS emulator pseudo board "mipssim"
1637
@item
1638
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1639
@end itemize
1640

    
1641
The generic emulation is supported by Debian 'Etch' and is able to
1642
install Debian into a virtual disk image. The following devices are
1643
emulated:
1644

    
1645
@itemize @minus
1646
@item
1647
A range of MIPS CPUs, default is the 24Kf
1648
@item
1649
PC style serial port
1650
@item
1651
PC style IDE disk
1652
@item
1653
NE2000 network card
1654
@end itemize
1655

    
1656
The Malta emulation supports the following devices:
1657

    
1658
@itemize @minus
1659
@item
1660
Core board with MIPS 24Kf CPU and Galileo system controller
1661
@item
1662
PIIX4 PCI/USB/SMbus controller
1663
@item
1664
The Multi-I/O chip's serial device
1665
@item
1666
PCI network cards (PCnet32 and others)
1667
@item
1668
Malta FPGA serial device
1669
@item
1670
Cirrus (default) or any other PCI VGA graphics card
1671
@end itemize
1672

    
1673
The ACER Pica emulation supports:
1674

    
1675
@itemize @minus
1676
@item
1677
MIPS R4000 CPU
1678
@item
1679
PC-style IRQ and DMA controllers
1680
@item
1681
PC Keyboard
1682
@item
1683
IDE controller
1684
@end itemize
1685

    
1686
The mipssim pseudo board emulation provides an environment similiar
1687
to what the proprietary MIPS emulator uses for running Linux.
1688
It supports:
1689

    
1690
@itemize @minus
1691
@item
1692
A range of MIPS CPUs, default is the 24Kf
1693
@item
1694
PC style serial port
1695
@item
1696
MIPSnet network emulation
1697
@end itemize
1698

    
1699
The MIPS Magnum R4000 emulation supports:
1700

    
1701
@itemize @minus
1702
@item
1703
MIPS R4000 CPU
1704
@item
1705
PC-style IRQ controller
1706
@item
1707
PC Keyboard
1708
@item
1709
SCSI controller
1710
@item
1711
G364 framebuffer
1712
@end itemize
1713

    
1714

    
1715
@node ARM System emulator
1716
@section ARM System emulator
1717
@cindex system emulation (ARM)
1718

    
1719
Use the executable @file{qemu-system-arm} to simulate a ARM
1720
machine. The ARM Integrator/CP board is emulated with the following
1721
devices:
1722

    
1723
@itemize @minus
1724
@item
1725
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1726
@item
1727
Two PL011 UARTs
1728
@item
1729
SMC 91c111 Ethernet adapter
1730
@item
1731
PL110 LCD controller
1732
@item
1733
PL050 KMI with PS/2 keyboard and mouse.
1734
@item
1735
PL181 MultiMedia Card Interface with SD card.
1736
@end itemize
1737

    
1738
The ARM Versatile baseboard is emulated with the following devices:
1739

    
1740
@itemize @minus
1741
@item
1742
ARM926E, ARM1136 or Cortex-A8 CPU
1743
@item
1744
PL190 Vectored Interrupt Controller
1745
@item
1746
Four PL011 UARTs
1747
@item
1748
SMC 91c111 Ethernet adapter
1749
@item
1750
PL110 LCD controller
1751
@item
1752
PL050 KMI with PS/2 keyboard and mouse.
1753
@item
1754
PCI host bridge.  Note the emulated PCI bridge only provides access to
1755
PCI memory space.  It does not provide access to PCI IO space.
1756
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1757
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1758
mapped control registers.
1759
@item
1760
PCI OHCI USB controller.
1761
@item
1762
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1763
@item
1764
PL181 MultiMedia Card Interface with SD card.
1765
@end itemize
1766

    
1767
Several variants of the ARM RealView baseboard are emulated,
1768
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1769
bootloader, only certain Linux kernel configurations work out
1770
of the box on these boards.
1771

    
1772
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1773
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1774
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1775
disabled and expect 1024M RAM.
1776

    
1777
The following devices are emulated:
1778

    
1779
@itemize @minus
1780
@item
1781
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1782
@item
1783
ARM AMBA Generic/Distributed Interrupt Controller
1784
@item
1785
Four PL011 UARTs
1786
@item
1787
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1788
@item
1789
PL110 LCD controller
1790
@item
1791
PL050 KMI with PS/2 keyboard and mouse
1792
@item
1793
PCI host bridge
1794
@item
1795
PCI OHCI USB controller
1796
@item
1797
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1798
@item
1799
PL181 MultiMedia Card Interface with SD card.
1800
@end itemize
1801

    
1802
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1803
and "Terrier") emulation includes the following peripherals:
1804

    
1805
@itemize @minus
1806
@item
1807
Intel PXA270 System-on-chip (ARM V5TE core)
1808
@item
1809
NAND Flash memory
1810
@item
1811
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1812
@item
1813
On-chip OHCI USB controller
1814
@item
1815
On-chip LCD controller
1816
@item
1817
On-chip Real Time Clock
1818
@item
1819
TI ADS7846 touchscreen controller on SSP bus
1820
@item
1821
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1822
@item
1823
GPIO-connected keyboard controller and LEDs
1824
@item
1825
Secure Digital card connected to PXA MMC/SD host
1826
@item
1827
Three on-chip UARTs
1828
@item
1829
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1830
@end itemize
1831

    
1832
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1833
following elements:
1834

    
1835
@itemize @minus
1836
@item
1837
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1838
@item
1839
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1840
@item
1841
On-chip LCD controller
1842
@item
1843
On-chip Real Time Clock
1844
@item
1845
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1846
CODEC, connected through MicroWire and I@math{^2}S busses
1847
@item
1848
GPIO-connected matrix keypad
1849
@item
1850
Secure Digital card connected to OMAP MMC/SD host
1851
@item
1852
Three on-chip UARTs
1853
@end itemize
1854

    
1855
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1856
emulation supports the following elements:
1857

    
1858
@itemize @minus
1859
@item
1860
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1861
@item
1862
RAM and non-volatile OneNAND Flash memories
1863
@item
1864
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1865
display controller and a LS041y3 MIPI DBI-C controller
1866
@item
1867
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1868
driven through SPI bus
1869
@item
1870
National Semiconductor LM8323-controlled qwerty keyboard driven
1871
through I@math{^2}C bus
1872
@item
1873
Secure Digital card connected to OMAP MMC/SD host
1874
@item
1875
Three OMAP on-chip UARTs and on-chip STI debugging console
1876
@item
1877
A Bluetooth(R) transceiver and HCI connected to an UART
1878
@item
1879
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1880
TUSB6010 chip - only USB host mode is supported
1881
@item
1882
TI TMP105 temperature sensor driven through I@math{^2}C bus
1883
@item
1884
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1885
@item
1886
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1887
through CBUS
1888
@end itemize
1889

    
1890
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1891
devices:
1892

    
1893
@itemize @minus
1894
@item
1895
Cortex-M3 CPU core.
1896
@item
1897
64k Flash and 8k SRAM.
1898
@item
1899
Timers, UARTs, ADC and I@math{^2}C interface.
1900
@item
1901
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1902
@end itemize
1903

    
1904
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1905
devices:
1906

    
1907
@itemize @minus
1908
@item
1909
Cortex-M3 CPU core.
1910
@item
1911
256k Flash and 64k SRAM.
1912
@item
1913
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1914
@item
1915
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1916
@end itemize
1917

    
1918
The Freecom MusicPal internet radio emulation includes the following
1919
elements:
1920

    
1921
@itemize @minus
1922
@item
1923
Marvell MV88W8618 ARM core.
1924
@item
1925
32 MB RAM, 256 KB SRAM, 8 MB flash.
1926
@item
1927
Up to 2 16550 UARTs
1928
@item
1929
MV88W8xx8 Ethernet controller
1930
@item
1931
MV88W8618 audio controller, WM8750 CODEC and mixer
1932
@item
1933
128×64 display with brightness control
1934
@item
1935
2 buttons, 2 navigation wheels with button function
1936
@end itemize
1937

    
1938
The Siemens SX1 models v1 and v2 (default) basic emulation.
1939
The emulation includes the following elements:
1940

    
1941
@itemize @minus
1942
@item
1943
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1944
@item
1945
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1946
V1
1947
1 Flash of 16MB and 1 Flash of 8MB
1948
V2
1949
1 Flash of 32MB
1950
@item
1951
On-chip LCD controller
1952
@item
1953
On-chip Real Time Clock
1954
@item
1955
Secure Digital card connected to OMAP MMC/SD host
1956
@item
1957
Three on-chip UARTs
1958
@end itemize
1959

    
1960
The "Syborg" Symbian Virtual Platform base model includes the following
1961
elements:
1962

    
1963
@itemize @minus
1964
@item
1965
ARM Cortex-A8 CPU
1966
@item
1967
Interrupt controller
1968
@item
1969
Timer
1970
@item
1971
Real Time Clock
1972
@item
1973
Keyboard
1974
@item
1975
Framebuffer
1976
@item
1977
Touchscreen
1978
@item
1979
UARTs
1980
@end itemize
1981

    
1982
A Linux 2.6 test image is available on the QEMU web site. More
1983
information is available in the QEMU mailing-list archive.
1984

    
1985
@c man begin OPTIONS
1986

    
1987
The following options are specific to the ARM emulation:
1988

    
1989
@table @option
1990

    
1991
@item -semihosting
1992
Enable semihosting syscall emulation.
1993

    
1994
On ARM this implements the "Angel" interface.
1995

    
1996
Note that this allows guest direct access to the host filesystem,
1997
so should only be used with trusted guest OS.
1998

    
1999
@end table
2000

    
2001
@node ColdFire System emulator
2002
@section ColdFire System emulator
2003
@cindex system emulation (ColdFire)
2004
@cindex system emulation (M68K)
2005

    
2006
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2007
The emulator is able to boot a uClinux kernel.
2008

    
2009
The M5208EVB emulation includes the following devices:
2010

    
2011
@itemize @minus
2012
@item
2013
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2014
@item
2015
Three Two on-chip UARTs.
2016
@item
2017
Fast Ethernet Controller (FEC)
2018
@end itemize
2019

    
2020
The AN5206 emulation includes the following devices:
2021

    
2022
@itemize @minus
2023
@item
2024
MCF5206 ColdFire V2 Microprocessor.
2025
@item
2026
Two on-chip UARTs.
2027
@end itemize
2028

    
2029
@c man begin OPTIONS
2030

    
2031
The following options are specific to the ColdFire emulation:
2032

    
2033
@table @option
2034

    
2035
@item -semihosting
2036
Enable semihosting syscall emulation.
2037

    
2038
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2039

    
2040
Note that this allows guest direct access to the host filesystem,
2041
so should only be used with trusted guest OS.
2042

    
2043
@end table
2044

    
2045
@node Cris System emulator
2046
@section Cris System emulator
2047
@cindex system emulation (Cris)
2048

    
2049
TODO
2050

    
2051
@node Microblaze System emulator
2052
@section Microblaze System emulator
2053
@cindex system emulation (Microblaze)
2054

    
2055
TODO
2056

    
2057
@node SH4 System emulator
2058
@section SH4 System emulator
2059
@cindex system emulation (SH4)
2060

    
2061
TODO
2062

    
2063
@node QEMU User space emulator
2064
@chapter QEMU User space emulator
2065

    
2066
@menu
2067
* Supported Operating Systems ::
2068
* Linux User space emulator::
2069
* Mac OS X/Darwin User space emulator ::
2070
* BSD User space emulator ::
2071
@end menu
2072

    
2073
@node Supported Operating Systems
2074
@section Supported Operating Systems
2075

    
2076
The following OS are supported in user space emulation:
2077

    
2078
@itemize @minus
2079
@item
2080
Linux (referred as qemu-linux-user)
2081
@item
2082
Mac OS X/Darwin (referred as qemu-darwin-user)
2083
@item
2084
BSD (referred as qemu-bsd-user)
2085
@end itemize
2086

    
2087
@node Linux User space emulator
2088
@section Linux User space emulator
2089

    
2090
@menu
2091
* Quick Start::
2092
* Wine launch::
2093
* Command line options::
2094
* Other binaries::
2095
@end menu
2096

    
2097
@node Quick Start
2098
@subsection Quick Start
2099

    
2100
In order to launch a Linux process, QEMU needs the process executable
2101
itself and all the target (x86) dynamic libraries used by it.
2102

    
2103
@itemize
2104

    
2105
@item On x86, you can just try to launch any process by using the native
2106
libraries:
2107

    
2108
@example
2109
qemu-i386 -L / /bin/ls
2110
@end example
2111

    
2112
@code{-L /} tells that the x86 dynamic linker must be searched with a
2113
@file{/} prefix.
2114

    
2115
@item Since QEMU is also a linux process, you can launch qemu with
2116
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2117

    
2118
@example
2119
qemu-i386 -L / qemu-i386 -L / /bin/ls
2120
@end example
2121

    
2122
@item On non x86 CPUs, you need first to download at least an x86 glibc
2123
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2124
@code{LD_LIBRARY_PATH} is not set:
2125

    
2126
@example
2127
unset LD_LIBRARY_PATH
2128
@end example
2129

    
2130
Then you can launch the precompiled @file{ls} x86 executable:
2131

    
2132
@example
2133
qemu-i386 tests/i386/ls
2134
@end example
2135
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2136
QEMU is automatically launched by the Linux kernel when you try to
2137
launch x86 executables. It requires the @code{binfmt_misc} module in the
2138
Linux kernel.
2139

    
2140
@item The x86 version of QEMU is also included. You can try weird things such as:
2141
@example
2142
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2143
          /usr/local/qemu-i386/bin/ls-i386
2144
@end example
2145

    
2146
@end itemize
2147

    
2148
@node Wine launch
2149
@subsection Wine launch
2150

    
2151
@itemize
2152

    
2153
@item Ensure that you have a working QEMU with the x86 glibc
2154
distribution (see previous section). In order to verify it, you must be
2155
able to do:
2156

    
2157
@example
2158
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2159
@end example
2160

    
2161
@item Download the binary x86 Wine install
2162
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2163

    
2164
@item Configure Wine on your account. Look at the provided script
2165
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2166
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2167

    
2168
@item Then you can try the example @file{putty.exe}:
2169

    
2170
@example
2171
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2172
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2173
@end example
2174

    
2175
@end itemize
2176

    
2177
@node Command line options
2178
@subsection Command line options
2179

    
2180
@example
2181
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2182
@end example
2183

    
2184
@table @option
2185
@item -h
2186
Print the help
2187
@item -L path
2188
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2189
@item -s size
2190
Set the x86 stack size in bytes (default=524288)
2191
@item -cpu model
2192
Select CPU model (-cpu ? for list and additional feature selection)
2193
@item -ignore-environment
2194
Start with an empty environment. Without this option,
2195
the initial environment is a copy of the caller's environment.
2196
@item -E @var{var}=@var{value}
2197
Set environment @var{var} to @var{value}.
2198
@item -U @var{var}
2199
Remove @var{var} from the environment.
2200
@item -B offset
2201
Offset guest address by the specified number of bytes.  This is useful when
2202
the address region required by guest applications is reserved on the host.
2203
This option is currently only supported on some hosts.
2204
@item -R size
2205
Pre-allocate a guest virtual address space of the given size (in bytes).
2206
"G", "M", and "k" suffixes may be used when specifying the size.
2207
@end table
2208

    
2209
Debug options:
2210

    
2211
@table @option
2212
@item -d
2213
Activate log (logfile=/tmp/qemu.log)
2214
@item -p pagesize
2215
Act as if the host page size was 'pagesize' bytes
2216
@item -g port
2217
Wait gdb connection to port
2218
@item -singlestep
2219
Run the emulation in single step mode.
2220
@end table
2221

    
2222
Environment variables:
2223

    
2224
@table @env
2225
@item QEMU_STRACE
2226
Print system calls and arguments similar to the 'strace' program
2227
(NOTE: the actual 'strace' program will not work because the user
2228
space emulator hasn't implemented ptrace).  At the moment this is
2229
incomplete.  All system calls that don't have a specific argument
2230
format are printed with information for six arguments.  Many
2231
flag-style arguments don't have decoders and will show up as numbers.
2232
@end table
2233

    
2234
@node Other binaries
2235
@subsection Other binaries
2236

    
2237
@cindex user mode (Alpha)
2238
@command{qemu-alpha} TODO.
2239

    
2240
@cindex user mode (ARM)
2241
@command{qemu-armeb} TODO.
2242

    
2243
@cindex user mode (ARM)
2244
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2245
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2246
configurations), and arm-uclinux bFLT format binaries.
2247

    
2248
@cindex user mode (ColdFire)
2249
@cindex user mode (M68K)
2250
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2251
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2252
coldfire uClinux bFLT format binaries.
2253

    
2254
The binary format is detected automatically.
2255

    
2256
@cindex user mode (Cris)
2257
@command{qemu-cris} TODO.
2258

    
2259
@cindex user mode (i386)
2260
@command{qemu-i386} TODO.
2261
@command{qemu-x86_64} TODO.
2262

    
2263
@cindex user mode (Microblaze)
2264
@command{qemu-microblaze} TODO.
2265

    
2266
@cindex user mode (MIPS)
2267
@command{qemu-mips} TODO.
2268
@command{qemu-mipsel} TODO.
2269

    
2270
@cindex user mode (PowerPC)
2271
@command{qemu-ppc64abi32} TODO.
2272
@command{qemu-ppc64} TODO.
2273
@command{qemu-ppc} TODO.
2274

    
2275
@cindex user mode (SH4)
2276
@command{qemu-sh4eb} TODO.
2277
@command{qemu-sh4} TODO.
2278

    
2279
@cindex user mode (SPARC)
2280
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2281

    
2282
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2283
(Sparc64 CPU, 32 bit ABI).
2284

    
2285
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2286
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2287

    
2288
@node Mac OS X/Darwin User space emulator
2289
@section Mac OS X/Darwin User space emulator
2290

    
2291
@menu
2292
* Mac OS X/Darwin Status::
2293
* Mac OS X/Darwin Quick Start::
2294
* Mac OS X/Darwin Command line options::
2295
@end menu
2296

    
2297
@node Mac OS X/Darwin Status
2298
@subsection Mac OS X/Darwin Status
2299

    
2300
@itemize @minus
2301
@item
2302
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2303
@item
2304
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2305
@item
2306
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2307
@item
2308
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2309
@end itemize
2310

    
2311
[1] If you're host commpage can be executed by qemu.
2312

    
2313
@node Mac OS X/Darwin Quick Start
2314
@subsection Quick Start
2315

    
2316
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2317
itself and all the target dynamic libraries used by it. If you don't have the FAT
2318
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2319
CD or compile them by hand.
2320

    
2321
@itemize
2322

    
2323
@item On x86, you can just try to launch any process by using the native
2324
libraries:
2325

    
2326
@example
2327
qemu-i386 /bin/ls
2328
@end example
2329

    
2330
or to run the ppc version of the executable:
2331

    
2332
@example
2333
qemu-ppc /bin/ls
2334
@end example
2335

    
2336
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2337
are installed:
2338

    
2339
@example
2340
qemu-i386 -L /opt/x86_root/ /bin/ls
2341
@end example
2342

    
2343
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2344
@file{/opt/x86_root/usr/bin/dyld}.
2345

    
2346
@end itemize
2347

    
2348
@node Mac OS X/Darwin Command line options
2349
@subsection Command line options
2350

    
2351
@example
2352
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2353
@end example
2354

    
2355
@table @option
2356
@item -h
2357
Print the help
2358
@item -L path
2359
Set the library root path (default=/)
2360
@item -s size
2361
Set the stack size in bytes (default=524288)
2362
@end table
2363

    
2364
Debug options:
2365

    
2366
@table @option
2367
@item -d
2368
Activate log (logfile=/tmp/qemu.log)
2369
@item -p pagesize
2370
Act as if the host page size was 'pagesize' bytes
2371
@item -singlestep
2372
Run the emulation in single step mode.
2373
@end table
2374

    
2375
@node BSD User space emulator
2376
@section BSD User space emulator
2377

    
2378
@menu
2379
* BSD Status::
2380
* BSD Quick Start::
2381
* BSD Command line options::
2382
@end menu
2383

    
2384
@node BSD Status
2385
@subsection BSD Status
2386

    
2387
@itemize @minus
2388
@item
2389
target Sparc64 on Sparc64: Some trivial programs work.
2390
@end itemize
2391

    
2392
@node BSD Quick Start
2393
@subsection Quick Start
2394

    
2395
In order to launch a BSD process, QEMU needs the process executable
2396
itself and all the target dynamic libraries used by it.
2397

    
2398
@itemize
2399

    
2400
@item On Sparc64, you can just try to launch any process by using the native
2401
libraries:
2402

    
2403
@example
2404
qemu-sparc64 /bin/ls
2405
@end example
2406

    
2407
@end itemize
2408

    
2409
@node BSD Command line options
2410
@subsection Command line options
2411

    
2412
@example
2413
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2414
@end example
2415

    
2416
@table @option
2417
@item -h
2418
Print the help
2419
@item -L path
2420
Set the library root path (default=/)
2421
@item -s size
2422
Set the stack size in bytes (default=524288)
2423
@item -ignore-environment
2424
Start with an empty environment. Without this option,
2425
the initial environment is a copy of the caller's environment.
2426
@item -E @var{var}=@var{value}
2427
Set environment @var{var} to @var{value}.
2428
@item -U @var{var}
2429
Remove @var{var} from the environment.
2430
@item -bsd type
2431
Set the type of the emulated BSD Operating system. Valid values are
2432
FreeBSD, NetBSD and OpenBSD (default).
2433
@end table
2434

    
2435
Debug options:
2436

    
2437
@table @option
2438
@item -d
2439
Activate log (logfile=/tmp/qemu.log)
2440
@item -p pagesize
2441
Act as if the host page size was 'pagesize' bytes
2442
@item -singlestep
2443
Run the emulation in single step mode.
2444
@end table
2445

    
2446
@node compilation
2447
@chapter Compilation from the sources
2448

    
2449
@menu
2450
* Linux/Unix::
2451
* Windows::
2452
* Cross compilation for Windows with Linux::
2453
* Mac OS X::
2454
* Make targets::
2455
@end menu
2456

    
2457
@node Linux/Unix
2458
@section Linux/Unix
2459

    
2460
@subsection Compilation
2461

    
2462
First you must decompress the sources:
2463
@example
2464
cd /tmp
2465
tar zxvf qemu-x.y.z.tar.gz
2466
cd qemu-x.y.z
2467
@end example
2468

    
2469
Then you configure QEMU and build it (usually no options are needed):
2470
@example
2471
./configure
2472
make
2473
@end example
2474

    
2475
Then type as root user:
2476
@example
2477
make install
2478
@end example
2479
to install QEMU in @file{/usr/local}.
2480

    
2481
@node Windows
2482
@section Windows
2483

    
2484
@itemize
2485
@item Install the current versions of MSYS and MinGW from
2486
@url{http://www.mingw.org/}. You can find detailed installation
2487
instructions in the download section and the FAQ.
2488

    
2489
@item Download
2490
the MinGW development library of SDL 1.2.x
2491
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2492
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2493
edit the @file{sdl-config} script so that it gives the
2494
correct SDL directory when invoked.
2495

    
2496
@item Install the MinGW version of zlib and make sure
2497
@file{zlib.h} and @file{libz.dll.a} are in
2498
MinGW's default header and linker search paths.
2499

    
2500
@item Extract the current version of QEMU.
2501

    
2502
@item Start the MSYS shell (file @file{msys.bat}).
2503

    
2504
@item Change to the QEMU directory. Launch @file{./configure} and
2505
@file{make}.  If you have problems using SDL, verify that
2506
@file{sdl-config} can be launched from the MSYS command line.
2507

    
2508
@item You can install QEMU in @file{Program Files/Qemu} by typing
2509
@file{make install}. Don't forget to copy @file{SDL.dll} in
2510
@file{Program Files/Qemu}.
2511

    
2512
@end itemize
2513

    
2514
@node Cross compilation for Windows with Linux
2515
@section Cross compilation for Windows with Linux
2516

    
2517
@itemize
2518
@item
2519
Install the MinGW cross compilation tools available at
2520
@url{http://www.mingw.org/}.
2521

    
2522
@item Download
2523
the MinGW development library of SDL 1.2.x
2524
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2525
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2526
edit the @file{sdl-config} script so that it gives the
2527
correct SDL directory when invoked.  Set up the @code{PATH} environment
2528
variable so that @file{sdl-config} can be launched by
2529
the QEMU configuration script.
2530

    
2531
@item Install the MinGW version of zlib and make sure
2532
@file{zlib.h} and @file{libz.dll.a} are in
2533
MinGW's default header and linker search paths.
2534

    
2535
@item
2536
Configure QEMU for Windows cross compilation:
2537
@example
2538
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2539
@end example
2540
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2541
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2542
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2543
use --cross-prefix to specify the name of the cross compiler.
2544
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2545

    
2546
Under Fedora Linux, you can run:
2547
@example
2548
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2549
@end example
2550
to get a suitable cross compilation environment.
2551

    
2552
@item You can install QEMU in the installation directory by typing
2553
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2554
installation directory.
2555

    
2556
@end itemize
2557

    
2558
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2559

    
2560
@node Mac OS X
2561
@section Mac OS X
2562

    
2563
The Mac OS X patches are not fully merged in QEMU, so you should look
2564
at the QEMU mailing list archive to have all the necessary
2565
information.
2566

    
2567
@node Make targets
2568
@section Make targets
2569

    
2570
@table @code
2571

    
2572
@item make
2573
@item make all
2574
Make everything which is typically needed.
2575

    
2576
@item install
2577
TODO
2578

    
2579
@item install-doc
2580
TODO
2581

    
2582
@item make clean
2583
Remove most files which were built during make.
2584

    
2585
@item make distclean
2586
Remove everything which was built during make.
2587

    
2588
@item make dvi
2589
@item make html
2590
@item make info
2591
@item make pdf
2592
Create documentation in dvi, html, info or pdf format.
2593

    
2594
@item make cscope
2595
TODO
2596

    
2597
@item make defconfig
2598
(Re-)create some build configuration files.
2599
User made changes will be overwritten.
2600

    
2601
@item tar
2602
@item tarbin
2603
TODO
2604

    
2605
@end table
2606

    
2607
@node License
2608
@appendix License
2609

    
2610
QEMU is a trademark of Fabrice Bellard.
2611

    
2612
QEMU is released under the GNU General Public License (TODO: add link).
2613
Parts of QEMU have specific licenses, see file LICENSE.
2614

    
2615
TODO (refer to file LICENSE, include it, include the GPL?)
2616

    
2617
@node Index
2618
@appendix Index
2619
@menu
2620
* Concept Index::
2621
* Function Index::
2622
* Keystroke Index::
2623
* Program Index::
2624
* Data Type Index::
2625
* Variable Index::
2626
@end menu
2627

    
2628
@node Concept Index
2629
@section Concept Index
2630
This is the main index. Should we combine all keywords in one index? TODO
2631
@printindex cp
2632

    
2633
@node Function Index
2634
@section Function Index
2635
This index could be used for command line options and monitor functions.
2636
@printindex fn
2637

    
2638
@node Keystroke Index
2639
@section Keystroke Index
2640

    
2641
This is a list of all keystrokes which have a special function
2642
in system emulation.
2643

    
2644
@printindex ky
2645

    
2646
@node Program Index
2647
@section Program Index
2648
@printindex pg
2649

    
2650
@node Data Type Index
2651
@section Data Type Index
2652

    
2653
This index could be used for qdev device names and options.
2654

    
2655
@printindex tp
2656

    
2657
@node Variable Index
2658
@section Variable Index
2659
@printindex vr
2660

    
2661
@bye