Statistics
| Branch: | Revision:

root / target-arm / helper.c @ 4fcc562b

History | View | Annotate | Download (71.1 kB)

1
#include <stdio.h>
2
#include <stdlib.h>
3
#include <string.h>
4

    
5
#include "cpu.h"
6
#include "exec-all.h"
7
#include "gdbstub.h"
8
#include "helpers.h"
9
#include "qemu-common.h"
10
#include "host-utils.h"
11

    
12
static uint32_t cortexa9_cp15_c0_c1[8] =
13
{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
14

    
15
static uint32_t cortexa9_cp15_c0_c2[8] =
16
{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
17

    
18
static uint32_t cortexa8_cp15_c0_c1[8] =
19
{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
20

    
21
static uint32_t cortexa8_cp15_c0_c2[8] =
22
{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
23

    
24
static uint32_t mpcore_cp15_c0_c1[8] =
25
{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
26

    
27
static uint32_t mpcore_cp15_c0_c2[8] =
28
{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
29

    
30
static uint32_t arm1136_cp15_c0_c1[8] =
31
{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
32

    
33
static uint32_t arm1136_cp15_c0_c2[8] =
34
{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
35

    
36
static uint32_t cpu_arm_find_by_name(const char *name);
37

    
38
static inline void set_feature(CPUARMState *env, int feature)
39
{
40
    env->features |= 1u << feature;
41
}
42

    
43
static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
44
{
45
    env->cp15.c0_cpuid = id;
46
    switch (id) {
47
    case ARM_CPUID_ARM926:
48
        set_feature(env, ARM_FEATURE_VFP);
49
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
50
        env->cp15.c0_cachetype = 0x1dd20d2;
51
        env->cp15.c1_sys = 0x00090078;
52
        break;
53
    case ARM_CPUID_ARM946:
54
        set_feature(env, ARM_FEATURE_MPU);
55
        env->cp15.c0_cachetype = 0x0f004006;
56
        env->cp15.c1_sys = 0x00000078;
57
        break;
58
    case ARM_CPUID_ARM1026:
59
        set_feature(env, ARM_FEATURE_VFP);
60
        set_feature(env, ARM_FEATURE_AUXCR);
61
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
62
        env->cp15.c0_cachetype = 0x1dd20d2;
63
        env->cp15.c1_sys = 0x00090078;
64
        break;
65
    case ARM_CPUID_ARM1136_R2:
66
    case ARM_CPUID_ARM1136:
67
        set_feature(env, ARM_FEATURE_V6);
68
        set_feature(env, ARM_FEATURE_VFP);
69
        set_feature(env, ARM_FEATURE_AUXCR);
70
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
71
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
72
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
73
        memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
74
        memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
75
        env->cp15.c0_cachetype = 0x1dd20d2;
76
        break;
77
    case ARM_CPUID_ARM11MPCORE:
78
        set_feature(env, ARM_FEATURE_V6);
79
        set_feature(env, ARM_FEATURE_V6K);
80
        set_feature(env, ARM_FEATURE_VFP);
81
        set_feature(env, ARM_FEATURE_AUXCR);
82
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
83
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
84
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
85
        memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
86
        memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
87
        env->cp15.c0_cachetype = 0x1dd20d2;
88
        break;
89
    case ARM_CPUID_CORTEXA8:
90
        set_feature(env, ARM_FEATURE_V6);
91
        set_feature(env, ARM_FEATURE_V6K);
92
        set_feature(env, ARM_FEATURE_V7);
93
        set_feature(env, ARM_FEATURE_AUXCR);
94
        set_feature(env, ARM_FEATURE_THUMB2);
95
        set_feature(env, ARM_FEATURE_VFP);
96
        set_feature(env, ARM_FEATURE_VFP3);
97
        set_feature(env, ARM_FEATURE_NEON);
98
        set_feature(env, ARM_FEATURE_THUMB2EE);
99
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
100
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
101
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
102
        memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
103
        memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
104
        env->cp15.c0_cachetype = 0x82048004;
105
        env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
106
        env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
107
        env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
108
        env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
109
        break;
110
    case ARM_CPUID_CORTEXA9:
111
        set_feature(env, ARM_FEATURE_V6);
112
        set_feature(env, ARM_FEATURE_V6K);
113
        set_feature(env, ARM_FEATURE_V7);
114
        set_feature(env, ARM_FEATURE_AUXCR);
115
        set_feature(env, ARM_FEATURE_THUMB2);
116
        set_feature(env, ARM_FEATURE_VFP);
117
        set_feature(env, ARM_FEATURE_VFP3);
118
        set_feature(env, ARM_FEATURE_VFP_FP16);
119
        set_feature(env, ARM_FEATURE_NEON);
120
        set_feature(env, ARM_FEATURE_THUMB2EE);
121
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
122
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
123
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
124
        memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
125
        memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
126
        env->cp15.c0_cachetype = 0x80038003;
127
        env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
128
        env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
129
        env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
130
        break;
131
    case ARM_CPUID_CORTEXM3:
132
        set_feature(env, ARM_FEATURE_V6);
133
        set_feature(env, ARM_FEATURE_THUMB2);
134
        set_feature(env, ARM_FEATURE_V7);
135
        set_feature(env, ARM_FEATURE_M);
136
        set_feature(env, ARM_FEATURE_DIV);
137
        break;
138
    case ARM_CPUID_ANY: /* For userspace emulation.  */
139
        set_feature(env, ARM_FEATURE_V6);
140
        set_feature(env, ARM_FEATURE_V6K);
141
        set_feature(env, ARM_FEATURE_V7);
142
        set_feature(env, ARM_FEATURE_THUMB2);
143
        set_feature(env, ARM_FEATURE_VFP);
144
        set_feature(env, ARM_FEATURE_VFP3);
145
        set_feature(env, ARM_FEATURE_VFP_FP16);
146
        set_feature(env, ARM_FEATURE_NEON);
147
        set_feature(env, ARM_FEATURE_THUMB2EE);
148
        set_feature(env, ARM_FEATURE_DIV);
149
        break;
150
    case ARM_CPUID_TI915T:
151
    case ARM_CPUID_TI925T:
152
        set_feature(env, ARM_FEATURE_OMAPCP);
153
        env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
154
        env->cp15.c0_cachetype = 0x5109149;
155
        env->cp15.c1_sys = 0x00000070;
156
        env->cp15.c15_i_max = 0x000;
157
        env->cp15.c15_i_min = 0xff0;
158
        break;
159
    case ARM_CPUID_PXA250:
160
    case ARM_CPUID_PXA255:
161
    case ARM_CPUID_PXA260:
162
    case ARM_CPUID_PXA261:
163
    case ARM_CPUID_PXA262:
164
        set_feature(env, ARM_FEATURE_XSCALE);
165
        /* JTAG_ID is ((id << 28) | 0x09265013) */
166
        env->cp15.c0_cachetype = 0xd172172;
167
        env->cp15.c1_sys = 0x00000078;
168
        break;
169
    case ARM_CPUID_PXA270_A0:
170
    case ARM_CPUID_PXA270_A1:
171
    case ARM_CPUID_PXA270_B0:
172
    case ARM_CPUID_PXA270_B1:
173
    case ARM_CPUID_PXA270_C0:
174
    case ARM_CPUID_PXA270_C5:
175
        set_feature(env, ARM_FEATURE_XSCALE);
176
        /* JTAG_ID is ((id << 28) | 0x09265013) */
177
        set_feature(env, ARM_FEATURE_IWMMXT);
178
        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
179
        env->cp15.c0_cachetype = 0xd172172;
180
        env->cp15.c1_sys = 0x00000078;
181
        break;
182
    default:
183
        cpu_abort(env, "Bad CPU ID: %x\n", id);
184
        break;
185
    }
186
}
187

    
188
void cpu_reset(CPUARMState *env)
189
{
190
    uint32_t id;
191

    
192
    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
193
        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
194
        log_cpu_state(env, 0);
195
    }
196

    
197
    id = env->cp15.c0_cpuid;
198
    memset(env, 0, offsetof(CPUARMState, breakpoints));
199
    if (id)
200
        cpu_reset_model_id(env, id);
201
#if defined (CONFIG_USER_ONLY)
202
    env->uncached_cpsr = ARM_CPU_MODE_USR;
203
    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
204
#else
205
    /* SVC mode with interrupts disabled.  */
206
    env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
207
    /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
208
       clear at reset.  */
209
    if (IS_M(env))
210
        env->uncached_cpsr &= ~CPSR_I;
211
    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
212
    env->cp15.c2_base_mask = 0xffffc000u;
213
#endif
214
    env->regs[15] = 0;
215
    tlb_flush(env, 1);
216
}
217

    
218
static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
219
{
220
    int nregs;
221

    
222
    /* VFP data registers are always little-endian.  */
223
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
224
    if (reg < nregs) {
225
        stfq_le_p(buf, env->vfp.regs[reg]);
226
        return 8;
227
    }
228
    if (arm_feature(env, ARM_FEATURE_NEON)) {
229
        /* Aliases for Q regs.  */
230
        nregs += 16;
231
        if (reg < nregs) {
232
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
233
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
234
            return 16;
235
        }
236
    }
237
    switch (reg - nregs) {
238
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
239
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
240
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
241
    }
242
    return 0;
243
}
244

    
245
static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
246
{
247
    int nregs;
248

    
249
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
250
    if (reg < nregs) {
251
        env->vfp.regs[reg] = ldfq_le_p(buf);
252
        return 8;
253
    }
254
    if (arm_feature(env, ARM_FEATURE_NEON)) {
255
        nregs += 16;
256
        if (reg < nregs) {
257
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
258
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
259
            return 16;
260
        }
261
    }
262
    switch (reg - nregs) {
263
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
264
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
265
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
266
    }
267
    return 0;
268
}
269

    
270
CPUARMState *cpu_arm_init(const char *cpu_model)
271
{
272
    CPUARMState *env;
273
    uint32_t id;
274
    static int inited = 0;
275

    
276
    id = cpu_arm_find_by_name(cpu_model);
277
    if (id == 0)
278
        return NULL;
279
    env = qemu_mallocz(sizeof(CPUARMState));
280
    cpu_exec_init(env);
281
    if (!inited) {
282
        inited = 1;
283
        arm_translate_init();
284
    }
285

    
286
    env->cpu_model_str = cpu_model;
287
    env->cp15.c0_cpuid = id;
288
    cpu_reset(env);
289
    if (arm_feature(env, ARM_FEATURE_NEON)) {
290
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
291
                                 51, "arm-neon.xml", 0);
292
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
293
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
294
                                 35, "arm-vfp3.xml", 0);
295
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
296
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
297
                                 19, "arm-vfp.xml", 0);
298
    }
299
    qemu_init_vcpu(env);
300
    return env;
301
}
302

    
303
struct arm_cpu_t {
304
    uint32_t id;
305
    const char *name;
306
};
307

    
308
static const struct arm_cpu_t arm_cpu_names[] = {
309
    { ARM_CPUID_ARM926, "arm926"},
310
    { ARM_CPUID_ARM946, "arm946"},
311
    { ARM_CPUID_ARM1026, "arm1026"},
312
    { ARM_CPUID_ARM1136, "arm1136"},
313
    { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
314
    { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
315
    { ARM_CPUID_CORTEXM3, "cortex-m3"},
316
    { ARM_CPUID_CORTEXA8, "cortex-a8"},
317
    { ARM_CPUID_CORTEXA9, "cortex-a9"},
318
    { ARM_CPUID_TI925T, "ti925t" },
319
    { ARM_CPUID_PXA250, "pxa250" },
320
    { ARM_CPUID_PXA255, "pxa255" },
321
    { ARM_CPUID_PXA260, "pxa260" },
322
    { ARM_CPUID_PXA261, "pxa261" },
323
    { ARM_CPUID_PXA262, "pxa262" },
324
    { ARM_CPUID_PXA270, "pxa270" },
325
    { ARM_CPUID_PXA270_A0, "pxa270-a0" },
326
    { ARM_CPUID_PXA270_A1, "pxa270-a1" },
327
    { ARM_CPUID_PXA270_B0, "pxa270-b0" },
328
    { ARM_CPUID_PXA270_B1, "pxa270-b1" },
329
    { ARM_CPUID_PXA270_C0, "pxa270-c0" },
330
    { ARM_CPUID_PXA270_C5, "pxa270-c5" },
331
    { ARM_CPUID_ANY, "any"},
332
    { 0, NULL}
333
};
334

    
335
void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
336
{
337
    int i;
338

    
339
    (*cpu_fprintf)(f, "Available CPUs:\n");
340
    for (i = 0; arm_cpu_names[i].name; i++) {
341
        (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
342
    }
343
}
344

    
345
/* return 0 if not found */
346
static uint32_t cpu_arm_find_by_name(const char *name)
347
{
348
    int i;
349
    uint32_t id;
350

    
351
    id = 0;
352
    for (i = 0; arm_cpu_names[i].name; i++) {
353
        if (strcmp(name, arm_cpu_names[i].name) == 0) {
354
            id = arm_cpu_names[i].id;
355
            break;
356
        }
357
    }
358
    return id;
359
}
360

    
361
void cpu_arm_close(CPUARMState *env)
362
{
363
    free(env);
364
}
365

    
366
uint32_t cpsr_read(CPUARMState *env)
367
{
368
    int ZF;
369
    ZF = (env->ZF == 0);
370
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
371
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
372
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
373
        | ((env->condexec_bits & 0xfc) << 8)
374
        | (env->GE << 16);
375
}
376

    
377
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
378
{
379
    if (mask & CPSR_NZCV) {
380
        env->ZF = (~val) & CPSR_Z;
381
        env->NF = val;
382
        env->CF = (val >> 29) & 1;
383
        env->VF = (val << 3) & 0x80000000;
384
    }
385
    if (mask & CPSR_Q)
386
        env->QF = ((val & CPSR_Q) != 0);
387
    if (mask & CPSR_T)
388
        env->thumb = ((val & CPSR_T) != 0);
389
    if (mask & CPSR_IT_0_1) {
390
        env->condexec_bits &= ~3;
391
        env->condexec_bits |= (val >> 25) & 3;
392
    }
393
    if (mask & CPSR_IT_2_7) {
394
        env->condexec_bits &= 3;
395
        env->condexec_bits |= (val >> 8) & 0xfc;
396
    }
397
    if (mask & CPSR_GE) {
398
        env->GE = (val >> 16) & 0xf;
399
    }
400

    
401
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
402
        switch_mode(env, val & CPSR_M);
403
    }
404
    mask &= ~CACHED_CPSR_BITS;
405
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
406
}
407

    
408
/* Sign/zero extend */
409
uint32_t HELPER(sxtb16)(uint32_t x)
410
{
411
    uint32_t res;
412
    res = (uint16_t)(int8_t)x;
413
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
414
    return res;
415
}
416

    
417
uint32_t HELPER(uxtb16)(uint32_t x)
418
{
419
    uint32_t res;
420
    res = (uint16_t)(uint8_t)x;
421
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
422
    return res;
423
}
424

    
425
uint32_t HELPER(clz)(uint32_t x)
426
{
427
    return clz32(x);
428
}
429

    
430
int32_t HELPER(sdiv)(int32_t num, int32_t den)
431
{
432
    if (den == 0)
433
      return 0;
434
    if (num == INT_MIN && den == -1)
435
      return INT_MIN;
436
    return num / den;
437
}
438

    
439
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
440
{
441
    if (den == 0)
442
      return 0;
443
    return num / den;
444
}
445

    
446
uint32_t HELPER(rbit)(uint32_t x)
447
{
448
    x =  ((x & 0xff000000) >> 24)
449
       | ((x & 0x00ff0000) >> 8)
450
       | ((x & 0x0000ff00) << 8)
451
       | ((x & 0x000000ff) << 24);
452
    x =  ((x & 0xf0f0f0f0) >> 4)
453
       | ((x & 0x0f0f0f0f) << 4);
454
    x =  ((x & 0x88888888) >> 3)
455
       | ((x & 0x44444444) >> 1)
456
       | ((x & 0x22222222) << 1)
457
       | ((x & 0x11111111) << 3);
458
    return x;
459
}
460

    
461
uint32_t HELPER(abs)(uint32_t x)
462
{
463
    return ((int32_t)x < 0) ? -x : x;
464
}
465

    
466
#if defined(CONFIG_USER_ONLY)
467

    
468
void do_interrupt (CPUState *env)
469
{
470
    env->exception_index = -1;
471
}
472

    
473
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
474
                              int mmu_idx, int is_softmmu)
475
{
476
    if (rw == 2) {
477
        env->exception_index = EXCP_PREFETCH_ABORT;
478
        env->cp15.c6_insn = address;
479
    } else {
480
        env->exception_index = EXCP_DATA_ABORT;
481
        env->cp15.c6_data = address;
482
    }
483
    return 1;
484
}
485

    
486
/* These should probably raise undefined insn exceptions.  */
487
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
488
{
489
    int op1 = (insn >> 8) & 0xf;
490
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
491
    return;
492
}
493

    
494
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
495
{
496
    int op1 = (insn >> 8) & 0xf;
497
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
498
    return 0;
499
}
500

    
501
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
502
{
503
    cpu_abort(env, "cp15 insn %08x\n", insn);
504
}
505

    
506
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
507
{
508
    cpu_abort(env, "cp15 insn %08x\n", insn);
509
}
510

    
511
/* These should probably raise undefined insn exceptions.  */
512
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
513
{
514
    cpu_abort(env, "v7m_mrs %d\n", reg);
515
}
516

    
517
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
518
{
519
    cpu_abort(env, "v7m_mrs %d\n", reg);
520
    return 0;
521
}
522

    
523
void switch_mode(CPUState *env, int mode)
524
{
525
    if (mode != ARM_CPU_MODE_USR)
526
        cpu_abort(env, "Tried to switch out of user mode\n");
527
}
528

    
529
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
530
{
531
    cpu_abort(env, "banked r13 write\n");
532
}
533

    
534
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
535
{
536
    cpu_abort(env, "banked r13 read\n");
537
    return 0;
538
}
539

    
540
#else
541

    
542
extern int semihosting_enabled;
543

    
544
/* Map CPU modes onto saved register banks.  */
545
static inline int bank_number (int mode)
546
{
547
    switch (mode) {
548
    case ARM_CPU_MODE_USR:
549
    case ARM_CPU_MODE_SYS:
550
        return 0;
551
    case ARM_CPU_MODE_SVC:
552
        return 1;
553
    case ARM_CPU_MODE_ABT:
554
        return 2;
555
    case ARM_CPU_MODE_UND:
556
        return 3;
557
    case ARM_CPU_MODE_IRQ:
558
        return 4;
559
    case ARM_CPU_MODE_FIQ:
560
        return 5;
561
    }
562
    cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
563
    return -1;
564
}
565

    
566
void switch_mode(CPUState *env, int mode)
567
{
568
    int old_mode;
569
    int i;
570

    
571
    old_mode = env->uncached_cpsr & CPSR_M;
572
    if (mode == old_mode)
573
        return;
574

    
575
    if (old_mode == ARM_CPU_MODE_FIQ) {
576
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
577
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
578
    } else if (mode == ARM_CPU_MODE_FIQ) {
579
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
580
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
581
    }
582

    
583
    i = bank_number(old_mode);
584
    env->banked_r13[i] = env->regs[13];
585
    env->banked_r14[i] = env->regs[14];
586
    env->banked_spsr[i] = env->spsr;
587

    
588
    i = bank_number(mode);
589
    env->regs[13] = env->banked_r13[i];
590
    env->regs[14] = env->banked_r14[i];
591
    env->spsr = env->banked_spsr[i];
592
}
593

    
594
static void v7m_push(CPUARMState *env, uint32_t val)
595
{
596
    env->regs[13] -= 4;
597
    stl_phys(env->regs[13], val);
598
}
599

    
600
static uint32_t v7m_pop(CPUARMState *env)
601
{
602
    uint32_t val;
603
    val = ldl_phys(env->regs[13]);
604
    env->regs[13] += 4;
605
    return val;
606
}
607

    
608
/* Switch to V7M main or process stack pointer.  */
609
static void switch_v7m_sp(CPUARMState *env, int process)
610
{
611
    uint32_t tmp;
612
    if (env->v7m.current_sp != process) {
613
        tmp = env->v7m.other_sp;
614
        env->v7m.other_sp = env->regs[13];
615
        env->regs[13] = tmp;
616
        env->v7m.current_sp = process;
617
    }
618
}
619

    
620
static void do_v7m_exception_exit(CPUARMState *env)
621
{
622
    uint32_t type;
623
    uint32_t xpsr;
624

    
625
    type = env->regs[15];
626
    if (env->v7m.exception != 0)
627
        armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
628

    
629
    /* Switch to the target stack.  */
630
    switch_v7m_sp(env, (type & 4) != 0);
631
    /* Pop registers.  */
632
    env->regs[0] = v7m_pop(env);
633
    env->regs[1] = v7m_pop(env);
634
    env->regs[2] = v7m_pop(env);
635
    env->regs[3] = v7m_pop(env);
636
    env->regs[12] = v7m_pop(env);
637
    env->regs[14] = v7m_pop(env);
638
    env->regs[15] = v7m_pop(env);
639
    xpsr = v7m_pop(env);
640
    xpsr_write(env, xpsr, 0xfffffdff);
641
    /* Undo stack alignment.  */
642
    if (xpsr & 0x200)
643
        env->regs[13] |= 4;
644
    /* ??? The exception return type specifies Thread/Handler mode.  However
645
       this is also implied by the xPSR value. Not sure what to do
646
       if there is a mismatch.  */
647
    /* ??? Likewise for mismatches between the CONTROL register and the stack
648
       pointer.  */
649
}
650

    
651
static void do_interrupt_v7m(CPUARMState *env)
652
{
653
    uint32_t xpsr = xpsr_read(env);
654
    uint32_t lr;
655
    uint32_t addr;
656

    
657
    lr = 0xfffffff1;
658
    if (env->v7m.current_sp)
659
        lr |= 4;
660
    if (env->v7m.exception == 0)
661
        lr |= 8;
662

    
663
    /* For exceptions we just mark as pending on the NVIC, and let that
664
       handle it.  */
665
    /* TODO: Need to escalate if the current priority is higher than the
666
       one we're raising.  */
667
    switch (env->exception_index) {
668
    case EXCP_UDEF:
669
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
670
        return;
671
    case EXCP_SWI:
672
        env->regs[15] += 2;
673
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
674
        return;
675
    case EXCP_PREFETCH_ABORT:
676
    case EXCP_DATA_ABORT:
677
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
678
        return;
679
    case EXCP_BKPT:
680
        if (semihosting_enabled) {
681
            int nr;
682
            nr = lduw_code(env->regs[15]) & 0xff;
683
            if (nr == 0xab) {
684
                env->regs[15] += 2;
685
                env->regs[0] = do_arm_semihosting(env);
686
                return;
687
            }
688
        }
689
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
690
        return;
691
    case EXCP_IRQ:
692
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
693
        break;
694
    case EXCP_EXCEPTION_EXIT:
695
        do_v7m_exception_exit(env);
696
        return;
697
    default:
698
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
699
        return; /* Never happens.  Keep compiler happy.  */
700
    }
701

    
702
    /* Align stack pointer.  */
703
    /* ??? Should only do this if Configuration Control Register
704
       STACKALIGN bit is set.  */
705
    if (env->regs[13] & 4) {
706
        env->regs[13] -= 4;
707
        xpsr |= 0x200;
708
    }
709
    /* Switch to the handler mode.  */
710
    v7m_push(env, xpsr);
711
    v7m_push(env, env->regs[15]);
712
    v7m_push(env, env->regs[14]);
713
    v7m_push(env, env->regs[12]);
714
    v7m_push(env, env->regs[3]);
715
    v7m_push(env, env->regs[2]);
716
    v7m_push(env, env->regs[1]);
717
    v7m_push(env, env->regs[0]);
718
    switch_v7m_sp(env, 0);
719
    env->uncached_cpsr &= ~CPSR_IT;
720
    env->regs[14] = lr;
721
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
722
    env->regs[15] = addr & 0xfffffffe;
723
    env->thumb = addr & 1;
724
}
725

    
726
/* Handle a CPU exception.  */
727
void do_interrupt(CPUARMState *env)
728
{
729
    uint32_t addr;
730
    uint32_t mask;
731
    int new_mode;
732
    uint32_t offset;
733

    
734
    if (IS_M(env)) {
735
        do_interrupt_v7m(env);
736
        return;
737
    }
738
    /* TODO: Vectored interrupt controller.  */
739
    switch (env->exception_index) {
740
    case EXCP_UDEF:
741
        new_mode = ARM_CPU_MODE_UND;
742
        addr = 0x04;
743
        mask = CPSR_I;
744
        if (env->thumb)
745
            offset = 2;
746
        else
747
            offset = 4;
748
        break;
749
    case EXCP_SWI:
750
        if (semihosting_enabled) {
751
            /* Check for semihosting interrupt.  */
752
            if (env->thumb) {
753
                mask = lduw_code(env->regs[15] - 2) & 0xff;
754
            } else {
755
                mask = ldl_code(env->regs[15] - 4) & 0xffffff;
756
            }
757
            /* Only intercept calls from privileged modes, to provide some
758
               semblance of security.  */
759
            if (((mask == 0x123456 && !env->thumb)
760
                    || (mask == 0xab && env->thumb))
761
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
762
                env->regs[0] = do_arm_semihosting(env);
763
                return;
764
            }
765
        }
766
        new_mode = ARM_CPU_MODE_SVC;
767
        addr = 0x08;
768
        mask = CPSR_I;
769
        /* The PC already points to the next instruction.  */
770
        offset = 0;
771
        break;
772
    case EXCP_BKPT:
773
        /* See if this is a semihosting syscall.  */
774
        if (env->thumb && semihosting_enabled) {
775
            mask = lduw_code(env->regs[15]) & 0xff;
776
            if (mask == 0xab
777
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
778
                env->regs[15] += 2;
779
                env->regs[0] = do_arm_semihosting(env);
780
                return;
781
            }
782
        }
783
        /* Fall through to prefetch abort.  */
784
    case EXCP_PREFETCH_ABORT:
785
        new_mode = ARM_CPU_MODE_ABT;
786
        addr = 0x0c;
787
        mask = CPSR_A | CPSR_I;
788
        offset = 4;
789
        break;
790
    case EXCP_DATA_ABORT:
791
        new_mode = ARM_CPU_MODE_ABT;
792
        addr = 0x10;
793
        mask = CPSR_A | CPSR_I;
794
        offset = 8;
795
        break;
796
    case EXCP_IRQ:
797
        new_mode = ARM_CPU_MODE_IRQ;
798
        addr = 0x18;
799
        /* Disable IRQ and imprecise data aborts.  */
800
        mask = CPSR_A | CPSR_I;
801
        offset = 4;
802
        break;
803
    case EXCP_FIQ:
804
        new_mode = ARM_CPU_MODE_FIQ;
805
        addr = 0x1c;
806
        /* Disable FIQ, IRQ and imprecise data aborts.  */
807
        mask = CPSR_A | CPSR_I | CPSR_F;
808
        offset = 4;
809
        break;
810
    default:
811
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
812
        return; /* Never happens.  Keep compiler happy.  */
813
    }
814
    /* High vectors.  */
815
    if (env->cp15.c1_sys & (1 << 13)) {
816
        addr += 0xffff0000;
817
    }
818
    switch_mode (env, new_mode);
819
    env->spsr = cpsr_read(env);
820
    /* Clear IT bits.  */
821
    env->condexec_bits = 0;
822
    /* Switch to the new mode, and to the correct instruction set.  */
823
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
824
    env->uncached_cpsr |= mask;
825
    env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
826
    env->regs[14] = env->regs[15] + offset;
827
    env->regs[15] = addr;
828
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
829
}
830

    
831
/* Check section/page access permissions.
832
   Returns the page protection flags, or zero if the access is not
833
   permitted.  */
834
static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
835
                           int is_user)
836
{
837
  int prot_ro;
838

    
839
  if (domain == 3)
840
    return PAGE_READ | PAGE_WRITE;
841

    
842
  if (access_type == 1)
843
      prot_ro = 0;
844
  else
845
      prot_ro = PAGE_READ;
846

    
847
  switch (ap) {
848
  case 0:
849
      if (access_type == 1)
850
          return 0;
851
      switch ((env->cp15.c1_sys >> 8) & 3) {
852
      case 1:
853
          return is_user ? 0 : PAGE_READ;
854
      case 2:
855
          return PAGE_READ;
856
      default:
857
          return 0;
858
      }
859
  case 1:
860
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
861
  case 2:
862
      if (is_user)
863
          return prot_ro;
864
      else
865
          return PAGE_READ | PAGE_WRITE;
866
  case 3:
867
      return PAGE_READ | PAGE_WRITE;
868
  case 4: /* Reserved.  */
869
      return 0;
870
  case 5:
871
      return is_user ? 0 : prot_ro;
872
  case 6:
873
      return prot_ro;
874
  case 7:
875
      if (!arm_feature (env, ARM_FEATURE_V7))
876
          return 0;
877
      return prot_ro;
878
  default:
879
      abort();
880
  }
881
}
882

    
883
static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
884
{
885
    uint32_t table;
886

    
887
    if (address & env->cp15.c2_mask)
888
        table = env->cp15.c2_base1 & 0xffffc000;
889
    else
890
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
891

    
892
    table |= (address >> 18) & 0x3ffc;
893
    return table;
894
}
895

    
896
static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
897
                            int is_user, uint32_t *phys_ptr, int *prot)
898
{
899
    int code;
900
    uint32_t table;
901
    uint32_t desc;
902
    int type;
903
    int ap;
904
    int domain;
905
    uint32_t phys_addr;
906

    
907
    /* Pagetable walk.  */
908
    /* Lookup l1 descriptor.  */
909
    table = get_level1_table_address(env, address);
910
    desc = ldl_phys(table);
911
    type = (desc & 3);
912
    domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
913
    if (type == 0) {
914
        /* Section translation fault.  */
915
        code = 5;
916
        goto do_fault;
917
    }
918
    if (domain == 0 || domain == 2) {
919
        if (type == 2)
920
            code = 9; /* Section domain fault.  */
921
        else
922
            code = 11; /* Page domain fault.  */
923
        goto do_fault;
924
    }
925
    if (type == 2) {
926
        /* 1Mb section.  */
927
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
928
        ap = (desc >> 10) & 3;
929
        code = 13;
930
    } else {
931
        /* Lookup l2 entry.  */
932
        if (type == 1) {
933
            /* Coarse pagetable.  */
934
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
935
        } else {
936
            /* Fine pagetable.  */
937
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
938
        }
939
        desc = ldl_phys(table);
940
        switch (desc & 3) {
941
        case 0: /* Page translation fault.  */
942
            code = 7;
943
            goto do_fault;
944
        case 1: /* 64k page.  */
945
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
946
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
947
            break;
948
        case 2: /* 4k page.  */
949
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
950
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
951
            break;
952
        case 3: /* 1k page.  */
953
            if (type == 1) {
954
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
955
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
956
                } else {
957
                    /* Page translation fault.  */
958
                    code = 7;
959
                    goto do_fault;
960
                }
961
            } else {
962
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
963
            }
964
            ap = (desc >> 4) & 3;
965
            break;
966
        default:
967
            /* Never happens, but compiler isn't smart enough to tell.  */
968
            abort();
969
        }
970
        code = 15;
971
    }
972
    *prot = check_ap(env, ap, domain, access_type, is_user);
973
    if (!*prot) {
974
        /* Access permission fault.  */
975
        goto do_fault;
976
    }
977
    *phys_ptr = phys_addr;
978
    return 0;
979
do_fault:
980
    return code | (domain << 4);
981
}
982

    
983
static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
984
                            int is_user, uint32_t *phys_ptr, int *prot)
985
{
986
    int code;
987
    uint32_t table;
988
    uint32_t desc;
989
    uint32_t xn;
990
    int type;
991
    int ap;
992
    int domain;
993
    uint32_t phys_addr;
994

    
995
    /* Pagetable walk.  */
996
    /* Lookup l1 descriptor.  */
997
    table = get_level1_table_address(env, address);
998
    desc = ldl_phys(table);
999
    type = (desc & 3);
1000
    if (type == 0) {
1001
        /* Section translation fault.  */
1002
        code = 5;
1003
        domain = 0;
1004
        goto do_fault;
1005
    } else if (type == 2 && (desc & (1 << 18))) {
1006
        /* Supersection.  */
1007
        domain = 0;
1008
    } else {
1009
        /* Section or page.  */
1010
        domain = (desc >> 4) & 0x1e;
1011
    }
1012
    domain = (env->cp15.c3 >> domain) & 3;
1013
    if (domain == 0 || domain == 2) {
1014
        if (type == 2)
1015
            code = 9; /* Section domain fault.  */
1016
        else
1017
            code = 11; /* Page domain fault.  */
1018
        goto do_fault;
1019
    }
1020
    if (type == 2) {
1021
        if (desc & (1 << 18)) {
1022
            /* Supersection.  */
1023
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1024
        } else {
1025
            /* Section.  */
1026
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1027
        }
1028
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1029
        xn = desc & (1 << 4);
1030
        code = 13;
1031
    } else {
1032
        /* Lookup l2 entry.  */
1033
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1034
        desc = ldl_phys(table);
1035
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1036
        switch (desc & 3) {
1037
        case 0: /* Page translation fault.  */
1038
            code = 7;
1039
            goto do_fault;
1040
        case 1: /* 64k page.  */
1041
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1042
            xn = desc & (1 << 15);
1043
            break;
1044
        case 2: case 3: /* 4k page.  */
1045
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1046
            xn = desc & 1;
1047
            break;
1048
        default:
1049
            /* Never happens, but compiler isn't smart enough to tell.  */
1050
            abort();
1051
        }
1052
        code = 15;
1053
    }
1054
    if (xn && access_type == 2)
1055
        goto do_fault;
1056

    
1057
    /* The simplified model uses AP[0] as an access control bit.  */
1058
    if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1059
        /* Access flag fault.  */
1060
        code = (code == 15) ? 6 : 3;
1061
        goto do_fault;
1062
    }
1063
    *prot = check_ap(env, ap, domain, access_type, is_user);
1064
    if (!*prot) {
1065
        /* Access permission fault.  */
1066
        goto do_fault;
1067
    }
1068
    *phys_ptr = phys_addr;
1069
    return 0;
1070
do_fault:
1071
    return code | (domain << 4);
1072
}
1073

    
1074
static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1075
                             int is_user, uint32_t *phys_ptr, int *prot)
1076
{
1077
    int n;
1078
    uint32_t mask;
1079
    uint32_t base;
1080

    
1081
    *phys_ptr = address;
1082
    for (n = 7; n >= 0; n--) {
1083
        base = env->cp15.c6_region[n];
1084
        if ((base & 1) == 0)
1085
            continue;
1086
        mask = 1 << ((base >> 1) & 0x1f);
1087
        /* Keep this shift separate from the above to avoid an
1088
           (undefined) << 32.  */
1089
        mask = (mask << 1) - 1;
1090
        if (((base ^ address) & ~mask) == 0)
1091
            break;
1092
    }
1093
    if (n < 0)
1094
        return 2;
1095

    
1096
    if (access_type == 2) {
1097
        mask = env->cp15.c5_insn;
1098
    } else {
1099
        mask = env->cp15.c5_data;
1100
    }
1101
    mask = (mask >> (n * 4)) & 0xf;
1102
    switch (mask) {
1103
    case 0:
1104
        return 1;
1105
    case 1:
1106
        if (is_user)
1107
          return 1;
1108
        *prot = PAGE_READ | PAGE_WRITE;
1109
        break;
1110
    case 2:
1111
        *prot = PAGE_READ;
1112
        if (!is_user)
1113
            *prot |= PAGE_WRITE;
1114
        break;
1115
    case 3:
1116
        *prot = PAGE_READ | PAGE_WRITE;
1117
        break;
1118
    case 5:
1119
        if (is_user)
1120
            return 1;
1121
        *prot = PAGE_READ;
1122
        break;
1123
    case 6:
1124
        *prot = PAGE_READ;
1125
        break;
1126
    default:
1127
        /* Bad permission.  */
1128
        return 1;
1129
    }
1130
    return 0;
1131
}
1132

    
1133
static inline int get_phys_addr(CPUState *env, uint32_t address,
1134
                                int access_type, int is_user,
1135
                                uint32_t *phys_ptr, int *prot)
1136
{
1137
    /* Fast Context Switch Extension.  */
1138
    if (address < 0x02000000)
1139
        address += env->cp15.c13_fcse;
1140

    
1141
    if ((env->cp15.c1_sys & 1) == 0) {
1142
        /* MMU/MPU disabled.  */
1143
        *phys_ptr = address;
1144
        *prot = PAGE_READ | PAGE_WRITE;
1145
        return 0;
1146
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1147
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1148
                                 prot);
1149
    } else if (env->cp15.c1_sys & (1 << 23)) {
1150
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1151
                                prot);
1152
    } else {
1153
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1154
                                prot);
1155
    }
1156
}
1157

    
1158
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1159
                              int access_type, int mmu_idx, int is_softmmu)
1160
{
1161
    uint32_t phys_addr;
1162
    int prot;
1163
    int ret, is_user;
1164

    
1165
    is_user = mmu_idx == MMU_USER_IDX;
1166
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1167
    if (ret == 0) {
1168
        /* Map a single [sub]page.  */
1169
        phys_addr &= ~(uint32_t)0x3ff;
1170
        address &= ~(uint32_t)0x3ff;
1171
        return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1172
                             is_softmmu);
1173
    }
1174

    
1175
    if (access_type == 2) {
1176
        env->cp15.c5_insn = ret;
1177
        env->cp15.c6_insn = address;
1178
        env->exception_index = EXCP_PREFETCH_ABORT;
1179
    } else {
1180
        env->cp15.c5_data = ret;
1181
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1182
            env->cp15.c5_data |= (1 << 11);
1183
        env->cp15.c6_data = address;
1184
        env->exception_index = EXCP_DATA_ABORT;
1185
    }
1186
    return 1;
1187
}
1188

    
1189
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1190
{
1191
    uint32_t phys_addr;
1192
    int prot;
1193
    int ret;
1194

    
1195
    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1196

    
1197
    if (ret != 0)
1198
        return -1;
1199

    
1200
    return phys_addr;
1201
}
1202

    
1203
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1204
{
1205
    int cp_num = (insn >> 8) & 0xf;
1206
    int cp_info = (insn >> 5) & 7;
1207
    int src = (insn >> 16) & 0xf;
1208
    int operand = insn & 0xf;
1209

    
1210
    if (env->cp[cp_num].cp_write)
1211
        env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1212
                                 cp_info, src, operand, val);
1213
}
1214

    
1215
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1216
{
1217
    int cp_num = (insn >> 8) & 0xf;
1218
    int cp_info = (insn >> 5) & 7;
1219
    int dest = (insn >> 16) & 0xf;
1220
    int operand = insn & 0xf;
1221

    
1222
    if (env->cp[cp_num].cp_read)
1223
        return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1224
                                       cp_info, dest, operand);
1225
    return 0;
1226
}
1227

    
1228
/* Return basic MPU access permission bits.  */
1229
static uint32_t simple_mpu_ap_bits(uint32_t val)
1230
{
1231
    uint32_t ret;
1232
    uint32_t mask;
1233
    int i;
1234
    ret = 0;
1235
    mask = 3;
1236
    for (i = 0; i < 16; i += 2) {
1237
        ret |= (val >> i) & mask;
1238
        mask <<= 2;
1239
    }
1240
    return ret;
1241
}
1242

    
1243
/* Pad basic MPU access permission bits to extended format.  */
1244
static uint32_t extended_mpu_ap_bits(uint32_t val)
1245
{
1246
    uint32_t ret;
1247
    uint32_t mask;
1248
    int i;
1249
    ret = 0;
1250
    mask = 3;
1251
    for (i = 0; i < 16; i += 2) {
1252
        ret |= (val & mask) << i;
1253
        mask <<= 2;
1254
    }
1255
    return ret;
1256
}
1257

    
1258
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1259
{
1260
    int op1;
1261
    int op2;
1262
    int crm;
1263

    
1264
    op1 = (insn >> 21) & 7;
1265
    op2 = (insn >> 5) & 7;
1266
    crm = insn & 0xf;
1267
    switch ((insn >> 16) & 0xf) {
1268
    case 0:
1269
        /* ID codes.  */
1270
        if (arm_feature(env, ARM_FEATURE_XSCALE))
1271
            break;
1272
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1273
            break;
1274
        if (arm_feature(env, ARM_FEATURE_V7)
1275
                && op1 == 2 && crm == 0 && op2 == 0) {
1276
            env->cp15.c0_cssel = val & 0xf;
1277
            break;
1278
        }
1279
        goto bad_reg;
1280
    case 1: /* System configuration.  */
1281
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1282
            op2 = 0;
1283
        switch (op2) {
1284
        case 0:
1285
            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1286
                env->cp15.c1_sys = val;
1287
            /* ??? Lots of these bits are not implemented.  */
1288
            /* This may enable/disable the MMU, so do a TLB flush.  */
1289
            tlb_flush(env, 1);
1290
            break;
1291
        case 1: /* Auxiliary cotrol register.  */
1292
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1293
                env->cp15.c1_xscaleauxcr = val;
1294
                break;
1295
            }
1296
            /* Not implemented.  */
1297
            break;
1298
        case 2:
1299
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1300
                goto bad_reg;
1301
            if (env->cp15.c1_coproc != val) {
1302
                env->cp15.c1_coproc = val;
1303
                /* ??? Is this safe when called from within a TB?  */
1304
                tb_flush(env);
1305
            }
1306
            break;
1307
        default:
1308
            goto bad_reg;
1309
        }
1310
        break;
1311
    case 2: /* MMU Page table control / MPU cache control.  */
1312
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1313
            switch (op2) {
1314
            case 0:
1315
                env->cp15.c2_data = val;
1316
                break;
1317
            case 1:
1318
                env->cp15.c2_insn = val;
1319
                break;
1320
            default:
1321
                goto bad_reg;
1322
            }
1323
        } else {
1324
            switch (op2) {
1325
            case 0:
1326
                env->cp15.c2_base0 = val;
1327
                break;
1328
            case 1:
1329
                env->cp15.c2_base1 = val;
1330
                break;
1331
            case 2:
1332
                val &= 7;
1333
                env->cp15.c2_control = val;
1334
                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1335
                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1336
                break;
1337
            default:
1338
                goto bad_reg;
1339
            }
1340
        }
1341
        break;
1342
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1343
        env->cp15.c3 = val;
1344
        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1345
        break;
1346
    case 4: /* Reserved.  */
1347
        goto bad_reg;
1348
    case 5: /* MMU Fault status / MPU access permission.  */
1349
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1350
            op2 = 0;
1351
        switch (op2) {
1352
        case 0:
1353
            if (arm_feature(env, ARM_FEATURE_MPU))
1354
                val = extended_mpu_ap_bits(val);
1355
            env->cp15.c5_data = val;
1356
            break;
1357
        case 1:
1358
            if (arm_feature(env, ARM_FEATURE_MPU))
1359
                val = extended_mpu_ap_bits(val);
1360
            env->cp15.c5_insn = val;
1361
            break;
1362
        case 2:
1363
            if (!arm_feature(env, ARM_FEATURE_MPU))
1364
                goto bad_reg;
1365
            env->cp15.c5_data = val;
1366
            break;
1367
        case 3:
1368
            if (!arm_feature(env, ARM_FEATURE_MPU))
1369
                goto bad_reg;
1370
            env->cp15.c5_insn = val;
1371
            break;
1372
        default:
1373
            goto bad_reg;
1374
        }
1375
        break;
1376
    case 6: /* MMU Fault address / MPU base/size.  */
1377
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1378
            if (crm >= 8)
1379
                goto bad_reg;
1380
            env->cp15.c6_region[crm] = val;
1381
        } else {
1382
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1383
                op2 = 0;
1384
            switch (op2) {
1385
            case 0:
1386
                env->cp15.c6_data = val;
1387
                break;
1388
            case 1: /* ??? This is WFAR on armv6 */
1389
            case 2:
1390
                env->cp15.c6_insn = val;
1391
                break;
1392
            default:
1393
                goto bad_reg;
1394
            }
1395
        }
1396
        break;
1397
    case 7: /* Cache control.  */
1398
        env->cp15.c15_i_max = 0x000;
1399
        env->cp15.c15_i_min = 0xff0;
1400
        /* No cache, so nothing to do.  */
1401
        /* ??? MPCore has VA to PA translation functions.  */
1402
        break;
1403
    case 8: /* MMU TLB control.  */
1404
        switch (op2) {
1405
        case 0: /* Invalidate all.  */
1406
            tlb_flush(env, 0);
1407
            break;
1408
        case 1: /* Invalidate single TLB entry.  */
1409
#if 0
1410
            /* ??? This is wrong for large pages and sections.  */
1411
            /* As an ugly hack to make linux work we always flush a 4K
1412
               pages.  */
1413
            val &= 0xfffff000;
1414
            tlb_flush_page(env, val);
1415
            tlb_flush_page(env, val + 0x400);
1416
            tlb_flush_page(env, val + 0x800);
1417
            tlb_flush_page(env, val + 0xc00);
1418
#else
1419
            tlb_flush(env, 1);
1420
#endif
1421
            break;
1422
        case 2: /* Invalidate on ASID.  */
1423
            tlb_flush(env, val == 0);
1424
            break;
1425
        case 3: /* Invalidate single entry on MVA.  */
1426
            /* ??? This is like case 1, but ignores ASID.  */
1427
            tlb_flush(env, 1);
1428
            break;
1429
        default:
1430
            goto bad_reg;
1431
        }
1432
        break;
1433
    case 9:
1434
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1435
            break;
1436
        switch (crm) {
1437
        case 0: /* Cache lockdown.  */
1438
            switch (op1) {
1439
            case 0: /* L1 cache.  */
1440
                switch (op2) {
1441
                case 0:
1442
                    env->cp15.c9_data = val;
1443
                    break;
1444
                case 1:
1445
                    env->cp15.c9_insn = val;
1446
                    break;
1447
                default:
1448
                    goto bad_reg;
1449
                }
1450
                break;
1451
            case 1: /* L2 cache.  */
1452
                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1453
                break;
1454
            default:
1455
                goto bad_reg;
1456
            }
1457
            break;
1458
        case 1: /* TCM memory region registers.  */
1459
            /* Not implemented.  */
1460
            goto bad_reg;
1461
        default:
1462
            goto bad_reg;
1463
        }
1464
        break;
1465
    case 10: /* MMU TLB lockdown.  */
1466
        /* ??? TLB lockdown not implemented.  */
1467
        break;
1468
    case 12: /* Reserved.  */
1469
        goto bad_reg;
1470
    case 13: /* Process ID.  */
1471
        switch (op2) {
1472
        case 0:
1473
            /* Unlike real hardware the qemu TLB uses virtual addresses,
1474
               not modified virtual addresses, so this causes a TLB flush.
1475
             */
1476
            if (env->cp15.c13_fcse != val)
1477
              tlb_flush(env, 1);
1478
            env->cp15.c13_fcse = val;
1479
            break;
1480
        case 1:
1481
            /* This changes the ASID, so do a TLB flush.  */
1482
            if (env->cp15.c13_context != val
1483
                && !arm_feature(env, ARM_FEATURE_MPU))
1484
              tlb_flush(env, 0);
1485
            env->cp15.c13_context = val;
1486
            break;
1487
        default:
1488
            goto bad_reg;
1489
        }
1490
        break;
1491
    case 14: /* Reserved.  */
1492
        goto bad_reg;
1493
    case 15: /* Implementation specific.  */
1494
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1495
            if (op2 == 0 && crm == 1) {
1496
                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1497
                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1498
                    tb_flush(env);
1499
                    env->cp15.c15_cpar = val & 0x3fff;
1500
                }
1501
                break;
1502
            }
1503
            goto bad_reg;
1504
        }
1505
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1506
            switch (crm) {
1507
            case 0:
1508
                break;
1509
            case 1: /* Set TI925T configuration.  */
1510
                env->cp15.c15_ticonfig = val & 0xe7;
1511
                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1512
                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1513
                break;
1514
            case 2: /* Set I_max.  */
1515
                env->cp15.c15_i_max = val;
1516
                break;
1517
            case 3: /* Set I_min.  */
1518
                env->cp15.c15_i_min = val;
1519
                break;
1520
            case 4: /* Set thread-ID.  */
1521
                env->cp15.c15_threadid = val & 0xffff;
1522
                break;
1523
            case 8: /* Wait-for-interrupt (deprecated).  */
1524
                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1525
                break;
1526
            default:
1527
                goto bad_reg;
1528
            }
1529
        }
1530
        break;
1531
    }
1532
    return;
1533
bad_reg:
1534
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1535
    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1536
              (insn >> 16) & 0xf, crm, op1, op2);
1537
}
1538

    
1539
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1540
{
1541
    int op1;
1542
    int op2;
1543
    int crm;
1544

    
1545
    op1 = (insn >> 21) & 7;
1546
    op2 = (insn >> 5) & 7;
1547
    crm = insn & 0xf;
1548
    switch ((insn >> 16) & 0xf) {
1549
    case 0: /* ID codes.  */
1550
        switch (op1) {
1551
        case 0:
1552
            switch (crm) {
1553
            case 0:
1554
                switch (op2) {
1555
                case 0: /* Device ID.  */
1556
                    return env->cp15.c0_cpuid;
1557
                case 1: /* Cache Type.  */
1558
                    return env->cp15.c0_cachetype;
1559
                case 2: /* TCM status.  */
1560
                    return 0;
1561
                case 3: /* TLB type register.  */
1562
                    return 0; /* No lockable TLB entries.  */
1563
                case 5: /* CPU ID */
1564
                    if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1565
                        return env->cpu_index | 0x80000900;
1566
                    } else {
1567
                        return env->cpu_index;
1568
                    }
1569
                default:
1570
                    goto bad_reg;
1571
                }
1572
            case 1:
1573
                if (!arm_feature(env, ARM_FEATURE_V6))
1574
                    goto bad_reg;
1575
                return env->cp15.c0_c1[op2];
1576
            case 2:
1577
                if (!arm_feature(env, ARM_FEATURE_V6))
1578
                    goto bad_reg;
1579
                return env->cp15.c0_c2[op2];
1580
            case 3: case 4: case 5: case 6: case 7:
1581
                return 0;
1582
            default:
1583
                goto bad_reg;
1584
            }
1585
        case 1:
1586
            /* These registers aren't documented on arm11 cores.  However
1587
               Linux looks at them anyway.  */
1588
            if (!arm_feature(env, ARM_FEATURE_V6))
1589
                goto bad_reg;
1590
            if (crm != 0)
1591
                goto bad_reg;
1592
            if (!arm_feature(env, ARM_FEATURE_V7))
1593
                return 0;
1594

    
1595
            switch (op2) {
1596
            case 0:
1597
                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1598
            case 1:
1599
                return env->cp15.c0_clid;
1600
            case 7:
1601
                return 0;
1602
            }
1603
            goto bad_reg;
1604
        case 2:
1605
            if (op2 != 0 || crm != 0)
1606
                goto bad_reg;
1607
            return env->cp15.c0_cssel;
1608
        default:
1609
            goto bad_reg;
1610
        }
1611
    case 1: /* System configuration.  */
1612
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1613
            op2 = 0;
1614
        switch (op2) {
1615
        case 0: /* Control register.  */
1616
            return env->cp15.c1_sys;
1617
        case 1: /* Auxiliary control register.  */
1618
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1619
                return env->cp15.c1_xscaleauxcr;
1620
            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1621
                goto bad_reg;
1622
            switch (ARM_CPUID(env)) {
1623
            case ARM_CPUID_ARM1026:
1624
                return 1;
1625
            case ARM_CPUID_ARM1136:
1626
            case ARM_CPUID_ARM1136_R2:
1627
                return 7;
1628
            case ARM_CPUID_ARM11MPCORE:
1629
                return 1;
1630
            case ARM_CPUID_CORTEXA8:
1631
                return 2;
1632
            case ARM_CPUID_CORTEXA9:
1633
                return 0;
1634
            default:
1635
                goto bad_reg;
1636
            }
1637
        case 2: /* Coprocessor access register.  */
1638
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1639
                goto bad_reg;
1640
            return env->cp15.c1_coproc;
1641
        default:
1642
            goto bad_reg;
1643
        }
1644
    case 2: /* MMU Page table control / MPU cache control.  */
1645
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1646
            switch (op2) {
1647
            case 0:
1648
                return env->cp15.c2_data;
1649
                break;
1650
            case 1:
1651
                return env->cp15.c2_insn;
1652
                break;
1653
            default:
1654
                goto bad_reg;
1655
            }
1656
        } else {
1657
            switch (op2) {
1658
            case 0:
1659
                return env->cp15.c2_base0;
1660
            case 1:
1661
                return env->cp15.c2_base1;
1662
            case 2:
1663
                return env->cp15.c2_control;
1664
            default:
1665
                goto bad_reg;
1666
            }
1667
        }
1668
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1669
        return env->cp15.c3;
1670
    case 4: /* Reserved.  */
1671
        goto bad_reg;
1672
    case 5: /* MMU Fault status / MPU access permission.  */
1673
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1674
            op2 = 0;
1675
        switch (op2) {
1676
        case 0:
1677
            if (arm_feature(env, ARM_FEATURE_MPU))
1678
                return simple_mpu_ap_bits(env->cp15.c5_data);
1679
            return env->cp15.c5_data;
1680
        case 1:
1681
            if (arm_feature(env, ARM_FEATURE_MPU))
1682
                return simple_mpu_ap_bits(env->cp15.c5_data);
1683
            return env->cp15.c5_insn;
1684
        case 2:
1685
            if (!arm_feature(env, ARM_FEATURE_MPU))
1686
                goto bad_reg;
1687
            return env->cp15.c5_data;
1688
        case 3:
1689
            if (!arm_feature(env, ARM_FEATURE_MPU))
1690
                goto bad_reg;
1691
            return env->cp15.c5_insn;
1692
        default:
1693
            goto bad_reg;
1694
        }
1695
    case 6: /* MMU Fault address.  */
1696
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1697
            if (crm >= 8)
1698
                goto bad_reg;
1699
            return env->cp15.c6_region[crm];
1700
        } else {
1701
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1702
                op2 = 0;
1703
            switch (op2) {
1704
            case 0:
1705
                return env->cp15.c6_data;
1706
            case 1:
1707
                if (arm_feature(env, ARM_FEATURE_V6)) {
1708
                    /* Watchpoint Fault Adrress.  */
1709
                    return 0; /* Not implemented.  */
1710
                } else {
1711
                    /* Instruction Fault Adrress.  */
1712
                    /* Arm9 doesn't have an IFAR, but implementing it anyway
1713
                       shouldn't do any harm.  */
1714
                    return env->cp15.c6_insn;
1715
                }
1716
            case 2:
1717
                if (arm_feature(env, ARM_FEATURE_V6)) {
1718
                    /* Instruction Fault Adrress.  */
1719
                    return env->cp15.c6_insn;
1720
                } else {
1721
                    goto bad_reg;
1722
                }
1723
            default:
1724
                goto bad_reg;
1725
            }
1726
        }
1727
    case 7: /* Cache control.  */
1728
        /* FIXME: Should only clear Z flag if destination is r15.  */
1729
        env->ZF = 0;
1730
        return 0;
1731
    case 8: /* MMU TLB control.  */
1732
        goto bad_reg;
1733
    case 9: /* Cache lockdown.  */
1734
        switch (op1) {
1735
        case 0: /* L1 cache.  */
1736
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1737
                return 0;
1738
            switch (op2) {
1739
            case 0:
1740
                return env->cp15.c9_data;
1741
            case 1:
1742
                return env->cp15.c9_insn;
1743
            default:
1744
                goto bad_reg;
1745
            }
1746
        case 1: /* L2 cache */
1747
            if (crm != 0)
1748
                goto bad_reg;
1749
            /* L2 Lockdown and Auxiliary control.  */
1750
            return 0;
1751
        default:
1752
            goto bad_reg;
1753
        }
1754
    case 10: /* MMU TLB lockdown.  */
1755
        /* ??? TLB lockdown not implemented.  */
1756
        return 0;
1757
    case 11: /* TCM DMA control.  */
1758
    case 12: /* Reserved.  */
1759
        goto bad_reg;
1760
    case 13: /* Process ID.  */
1761
        switch (op2) {
1762
        case 0:
1763
            return env->cp15.c13_fcse;
1764
        case 1:
1765
            return env->cp15.c13_context;
1766
        default:
1767
            goto bad_reg;
1768
        }
1769
    case 14: /* Reserved.  */
1770
        goto bad_reg;
1771
    case 15: /* Implementation specific.  */
1772
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1773
            if (op2 == 0 && crm == 1)
1774
                return env->cp15.c15_cpar;
1775

    
1776
            goto bad_reg;
1777
        }
1778
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1779
            switch (crm) {
1780
            case 0:
1781
                return 0;
1782
            case 1: /* Read TI925T configuration.  */
1783
                return env->cp15.c15_ticonfig;
1784
            case 2: /* Read I_max.  */
1785
                return env->cp15.c15_i_max;
1786
            case 3: /* Read I_min.  */
1787
                return env->cp15.c15_i_min;
1788
            case 4: /* Read thread-ID.  */
1789
                return env->cp15.c15_threadid;
1790
            case 8: /* TI925T_status */
1791
                return 0;
1792
            }
1793
            /* TODO: Peripheral port remap register:
1794
             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1795
             * controller base address at $rn & ~0xfff and map size of
1796
             * 0x200 << ($rn & 0xfff), when MMU is off.  */
1797
            goto bad_reg;
1798
        }
1799
        return 0;
1800
    }
1801
bad_reg:
1802
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1803
    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1804
              (insn >> 16) & 0xf, crm, op1, op2);
1805
    return 0;
1806
}
1807

    
1808
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1809
{
1810
    env->banked_r13[bank_number(mode)] = val;
1811
}
1812

    
1813
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1814
{
1815
    return env->banked_r13[bank_number(mode)];
1816
}
1817

    
1818
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1819
{
1820
    switch (reg) {
1821
    case 0: /* APSR */
1822
        return xpsr_read(env) & 0xf8000000;
1823
    case 1: /* IAPSR */
1824
        return xpsr_read(env) & 0xf80001ff;
1825
    case 2: /* EAPSR */
1826
        return xpsr_read(env) & 0xff00fc00;
1827
    case 3: /* xPSR */
1828
        return xpsr_read(env) & 0xff00fdff;
1829
    case 5: /* IPSR */
1830
        return xpsr_read(env) & 0x000001ff;
1831
    case 6: /* EPSR */
1832
        return xpsr_read(env) & 0x0700fc00;
1833
    case 7: /* IEPSR */
1834
        return xpsr_read(env) & 0x0700edff;
1835
    case 8: /* MSP */
1836
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1837
    case 9: /* PSP */
1838
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1839
    case 16: /* PRIMASK */
1840
        return (env->uncached_cpsr & CPSR_I) != 0;
1841
    case 17: /* FAULTMASK */
1842
        return (env->uncached_cpsr & CPSR_F) != 0;
1843
    case 18: /* BASEPRI */
1844
    case 19: /* BASEPRI_MAX */
1845
        return env->v7m.basepri;
1846
    case 20: /* CONTROL */
1847
        return env->v7m.control;
1848
    default:
1849
        /* ??? For debugging only.  */
1850
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1851
        return 0;
1852
    }
1853
}
1854

    
1855
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1856
{
1857
    switch (reg) {
1858
    case 0: /* APSR */
1859
        xpsr_write(env, val, 0xf8000000);
1860
        break;
1861
    case 1: /* IAPSR */
1862
        xpsr_write(env, val, 0xf8000000);
1863
        break;
1864
    case 2: /* EAPSR */
1865
        xpsr_write(env, val, 0xfe00fc00);
1866
        break;
1867
    case 3: /* xPSR */
1868
        xpsr_write(env, val, 0xfe00fc00);
1869
        break;
1870
    case 5: /* IPSR */
1871
        /* IPSR bits are readonly.  */
1872
        break;
1873
    case 6: /* EPSR */
1874
        xpsr_write(env, val, 0x0600fc00);
1875
        break;
1876
    case 7: /* IEPSR */
1877
        xpsr_write(env, val, 0x0600fc00);
1878
        break;
1879
    case 8: /* MSP */
1880
        if (env->v7m.current_sp)
1881
            env->v7m.other_sp = val;
1882
        else
1883
            env->regs[13] = val;
1884
        break;
1885
    case 9: /* PSP */
1886
        if (env->v7m.current_sp)
1887
            env->regs[13] = val;
1888
        else
1889
            env->v7m.other_sp = val;
1890
        break;
1891
    case 16: /* PRIMASK */
1892
        if (val & 1)
1893
            env->uncached_cpsr |= CPSR_I;
1894
        else
1895
            env->uncached_cpsr &= ~CPSR_I;
1896
        break;
1897
    case 17: /* FAULTMASK */
1898
        if (val & 1)
1899
            env->uncached_cpsr |= CPSR_F;
1900
        else
1901
            env->uncached_cpsr &= ~CPSR_F;
1902
        break;
1903
    case 18: /* BASEPRI */
1904
        env->v7m.basepri = val & 0xff;
1905
        break;
1906
    case 19: /* BASEPRI_MAX */
1907
        val &= 0xff;
1908
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1909
            env->v7m.basepri = val;
1910
        break;
1911
    case 20: /* CONTROL */
1912
        env->v7m.control = val & 3;
1913
        switch_v7m_sp(env, (val & 2) != 0);
1914
        break;
1915
    default:
1916
        /* ??? For debugging only.  */
1917
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1918
        return;
1919
    }
1920
}
1921

    
1922
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1923
                ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1924
                void *opaque)
1925
{
1926
    if (cpnum < 0 || cpnum > 14) {
1927
        cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1928
        return;
1929
    }
1930

    
1931
    env->cp[cpnum].cp_read = cp_read;
1932
    env->cp[cpnum].cp_write = cp_write;
1933
    env->cp[cpnum].opaque = opaque;
1934
}
1935

    
1936
#endif
1937

    
1938
/* Note that signed overflow is undefined in C.  The following routines are
1939
   careful to use unsigned types where modulo arithmetic is required.
1940
   Failure to do so _will_ break on newer gcc.  */
1941

    
1942
/* Signed saturating arithmetic.  */
1943

    
1944
/* Perform 16-bit signed saturating addition.  */
1945
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1946
{
1947
    uint16_t res;
1948

    
1949
    res = a + b;
1950
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1951
        if (a & 0x8000)
1952
            res = 0x8000;
1953
        else
1954
            res = 0x7fff;
1955
    }
1956
    return res;
1957
}
1958

    
1959
/* Perform 8-bit signed saturating addition.  */
1960
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1961
{
1962
    uint8_t res;
1963

    
1964
    res = a + b;
1965
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1966
        if (a & 0x80)
1967
            res = 0x80;
1968
        else
1969
            res = 0x7f;
1970
    }
1971
    return res;
1972
}
1973

    
1974
/* Perform 16-bit signed saturating subtraction.  */
1975
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1976
{
1977
    uint16_t res;
1978

    
1979
    res = a - b;
1980
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
1981
        if (a & 0x8000)
1982
            res = 0x8000;
1983
        else
1984
            res = 0x7fff;
1985
    }
1986
    return res;
1987
}
1988

    
1989
/* Perform 8-bit signed saturating subtraction.  */
1990
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
1991
{
1992
    uint8_t res;
1993

    
1994
    res = a - b;
1995
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
1996
        if (a & 0x80)
1997
            res = 0x80;
1998
        else
1999
            res = 0x7f;
2000
    }
2001
    return res;
2002
}
2003

    
2004
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2005
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2006
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2007
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2008
#define PFX q
2009

    
2010
#include "op_addsub.h"
2011

    
2012
/* Unsigned saturating arithmetic.  */
2013
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2014
{
2015
    uint16_t res;
2016
    res = a + b;
2017
    if (res < a)
2018
        res = 0xffff;
2019
    return res;
2020
}
2021

    
2022
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2023
{
2024
    if (a < b)
2025
        return a - b;
2026
    else
2027
        return 0;
2028
}
2029

    
2030
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2031
{
2032
    uint8_t res;
2033
    res = a + b;
2034
    if (res < a)
2035
        res = 0xff;
2036
    return res;
2037
}
2038

    
2039
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2040
{
2041
    if (a < b)
2042
        return a - b;
2043
    else
2044
        return 0;
2045
}
2046

    
2047
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2048
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2049
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2050
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2051
#define PFX uq
2052

    
2053
#include "op_addsub.h"
2054

    
2055
/* Signed modulo arithmetic.  */
2056
#define SARITH16(a, b, n, op) do { \
2057
    int32_t sum; \
2058
    sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2059
    RESULT(sum, n, 16); \
2060
    if (sum >= 0) \
2061
        ge |= 3 << (n * 2); \
2062
    } while(0)
2063

    
2064
#define SARITH8(a, b, n, op) do { \
2065
    int32_t sum; \
2066
    sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2067
    RESULT(sum, n, 8); \
2068
    if (sum >= 0) \
2069
        ge |= 1 << n; \
2070
    } while(0)
2071

    
2072

    
2073
#define ADD16(a, b, n) SARITH16(a, b, n, +)
2074
#define SUB16(a, b, n) SARITH16(a, b, n, -)
2075
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2076
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2077
#define PFX s
2078
#define ARITH_GE
2079

    
2080
#include "op_addsub.h"
2081

    
2082
/* Unsigned modulo arithmetic.  */
2083
#define ADD16(a, b, n) do { \
2084
    uint32_t sum; \
2085
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2086
    RESULT(sum, n, 16); \
2087
    if ((sum >> 16) == 1) \
2088
        ge |= 3 << (n * 2); \
2089
    } while(0)
2090

    
2091
#define ADD8(a, b, n) do { \
2092
    uint32_t sum; \
2093
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2094
    RESULT(sum, n, 8); \
2095
    if ((sum >> 8) == 1) \
2096
        ge |= 1 << n; \
2097
    } while(0)
2098

    
2099
#define SUB16(a, b, n) do { \
2100
    uint32_t sum; \
2101
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2102
    RESULT(sum, n, 16); \
2103
    if ((sum >> 16) == 0) \
2104
        ge |= 3 << (n * 2); \
2105
    } while(0)
2106

    
2107
#define SUB8(a, b, n) do { \
2108
    uint32_t sum; \
2109
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2110
    RESULT(sum, n, 8); \
2111
    if ((sum >> 8) == 0) \
2112
        ge |= 1 << n; \
2113
    } while(0)
2114

    
2115
#define PFX u
2116
#define ARITH_GE
2117

    
2118
#include "op_addsub.h"
2119

    
2120
/* Halved signed arithmetic.  */
2121
#define ADD16(a, b, n) \
2122
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2123
#define SUB16(a, b, n) \
2124
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2125
#define ADD8(a, b, n) \
2126
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2127
#define SUB8(a, b, n) \
2128
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2129
#define PFX sh
2130

    
2131
#include "op_addsub.h"
2132

    
2133
/* Halved unsigned arithmetic.  */
2134
#define ADD16(a, b, n) \
2135
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2136
#define SUB16(a, b, n) \
2137
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2138
#define ADD8(a, b, n) \
2139
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2140
#define SUB8(a, b, n) \
2141
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2142
#define PFX uh
2143

    
2144
#include "op_addsub.h"
2145

    
2146
static inline uint8_t do_usad(uint8_t a, uint8_t b)
2147
{
2148
    if (a > b)
2149
        return a - b;
2150
    else
2151
        return b - a;
2152
}
2153

    
2154
/* Unsigned sum of absolute byte differences.  */
2155
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2156
{
2157
    uint32_t sum;
2158
    sum = do_usad(a, b);
2159
    sum += do_usad(a >> 8, b >> 8);
2160
    sum += do_usad(a >> 16, b >>16);
2161
    sum += do_usad(a >> 24, b >> 24);
2162
    return sum;
2163
}
2164

    
2165
/* For ARMv6 SEL instruction.  */
2166
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2167
{
2168
    uint32_t mask;
2169

    
2170
    mask = 0;
2171
    if (flags & 1)
2172
        mask |= 0xff;
2173
    if (flags & 2)
2174
        mask |= 0xff00;
2175
    if (flags & 4)
2176
        mask |= 0xff0000;
2177
    if (flags & 8)
2178
        mask |= 0xff000000;
2179
    return (a & mask) | (b & ~mask);
2180
}
2181

    
2182
uint32_t HELPER(logicq_cc)(uint64_t val)
2183
{
2184
    return (val >> 32) | (val != 0);
2185
}
2186

    
2187
/* VFP support.  We follow the convention used for VFP instrunctions:
2188
   Single precition routines have a "s" suffix, double precision a
2189
   "d" suffix.  */
2190

    
2191
/* Convert host exception flags to vfp form.  */
2192
static inline int vfp_exceptbits_from_host(int host_bits)
2193
{
2194
    int target_bits = 0;
2195

    
2196
    if (host_bits & float_flag_invalid)
2197
        target_bits |= 1;
2198
    if (host_bits & float_flag_divbyzero)
2199
        target_bits |= 2;
2200
    if (host_bits & float_flag_overflow)
2201
        target_bits |= 4;
2202
    if (host_bits & float_flag_underflow)
2203
        target_bits |= 8;
2204
    if (host_bits & float_flag_inexact)
2205
        target_bits |= 0x10;
2206
    return target_bits;
2207
}
2208

    
2209
uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2210
{
2211
    int i;
2212
    uint32_t fpscr;
2213

    
2214
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2215
            | (env->vfp.vec_len << 16)
2216
            | (env->vfp.vec_stride << 20);
2217
    i = get_float_exception_flags(&env->vfp.fp_status);
2218
    fpscr |= vfp_exceptbits_from_host(i);
2219
    return fpscr;
2220
}
2221

    
2222
/* Convert vfp exception flags to target form.  */
2223
static inline int vfp_exceptbits_to_host(int target_bits)
2224
{
2225
    int host_bits = 0;
2226

    
2227
    if (target_bits & 1)
2228
        host_bits |= float_flag_invalid;
2229
    if (target_bits & 2)
2230
        host_bits |= float_flag_divbyzero;
2231
    if (target_bits & 4)
2232
        host_bits |= float_flag_overflow;
2233
    if (target_bits & 8)
2234
        host_bits |= float_flag_underflow;
2235
    if (target_bits & 0x10)
2236
        host_bits |= float_flag_inexact;
2237
    return host_bits;
2238
}
2239

    
2240
void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2241
{
2242
    int i;
2243
    uint32_t changed;
2244

    
2245
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2246
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2247
    env->vfp.vec_len = (val >> 16) & 7;
2248
    env->vfp.vec_stride = (val >> 20) & 3;
2249

    
2250
    changed ^= val;
2251
    if (changed & (3 << 22)) {
2252
        i = (val >> 22) & 3;
2253
        switch (i) {
2254
        case 0:
2255
            i = float_round_nearest_even;
2256
            break;
2257
        case 1:
2258
            i = float_round_up;
2259
            break;
2260
        case 2:
2261
            i = float_round_down;
2262
            break;
2263
        case 3:
2264
            i = float_round_to_zero;
2265
            break;
2266
        }
2267
        set_float_rounding_mode(i, &env->vfp.fp_status);
2268
    }
2269
    if (changed & (1 << 24))
2270
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2271
    if (changed & (1 << 25))
2272
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2273

    
2274
    i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2275
    set_float_exception_flags(i, &env->vfp.fp_status);
2276
}
2277

    
2278
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2279

    
2280
#define VFP_BINOP(name) \
2281
float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2282
{ \
2283
    return float32_ ## name (a, b, &env->vfp.fp_status); \
2284
} \
2285
float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2286
{ \
2287
    return float64_ ## name (a, b, &env->vfp.fp_status); \
2288
}
2289
VFP_BINOP(add)
2290
VFP_BINOP(sub)
2291
VFP_BINOP(mul)
2292
VFP_BINOP(div)
2293
#undef VFP_BINOP
2294

    
2295
float32 VFP_HELPER(neg, s)(float32 a)
2296
{
2297
    return float32_chs(a);
2298
}
2299

    
2300
float64 VFP_HELPER(neg, d)(float64 a)
2301
{
2302
    return float64_chs(a);
2303
}
2304

    
2305
float32 VFP_HELPER(abs, s)(float32 a)
2306
{
2307
    return float32_abs(a);
2308
}
2309

    
2310
float64 VFP_HELPER(abs, d)(float64 a)
2311
{
2312
    return float64_abs(a);
2313
}
2314

    
2315
float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2316
{
2317
    return float32_sqrt(a, &env->vfp.fp_status);
2318
}
2319

    
2320
float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2321
{
2322
    return float64_sqrt(a, &env->vfp.fp_status);
2323
}
2324

    
2325
/* XXX: check quiet/signaling case */
2326
#define DO_VFP_cmp(p, type) \
2327
void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2328
{ \
2329
    uint32_t flags; \
2330
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2331
    case 0: flags = 0x6; break; \
2332
    case -1: flags = 0x8; break; \
2333
    case 1: flags = 0x2; break; \
2334
    default: case 2: flags = 0x3; break; \
2335
    } \
2336
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2337
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2338
} \
2339
void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2340
{ \
2341
    uint32_t flags; \
2342
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2343
    case 0: flags = 0x6; break; \
2344
    case -1: flags = 0x8; break; \
2345
    case 1: flags = 0x2; break; \
2346
    default: case 2: flags = 0x3; break; \
2347
    } \
2348
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2349
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2350
}
2351
DO_VFP_cmp(s, float32)
2352
DO_VFP_cmp(d, float64)
2353
#undef DO_VFP_cmp
2354

    
2355
/* Helper routines to perform bitwise copies between float and int.  */
2356
static inline float32 vfp_itos(uint32_t i)
2357
{
2358
    union {
2359
        uint32_t i;
2360
        float32 s;
2361
    } v;
2362

    
2363
    v.i = i;
2364
    return v.s;
2365
}
2366

    
2367
static inline uint32_t vfp_stoi(float32 s)
2368
{
2369
    union {
2370
        uint32_t i;
2371
        float32 s;
2372
    } v;
2373

    
2374
    v.s = s;
2375
    return v.i;
2376
}
2377

    
2378
static inline float64 vfp_itod(uint64_t i)
2379
{
2380
    union {
2381
        uint64_t i;
2382
        float64 d;
2383
    } v;
2384

    
2385
    v.i = i;
2386
    return v.d;
2387
}
2388

    
2389
static inline uint64_t vfp_dtoi(float64 d)
2390
{
2391
    union {
2392
        uint64_t i;
2393
        float64 d;
2394
    } v;
2395

    
2396
    v.d = d;
2397
    return v.i;
2398
}
2399

    
2400
/* Integer to float conversion.  */
2401
float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2402
{
2403
    return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2404
}
2405

    
2406
float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2407
{
2408
    return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2409
}
2410

    
2411
float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2412
{
2413
    return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2414
}
2415

    
2416
float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2417
{
2418
    return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2419
}
2420

    
2421
/* Float to integer conversion.  */
2422
float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2423
{
2424
    return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2425
}
2426

    
2427
float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2428
{
2429
    return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2430
}
2431

    
2432
float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2433
{
2434
    return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2435
}
2436

    
2437
float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2438
{
2439
    return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2440
}
2441

    
2442
float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2443
{
2444
    return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2445
}
2446

    
2447
float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2448
{
2449
    return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2450
}
2451

    
2452
float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2453
{
2454
    return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2455
}
2456

    
2457
float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2458
{
2459
    return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2460
}
2461

    
2462
/* floating point conversion */
2463
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2464
{
2465
    return float32_to_float64(x, &env->vfp.fp_status);
2466
}
2467

    
2468
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2469
{
2470
    return float64_to_float32(x, &env->vfp.fp_status);
2471
}
2472

    
2473
/* VFP3 fixed point conversion.  */
2474
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2475
ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2476
{ \
2477
    ftype tmp; \
2478
    tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2479
                                  &env->vfp.fp_status); \
2480
    return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2481
} \
2482
ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2483
{ \
2484
    ftype tmp; \
2485
    tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2486
    return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2487
        &env->vfp.fp_status)); \
2488
}
2489

    
2490
VFP_CONV_FIX(sh, d, float64, int16, )
2491
VFP_CONV_FIX(sl, d, float64, int32, )
2492
VFP_CONV_FIX(uh, d, float64, uint16, u)
2493
VFP_CONV_FIX(ul, d, float64, uint32, u)
2494
VFP_CONV_FIX(sh, s, float32, int16, )
2495
VFP_CONV_FIX(sl, s, float32, int32, )
2496
VFP_CONV_FIX(uh, s, float32, uint16, u)
2497
VFP_CONV_FIX(ul, s, float32, uint32, u)
2498
#undef VFP_CONV_FIX
2499

    
2500
/* Half precision conversions.  */
2501
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2502
{
2503
    float_status *s = &env->vfp.fp_status;
2504
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2505
    return float16_to_float32(a, ieee, s);
2506
}
2507

    
2508
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2509
{
2510
    float_status *s = &env->vfp.fp_status;
2511
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2512
    return float32_to_float16(a, ieee, s);
2513
}
2514

    
2515
float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2516
{
2517
    float_status *s = &env->vfp.fp_status;
2518
    float32 two = int32_to_float32(2, s);
2519
    return float32_sub(two, float32_mul(a, b, s), s);
2520
}
2521

    
2522
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2523
{
2524
    float_status *s = &env->vfp.fp_status;
2525
    float32 three = int32_to_float32(3, s);
2526
    return float32_sub(three, float32_mul(a, b, s), s);
2527
}
2528

    
2529
/* NEON helpers.  */
2530

    
2531
/* TODO: The architecture specifies the value that the estimate functions
2532
   should return.  We return the exact reciprocal/root instead.  */
2533
float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2534
{
2535
    float_status *s = &env->vfp.fp_status;
2536
    float32 one = int32_to_float32(1, s);
2537
    return float32_div(one, a, s);
2538
}
2539

    
2540
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2541
{
2542
    float_status *s = &env->vfp.fp_status;
2543
    float32 one = int32_to_float32(1, s);
2544
    return float32_div(one, float32_sqrt(a, s), s);
2545
}
2546

    
2547
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2548
{
2549
    float_status *s = &env->vfp.fp_status;
2550
    float32 tmp;
2551
    tmp = int32_to_float32(a, s);
2552
    tmp = float32_scalbn(tmp, -32, s);
2553
    tmp = helper_recpe_f32(tmp, env);
2554
    tmp = float32_scalbn(tmp, 31, s);
2555
    return float32_to_int32(tmp, s);
2556
}
2557

    
2558
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2559
{
2560
    float_status *s = &env->vfp.fp_status;
2561
    float32 tmp;
2562
    tmp = int32_to_float32(a, s);
2563
    tmp = float32_scalbn(tmp, -32, s);
2564
    tmp = helper_rsqrte_f32(tmp, env);
2565
    tmp = float32_scalbn(tmp, 31, s);
2566
    return float32_to_int32(tmp, s);
2567
}
2568

    
2569
void HELPER(set_teecr)(CPUState *env, uint32_t val)
2570
{
2571
    val &= 1;
2572
    if (env->teecr != val) {
2573
        env->teecr = val;
2574
        tb_flush(env);
2575
    }
2576
}