Statistics
| Branch: | Revision:

root / hw / pc.c @ 5245d57a

History | View | Annotate | Download (40.8 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "fdc.h"
27
#include "pci.h"
28
#include "block.h"
29
#include "sysemu.h"
30
#include "audio/audio.h"
31
#include "net.h"
32
#include "smbus.h"
33
#include "boards.h"
34
#include "monitor.h"
35
#include "fw_cfg.h"
36
#include "hpet_emul.h"
37
#include "watchdog.h"
38
#include "smbios.h"
39
#include "ide.h"
40
#include "loader.h"
41
#include "elf.h"
42

    
43
/* output Bochs bios info messages */
44
//#define DEBUG_BIOS
45

    
46
/* Show multiboot debug output */
47
//#define DEBUG_MULTIBOOT
48

    
49
#define BIOS_FILENAME "bios.bin"
50

    
51
#define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
52

    
53
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
54
#define ACPI_DATA_SIZE       0x10000
55
#define BIOS_CFG_IOPORT 0x510
56
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
57
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
58
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
59

    
60
#define MAX_IDE_BUS 2
61

    
62
static fdctrl_t *floppy_controller;
63
static RTCState *rtc_state;
64
static PITState *pit;
65
static PCII440FXState *i440fx_state;
66

    
67
typedef struct isa_irq_state {
68
    qemu_irq *i8259;
69
    qemu_irq *ioapic;
70
} IsaIrqState;
71

    
72
static void isa_irq_handler(void *opaque, int n, int level)
73
{
74
    IsaIrqState *isa = (IsaIrqState *)opaque;
75

    
76
    if (n < 16) {
77
        qemu_set_irq(isa->i8259[n], level);
78
    }
79
    if (isa->ioapic)
80
        qemu_set_irq(isa->ioapic[n], level);
81
};
82

    
83
static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
84
{
85
}
86

    
87
/* MSDOS compatibility mode FPU exception support */
88
static qemu_irq ferr_irq;
89
/* XXX: add IGNNE support */
90
void cpu_set_ferr(CPUX86State *s)
91
{
92
    qemu_irq_raise(ferr_irq);
93
}
94

    
95
static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
96
{
97
    qemu_irq_lower(ferr_irq);
98
}
99

    
100
/* TSC handling */
101
uint64_t cpu_get_tsc(CPUX86State *env)
102
{
103
    return cpu_get_ticks();
104
}
105

    
106
/* SMM support */
107
void cpu_smm_update(CPUState *env)
108
{
109
    if (i440fx_state && env == first_cpu)
110
        i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1);
111
}
112

    
113

    
114
/* IRQ handling */
115
int cpu_get_pic_interrupt(CPUState *env)
116
{
117
    int intno;
118

    
119
    intno = apic_get_interrupt(env);
120
    if (intno >= 0) {
121
        /* set irq request if a PIC irq is still pending */
122
        /* XXX: improve that */
123
        pic_update_irq(isa_pic);
124
        return intno;
125
    }
126
    /* read the irq from the PIC */
127
    if (!apic_accept_pic_intr(env))
128
        return -1;
129

    
130
    intno = pic_read_irq(isa_pic);
131
    return intno;
132
}
133

    
134
static void pic_irq_request(void *opaque, int irq, int level)
135
{
136
    CPUState *env = first_cpu;
137

    
138
    if (env->apic_state) {
139
        while (env) {
140
            if (apic_accept_pic_intr(env))
141
                apic_deliver_pic_intr(env, level);
142
            env = env->next_cpu;
143
        }
144
    } else {
145
        if (level)
146
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
147
        else
148
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
149
    }
150
}
151

    
152
/* PC cmos mappings */
153

    
154
#define REG_EQUIPMENT_BYTE          0x14
155

    
156
static int cmos_get_fd_drive_type(int fd0)
157
{
158
    int val;
159

    
160
    switch (fd0) {
161
    case 0:
162
        /* 1.44 Mb 3"5 drive */
163
        val = 4;
164
        break;
165
    case 1:
166
        /* 2.88 Mb 3"5 drive */
167
        val = 5;
168
        break;
169
    case 2:
170
        /* 1.2 Mb 5"5 drive */
171
        val = 2;
172
        break;
173
    default:
174
        val = 0;
175
        break;
176
    }
177
    return val;
178
}
179

    
180
static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd)
181
{
182
    RTCState *s = rtc_state;
183
    int cylinders, heads, sectors;
184
    bdrv_get_geometry_hint(hd, &cylinders, &heads, &sectors);
185
    rtc_set_memory(s, type_ofs, 47);
186
    rtc_set_memory(s, info_ofs, cylinders);
187
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
188
    rtc_set_memory(s, info_ofs + 2, heads);
189
    rtc_set_memory(s, info_ofs + 3, 0xff);
190
    rtc_set_memory(s, info_ofs + 4, 0xff);
191
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
192
    rtc_set_memory(s, info_ofs + 6, cylinders);
193
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
194
    rtc_set_memory(s, info_ofs + 8, sectors);
195
}
196

    
197
/* convert boot_device letter to something recognizable by the bios */
198
static int boot_device2nibble(char boot_device)
199
{
200
    switch(boot_device) {
201
    case 'a':
202
    case 'b':
203
        return 0x01; /* floppy boot */
204
    case 'c':
205
        return 0x02; /* hard drive boot */
206
    case 'd':
207
        return 0x03; /* CD-ROM boot */
208
    case 'n':
209
        return 0x04; /* Network boot */
210
    }
211
    return 0;
212
}
213

    
214
/* copy/pasted from cmos_init, should be made a general function
215
 and used there as well */
216
static int pc_boot_set(void *opaque, const char *boot_device)
217
{
218
    Monitor *mon = cur_mon;
219
#define PC_MAX_BOOT_DEVICES 3
220
    RTCState *s = (RTCState *)opaque;
221
    int nbds, bds[3] = { 0, };
222
    int i;
223

    
224
    nbds = strlen(boot_device);
225
    if (nbds > PC_MAX_BOOT_DEVICES) {
226
        monitor_printf(mon, "Too many boot devices for PC\n");
227
        return(1);
228
    }
229
    for (i = 0; i < nbds; i++) {
230
        bds[i] = boot_device2nibble(boot_device[i]);
231
        if (bds[i] == 0) {
232
            monitor_printf(mon, "Invalid boot device for PC: '%c'\n",
233
                           boot_device[i]);
234
            return(1);
235
        }
236
    }
237
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
238
    rtc_set_memory(s, 0x38, (bds[2] << 4));
239
    return(0);
240
}
241

    
242
/* hd_table must contain 4 block drivers */
243
static void cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
244
                      const char *boot_device, DriveInfo **hd_table)
245
{
246
    RTCState *s = rtc_state;
247
    int nbds, bds[3] = { 0, };
248
    int val;
249
    int fd0, fd1, nb;
250
    int i;
251

    
252
    /* various important CMOS locations needed by PC/Bochs bios */
253

    
254
    /* memory size */
255
    val = 640; /* base memory in K */
256
    rtc_set_memory(s, 0x15, val);
257
    rtc_set_memory(s, 0x16, val >> 8);
258

    
259
    val = (ram_size / 1024) - 1024;
260
    if (val > 65535)
261
        val = 65535;
262
    rtc_set_memory(s, 0x17, val);
263
    rtc_set_memory(s, 0x18, val >> 8);
264
    rtc_set_memory(s, 0x30, val);
265
    rtc_set_memory(s, 0x31, val >> 8);
266

    
267
    if (above_4g_mem_size) {
268
        rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
269
        rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
270
        rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
271
    }
272

    
273
    if (ram_size > (16 * 1024 * 1024))
274
        val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
275
    else
276
        val = 0;
277
    if (val > 65535)
278
        val = 65535;
279
    rtc_set_memory(s, 0x34, val);
280
    rtc_set_memory(s, 0x35, val >> 8);
281

    
282
    /* set the number of CPU */
283
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
284

    
285
    /* set boot devices, and disable floppy signature check if requested */
286
#define PC_MAX_BOOT_DEVICES 3
287
    nbds = strlen(boot_device);
288
    if (nbds > PC_MAX_BOOT_DEVICES) {
289
        fprintf(stderr, "Too many boot devices for PC\n");
290
        exit(1);
291
    }
292
    for (i = 0; i < nbds; i++) {
293
        bds[i] = boot_device2nibble(boot_device[i]);
294
        if (bds[i] == 0) {
295
            fprintf(stderr, "Invalid boot device for PC: '%c'\n",
296
                    boot_device[i]);
297
            exit(1);
298
        }
299
    }
300
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
301
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ?  0x0 : 0x1));
302

    
303
    /* floppy type */
304

    
305
    fd0 = fdctrl_get_drive_type(floppy_controller, 0);
306
    fd1 = fdctrl_get_drive_type(floppy_controller, 1);
307

    
308
    val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1);
309
    rtc_set_memory(s, 0x10, val);
310

    
311
    val = 0;
312
    nb = 0;
313
    if (fd0 < 3)
314
        nb++;
315
    if (fd1 < 3)
316
        nb++;
317
    switch (nb) {
318
    case 0:
319
        break;
320
    case 1:
321
        val |= 0x01; /* 1 drive, ready for boot */
322
        break;
323
    case 2:
324
        val |= 0x41; /* 2 drives, ready for boot */
325
        break;
326
    }
327
    val |= 0x02; /* FPU is there */
328
    val |= 0x04; /* PS/2 mouse installed */
329
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
330

    
331
    /* hard drives */
332

    
333
    rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0));
334
    if (hd_table[0])
335
        cmos_init_hd(0x19, 0x1b, hd_table[0]->bdrv);
336
    if (hd_table[1])
337
        cmos_init_hd(0x1a, 0x24, hd_table[1]->bdrv);
338

    
339
    val = 0;
340
    for (i = 0; i < 4; i++) {
341
        if (hd_table[i]) {
342
            int cylinders, heads, sectors, translation;
343
            /* NOTE: bdrv_get_geometry_hint() returns the physical
344
                geometry.  It is always such that: 1 <= sects <= 63, 1
345
                <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
346
                geometry can be different if a translation is done. */
347
            translation = bdrv_get_translation_hint(hd_table[i]->bdrv);
348
            if (translation == BIOS_ATA_TRANSLATION_AUTO) {
349
                bdrv_get_geometry_hint(hd_table[i]->bdrv, &cylinders, &heads, &sectors);
350
                if (cylinders <= 1024 && heads <= 16 && sectors <= 63) {
351
                    /* No translation. */
352
                    translation = 0;
353
                } else {
354
                    /* LBA translation. */
355
                    translation = 1;
356
                }
357
            } else {
358
                translation--;
359
            }
360
            val |= translation << (i * 2);
361
        }
362
    }
363
    rtc_set_memory(s, 0x39, val);
364
}
365

    
366
void ioport_set_a20(int enable)
367
{
368
    /* XXX: send to all CPUs ? */
369
    cpu_x86_set_a20(first_cpu, enable);
370
}
371

    
372
int ioport_get_a20(void)
373
{
374
    return ((first_cpu->a20_mask >> 20) & 1);
375
}
376

    
377
static void ioport92_write(void *opaque, uint32_t addr, uint32_t val)
378
{
379
    ioport_set_a20((val >> 1) & 1);
380
    /* XXX: bit 0 is fast reset */
381
}
382

    
383
static uint32_t ioport92_read(void *opaque, uint32_t addr)
384
{
385
    return ioport_get_a20() << 1;
386
}
387

    
388
/***********************************************************/
389
/* Bochs BIOS debug ports */
390

    
391
static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
392
{
393
    static const char shutdown_str[8] = "Shutdown";
394
    static int shutdown_index = 0;
395

    
396
    switch(addr) {
397
        /* Bochs BIOS messages */
398
    case 0x400:
399
    case 0x401:
400
        fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
401
        exit(1);
402
    case 0x402:
403
    case 0x403:
404
#ifdef DEBUG_BIOS
405
        fprintf(stderr, "%c", val);
406
#endif
407
        break;
408
    case 0x8900:
409
        /* same as Bochs power off */
410
        if (val == shutdown_str[shutdown_index]) {
411
            shutdown_index++;
412
            if (shutdown_index == 8) {
413
                shutdown_index = 0;
414
                qemu_system_shutdown_request();
415
            }
416
        } else {
417
            shutdown_index = 0;
418
        }
419
        break;
420

    
421
        /* LGPL'ed VGA BIOS messages */
422
    case 0x501:
423
    case 0x502:
424
        fprintf(stderr, "VGA BIOS panic, line %d\n", val);
425
        exit(1);
426
    case 0x500:
427
    case 0x503:
428
#ifdef DEBUG_BIOS
429
        fprintf(stderr, "%c", val);
430
#endif
431
        break;
432
    }
433
}
434

    
435
static void *bochs_bios_init(void)
436
{
437
    void *fw_cfg;
438
    uint8_t *smbios_table;
439
    size_t smbios_len;
440
    uint64_t *numa_fw_cfg;
441
    int i, j;
442

    
443
    register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
444
    register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
445
    register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
446
    register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
447
    register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
448

    
449
    register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
450
    register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
451
    register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
452
    register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
453

    
454
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
455

    
456
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
457
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
458
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
459
                     acpi_tables_len);
460
    fw_cfg_add_bytes(fw_cfg, FW_CFG_IRQ0_OVERRIDE, &irq0override, 1);
461

    
462
    smbios_table = smbios_get_table(&smbios_len);
463
    if (smbios_table)
464
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
465
                         smbios_table, smbios_len);
466

    
467
    /* allocate memory for the NUMA channel: one (64bit) word for the number
468
     * of nodes, one word for each VCPU->node and one word for each node to
469
     * hold the amount of memory.
470
     */
471
    numa_fw_cfg = qemu_mallocz((1 + smp_cpus + nb_numa_nodes) * 8);
472
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
473
    for (i = 0; i < smp_cpus; i++) {
474
        for (j = 0; j < nb_numa_nodes; j++) {
475
            if (node_cpumask[j] & (1 << i)) {
476
                numa_fw_cfg[i + 1] = cpu_to_le64(j);
477
                break;
478
            }
479
        }
480
    }
481
    for (i = 0; i < nb_numa_nodes; i++) {
482
        numa_fw_cfg[smp_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
483
    }
484
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
485
                     (1 + smp_cpus + nb_numa_nodes) * 8);
486

    
487
    return fw_cfg;
488
}
489

    
490
/* Generate an initial boot sector which sets state and jump to
491
   a specified vector */
492
static void generate_bootsect(uint32_t gpr[8], uint16_t segs[6], uint16_t ip)
493
{
494
    uint8_t rom[512], *p, *reloc;
495
    uint8_t sum;
496
    int i;
497

    
498
    memset(rom, 0, sizeof(rom));
499

    
500
    p = rom;
501
    /* Make sure we have an option rom signature */
502
    *p++ = 0x55;
503
    *p++ = 0xaa;
504

    
505
    /* ROM size in sectors*/
506
    *p++ = 1;
507

    
508
    /* Hook int19 */
509

    
510
    *p++ = 0x50;                /* push ax */
511
    *p++ = 0x1e;                /* push ds */
512
    *p++ = 0x31; *p++ = 0xc0;        /* xor ax, ax */
513
    *p++ = 0x8e; *p++ = 0xd8;        /* mov ax, ds */
514

    
515
    *p++ = 0xc7; *p++ = 0x06;   /* movvw _start,0x64 */
516
    *p++ = 0x64; *p++ = 0x00;
517
    reloc = p;
518
    *p++ = 0x00; *p++ = 0x00;
519

    
520
    *p++ = 0x8c; *p++ = 0x0e;   /* mov cs,0x66 */
521
    *p++ = 0x66; *p++ = 0x00;
522

    
523
    *p++ = 0x1f;                /* pop ds */
524
    *p++ = 0x58;                /* pop ax */
525
    *p++ = 0xcb;                /* lret */
526

    
527
    /* Actual code */
528
    *reloc = (p - rom);
529

    
530
    *p++ = 0xfa;                /* CLI */
531
    *p++ = 0xfc;                /* CLD */
532

    
533
    for (i = 0; i < 6; i++) {
534
        if (i == 1)                /* Skip CS */
535
            continue;
536

    
537
        *p++ = 0xb8;                /* MOV AX,imm16 */
538
        *p++ = segs[i];
539
        *p++ = segs[i] >> 8;
540
        *p++ = 0x8e;                /* MOV <seg>,AX */
541
        *p++ = 0xc0 + (i << 3);
542
    }
543

    
544
    for (i = 0; i < 8; i++) {
545
        *p++ = 0x66;                /* 32-bit operand size */
546
        *p++ = 0xb8 + i;        /* MOV <reg>,imm32 */
547
        *p++ = gpr[i];
548
        *p++ = gpr[i] >> 8;
549
        *p++ = gpr[i] >> 16;
550
        *p++ = gpr[i] >> 24;
551
    }
552

    
553
    *p++ = 0xea;                /* JMP FAR */
554
    *p++ = ip;                        /* IP */
555
    *p++ = ip >> 8;
556
    *p++ = segs[1];                /* CS */
557
    *p++ = segs[1] >> 8;
558

    
559
    /* sign rom */
560
    sum = 0;
561
    for (i = 0; i < (sizeof(rom) - 1); i++)
562
        sum += rom[i];
563
    rom[sizeof(rom) - 1] = -sum;
564

    
565
    rom_add_blob("linux-bootsect", rom, sizeof(rom),
566
                 PC_ROM_MIN_OPTION, PC_ROM_MAX, PC_ROM_ALIGN);
567
}
568

    
569
static long get_file_size(FILE *f)
570
{
571
    long where, size;
572

    
573
    /* XXX: on Unix systems, using fstat() probably makes more sense */
574

    
575
    where = ftell(f);
576
    fseek(f, 0, SEEK_END);
577
    size = ftell(f);
578
    fseek(f, where, SEEK_SET);
579

    
580
    return size;
581
}
582

    
583
#define MULTIBOOT_STRUCT_ADDR 0x9000
584

    
585
#if MULTIBOOT_STRUCT_ADDR > 0xf0000
586
#error multiboot struct needs to fit in 16 bit real mode
587
#endif
588

    
589
static int load_multiboot(void *fw_cfg,
590
                          FILE *f,
591
                          const char *kernel_filename,
592
                          const char *initrd_filename,
593
                          const char *kernel_cmdline,
594
                          uint8_t *header)
595
{
596
    int i, is_multiboot = 0;
597
    uint32_t flags = 0;
598
    uint32_t mh_entry_addr;
599
    uint32_t mh_load_addr;
600
    uint32_t mb_kernel_size;
601
    uint32_t mmap_addr = MULTIBOOT_STRUCT_ADDR;
602
    uint32_t mb_bootinfo = MULTIBOOT_STRUCT_ADDR + 0x500;
603
    uint32_t mb_mod_end;
604
    uint8_t bootinfo[0x500];
605
    uint32_t cmdline = 0x200;
606

    
607
    /* Ok, let's see if it is a multiboot image.
608
       The header is 12x32bit long, so the latest entry may be 8192 - 48. */
609
    for (i = 0; i < (8192 - 48); i += 4) {
610
        if (ldl_p(header+i) == 0x1BADB002) {
611
            uint32_t checksum = ldl_p(header+i+8);
612
            flags = ldl_p(header+i+4);
613
            checksum += flags;
614
            checksum += (uint32_t)0x1BADB002;
615
            if (!checksum) {
616
                is_multiboot = 1;
617
                break;
618
            }
619
        }
620
    }
621

    
622
    if (!is_multiboot)
623
        return 0; /* no multiboot */
624

    
625
#ifdef DEBUG_MULTIBOOT
626
    fprintf(stderr, "qemu: I believe we found a multiboot image!\n");
627
#endif
628
    memset(bootinfo, 0, sizeof(bootinfo));
629

    
630
    if (flags & 0x00000004) { /* MULTIBOOT_HEADER_HAS_VBE */
631
        fprintf(stderr, "qemu: multiboot knows VBE. we don't.\n");
632
    }
633
    if (!(flags & 0x00010000)) { /* MULTIBOOT_HEADER_HAS_ADDR */
634
        uint64_t elf_entry;
635
        int kernel_size;
636
        fclose(f);
637
        kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL,
638
                               0, ELF_MACHINE, 0);
639
        if (kernel_size < 0) {
640
            fprintf(stderr, "Error while loading elf kernel\n");
641
            exit(1);
642
        }
643
        mh_load_addr = mh_entry_addr = elf_entry;
644
        mb_kernel_size = kernel_size;
645

    
646
#ifdef DEBUG_MULTIBOOT
647
        fprintf(stderr, "qemu: loading multiboot-elf kernel (%#x bytes) with entry %#zx\n",
648
                mb_kernel_size, (size_t)mh_entry_addr);
649
#endif
650
    } else {
651
        /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_ADDR. */
652
        uint32_t mh_header_addr = ldl_p(header+i+12);
653
        mh_load_addr = ldl_p(header+i+16);
654
#ifdef DEBUG_MULTIBOOT
655
        uint32_t mh_load_end_addr = ldl_p(header+i+20);
656
        uint32_t mh_bss_end_addr = ldl_p(header+i+24);
657
#endif
658
        uint32_t mb_kernel_text_offset = i - (mh_header_addr - mh_load_addr);
659
        uint8_t *kernel;
660

    
661
        mh_entry_addr = ldl_p(header+i+28);
662
        mb_kernel_size = get_file_size(f) - mb_kernel_text_offset;
663

    
664
        /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_VBE.
665
        uint32_t mh_mode_type = ldl_p(header+i+32);
666
        uint32_t mh_width = ldl_p(header+i+36);
667
        uint32_t mh_height = ldl_p(header+i+40);
668
        uint32_t mh_depth = ldl_p(header+i+44); */
669

    
670
#ifdef DEBUG_MULTIBOOT
671
        fprintf(stderr, "multiboot: mh_header_addr = %#x\n", mh_header_addr);
672
        fprintf(stderr, "multiboot: mh_load_addr = %#x\n", mh_load_addr);
673
        fprintf(stderr, "multiboot: mh_load_end_addr = %#x\n", mh_load_end_addr);
674
        fprintf(stderr, "multiboot: mh_bss_end_addr = %#x\n", mh_bss_end_addr);
675
        fprintf(stderr, "qemu: loading multiboot kernel (%#x bytes) at %#x\n",
676
                mb_kernel_size, mh_load_addr);
677
#endif
678

    
679
        kernel = qemu_malloc(mb_kernel_size);
680
        fseek(f, mb_kernel_text_offset, SEEK_SET);
681
        fread(kernel, 1, mb_kernel_size, f);
682
        rom_add_blob_fixed(kernel_filename, kernel, mb_kernel_size,
683
                           mh_load_addr);
684
        qemu_free(kernel);
685
        fclose(f);
686
    }
687

    
688
    /* blob size is only the kernel for now */
689
    mb_mod_end = mh_load_addr + mb_kernel_size;
690

    
691
    /* load modules */
692
    stl_p(bootinfo + 20, 0x0); /* mods_count */
693
    if (initrd_filename) {
694
        uint32_t mb_mod_info = 0x100;
695
        uint32_t mb_mod_cmdline = 0x300;
696
        uint32_t mb_mod_start = mh_load_addr;
697
        uint32_t mb_mod_length = mb_kernel_size;
698
        char *next_initrd;
699
        char *next_space;
700
        int mb_mod_count = 0;
701

    
702
        do {
703
            if (mb_mod_info + 16 > mb_mod_cmdline) {
704
                printf("WARNING: Too many modules loaded, aborting.\n");
705
                break;
706
            }
707
            next_initrd = strchr(initrd_filename, ',');
708
            if (next_initrd)
709
                *next_initrd = '\0';
710
            /* if a space comes after the module filename, treat everything
711
               after that as parameters */
712
            pstrcpy((char*)bootinfo + mb_mod_cmdline,
713
                    sizeof(bootinfo) - mb_mod_cmdline,
714
                    initrd_filename);
715
            stl_p(bootinfo + mb_mod_info + 8, mb_bootinfo + mb_mod_cmdline); /* string */
716
            mb_mod_cmdline += strlen(initrd_filename) + 1;
717
            if (mb_mod_cmdline > sizeof(bootinfo)) {
718
                mb_mod_cmdline = sizeof(bootinfo);
719
                printf("WARNING: Too many module cmdlines loaded, aborting.\n");
720
                break;
721
            }
722
            if ((next_space = strchr(initrd_filename, ' ')))
723
                *next_space = '\0';
724
#ifdef DEBUG_MULTIBOOT
725
            printf("multiboot loading module: %s\n", initrd_filename);
726
#endif
727
            mb_mod_start = (mb_mod_start + mb_mod_length + (TARGET_PAGE_SIZE - 1))
728
                         & (TARGET_PAGE_MASK);
729
            mb_mod_length = get_image_size(initrd_filename);
730
            if (mb_mod_length < 0) {
731
                fprintf(stderr, "failed to get %s image size\n", initrd_filename);
732
                exit(1);
733
            }
734
            mb_mod_end = mb_mod_start + mb_mod_length;
735
            rom_add_file_fixed(initrd_filename, mb_mod_start);
736

    
737
            mb_mod_count++;
738
            stl_p(bootinfo + mb_mod_info + 0, mb_mod_start);
739
            stl_p(bootinfo + mb_mod_info + 4, mb_mod_start + mb_mod_length);
740
            stl_p(bootinfo + mb_mod_info + 12, 0x0); /* reserved */
741
#ifdef DEBUG_MULTIBOOT
742
            printf("mod_start: %#x\nmod_end:   %#x\n", mb_mod_start,
743
                   mb_mod_start + mb_mod_length);
744
#endif
745
            initrd_filename = next_initrd+1;
746
            mb_mod_info += 16;
747
        } while (next_initrd);
748
        stl_p(bootinfo + 20, mb_mod_count); /* mods_count */
749
        stl_p(bootinfo + 24, mb_bootinfo + 0x100); /* mods_addr */
750
    }
751

    
752
    /* Commandline support */
753
    stl_p(bootinfo + 16, mb_bootinfo + cmdline);
754
    snprintf((char*)bootinfo + cmdline, 0x100, "%s %s",
755
             kernel_filename, kernel_cmdline);
756

    
757
    /* the kernel is where we want it to be now */
758
#define MULTIBOOT_FLAGS_MEMORY (1 << 0)
759
#define MULTIBOOT_FLAGS_BOOT_DEVICE (1 << 1)
760
#define MULTIBOOT_FLAGS_CMDLINE (1 << 2)
761
#define MULTIBOOT_FLAGS_MODULES (1 << 3)
762
#define MULTIBOOT_FLAGS_MMAP (1 << 6)
763
    stl_p(bootinfo, MULTIBOOT_FLAGS_MEMORY
764
                  | MULTIBOOT_FLAGS_BOOT_DEVICE
765
                  | MULTIBOOT_FLAGS_CMDLINE
766
                  | MULTIBOOT_FLAGS_MODULES
767
                  | MULTIBOOT_FLAGS_MMAP);
768
    stl_p(bootinfo + 4, 640); /* mem_lower */
769
    stl_p(bootinfo + 8, ram_size / 1024); /* mem_upper */
770
    stl_p(bootinfo + 12, 0x8001ffff); /* XXX: use the -boot switch? */
771
    stl_p(bootinfo + 48, mmap_addr); /* mmap_addr */
772

    
773
#ifdef DEBUG_MULTIBOOT
774
    fprintf(stderr, "multiboot: mh_entry_addr = %#x\n", mh_entry_addr);
775
#endif
776

    
777
    /* Pass variables to option rom */
778
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_entry_addr);
779
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, mb_bootinfo);
780
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, mmap_addr);
781

    
782
    rom_add_blob_fixed("multiboot-info", bootinfo, sizeof(bootinfo),
783
                       mb_bootinfo);
784

    
785
    option_rom[nb_option_roms] = "multiboot.bin";
786
    nb_option_roms++;
787

    
788
    return 1; /* yes, we are multiboot */
789
}
790

    
791
static void load_linux(void *fw_cfg,
792
                       const char *kernel_filename,
793
                       const char *initrd_filename,
794
                       const char *kernel_cmdline,
795
                       target_phys_addr_t max_ram_size)
796
{
797
    uint16_t protocol;
798
    uint32_t gpr[8];
799
    uint16_t seg[6];
800
    uint16_t real_seg;
801
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
802
    uint32_t initrd_max;
803
    uint8_t header[8192], *setup, *kernel;
804
    target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
805
    FILE *f;
806
    char *vmode;
807

    
808
    /* Align to 16 bytes as a paranoia measure */
809
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
810

    
811
    /* load the kernel header */
812
    f = fopen(kernel_filename, "rb");
813
    if (!f || !(kernel_size = get_file_size(f)) ||
814
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
815
        MIN(ARRAY_SIZE(header), kernel_size)) {
816
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
817
                kernel_filename, strerror(errno));
818
        exit(1);
819
    }
820

    
821
    /* kernel protocol version */
822
#if 0
823
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
824
#endif
825
    if (ldl_p(header+0x202) == 0x53726448)
826
        protocol = lduw_p(header+0x206);
827
    else {
828
        /* This looks like a multiboot kernel. If it is, let's stop
829
           treating it like a Linux kernel. */
830
        if (load_multiboot(fw_cfg, f, kernel_filename,
831
                           initrd_filename, kernel_cmdline, header))
832
            return;
833
        protocol = 0;
834
    }
835

    
836
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
837
        /* Low kernel */
838
        real_addr    = 0x90000;
839
        cmdline_addr = 0x9a000 - cmdline_size;
840
        prot_addr    = 0x10000;
841
    } else if (protocol < 0x202) {
842
        /* High but ancient kernel */
843
        real_addr    = 0x90000;
844
        cmdline_addr = 0x9a000 - cmdline_size;
845
        prot_addr    = 0x100000;
846
    } else {
847
        /* High and recent kernel */
848
        real_addr    = 0x10000;
849
        cmdline_addr = 0x20000;
850
        prot_addr    = 0x100000;
851
    }
852

    
853
#if 0
854
    fprintf(stderr,
855
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
856
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
857
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
858
            real_addr,
859
            cmdline_addr,
860
            prot_addr);
861
#endif
862

    
863
    /* highest address for loading the initrd */
864
    if (protocol >= 0x203)
865
        initrd_max = ldl_p(header+0x22c);
866
    else
867
        initrd_max = 0x37ffffff;
868

    
869
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
870
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
871

    
872
    /* kernel command line */
873
    rom_add_blob_fixed("cmdline", kernel_cmdline,
874
                       strlen(kernel_cmdline)+1, cmdline_addr);
875

    
876
    if (protocol >= 0x202) {
877
        stl_p(header+0x228, cmdline_addr);
878
    } else {
879
        stw_p(header+0x20, 0xA33F);
880
        stw_p(header+0x22, cmdline_addr-real_addr);
881
    }
882

    
883
    /* handle vga= parameter */
884
    vmode = strstr(kernel_cmdline, "vga=");
885
    if (vmode) {
886
        unsigned int video_mode;
887
        /* skip "vga=" */
888
        vmode += 4;
889
        if (!strncmp(vmode, "normal", 6)) {
890
            video_mode = 0xffff;
891
        } else if (!strncmp(vmode, "ext", 3)) {
892
            video_mode = 0xfffe;
893
        } else if (!strncmp(vmode, "ask", 3)) {
894
            video_mode = 0xfffd;
895
        } else {
896
            video_mode = strtol(vmode, NULL, 0);
897
        }
898
        stw_p(header+0x1fa, video_mode);
899
    }
900

    
901
    /* loader type */
902
    /* High nybble = B reserved for Qemu; low nybble is revision number.
903
       If this code is substantially changed, you may want to consider
904
       incrementing the revision. */
905
    if (protocol >= 0x200)
906
        header[0x210] = 0xB0;
907

    
908
    /* heap */
909
    if (protocol >= 0x201) {
910
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
911
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
912
    }
913

    
914
    /* load initrd */
915
    if (initrd_filename) {
916
        if (protocol < 0x200) {
917
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
918
            exit(1);
919
        }
920

    
921
        initrd_size = get_image_size(initrd_filename);
922
        initrd_addr = (initrd_max-initrd_size) & ~4095;
923
        rom_add_file_fixed(initrd_filename, initrd_addr);
924

    
925
        stl_p(header+0x218, initrd_addr);
926
        stl_p(header+0x21c, initrd_size);
927
    }
928

    
929
    /* load kernel and setup */
930
    setup_size = header[0x1f1];
931
    if (setup_size == 0)
932
        setup_size = 4;
933
    setup_size = (setup_size+1)*512;
934
    kernel_size -= setup_size;
935

    
936
    setup  = qemu_malloc(setup_size);
937
    kernel = qemu_malloc(kernel_size);
938
    fseek(f, 0, SEEK_SET);
939
    fread(setup, 1, setup_size, f);
940
    fread(kernel, 1, kernel_size, f);
941
    fclose(f);
942
    memcpy(setup, header, MIN(sizeof(header), setup_size));
943
    rom_add_blob_fixed("linux-setup", setup,
944
                       setup_size, real_addr);
945
    rom_add_blob_fixed(kernel_filename, kernel,
946
                       kernel_size, prot_addr);
947
    qemu_free(setup);
948
    qemu_free(kernel);
949

    
950
    /* generate bootsector to set up the initial register state */
951
    real_seg = real_addr >> 4;
952
    seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg;
953
    seg[1] = real_seg+0x20;        /* CS */
954
    memset(gpr, 0, sizeof gpr);
955
    gpr[4] = cmdline_addr-real_addr-16;        /* SP (-16 is paranoia) */
956

    
957
    generate_bootsect(gpr, seg, 0);
958
}
959

    
960
static const int ide_iobase[2] = { 0x1f0, 0x170 };
961
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
962
static const int ide_irq[2] = { 14, 15 };
963

    
964
#define NE2000_NB_MAX 6
965

    
966
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
967
                                              0x280, 0x380 };
968
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
969

    
970
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
971
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
972

    
973
#ifdef HAS_AUDIO
974
static void audio_init (PCIBus *pci_bus, qemu_irq *pic)
975
{
976
    struct soundhw *c;
977

    
978
    for (c = soundhw; c->name; ++c) {
979
        if (c->enabled) {
980
            if (c->isa) {
981
                c->init.init_isa(pic);
982
            } else {
983
                if (pci_bus) {
984
                    c->init.init_pci(pci_bus);
985
                }
986
            }
987
        }
988
    }
989
}
990
#endif
991

    
992
static void pc_init_ne2k_isa(NICInfo *nd)
993
{
994
    static int nb_ne2k = 0;
995

    
996
    if (nb_ne2k == NE2000_NB_MAX)
997
        return;
998
    isa_ne2000_init(ne2000_io[nb_ne2k],
999
                    ne2000_irq[nb_ne2k], nd);
1000
    nb_ne2k++;
1001
}
1002

    
1003
int cpu_is_bsp(CPUState *env)
1004
{
1005
    return env->cpuid_apic_id == 0;
1006
}
1007

    
1008
static CPUState *pc_new_cpu(const char *cpu_model)
1009
{
1010
    CPUState *env;
1011

    
1012
    env = cpu_init(cpu_model);
1013
    if (!env) {
1014
        fprintf(stderr, "Unable to find x86 CPU definition\n");
1015
        exit(1);
1016
    }
1017
    if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
1018
        env->cpuid_apic_id = env->cpu_index;
1019
        /* APIC reset callback resets cpu */
1020
        apic_init(env);
1021
    } else {
1022
        qemu_register_reset((QEMUResetHandler*)cpu_reset, env);
1023
    }
1024
    return env;
1025
}
1026

    
1027
/* PC hardware initialisation */
1028
static void pc_init1(ram_addr_t ram_size,
1029
                     const char *boot_device,
1030
                     const char *kernel_filename,
1031
                     const char *kernel_cmdline,
1032
                     const char *initrd_filename,
1033
                     const char *cpu_model,
1034
                     int pci_enabled)
1035
{
1036
    char *filename;
1037
    int ret, linux_boot, i;
1038
    ram_addr_t ram_addr, bios_offset, option_rom_offset;
1039
    ram_addr_t below_4g_mem_size, above_4g_mem_size = 0;
1040
    int bios_size, isa_bios_size;
1041
    PCIBus *pci_bus;
1042
    ISADevice *isa_dev;
1043
    int piix3_devfn = -1;
1044
    CPUState *env;
1045
    qemu_irq *cpu_irq;
1046
    qemu_irq *isa_irq;
1047
    qemu_irq *i8259;
1048
    IsaIrqState *isa_irq_state;
1049
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
1050
    DriveInfo *fd[MAX_FD];
1051
    void *fw_cfg;
1052

    
1053
    if (ram_size >= 0xe0000000 ) {
1054
        above_4g_mem_size = ram_size - 0xe0000000;
1055
        below_4g_mem_size = 0xe0000000;
1056
    } else {
1057
        below_4g_mem_size = ram_size;
1058
    }
1059

    
1060
    linux_boot = (kernel_filename != NULL);
1061

    
1062
    /* init CPUs */
1063
    if (cpu_model == NULL) {
1064
#ifdef TARGET_X86_64
1065
        cpu_model = "qemu64";
1066
#else
1067
        cpu_model = "qemu32";
1068
#endif
1069
    }
1070

    
1071
    for (i = 0; i < smp_cpus; i++) {
1072
        env = pc_new_cpu(cpu_model);
1073
    }
1074

    
1075
    vmport_init();
1076

    
1077
    /* allocate RAM */
1078
    ram_addr = qemu_ram_alloc(0xa0000);
1079
    cpu_register_physical_memory(0, 0xa0000, ram_addr);
1080

    
1081
    /* Allocate, even though we won't register, so we don't break the
1082
     * phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000),
1083
     * and some bios areas, which will be registered later
1084
     */
1085
    ram_addr = qemu_ram_alloc(0x100000 - 0xa0000);
1086
    ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000);
1087
    cpu_register_physical_memory(0x100000,
1088
                 below_4g_mem_size - 0x100000,
1089
                 ram_addr);
1090

    
1091
    /* above 4giga memory allocation */
1092
    if (above_4g_mem_size > 0) {
1093
#if TARGET_PHYS_ADDR_BITS == 32
1094
        hw_error("To much RAM for 32-bit physical address");
1095
#else
1096
        ram_addr = qemu_ram_alloc(above_4g_mem_size);
1097
        cpu_register_physical_memory(0x100000000ULL,
1098
                                     above_4g_mem_size,
1099
                                     ram_addr);
1100
#endif
1101
    }
1102

    
1103

    
1104
    /* BIOS load */
1105
    if (bios_name == NULL)
1106
        bios_name = BIOS_FILENAME;
1107
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1108
    if (filename) {
1109
        bios_size = get_image_size(filename);
1110
    } else {
1111
        bios_size = -1;
1112
    }
1113
    if (bios_size <= 0 ||
1114
        (bios_size % 65536) != 0) {
1115
        goto bios_error;
1116
    }
1117
    bios_offset = qemu_ram_alloc(bios_size);
1118
    ret = load_image(filename, qemu_get_ram_ptr(bios_offset));
1119
    if (ret != bios_size) {
1120
    bios_error:
1121
        fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1122
        exit(1);
1123
    }
1124
    if (filename) {
1125
        qemu_free(filename);
1126
    }
1127
    /* map the last 128KB of the BIOS in ISA space */
1128
    isa_bios_size = bios_size;
1129
    if (isa_bios_size > (128 * 1024))
1130
        isa_bios_size = 128 * 1024;
1131
    cpu_register_physical_memory(0x100000 - isa_bios_size,
1132
                                 isa_bios_size,
1133
                                 (bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM);
1134

    
1135

    
1136

    
1137
    rom_enable_driver_roms = 1;
1138
    option_rom_offset = qemu_ram_alloc(PC_ROM_SIZE);
1139
    cpu_register_physical_memory(PC_ROM_MIN_VGA, PC_ROM_SIZE, option_rom_offset);
1140

    
1141
    /* map all the bios at the top of memory */
1142
    cpu_register_physical_memory((uint32_t)(-bios_size),
1143
                                 bios_size, bios_offset | IO_MEM_ROM);
1144

    
1145
    fw_cfg = bochs_bios_init();
1146

    
1147
    if (linux_boot) {
1148
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1149
    }
1150

    
1151
    for (i = 0; i < nb_option_roms; i++) {
1152
        rom_add_option(option_rom[i]);
1153
    }
1154

    
1155
#if 1
1156
    /*
1157
     * Needed for the e1000 rom only.  The rom doesn't do proper BEV
1158
     * and thus we can't load it unconditionally.
1159
     */
1160
    for (i = 0; i < nb_nics; i++) {
1161
        char nic_oprom[1024];
1162
        const char *model = nd_table[i].model;
1163

    
1164
        if (!nd_table[i].bootable)
1165
            continue;
1166

    
1167
        if (model == NULL)
1168
            model = "e1000";
1169
        if (strcmp(model,"e1000") != 0)
1170
            continue;
1171
        snprintf(nic_oprom, sizeof(nic_oprom), "pxe-%s.bin", model);
1172
        rom_add_option(nic_oprom);
1173
    }
1174
#endif
1175

    
1176
    cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1);
1177
    i8259 = i8259_init(cpu_irq[0]);
1178
    isa_irq_state = qemu_mallocz(sizeof(*isa_irq_state));
1179
    isa_irq_state->i8259 = i8259;
1180
    isa_irq = qemu_allocate_irqs(isa_irq_handler, isa_irq_state, 24);
1181

    
1182
    if (pci_enabled) {
1183
        pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, isa_irq);
1184
    } else {
1185
        pci_bus = NULL;
1186
        isa_bus_new(NULL);
1187
    }
1188
    isa_bus_irqs(isa_irq);
1189

    
1190
    ferr_irq = isa_reserve_irq(13);
1191

    
1192
    /* init basic PC hardware */
1193
    register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
1194

    
1195
    register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
1196

    
1197
    if (cirrus_vga_enabled) {
1198
        if (pci_enabled) {
1199
            pci_cirrus_vga_init(pci_bus);
1200
        } else {
1201
            isa_cirrus_vga_init();
1202
        }
1203
    } else if (vmsvga_enabled) {
1204
        if (pci_enabled)
1205
            pci_vmsvga_init(pci_bus);
1206
        else
1207
            fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
1208
    } else if (std_vga_enabled) {
1209
        if (pci_enabled) {
1210
            pci_vga_init(pci_bus, 0, 0);
1211
        } else {
1212
            isa_vga_init();
1213
        }
1214
    }
1215

    
1216
    rtc_state = rtc_init(2000);
1217

    
1218
    qemu_register_boot_set(pc_boot_set, rtc_state);
1219

    
1220
    register_ioport_read(0x92, 1, 1, ioport92_read, NULL);
1221
    register_ioport_write(0x92, 1, 1, ioport92_write, NULL);
1222

    
1223
    if (pci_enabled) {
1224
        isa_irq_state->ioapic = ioapic_init();
1225
    }
1226
    pit = pit_init(0x40, isa_reserve_irq(0));
1227
    pcspk_init(pit);
1228
    if (!no_hpet) {
1229
        hpet_init(isa_irq);
1230
    }
1231

    
1232
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1233
        if (serial_hds[i]) {
1234
            serial_isa_init(i, serial_hds[i]);
1235
        }
1236
    }
1237

    
1238
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1239
        if (parallel_hds[i]) {
1240
            parallel_init(i, parallel_hds[i]);
1241
        }
1242
    }
1243

    
1244
    for(i = 0; i < nb_nics; i++) {
1245
        NICInfo *nd = &nd_table[i];
1246

    
1247
        if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
1248
            pc_init_ne2k_isa(nd);
1249
        else
1250
            pci_nic_init_nofail(nd, "e1000", NULL);
1251
    }
1252

    
1253
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
1254
        fprintf(stderr, "qemu: too many IDE bus\n");
1255
        exit(1);
1256
    }
1257

    
1258
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
1259
        hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
1260
    }
1261

    
1262
    if (pci_enabled) {
1263
        pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
1264
    } else {
1265
        for(i = 0; i < MAX_IDE_BUS; i++) {
1266
            isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
1267
                         hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
1268
        }
1269
    }
1270

    
1271
    isa_dev = isa_create_simple("i8042");
1272
    DMA_init(0);
1273
#ifdef HAS_AUDIO
1274
    audio_init(pci_enabled ? pci_bus : NULL, isa_irq);
1275
#endif
1276

    
1277
    for(i = 0; i < MAX_FD; i++) {
1278
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1279
    }
1280
    floppy_controller = fdctrl_init_isa(fd);
1281

    
1282
    cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device, hd);
1283

    
1284
    if (pci_enabled && usb_enabled) {
1285
        usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
1286
    }
1287

    
1288
    if (pci_enabled && acpi_enabled) {
1289
        uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
1290
        i2c_bus *smbus;
1291

    
1292
        /* TODO: Populate SPD eeprom data.  */
1293
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
1294
                              isa_reserve_irq(9));
1295
        for (i = 0; i < 8; i++) {
1296
            DeviceState *eeprom;
1297
            eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
1298
            qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
1299
            qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
1300
            qdev_init_nofail(eeprom);
1301
        }
1302
        piix4_acpi_system_hot_add_init(pci_bus);
1303
    }
1304

    
1305
    if (i440fx_state) {
1306
        i440fx_init_memory_mappings(i440fx_state);
1307
    }
1308

    
1309
    if (pci_enabled) {
1310
        int max_bus;
1311
        int bus;
1312

    
1313
        max_bus = drive_get_max_bus(IF_SCSI);
1314
        for (bus = 0; bus <= max_bus; bus++) {
1315
            pci_create_simple(pci_bus, -1, "lsi53c895a");
1316
        }
1317
    }
1318

    
1319
    /* Add virtio console devices */
1320
    if (pci_enabled) {
1321
        for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
1322
            if (virtcon_hds[i]) {
1323
                pci_create_simple(pci_bus, -1, "virtio-console-pci");
1324
            }
1325
        }
1326
    }
1327
}
1328

    
1329
static void pc_init_pci(ram_addr_t ram_size,
1330
                        const char *boot_device,
1331
                        const char *kernel_filename,
1332
                        const char *kernel_cmdline,
1333
                        const char *initrd_filename,
1334
                        const char *cpu_model)
1335
{
1336
    pc_init1(ram_size, boot_device,
1337
             kernel_filename, kernel_cmdline,
1338
             initrd_filename, cpu_model, 1);
1339
}
1340

    
1341
static void pc_init_isa(ram_addr_t ram_size,
1342
                        const char *boot_device,
1343
                        const char *kernel_filename,
1344
                        const char *kernel_cmdline,
1345
                        const char *initrd_filename,
1346
                        const char *cpu_model)
1347
{
1348
    if (cpu_model == NULL)
1349
        cpu_model = "486";
1350
    pc_init1(ram_size, boot_device,
1351
             kernel_filename, kernel_cmdline,
1352
             initrd_filename, cpu_model, 0);
1353
}
1354

    
1355
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
1356
   BIOS will read it and start S3 resume at POST Entry */
1357
void cmos_set_s3_resume(void)
1358
{
1359
    if (rtc_state)
1360
        rtc_set_memory(rtc_state, 0xF, 0xFE);
1361
}
1362

    
1363
static QEMUMachine pc_machine = {
1364
    .name = "pc-0.11",
1365
    .alias = "pc",
1366
    .desc = "Standard PC",
1367
    .init = pc_init_pci,
1368
    .max_cpus = 255,
1369
    .is_default = 1,
1370
};
1371

    
1372
static QEMUMachine pc_machine_v0_10 = {
1373
    .name = "pc-0.10",
1374
    .desc = "Standard PC, qemu 0.10",
1375
    .init = pc_init_pci,
1376
    .max_cpus = 255,
1377
    .compat_props = (CompatProperty[]) {
1378
        {
1379
            .driver   = "virtio-blk-pci",
1380
            .property = "class",
1381
            .value    = stringify(PCI_CLASS_STORAGE_OTHER),
1382
        },{
1383
            .driver   = "virtio-console-pci",
1384
            .property = "class",
1385
            .value    = stringify(PCI_CLASS_DISPLAY_OTHER),
1386
        },{
1387
            .driver   = "virtio-net-pci",
1388
            .property = "vectors",
1389
            .value    = stringify(0),
1390
        },{
1391
            .driver   = "virtio-blk-pci",
1392
            .property = "vectors",
1393
            .value    = stringify(0),
1394
        },
1395
        { /* end of list */ }
1396
    },
1397
};
1398

    
1399
static QEMUMachine isapc_machine = {
1400
    .name = "isapc",
1401
    .desc = "ISA-only PC",
1402
    .init = pc_init_isa,
1403
    .max_cpus = 1,
1404
};
1405

    
1406
static void pc_machine_init(void)
1407
{
1408
    qemu_register_machine(&pc_machine);
1409
    qemu_register_machine(&pc_machine_v0_10);
1410
    qemu_register_machine(&isapc_machine);
1411
}
1412

    
1413
machine_init(pc_machine_init);