Statistics
| Branch: | Revision:

root / tests / test-i386.c @ 530e7615

History | View | Annotate | Download (70.1 kB)

1
/*
2
 *  x86 CPU test
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, write to the Free Software
18
 *  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19
 *  MA 02110-1301, USA.
20
 */
21
#define _GNU_SOURCE
22
#include <stdlib.h>
23
#include <stdio.h>
24
#include <string.h>
25
#include <inttypes.h>
26
#include <math.h>
27
#include <signal.h>
28
#include <setjmp.h>
29
#include <errno.h>
30
#include <sys/ucontext.h>
31
#include <sys/mman.h>
32

    
33
#if !defined(__x86_64__)
34
//#define TEST_VM86
35
#define TEST_SEGS
36
#endif
37
//#define LINUX_VM86_IOPL_FIX
38
//#define TEST_P4_FLAGS
39
#ifdef __SSE__
40
#define TEST_SSE
41
#define TEST_CMOV  1
42
#define TEST_FCOMI 1
43
#else
44
#undef TEST_SSE
45
#define TEST_CMOV  1
46
#define TEST_FCOMI 1
47
#endif
48

    
49
#if defined(__x86_64__)
50
#define FMT64X "%016lx"
51
#define FMTLX "%016lx"
52
#define X86_64_ONLY(x) x
53
#else
54
#define FMT64X "%016" PRIx64
55
#define FMTLX "%08lx"
56
#define X86_64_ONLY(x)
57
#endif
58

    
59
#ifdef TEST_VM86
60
#include <asm/vm86.h>
61
#endif
62

    
63
#define xglue(x, y) x ## y
64
#define glue(x, y) xglue(x, y)
65
#define stringify(s)        tostring(s)
66
#define tostring(s)        #s
67

    
68
#define CC_C           0x0001
69
#define CC_P         0x0004
70
#define CC_A        0x0010
71
#define CC_Z        0x0040
72
#define CC_S    0x0080
73
#define CC_O    0x0800
74

    
75
#define __init_call        __attribute__ ((unused,__section__ ("initcall")))
76

    
77
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
78

    
79
#if defined(__x86_64__)
80
static inline long i2l(long v)
81
{
82
    return v | ((v ^ 0xabcd) << 32);
83
}
84
#else
85
static inline long i2l(long v)
86
{
87
    return v;
88
}
89
#endif
90

    
91
#define OP add
92
#include "test-i386.h"
93

    
94
#define OP sub
95
#include "test-i386.h"
96

    
97
#define OP xor
98
#include "test-i386.h"
99

    
100
#define OP and
101
#include "test-i386.h"
102

    
103
#define OP or
104
#include "test-i386.h"
105

    
106
#define OP cmp
107
#include "test-i386.h"
108

    
109
#define OP adc
110
#define OP_CC
111
#include "test-i386.h"
112

    
113
#define OP sbb
114
#define OP_CC
115
#include "test-i386.h"
116

    
117
#define OP inc
118
#define OP_CC
119
#define OP1
120
#include "test-i386.h"
121

    
122
#define OP dec
123
#define OP_CC
124
#define OP1
125
#include "test-i386.h"
126

    
127
#define OP neg
128
#define OP_CC
129
#define OP1
130
#include "test-i386.h"
131

    
132
#define OP not
133
#define OP_CC
134
#define OP1
135
#include "test-i386.h"
136

    
137
#undef CC_MASK
138
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O)
139

    
140
#define OP shl
141
#include "test-i386-shift.h"
142

    
143
#define OP shr
144
#include "test-i386-shift.h"
145

    
146
#define OP sar
147
#include "test-i386-shift.h"
148

    
149
#define OP rol
150
#include "test-i386-shift.h"
151

    
152
#define OP ror
153
#include "test-i386-shift.h"
154

    
155
#define OP rcr
156
#define OP_CC
157
#include "test-i386-shift.h"
158

    
159
#define OP rcl
160
#define OP_CC
161
#include "test-i386-shift.h"
162

    
163
#define OP shld
164
#define OP_SHIFTD
165
#define OP_NOBYTE
166
#include "test-i386-shift.h"
167

    
168
#define OP shrd
169
#define OP_SHIFTD
170
#define OP_NOBYTE
171
#include "test-i386-shift.h"
172

    
173
/* XXX: should be more precise ? */
174
#undef CC_MASK
175
#define CC_MASK (CC_C)
176

    
177
#define OP bt
178
#define OP_NOBYTE
179
#include "test-i386-shift.h"
180

    
181
#define OP bts
182
#define OP_NOBYTE
183
#include "test-i386-shift.h"
184

    
185
#define OP btr
186
#define OP_NOBYTE
187
#include "test-i386-shift.h"
188

    
189
#define OP btc
190
#define OP_NOBYTE
191
#include "test-i386-shift.h"
192

    
193
/* lea test (modrm support) */
194
#define TEST_LEAQ(STR)\
195
{\
196
    asm("lea " STR ", %0"\
197
        : "=r" (res)\
198
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
199
    printf("lea %s = " FMTLX "\n", STR, res);\
200
}
201

    
202
#define TEST_LEA(STR)\
203
{\
204
    asm("lea " STR ", %0"\
205
        : "=r" (res)\
206
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
207
    printf("lea %s = " FMTLX "\n", STR, res);\
208
}
209

    
210
#define TEST_LEA16(STR)\
211
{\
212
    asm(".code16 ; .byte 0x67 ; leal " STR ", %0 ; .code32"\
213
        : "=wq" (res)\
214
        : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
215
    printf("lea %s = %08lx\n", STR, res);\
216
}
217

    
218

    
219
void test_lea(void)
220
{
221
    long eax, ebx, ecx, edx, esi, edi, res;
222
    eax = i2l(0x0001);
223
    ebx = i2l(0x0002);
224
    ecx = i2l(0x0004);
225
    edx = i2l(0x0008);
226
    esi = i2l(0x0010);
227
    edi = i2l(0x0020);
228

    
229
    TEST_LEA("0x4000");
230

    
231
    TEST_LEA("(%%eax)");
232
    TEST_LEA("(%%ebx)");
233
    TEST_LEA("(%%ecx)");
234
    TEST_LEA("(%%edx)");
235
    TEST_LEA("(%%esi)");
236
    TEST_LEA("(%%edi)");
237

    
238
    TEST_LEA("0x40(%%eax)");
239
    TEST_LEA("0x40(%%ebx)");
240
    TEST_LEA("0x40(%%ecx)");
241
    TEST_LEA("0x40(%%edx)");
242
    TEST_LEA("0x40(%%esi)");
243
    TEST_LEA("0x40(%%edi)");
244

    
245
    TEST_LEA("0x4000(%%eax)");
246
    TEST_LEA("0x4000(%%ebx)");
247
    TEST_LEA("0x4000(%%ecx)");
248
    TEST_LEA("0x4000(%%edx)");
249
    TEST_LEA("0x4000(%%esi)");
250
    TEST_LEA("0x4000(%%edi)");
251

    
252
    TEST_LEA("(%%eax, %%ecx)");
253
    TEST_LEA("(%%ebx, %%edx)");
254
    TEST_LEA("(%%ecx, %%ecx)");
255
    TEST_LEA("(%%edx, %%ecx)");
256
    TEST_LEA("(%%esi, %%ecx)");
257
    TEST_LEA("(%%edi, %%ecx)");
258

    
259
    TEST_LEA("0x40(%%eax, %%ecx)");
260
    TEST_LEA("0x4000(%%ebx, %%edx)");
261

    
262
    TEST_LEA("(%%ecx, %%ecx, 2)");
263
    TEST_LEA("(%%edx, %%ecx, 4)");
264
    TEST_LEA("(%%esi, %%ecx, 8)");
265

    
266
    TEST_LEA("(,%%eax, 2)");
267
    TEST_LEA("(,%%ebx, 4)");
268
    TEST_LEA("(,%%ecx, 8)");
269

    
270
    TEST_LEA("0x40(,%%eax, 2)");
271
    TEST_LEA("0x40(,%%ebx, 4)");
272
    TEST_LEA("0x40(,%%ecx, 8)");
273

    
274

    
275
    TEST_LEA("-10(%%ecx, %%ecx, 2)");
276
    TEST_LEA("-10(%%edx, %%ecx, 4)");
277
    TEST_LEA("-10(%%esi, %%ecx, 8)");
278

    
279
    TEST_LEA("0x4000(%%ecx, %%ecx, 2)");
280
    TEST_LEA("0x4000(%%edx, %%ecx, 4)");
281
    TEST_LEA("0x4000(%%esi, %%ecx, 8)");
282

    
283
#if defined(__x86_64__)
284
    TEST_LEAQ("0x4000");
285
    TEST_LEAQ("0x4000(%%rip)");
286

    
287
    TEST_LEAQ("(%%rax)");
288
    TEST_LEAQ("(%%rbx)");
289
    TEST_LEAQ("(%%rcx)");
290
    TEST_LEAQ("(%%rdx)");
291
    TEST_LEAQ("(%%rsi)");
292
    TEST_LEAQ("(%%rdi)");
293

    
294
    TEST_LEAQ("0x40(%%rax)");
295
    TEST_LEAQ("0x40(%%rbx)");
296
    TEST_LEAQ("0x40(%%rcx)");
297
    TEST_LEAQ("0x40(%%rdx)");
298
    TEST_LEAQ("0x40(%%rsi)");
299
    TEST_LEAQ("0x40(%%rdi)");
300

    
301
    TEST_LEAQ("0x4000(%%rax)");
302
    TEST_LEAQ("0x4000(%%rbx)");
303
    TEST_LEAQ("0x4000(%%rcx)");
304
    TEST_LEAQ("0x4000(%%rdx)");
305
    TEST_LEAQ("0x4000(%%rsi)");
306
    TEST_LEAQ("0x4000(%%rdi)");
307

    
308
    TEST_LEAQ("(%%rax, %%rcx)");
309
    TEST_LEAQ("(%%rbx, %%rdx)");
310
    TEST_LEAQ("(%%rcx, %%rcx)");
311
    TEST_LEAQ("(%%rdx, %%rcx)");
312
    TEST_LEAQ("(%%rsi, %%rcx)");
313
    TEST_LEAQ("(%%rdi, %%rcx)");
314

    
315
    TEST_LEAQ("0x40(%%rax, %%rcx)");
316
    TEST_LEAQ("0x4000(%%rbx, %%rdx)");
317

    
318
    TEST_LEAQ("(%%rcx, %%rcx, 2)");
319
    TEST_LEAQ("(%%rdx, %%rcx, 4)");
320
    TEST_LEAQ("(%%rsi, %%rcx, 8)");
321

    
322
    TEST_LEAQ("(,%%rax, 2)");
323
    TEST_LEAQ("(,%%rbx, 4)");
324
    TEST_LEAQ("(,%%rcx, 8)");
325

    
326
    TEST_LEAQ("0x40(,%%rax, 2)");
327
    TEST_LEAQ("0x40(,%%rbx, 4)");
328
    TEST_LEAQ("0x40(,%%rcx, 8)");
329

    
330

    
331
    TEST_LEAQ("-10(%%rcx, %%rcx, 2)");
332
    TEST_LEAQ("-10(%%rdx, %%rcx, 4)");
333
    TEST_LEAQ("-10(%%rsi, %%rcx, 8)");
334

    
335
    TEST_LEAQ("0x4000(%%rcx, %%rcx, 2)");
336
    TEST_LEAQ("0x4000(%%rdx, %%rcx, 4)");
337
    TEST_LEAQ("0x4000(%%rsi, %%rcx, 8)");
338
#else
339
    /* limited 16 bit addressing test */
340
    TEST_LEA16("0x4000");
341
    TEST_LEA16("(%%bx)");
342
    TEST_LEA16("(%%si)");
343
    TEST_LEA16("(%%di)");
344
    TEST_LEA16("0x40(%%bx)");
345
    TEST_LEA16("0x40(%%si)");
346
    TEST_LEA16("0x40(%%di)");
347
    TEST_LEA16("0x4000(%%bx)");
348
    TEST_LEA16("0x4000(%%si)");
349
    TEST_LEA16("(%%bx,%%si)");
350
    TEST_LEA16("(%%bx,%%di)");
351
    TEST_LEA16("0x40(%%bx,%%si)");
352
    TEST_LEA16("0x40(%%bx,%%di)");
353
    TEST_LEA16("0x4000(%%bx,%%si)");
354
    TEST_LEA16("0x4000(%%bx,%%di)");
355
#endif
356
}
357

    
358
#define TEST_JCC(JCC, v1, v2)\
359
{\
360
    int res;\
361
    asm("movl $1, %0\n\t"\
362
        "cmpl %2, %1\n\t"\
363
        "j" JCC " 1f\n\t"\
364
        "movl $0, %0\n\t"\
365
        "1:\n\t"\
366
        : "=r" (res)\
367
        : "r" (v1), "r" (v2));\
368
    printf("%-10s %d\n", "j" JCC, res);\
369
\
370
    asm("movl $0, %0\n\t"\
371
        "cmpl %2, %1\n\t"\
372
        "set" JCC " %b0\n\t"\
373
        : "=r" (res)\
374
        : "r" (v1), "r" (v2));\
375
    printf("%-10s %d\n", "set" JCC, res);\
376
 if (TEST_CMOV) {\
377
    long val = i2l(1);\
378
    long res = i2l(0x12345678);\
379
X86_64_ONLY(\
380
    asm("cmpl %2, %1\n\t"\
381
        "cmov" JCC "q %3, %0\n\t"\
382
        : "=r" (res)\
383
        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
384
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "q", res);)\
385
    asm("cmpl %2, %1\n\t"\
386
        "cmov" JCC "l %k3, %k0\n\t"\
387
        : "=r" (res)\
388
        : "r" (v1), "r" (v2), "m" (val), "0" (res));\
389
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "l", res);\
390
    asm("cmpl %2, %1\n\t"\
391
        "cmov" JCC "w %w3, %w0\n\t"\
392
        : "=r" (res)\
393
        : "r" (v1), "r" (v2), "r" (1), "0" (res));\
394
        printf("%-10s R=" FMTLX "\n", "cmov" JCC "w", res);\
395
 } \
396
}
397

    
398
/* various jump tests */
399
void test_jcc(void)
400
{
401
    TEST_JCC("ne", 1, 1);
402
    TEST_JCC("ne", 1, 0);
403

    
404
    TEST_JCC("e", 1, 1);
405
    TEST_JCC("e", 1, 0);
406

    
407
    TEST_JCC("l", 1, 1);
408
    TEST_JCC("l", 1, 0);
409
    TEST_JCC("l", 1, -1);
410

    
411
    TEST_JCC("le", 1, 1);
412
    TEST_JCC("le", 1, 0);
413
    TEST_JCC("le", 1, -1);
414

    
415
    TEST_JCC("ge", 1, 1);
416
    TEST_JCC("ge", 1, 0);
417
    TEST_JCC("ge", -1, 1);
418

    
419
    TEST_JCC("g", 1, 1);
420
    TEST_JCC("g", 1, 0);
421
    TEST_JCC("g", 1, -1);
422

    
423
    TEST_JCC("b", 1, 1);
424
    TEST_JCC("b", 1, 0);
425
    TEST_JCC("b", 1, -1);
426

    
427
    TEST_JCC("be", 1, 1);
428
    TEST_JCC("be", 1, 0);
429
    TEST_JCC("be", 1, -1);
430

    
431
    TEST_JCC("ae", 1, 1);
432
    TEST_JCC("ae", 1, 0);
433
    TEST_JCC("ae", 1, -1);
434

    
435
    TEST_JCC("a", 1, 1);
436
    TEST_JCC("a", 1, 0);
437
    TEST_JCC("a", 1, -1);
438

    
439

    
440
    TEST_JCC("p", 1, 1);
441
    TEST_JCC("p", 1, 0);
442

    
443
    TEST_JCC("np", 1, 1);
444
    TEST_JCC("np", 1, 0);
445

    
446
    TEST_JCC("o", 0x7fffffff, 0);
447
    TEST_JCC("o", 0x7fffffff, -1);
448

    
449
    TEST_JCC("no", 0x7fffffff, 0);
450
    TEST_JCC("no", 0x7fffffff, -1);
451

    
452
    TEST_JCC("s", 0, 1);
453
    TEST_JCC("s", 0, -1);
454
    TEST_JCC("s", 0, 0);
455

    
456
    TEST_JCC("ns", 0, 1);
457
    TEST_JCC("ns", 0, -1);
458
    TEST_JCC("ns", 0, 0);
459
}
460

    
461
#define TEST_LOOP(insn) \
462
{\
463
    for(i = 0; i < sizeof(ecx_vals) / sizeof(long); i++) {\
464
        ecx = ecx_vals[i];\
465
        for(zf = 0; zf < 2; zf++) {\
466
    asm("test %2, %2\n\t"\
467
        "movl $1, %0\n\t"\
468
          insn " 1f\n\t" \
469
        "movl $0, %0\n\t"\
470
        "1:\n\t"\
471
        : "=a" (res)\
472
        : "c" (ecx), "b" (!zf)); \
473
    printf("%-10s ECX=" FMTLX " ZF=%ld r=%d\n", insn, ecx, zf, res);      \
474
        }\
475
   }\
476
}
477

    
478
void test_loop(void)
479
{
480
    long ecx, zf;
481
    const long ecx_vals[] = {
482
        0,
483
        1,
484
        0x10000,
485
        0x10001,
486
#if defined(__x86_64__)
487
        0x100000000L,
488
        0x100000001L,
489
#endif
490
    };
491
    int i, res;
492

    
493
#if !defined(__x86_64__)
494
    TEST_LOOP("jcxz");
495
    TEST_LOOP("loopw");
496
    TEST_LOOP("loopzw");
497
    TEST_LOOP("loopnzw");
498
#endif
499

    
500
    TEST_LOOP("jecxz");
501
    TEST_LOOP("loopl");
502
    TEST_LOOP("loopzl");
503
    TEST_LOOP("loopnzl");
504
}
505

    
506
#undef CC_MASK
507
#ifdef TEST_P4_FLAGS
508
#define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
509
#else
510
#define CC_MASK (CC_O | CC_C)
511
#endif
512

    
513
#define OP mul
514
#include "test-i386-muldiv.h"
515

    
516
#define OP imul
517
#include "test-i386-muldiv.h"
518

    
519
void test_imulw2(long op0, long op1)
520
{
521
    long res, s1, s0, flags;
522
    s0 = op0;
523
    s1 = op1;
524
    res = s0;
525
    flags = 0;
526
    asm volatile ("push %4\n\t"
527
         "popf\n\t"
528
         "imulw %w2, %w0\n\t"
529
         "pushf\n\t"
530
         "pop %1\n\t"
531
         : "=q" (res), "=g" (flags)
532
         : "q" (s1), "0" (res), "1" (flags));
533
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
534
           "imulw", s0, s1, res, flags & CC_MASK);
535
}
536

    
537
void test_imull2(long op0, long op1)
538
{
539
    long res, s1, s0, flags;
540
    s0 = op0;
541
    s1 = op1;
542
    res = s0;
543
    flags = 0;
544
    asm volatile ("push %4\n\t"
545
         "popf\n\t"
546
         "imull %k2, %k0\n\t"
547
         "pushf\n\t"
548
         "pop %1\n\t"
549
         : "=q" (res), "=g" (flags)
550
         : "q" (s1), "0" (res), "1" (flags));
551
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
552
           "imull", s0, s1, res, flags & CC_MASK);
553
}
554

    
555
#if defined(__x86_64__)
556
void test_imulq2(long op0, long op1)
557
{
558
    long res, s1, s0, flags;
559
    s0 = op0;
560
    s1 = op1;
561
    res = s0;
562
    flags = 0;
563
    asm volatile ("push %4\n\t"
564
         "popf\n\t"
565
         "imulq %2, %0\n\t"
566
         "pushf\n\t"
567
         "pop %1\n\t"
568
         : "=q" (res), "=g" (flags)
569
         : "q" (s1), "0" (res), "1" (flags));
570
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
571
           "imulq", s0, s1, res, flags & CC_MASK);
572
}
573
#endif
574

    
575
#define TEST_IMUL_IM(size, rsize, op0, op1)\
576
{\
577
    long res, flags, s1;\
578
    flags = 0;\
579
    res = 0;\
580
    s1 = op1;\
581
    asm volatile ("push %3\n\t"\
582
         "popf\n\t"\
583
         "imul" size " $" #op0 ", %" rsize "2, %" rsize "0\n\t" \
584
         "pushf\n\t"\
585
         "pop %1\n\t"\
586
         : "=r" (res), "=g" (flags)\
587
         : "r" (s1), "1" (flags), "0" (res));\
588
    printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",\
589
           "imul" size " im", (long)op0, (long)op1, res, flags & CC_MASK);\
590
}
591

    
592

    
593
#undef CC_MASK
594
#define CC_MASK (0)
595

    
596
#define OP div
597
#include "test-i386-muldiv.h"
598

    
599
#define OP idiv
600
#include "test-i386-muldiv.h"
601

    
602
void test_mul(void)
603
{
604
    test_imulb(0x1234561d, 4);
605
    test_imulb(3, -4);
606
    test_imulb(0x80, 0x80);
607
    test_imulb(0x10, 0x10);
608

    
609
    test_imulw(0, 0x1234001d, 45);
610
    test_imulw(0, 23, -45);
611
    test_imulw(0, 0x8000, 0x8000);
612
    test_imulw(0, 0x100, 0x100);
613

    
614
    test_imull(0, 0x1234001d, 45);
615
    test_imull(0, 23, -45);
616
    test_imull(0, 0x80000000, 0x80000000);
617
    test_imull(0, 0x10000, 0x10000);
618

    
619
    test_mulb(0x1234561d, 4);
620
    test_mulb(3, -4);
621
    test_mulb(0x80, 0x80);
622
    test_mulb(0x10, 0x10);
623

    
624
    test_mulw(0, 0x1234001d, 45);
625
    test_mulw(0, 23, -45);
626
    test_mulw(0, 0x8000, 0x8000);
627
    test_mulw(0, 0x100, 0x100);
628

    
629
    test_mull(0, 0x1234001d, 45);
630
    test_mull(0, 23, -45);
631
    test_mull(0, 0x80000000, 0x80000000);
632
    test_mull(0, 0x10000, 0x10000);
633

    
634
    test_imulw2(0x1234001d, 45);
635
    test_imulw2(23, -45);
636
    test_imulw2(0x8000, 0x8000);
637
    test_imulw2(0x100, 0x100);
638

    
639
    test_imull2(0x1234001d, 45);
640
    test_imull2(23, -45);
641
    test_imull2(0x80000000, 0x80000000);
642
    test_imull2(0x10000, 0x10000);
643

    
644
    TEST_IMUL_IM("w", "w", 45, 0x1234);
645
    TEST_IMUL_IM("w", "w", -45, 23);
646
    TEST_IMUL_IM("w", "w", 0x8000, 0x80000000);
647
    TEST_IMUL_IM("w", "w", 0x7fff, 0x1000);
648

    
649
    TEST_IMUL_IM("l", "k", 45, 0x1234);
650
    TEST_IMUL_IM("l", "k", -45, 23);
651
    TEST_IMUL_IM("l", "k", 0x8000, 0x80000000);
652
    TEST_IMUL_IM("l", "k", 0x7fff, 0x1000);
653

    
654
    test_idivb(0x12341678, 0x127e);
655
    test_idivb(0x43210123, -5);
656
    test_idivb(0x12340004, -1);
657

    
658
    test_idivw(0, 0x12345678, 12347);
659
    test_idivw(0, -23223, -45);
660
    test_idivw(0, 0x12348000, -1);
661
    test_idivw(0x12343, 0x12345678, 0x81238567);
662

    
663
    test_idivl(0, 0x12345678, 12347);
664
    test_idivl(0, -233223, -45);
665
    test_idivl(0, 0x80000000, -1);
666
    test_idivl(0x12343, 0x12345678, 0x81234567);
667

    
668
    test_divb(0x12341678, 0x127e);
669
    test_divb(0x43210123, -5);
670
    test_divb(0x12340004, -1);
671

    
672
    test_divw(0, 0x12345678, 12347);
673
    test_divw(0, -23223, -45);
674
    test_divw(0, 0x12348000, -1);
675
    test_divw(0x12343, 0x12345678, 0x81238567);
676

    
677
    test_divl(0, 0x12345678, 12347);
678
    test_divl(0, -233223, -45);
679
    test_divl(0, 0x80000000, -1);
680
    test_divl(0x12343, 0x12345678, 0x81234567);
681

    
682
#if defined(__x86_64__)
683
    test_imulq(0, 0x1234001d1234001d, 45);
684
    test_imulq(0, 23, -45);
685
    test_imulq(0, 0x8000000000000000, 0x8000000000000000);
686
    test_imulq(0, 0x100000000, 0x100000000);
687

    
688
    test_mulq(0, 0x1234001d1234001d, 45);
689
    test_mulq(0, 23, -45);
690
    test_mulq(0, 0x8000000000000000, 0x8000000000000000);
691
    test_mulq(0, 0x100000000, 0x100000000);
692

    
693
    test_imulq2(0x1234001d1234001d, 45);
694
    test_imulq2(23, -45);
695
    test_imulq2(0x8000000000000000, 0x8000000000000000);
696
    test_imulq2(0x100000000, 0x100000000);
697

    
698
    TEST_IMUL_IM("q", "", 45, 0x12341234);
699
    TEST_IMUL_IM("q", "", -45, 23);
700
    TEST_IMUL_IM("q", "", 0x8000, 0x8000000000000000);
701
    TEST_IMUL_IM("q", "", 0x7fff, 0x10000000);
702

    
703
    test_idivq(0, 0x12345678abcdef, 12347);
704
    test_idivq(0, -233223, -45);
705
    test_idivq(0, 0x8000000000000000, -1);
706
    test_idivq(0x12343, 0x12345678, 0x81234567);
707

    
708
    test_divq(0, 0x12345678abcdef, 12347);
709
    test_divq(0, -233223, -45);
710
    test_divq(0, 0x8000000000000000, -1);
711
    test_divq(0x12343, 0x12345678, 0x81234567);
712
#endif
713
}
714

    
715
#define TEST_BSX(op, size, op0)\
716
{\
717
    long res, val, resz;\
718
    val = op0;\
719
    asm("xor %1, %1\n"\
720
        "mov $0x12345678, %0\n"\
721
        #op " %" size "2, %" size "0 ; setz %b1" \
722
        : "=&r" (res), "=&q" (resz)\
723
        : "r" (val));\
724
    printf("%-10s A=" FMTLX " R=" FMTLX " %ld\n", #op, val, res, resz);\
725
}
726

    
727
void test_bsx(void)
728
{
729
    TEST_BSX(bsrw, "w", 0);
730
    TEST_BSX(bsrw, "w", 0x12340128);
731
    TEST_BSX(bsfw, "w", 0);
732
    TEST_BSX(bsfw, "w", 0x12340128);
733
    TEST_BSX(bsrl, "k", 0);
734
    TEST_BSX(bsrl, "k", 0x00340128);
735
    TEST_BSX(bsfl, "k", 0);
736
    TEST_BSX(bsfl, "k", 0x00340128);
737
#if defined(__x86_64__)
738
    TEST_BSX(bsrq, "", 0);
739
    TEST_BSX(bsrq, "", 0x003401281234);
740
    TEST_BSX(bsfq, "", 0);
741
    TEST_BSX(bsfq, "", 0x003401281234);
742
#endif
743
}
744

    
745
/**********************************************/
746

    
747
union float64u {
748
    double d;
749
    uint64_t l;
750
};
751

    
752
union float64u q_nan = { .l = 0xFFF8000000000000LL };
753
union float64u s_nan = { .l = 0xFFF0000000000000LL };
754

    
755
void test_fops(double a, double b)
756
{
757
    printf("a=%f b=%f a+b=%f\n", a, b, a + b);
758
    printf("a=%f b=%f a-b=%f\n", a, b, a - b);
759
    printf("a=%f b=%f a*b=%f\n", a, b, a * b);
760
    printf("a=%f b=%f a/b=%f\n", a, b, a / b);
761
    printf("a=%f b=%f fmod(a, b)=%f\n", a, b, fmod(a, b));
762
    printf("a=%f sqrt(a)=%f\n", a, sqrt(a));
763
    printf("a=%f sin(a)=%f\n", a, sin(a));
764
    printf("a=%f cos(a)=%f\n", a, cos(a));
765
    printf("a=%f tan(a)=%f\n", a, tan(a));
766
    printf("a=%f log(a)=%f\n", a, log(a));
767
    printf("a=%f exp(a)=%f\n", a, exp(a));
768
    printf("a=%f b=%f atan2(a, b)=%f\n", a, b, atan2(a, b));
769
    /* just to test some op combining */
770
    printf("a=%f asin(sin(a))=%f\n", a, asin(sin(a)));
771
    printf("a=%f acos(cos(a))=%f\n", a, acos(cos(a)));
772
    printf("a=%f atan(tan(a))=%f\n", a, atan(tan(a)));
773

    
774
}
775

    
776
void fpu_clear_exceptions(void)
777
{
778
    struct __attribute__((packed)) {
779
        uint16_t fpuc;
780
        uint16_t dummy1;
781
        uint16_t fpus;
782
        uint16_t dummy2;
783
        uint16_t fptag;
784
        uint16_t dummy3;
785
        uint32_t ignored[4];
786
        long double fpregs[8];
787
    } float_env32;
788

    
789
    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
790
    float_env32.fpus &= ~0x7f;
791
    asm volatile ("fldenv %0\n" : : "m" (float_env32));
792
}
793

    
794
/* XXX: display exception bits when supported */
795
#define FPUS_EMASK 0x0000
796
//#define FPUS_EMASK 0x007f
797

    
798
void test_fcmp(double a, double b)
799
{
800
    long eflags, fpus;
801

    
802
    fpu_clear_exceptions();
803
    asm("fcom %2\n"
804
        "fstsw %%ax\n"
805
        : "=a" (fpus)
806
        : "t" (a), "u" (b));
807
    printf("fcom(%f %f)=%04lx \n",
808
           a, b, fpus & (0x4500 | FPUS_EMASK));
809
    fpu_clear_exceptions();
810
    asm("fucom %2\n"
811
        "fstsw %%ax\n"
812
        : "=a" (fpus)
813
        : "t" (a), "u" (b));
814
    printf("fucom(%f %f)=%04lx\n",
815
           a, b, fpus & (0x4500 | FPUS_EMASK));
816
    if (TEST_FCOMI) {
817
        /* test f(u)comi instruction */
818
        fpu_clear_exceptions();
819
        asm("fcomi %3, %2\n"
820
            "fstsw %%ax\n"
821
            "pushf\n"
822
            "pop %0\n"
823
            : "=r" (eflags), "=a" (fpus)
824
            : "t" (a), "u" (b));
825
        printf("fcomi(%f %f)=%04lx %02lx\n",
826
               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
827
        fpu_clear_exceptions();
828
        asm("fucomi %3, %2\n"
829
            "fstsw %%ax\n"
830
            "pushf\n"
831
            "pop %0\n"
832
            : "=r" (eflags), "=a" (fpus)
833
            : "t" (a), "u" (b));
834
        printf("fucomi(%f %f)=%04lx %02lx\n",
835
               a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
836
    }
837
    fpu_clear_exceptions();
838
    asm volatile("fxam\n"
839
                 "fstsw %%ax\n"
840
                 : "=a" (fpus)
841
                 : "t" (a));
842
    printf("fxam(%f)=%04lx\n", a, fpus & 0x4700);
843
    fpu_clear_exceptions();
844
}
845

    
846
void test_fcvt(double a)
847
{
848
    float fa;
849
    long double la;
850
    int16_t fpuc;
851
    int i;
852
    int64_t lla;
853
    int ia;
854
    int16_t wa;
855
    double ra;
856

    
857
    fa = a;
858
    la = a;
859
    printf("(float)%f = %f\n", a, fa);
860
    printf("(long double)%f = %Lf\n", a, la);
861
    printf("a=" FMT64X "\n", *(uint64_t *)&a);
862
    printf("la=" FMT64X " %04x\n", *(uint64_t *)&la,
863
           *(unsigned short *)((char *)(&la) + 8));
864

    
865
    /* test all roundings */
866
    asm volatile ("fstcw %0" : "=m" (fpuc));
867
    for(i=0;i<4;i++) {
868
        uint16_t val16;
869
        val16 = (fpuc & ~0x0c00) | (i << 10);
870
        asm volatile ("fldcw %0" : : "m" (val16));
871
        asm volatile ("fist %0" : "=m" (wa) : "t" (a));
872
        asm volatile ("fistl %0" : "=m" (ia) : "t" (a));
873
        asm volatile ("fistpll %0" : "=m" (lla) : "t" (a) : "st");
874
        asm volatile ("frndint ; fstl %0" : "=m" (ra) : "t" (a));
875
        asm volatile ("fldcw %0" : : "m" (fpuc));
876
        printf("(short)a = %d\n", wa);
877
        printf("(int)a = %d\n", ia);
878
        printf("(int64_t)a = " FMT64X "\n", lla);
879
        printf("rint(a) = %f\n", ra);
880
    }
881
}
882

    
883
#define TEST(N) \
884
    asm("fld" #N : "=t" (a)); \
885
    printf("fld" #N "= %f\n", a);
886

    
887
void test_fconst(void)
888
{
889
    double a;
890
    TEST(1);
891
    TEST(l2t);
892
    TEST(l2e);
893
    TEST(pi);
894
    TEST(lg2);
895
    TEST(ln2);
896
    TEST(z);
897
}
898

    
899
void test_fbcd(double a)
900
{
901
    unsigned short bcd[5];
902
    double b;
903

    
904
    asm("fbstp %0" : "=m" (bcd[0]) : "t" (a) : "st");
905
    asm("fbld %1" : "=t" (b) : "m" (bcd[0]));
906
    printf("a=%f bcd=%04x%04x%04x%04x%04x b=%f\n",
907
           a, bcd[4], bcd[3], bcd[2], bcd[1], bcd[0], b);
908
}
909

    
910
#define TEST_ENV(env, save, restore)\
911
{\
912
    memset((env), 0xaa, sizeof(*(env)));\
913
    for(i=0;i<5;i++)\
914
        asm volatile ("fldl %0" : : "m" (dtab[i]));\
915
    asm volatile (save " %0\n" : : "m" (*(env)));\
916
    asm volatile (restore " %0\n": : "m" (*(env)));\
917
    for(i=0;i<5;i++)\
918
        asm volatile ("fstpl %0" : "=m" (rtab[i]));\
919
    for(i=0;i<5;i++)\
920
        printf("res[%d]=%f\n", i, rtab[i]);\
921
    printf("fpuc=%04x fpus=%04x fptag=%04x\n",\
922
           (env)->fpuc,\
923
           (env)->fpus & 0xff00,\
924
           (env)->fptag);\
925
}
926

    
927
void test_fenv(void)
928
{
929
    struct __attribute__((packed)) {
930
        uint16_t fpuc;
931
        uint16_t dummy1;
932
        uint16_t fpus;
933
        uint16_t dummy2;
934
        uint16_t fptag;
935
        uint16_t dummy3;
936
        uint32_t ignored[4];
937
        long double fpregs[8];
938
    } float_env32;
939
    struct __attribute__((packed)) {
940
        uint16_t fpuc;
941
        uint16_t fpus;
942
        uint16_t fptag;
943
        uint16_t ignored[4];
944
        long double fpregs[8];
945
    } float_env16;
946
    double dtab[8];
947
    double rtab[8];
948
    int i;
949

    
950
    for(i=0;i<8;i++)
951
        dtab[i] = i + 1;
952

    
953
    TEST_ENV(&float_env16, "data16 fnstenv", "data16 fldenv");
954
    TEST_ENV(&float_env16, "data16 fnsave", "data16 frstor");
955
    TEST_ENV(&float_env32, "fnstenv", "fldenv");
956
    TEST_ENV(&float_env32, "fnsave", "frstor");
957

    
958
    /* test for ffree */
959
    for(i=0;i<5;i++)
960
        asm volatile ("fldl %0" : : "m" (dtab[i]));
961
    asm volatile("ffree %st(2)");
962
    asm volatile ("fnstenv %0\n" : : "m" (float_env32));
963
    asm volatile ("fninit");
964
    printf("fptag=%04x\n", float_env32.fptag);
965
}
966

    
967

    
968
#define TEST_FCMOV(a, b, eflags, CC)\
969
{\
970
    double res;\
971
    asm("push %3\n"\
972
        "popf\n"\
973
        "fcmov" CC " %2, %0\n"\
974
        : "=t" (res)\
975
        : "0" (a), "u" (b), "g" (eflags));\
976
    printf("fcmov%s eflags=0x%04lx-> %f\n", \
977
           CC, (long)eflags, res);\
978
}
979

    
980
void test_fcmov(void)
981
{
982
    double a, b;
983
    long eflags, i;
984

    
985
    a = 1.0;
986
    b = 2.0;
987
    for(i = 0; i < 4; i++) {
988
        eflags = 0;
989
        if (i & 1)
990
            eflags |= CC_C;
991
        if (i & 2)
992
            eflags |= CC_Z;
993
        TEST_FCMOV(a, b, eflags, "b");
994
        TEST_FCMOV(a, b, eflags, "e");
995
        TEST_FCMOV(a, b, eflags, "be");
996
        TEST_FCMOV(a, b, eflags, "nb");
997
        TEST_FCMOV(a, b, eflags, "ne");
998
        TEST_FCMOV(a, b, eflags, "nbe");
999
    }
1000
    TEST_FCMOV(a, b, 0, "u");
1001
    TEST_FCMOV(a, b, CC_P, "u");
1002
    TEST_FCMOV(a, b, 0, "nu");
1003
    TEST_FCMOV(a, b, CC_P, "nu");
1004
}
1005

    
1006
void test_floats(void)
1007
{
1008
    test_fops(2, 3);
1009
    test_fops(1.4, -5);
1010
    test_fcmp(2, -1);
1011
    test_fcmp(2, 2);
1012
    test_fcmp(2, 3);
1013
    test_fcmp(2, q_nan.d);
1014
    test_fcmp(q_nan.d, -1);
1015
    test_fcmp(-1.0/0.0, -1);
1016
    test_fcmp(1.0/0.0, -1);
1017
    test_fcvt(0.5);
1018
    test_fcvt(-0.5);
1019
    test_fcvt(1.0/7.0);
1020
    test_fcvt(-1.0/9.0);
1021
    test_fcvt(32768);
1022
    test_fcvt(-1e20);
1023
    test_fcvt(-1.0/0.0);
1024
    test_fcvt(1.0/0.0);
1025
    test_fcvt(q_nan.d);
1026
    test_fconst();
1027
    test_fbcd(1234567890123456.0);
1028
    test_fbcd(-123451234567890.0);
1029
    test_fenv();
1030
    if (TEST_CMOV) {
1031
        test_fcmov();
1032
    }
1033
}
1034

    
1035
/**********************************************/
1036
#if !defined(__x86_64__)
1037

    
1038
#define TEST_BCD(op, op0, cc_in, cc_mask)\
1039
{\
1040
    int res, flags;\
1041
    res = op0;\
1042
    flags = cc_in;\
1043
    asm ("push %3\n\t"\
1044
         "popf\n\t"\
1045
         #op "\n\t"\
1046
         "pushf\n\t"\
1047
         "pop %1\n\t"\
1048
        : "=a" (res), "=g" (flags)\
1049
        : "0" (res), "1" (flags));\
1050
    printf("%-10s A=%08x R=%08x CCIN=%04x CC=%04x\n",\
1051
           #op, op0, res, cc_in, flags & cc_mask);\
1052
}
1053

    
1054
void test_bcd(void)
1055
{
1056
    TEST_BCD(daa, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1057
    TEST_BCD(daa, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1058
    TEST_BCD(daa, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1059
    TEST_BCD(daa, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1060
    TEST_BCD(daa, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1061
    TEST_BCD(daa, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1062
    TEST_BCD(daa, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1063
    TEST_BCD(daa, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1064
    TEST_BCD(daa, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1065
    TEST_BCD(daa, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1066
    TEST_BCD(daa, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1067
    TEST_BCD(daa, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1068
    TEST_BCD(daa, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1069

    
1070
    TEST_BCD(das, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1071
    TEST_BCD(das, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1072
    TEST_BCD(das, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1073
    TEST_BCD(das, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1074
    TEST_BCD(das, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1075
    TEST_BCD(das, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1076
    TEST_BCD(das, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1077
    TEST_BCD(das, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1078
    TEST_BCD(das, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1079
    TEST_BCD(das, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1080
    TEST_BCD(das, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1081
    TEST_BCD(das, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1082
    TEST_BCD(das, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1083

    
1084
    TEST_BCD(aaa, 0x12340205, CC_A, (CC_C | CC_A));
1085
    TEST_BCD(aaa, 0x12340306, CC_A, (CC_C | CC_A));
1086
    TEST_BCD(aaa, 0x1234040a, CC_A, (CC_C | CC_A));
1087
    TEST_BCD(aaa, 0x123405fa, CC_A, (CC_C | CC_A));
1088
    TEST_BCD(aaa, 0x12340205, 0, (CC_C | CC_A));
1089
    TEST_BCD(aaa, 0x12340306, 0, (CC_C | CC_A));
1090
    TEST_BCD(aaa, 0x1234040a, 0, (CC_C | CC_A));
1091
    TEST_BCD(aaa, 0x123405fa, 0, (CC_C | CC_A));
1092

    
1093
    TEST_BCD(aas, 0x12340205, CC_A, (CC_C | CC_A));
1094
    TEST_BCD(aas, 0x12340306, CC_A, (CC_C | CC_A));
1095
    TEST_BCD(aas, 0x1234040a, CC_A, (CC_C | CC_A));
1096
    TEST_BCD(aas, 0x123405fa, CC_A, (CC_C | CC_A));
1097
    TEST_BCD(aas, 0x12340205, 0, (CC_C | CC_A));
1098
    TEST_BCD(aas, 0x12340306, 0, (CC_C | CC_A));
1099
    TEST_BCD(aas, 0x1234040a, 0, (CC_C | CC_A));
1100
    TEST_BCD(aas, 0x123405fa, 0, (CC_C | CC_A));
1101

    
1102
    TEST_BCD(aam, 0x12340547, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1103
    TEST_BCD(aad, 0x12340407, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1104
}
1105
#endif
1106

    
1107
#define TEST_XCHG(op, size, opconst)\
1108
{\
1109
    long op0, op1;\
1110
    op0 = i2l(0x12345678);\
1111
    op1 = i2l(0xfbca7654);\
1112
    asm(#op " %" size "0, %" size "1" \
1113
        : "=q" (op0), opconst (op1) \
1114
        : "0" (op0));\
1115
    printf("%-10s A=" FMTLX " B=" FMTLX "\n",\
1116
           #op, op0, op1);\
1117
}
1118

    
1119
#define TEST_CMPXCHG(op, size, opconst, eax)\
1120
{\
1121
    long op0, op1, op2;\
1122
    op0 = i2l(0x12345678);\
1123
    op1 = i2l(0xfbca7654);\
1124
    op2 = i2l(eax);\
1125
    asm(#op " %" size "0, %" size "1" \
1126
        : "=q" (op0), opconst (op1) \
1127
        : "0" (op0), "a" (op2));\
1128
    printf("%-10s EAX=" FMTLX " A=" FMTLX " C=" FMTLX "\n",\
1129
           #op, op2, op0, op1);\
1130
}
1131

    
1132
void test_xchg(void)
1133
{
1134
#if defined(__x86_64__)
1135
    TEST_XCHG(xchgq, "", "+q");
1136
#endif
1137
    TEST_XCHG(xchgl, "k", "+q");
1138
    TEST_XCHG(xchgw, "w", "+q");
1139
    TEST_XCHG(xchgb, "b", "+q");
1140

    
1141
#if defined(__x86_64__)
1142
    TEST_XCHG(xchgq, "", "=m");
1143
#endif
1144
    TEST_XCHG(xchgl, "k", "+m");
1145
    TEST_XCHG(xchgw, "w", "+m");
1146
    TEST_XCHG(xchgb, "b", "+m");
1147

    
1148
#if defined(__x86_64__)
1149
    TEST_XCHG(xaddq, "", "+q");
1150
#endif
1151
    TEST_XCHG(xaddl, "k", "+q");
1152
    TEST_XCHG(xaddw, "w", "+q");
1153
    TEST_XCHG(xaddb, "b", "+q");
1154

    
1155
    {
1156
        int res;
1157
        res = 0x12345678;
1158
        asm("xaddl %1, %0" : "=r" (res) : "0" (res));
1159
        printf("xaddl same res=%08x\n", res);
1160
    }
1161

    
1162
#if defined(__x86_64__)
1163
    TEST_XCHG(xaddq, "", "+m");
1164
#endif
1165
    TEST_XCHG(xaddl, "k", "+m");
1166
    TEST_XCHG(xaddw, "w", "+m");
1167
    TEST_XCHG(xaddb, "b", "+m");
1168

    
1169
#if defined(__x86_64__)
1170
    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfbca7654);
1171
#endif
1172
    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfbca7654);
1173
    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfbca7654);
1174
    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfbca7654);
1175

    
1176
#if defined(__x86_64__)
1177
    TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfffefdfc);
1178
#endif
1179
    TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfffefdfc);
1180
    TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfffefdfc);
1181
    TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfffefdfc);
1182

    
1183
#if defined(__x86_64__)
1184
    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfbca7654);
1185
#endif
1186
    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfbca7654);
1187
    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfbca7654);
1188
    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfbca7654);
1189

    
1190
#if defined(__x86_64__)
1191
    TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfffefdfc);
1192
#endif
1193
    TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfffefdfc);
1194
    TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfffefdfc);
1195
    TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfffefdfc);
1196

    
1197
    {
1198
        uint64_t op0, op1, op2;
1199
        long eax, edx;
1200
        long i, eflags;
1201

    
1202
        for(i = 0; i < 2; i++) {
1203
            op0 = 0x123456789abcdLL;
1204
            eax = i2l(op0 & 0xffffffff);
1205
            edx = i2l(op0 >> 32);
1206
            if (i == 0)
1207
                op1 = 0xfbca765423456LL;
1208
            else
1209
                op1 = op0;
1210
            op2 = 0x6532432432434LL;
1211
            asm("cmpxchg8b %2\n"
1212
                "pushf\n"
1213
                "pop %3\n"
1214
                : "=a" (eax), "=d" (edx), "=m" (op1), "=g" (eflags)
1215
                : "0" (eax), "1" (edx), "m" (op1), "b" ((int)op2), "c" ((int)(op2 >> 32)));
1216
            printf("cmpxchg8b: eax=" FMTLX " edx=" FMTLX " op1=" FMT64X " CC=%02lx\n",
1217
                   eax, edx, op1, eflags & CC_Z);
1218
        }
1219
    }
1220
}
1221

    
1222
#ifdef TEST_SEGS
1223
/**********************************************/
1224
/* segmentation tests */
1225

    
1226
#include <sys/syscall.h>
1227
#include <unistd.h>
1228
#include <asm/ldt.h>
1229
#include <linux/version.h>
1230

    
1231
static inline int modify_ldt(int func, void * ptr, unsigned long bytecount)
1232
{
1233
    return syscall(__NR_modify_ldt, func, ptr, bytecount);
1234
}
1235

    
1236
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66)
1237
#define modify_ldt_ldt_s user_desc
1238
#endif
1239

    
1240
#define MK_SEL(n) (((n) << 3) | 7)
1241

    
1242
uint8_t seg_data1[4096];
1243
uint8_t seg_data2[4096];
1244

    
1245
#define TEST_LR(op, size, seg, mask)\
1246
{\
1247
    int res, res2;\
1248
    uint16_t mseg = seg;\
1249
    res = 0x12345678;\
1250
    asm (op " %" size "2, %" size "0\n" \
1251
         "movl $0, %1\n"\
1252
         "jnz 1f\n"\
1253
         "movl $1, %1\n"\
1254
         "1:\n"\
1255
         : "=r" (res), "=r" (res2) : "m" (mseg), "0" (res));\
1256
    printf(op ": Z=%d %08x\n", res2, res & ~(mask));\
1257
}
1258

    
1259
#define TEST_ARPL(op, size, op1, op2)\
1260
{\
1261
    long a, b, c;                               \
1262
    a = (op1);                                  \
1263
    b = (op2);                                  \
1264
    asm volatile(op " %" size "3, %" size "0\n"\
1265
                 "movl $0,%1\n"\
1266
                 "jnz 1f\n"\
1267
                 "movl $1,%1\n"\
1268
                 "1:\n"\
1269
                 : "=r" (a), "=r" (c) : "0" (a), "r" (b));    \
1270
    printf(op size " A=" FMTLX " B=" FMTLX " R=" FMTLX " z=%ld\n",\
1271
           (long)(op1), (long)(op2), a, c);\
1272
}
1273

    
1274
/* NOTE: we use Linux modify_ldt syscall */
1275
void test_segs(void)
1276
{
1277
    struct modify_ldt_ldt_s ldt;
1278
    long long ldt_table[3];
1279
    int res, res2;
1280
    char tmp;
1281
    struct {
1282
        uint32_t offset;
1283
        uint16_t seg;
1284
    } __attribute__((packed)) segoff;
1285

    
1286
    ldt.entry_number = 1;
1287
    ldt.base_addr = (unsigned long)&seg_data1;
1288
    ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1289
    ldt.seg_32bit = 1;
1290
    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1291
    ldt.read_exec_only = 0;
1292
    ldt.limit_in_pages = 1;
1293
    ldt.seg_not_present = 0;
1294
    ldt.useable = 1;
1295
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1296

    
1297
    ldt.entry_number = 2;
1298
    ldt.base_addr = (unsigned long)&seg_data2;
1299
    ldt.limit = (sizeof(seg_data2) + 0xfff) >> 12;
1300
    ldt.seg_32bit = 1;
1301
    ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1302
    ldt.read_exec_only = 0;
1303
    ldt.limit_in_pages = 1;
1304
    ldt.seg_not_present = 0;
1305
    ldt.useable = 1;
1306
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1307

    
1308
    modify_ldt(0, &ldt_table, sizeof(ldt_table)); /* read ldt entries */
1309
#if 0
1310
    {
1311
        int i;
1312
        for(i=0;i<3;i++)
1313
            printf("%d: %016Lx\n", i, ldt_table[i]);
1314
    }
1315
#endif
1316
    /* do some tests with fs or gs */
1317
    asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1318

    
1319
    seg_data1[1] = 0xaa;
1320
    seg_data2[1] = 0x55;
1321

    
1322
    asm volatile ("fs movzbl 0x1, %0" : "=r" (res));
1323
    printf("FS[1] = %02x\n", res);
1324

    
1325
    asm volatile ("pushl %%gs\n"
1326
                  "movl %1, %%gs\n"
1327
                  "gs movzbl 0x1, %0\n"
1328
                  "popl %%gs\n"
1329
                  : "=r" (res)
1330
                  : "r" (MK_SEL(2)));
1331
    printf("GS[1] = %02x\n", res);
1332

    
1333
    /* tests with ds/ss (implicit segment case) */
1334
    tmp = 0xa5;
1335
    asm volatile ("pushl %%ebp\n\t"
1336
                  "pushl %%ds\n\t"
1337
                  "movl %2, %%ds\n\t"
1338
                  "movl %3, %%ebp\n\t"
1339
                  "movzbl 0x1, %0\n\t"
1340
                  "movzbl (%%ebp), %1\n\t"
1341
                  "popl %%ds\n\t"
1342
                  "popl %%ebp\n\t"
1343
                  : "=r" (res), "=r" (res2)
1344
                  : "r" (MK_SEL(1)), "r" (&tmp));
1345
    printf("DS[1] = %02x\n", res);
1346
    printf("SS[tmp] = %02x\n", res2);
1347

    
1348
    segoff.seg = MK_SEL(2);
1349
    segoff.offset = 0xabcdef12;
1350
    asm volatile("lfs %2, %0\n\t"
1351
                 "movl %%fs, %1\n\t"
1352
                 : "=r" (res), "=g" (res2)
1353
                 : "m" (segoff));
1354
    printf("FS:reg = %04x:%08x\n", res2, res);
1355

    
1356
    TEST_LR("larw", "w", MK_SEL(2), 0x0100);
1357
    TEST_LR("larl", "", MK_SEL(2), 0x0100);
1358
    TEST_LR("lslw", "w", MK_SEL(2), 0);
1359
    TEST_LR("lsll", "", MK_SEL(2), 0);
1360

    
1361
    TEST_LR("larw", "w", 0xfff8, 0);
1362
    TEST_LR("larl", "", 0xfff8, 0);
1363
    TEST_LR("lslw", "w", 0xfff8, 0);
1364
    TEST_LR("lsll", "", 0xfff8, 0);
1365

    
1366
    TEST_ARPL("arpl", "w", 0x12345678 | 3, 0x762123c | 1);
1367
    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 3);
1368
    TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 1);
1369
}
1370

    
1371
/* 16 bit code test */
1372
extern char code16_start, code16_end;
1373
extern char code16_func1;
1374
extern char code16_func2;
1375
extern char code16_func3;
1376

    
1377
void test_code16(void)
1378
{
1379
    struct modify_ldt_ldt_s ldt;
1380
    int res, res2;
1381

    
1382
    /* build a code segment */
1383
    ldt.entry_number = 1;
1384
    ldt.base_addr = (unsigned long)&code16_start;
1385
    ldt.limit = &code16_end - &code16_start;
1386
    ldt.seg_32bit = 0;
1387
    ldt.contents = MODIFY_LDT_CONTENTS_CODE;
1388
    ldt.read_exec_only = 0;
1389
    ldt.limit_in_pages = 0;
1390
    ldt.seg_not_present = 0;
1391
    ldt.useable = 1;
1392
    modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1393

    
1394
    /* call the first function */
1395
    asm volatile ("lcall %1, %2"
1396
                  : "=a" (res)
1397
                  : "i" (MK_SEL(1)), "i" (&code16_func1): "memory", "cc");
1398
    printf("func1() = 0x%08x\n", res);
1399
    asm volatile ("lcall %2, %3"
1400
                  : "=a" (res), "=c" (res2)
1401
                  : "i" (MK_SEL(1)), "i" (&code16_func2): "memory", "cc");
1402
    printf("func2() = 0x%08x spdec=%d\n", res, res2);
1403
    asm volatile ("lcall %1, %2"
1404
                  : "=a" (res)
1405
                  : "i" (MK_SEL(1)), "i" (&code16_func3): "memory", "cc");
1406
    printf("func3() = 0x%08x\n", res);
1407
}
1408
#endif
1409

    
1410
#if defined(__x86_64__)
1411
asm(".globl func_lret\n"
1412
    "func_lret:\n"
1413
    "movl $0x87654641, %eax\n"
1414
    "lretq\n");
1415
#else
1416
asm(".globl func_lret\n"
1417
    "func_lret:\n"
1418
    "movl $0x87654321, %eax\n"
1419
    "lret\n"
1420

    
1421
    ".globl func_iret\n"
1422
    "func_iret:\n"
1423
    "movl $0xabcd4321, %eax\n"
1424
    "iret\n");
1425
#endif
1426

    
1427
extern char func_lret;
1428
extern char func_iret;
1429

    
1430
void test_misc(void)
1431
{
1432
    char table[256];
1433
    long res, i;
1434

    
1435
    for(i=0;i<256;i++) table[i] = 256 - i;
1436
    res = 0x12345678;
1437
    asm ("xlat" : "=a" (res) : "b" (table), "0" (res));
1438
    printf("xlat: EAX=" FMTLX "\n", res);
1439

    
1440
#if defined(__x86_64__)
1441
#if 0
1442
    {
1443
        /* XXX: see if Intel Core2 and AMD64 behavior really
1444
           differ. Here we implemented the Intel way which is not
1445
           compatible yet with QEMU. */
1446
        static struct __attribute__((packed)) {
1447
            uint64_t offset;
1448
            uint16_t seg;
1449
        } desc;
1450
        long cs_sel;
1451

1452
        asm volatile ("mov %%cs, %0" : "=r" (cs_sel));
1453

1454
        asm volatile ("push %1\n"
1455
                      "call func_lret\n"
1456
                      : "=a" (res)
1457
                      : "r" (cs_sel) : "memory", "cc");
1458
        printf("func_lret=" FMTLX "\n", res);
1459

1460
        desc.offset = (long)&func_lret;
1461
        desc.seg = cs_sel;
1462

1463
        asm volatile ("xor %%rax, %%rax\n"
1464
                      "rex64 lcall *(%%rcx)\n"
1465
                      : "=a" (res)
1466
                      : "c" (&desc)
1467
                      : "memory", "cc");
1468
        printf("func_lret2=" FMTLX "\n", res);
1469

1470
        asm volatile ("push %2\n"
1471
                      "mov $ 1f, %%rax\n"
1472
                      "push %%rax\n"
1473
                      "rex64 ljmp *(%%rcx)\n"
1474
                      "1:\n"
1475
                      : "=a" (res)
1476
                      : "c" (&desc), "b" (cs_sel)
1477
                      : "memory", "cc");
1478
        printf("func_lret3=" FMTLX "\n", res);
1479
    }
1480
#endif
1481
#else
1482
    asm volatile ("push %%cs ; call %1"
1483
                  : "=a" (res)
1484
                  : "m" (func_lret): "memory", "cc");
1485
    printf("func_lret=" FMTLX "\n", res);
1486

    
1487
    asm volatile ("pushf ; push %%cs ; call %1"
1488
                  : "=a" (res)
1489
                  : "m" (func_iret): "memory", "cc");
1490
    printf("func_iret=" FMTLX "\n", res);
1491
#endif
1492

    
1493
#if defined(__x86_64__)
1494
    /* specific popl test */
1495
    asm volatile ("push $12345432 ; push $0x9abcdef ; pop (%%rsp) ; pop %0"
1496
                  : "=g" (res));
1497
    printf("popl esp=" FMTLX "\n", res);
1498
#else
1499
    /* specific popl test */
1500
    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popl (%%esp) ; popl %0"
1501
                  : "=g" (res));
1502
    printf("popl esp=" FMTLX "\n", res);
1503

    
1504
    /* specific popw test */
1505
    asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popw (%%esp) ; addl $2, %%esp ; popl %0"
1506
                  : "=g" (res));
1507
    printf("popw esp=" FMTLX "\n", res);
1508
#endif
1509
}
1510

    
1511
uint8_t str_buffer[4096];
1512

    
1513
#define TEST_STRING1(OP, size, DF, REP)\
1514
{\
1515
    long esi, edi, eax, ecx, eflags;\
1516
\
1517
    esi = (long)(str_buffer + sizeof(str_buffer) / 2);\
1518
    edi = (long)(str_buffer + sizeof(str_buffer) / 2) + 16;\
1519
    eax = i2l(0x12345678);\
1520
    ecx = 17;\
1521
\
1522
    asm volatile ("push $0\n\t"\
1523
                  "popf\n\t"\
1524
                  DF "\n\t"\
1525
                  REP #OP size "\n\t"\
1526
                  "cld\n\t"\
1527
                  "pushf\n\t"\
1528
                  "pop %4\n\t"\
1529
                  : "=S" (esi), "=D" (edi), "=a" (eax), "=c" (ecx), "=g" (eflags)\
1530
                  : "0" (esi), "1" (edi), "2" (eax), "3" (ecx));\
1531
    printf("%-10s ESI=" FMTLX " EDI=" FMTLX " EAX=" FMTLX " ECX=" FMTLX " EFL=%04x\n",\
1532
           REP #OP size, esi, edi, eax, ecx,\
1533
           (int)(eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)));\
1534
}
1535

    
1536
#define TEST_STRING(OP, REP)\
1537
    TEST_STRING1(OP, "b", "", REP);\
1538
    TEST_STRING1(OP, "w", "", REP);\
1539
    TEST_STRING1(OP, "l", "", REP);\
1540
    X86_64_ONLY(TEST_STRING1(OP, "q", "", REP));\
1541
    TEST_STRING1(OP, "b", "std", REP);\
1542
    TEST_STRING1(OP, "w", "std", REP);\
1543
    TEST_STRING1(OP, "l", "std", REP);\
1544
    X86_64_ONLY(TEST_STRING1(OP, "q", "std", REP))
1545

    
1546
void test_string(void)
1547
{
1548
    int i;
1549
    for(i = 0;i < sizeof(str_buffer); i++)
1550
        str_buffer[i] = i + 0x56;
1551
   TEST_STRING(stos, "");
1552
   TEST_STRING(stos, "rep ");
1553
   TEST_STRING(lods, ""); /* to verify stos */
1554
   TEST_STRING(lods, "rep ");
1555
   TEST_STRING(movs, "");
1556
   TEST_STRING(movs, "rep ");
1557
   TEST_STRING(lods, ""); /* to verify stos */
1558

    
1559
   /* XXX: better tests */
1560
   TEST_STRING(scas, "");
1561
   TEST_STRING(scas, "repz ");
1562
   TEST_STRING(scas, "repnz ");
1563
   TEST_STRING(cmps, "");
1564
   TEST_STRING(cmps, "repz ");
1565
   TEST_STRING(cmps, "repnz ");
1566
}
1567

    
1568
#ifdef TEST_VM86
1569
/* VM86 test */
1570

    
1571
static inline void set_bit(uint8_t *a, unsigned int bit)
1572
{
1573
    a[bit / 8] |= (1 << (bit % 8));
1574
}
1575

    
1576
static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
1577
{
1578
    return (uint8_t *)((seg << 4) + (reg & 0xffff));
1579
}
1580

    
1581
static inline void pushw(struct vm86_regs *r, int val)
1582
{
1583
    r->esp = (r->esp & ~0xffff) | ((r->esp - 2) & 0xffff);
1584
    *(uint16_t *)seg_to_linear(r->ss, r->esp) = val;
1585
}
1586

    
1587
static inline int vm86(int func, struct vm86plus_struct *v86)
1588
{
1589
    return syscall(__NR_vm86, func, v86);
1590
}
1591

    
1592
extern char vm86_code_start;
1593
extern char vm86_code_end;
1594

    
1595
#define VM86_CODE_CS 0x100
1596
#define VM86_CODE_IP 0x100
1597

    
1598
void test_vm86(void)
1599
{
1600
    struct vm86plus_struct ctx;
1601
    struct vm86_regs *r;
1602
    uint8_t *vm86_mem;
1603
    int seg, ret;
1604

    
1605
    vm86_mem = mmap((void *)0x00000000, 0x110000,
1606
                    PROT_WRITE | PROT_READ | PROT_EXEC,
1607
                    MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
1608
    if (vm86_mem == MAP_FAILED) {
1609
        printf("ERROR: could not map vm86 memory");
1610
        return;
1611
    }
1612
    memset(&ctx, 0, sizeof(ctx));
1613

    
1614
    /* init basic registers */
1615
    r = &ctx.regs;
1616
    r->eip = VM86_CODE_IP;
1617
    r->esp = 0xfffe;
1618
    seg = VM86_CODE_CS;
1619
    r->cs = seg;
1620
    r->ss = seg;
1621
    r->ds = seg;
1622
    r->es = seg;
1623
    r->fs = seg;
1624
    r->gs = seg;
1625
    r->eflags = VIF_MASK;
1626

    
1627
    /* move code to proper address. We use the same layout as a .com
1628
       dos program. */
1629
    memcpy(vm86_mem + (VM86_CODE_CS << 4) + VM86_CODE_IP,
1630
           &vm86_code_start, &vm86_code_end - &vm86_code_start);
1631

    
1632
    /* mark int 0x21 as being emulated */
1633
    set_bit((uint8_t *)&ctx.int_revectored, 0x21);
1634

    
1635
    for(;;) {
1636
        ret = vm86(VM86_ENTER, &ctx);
1637
        switch(VM86_TYPE(ret)) {
1638
        case VM86_INTx:
1639
            {
1640
                int int_num, ah, v;
1641

    
1642
                int_num = VM86_ARG(ret);
1643
                if (int_num != 0x21)
1644
                    goto unknown_int;
1645
                ah = (r->eax >> 8) & 0xff;
1646
                switch(ah) {
1647
                case 0x00: /* exit */
1648
                    goto the_end;
1649
                case 0x02: /* write char */
1650
                    {
1651
                        uint8_t c = r->edx;
1652
                        putchar(c);
1653
                    }
1654
                    break;
1655
                case 0x09: /* write string */
1656
                    {
1657
                        uint8_t c, *ptr;
1658
                        ptr = seg_to_linear(r->ds, r->edx);
1659
                        for(;;) {
1660
                            c = *ptr++;
1661
                            if (c == '$')
1662
                                break;
1663
                            putchar(c);
1664
                        }
1665
                        r->eax = (r->eax & ~0xff) | '$';
1666
                    }
1667
                    break;
1668
                case 0xff: /* extension: write eflags number in edx */
1669
                    v = (int)r->edx;
1670
#ifndef LINUX_VM86_IOPL_FIX
1671
                    v &= ~0x3000;
1672
#endif
1673
                    printf("%08x\n", v);
1674
                    break;
1675
                default:
1676
                unknown_int:
1677
                    printf("unsupported int 0x%02x\n", int_num);
1678
                    goto the_end;
1679
                }
1680
            }
1681
            break;
1682
        case VM86_SIGNAL:
1683
            /* a signal came, we just ignore that */
1684
            break;
1685
        case VM86_STI:
1686
            break;
1687
        default:
1688
            printf("ERROR: unhandled vm86 return code (0x%x)\n", ret);
1689
            goto the_end;
1690
        }
1691
    }
1692
 the_end:
1693
    printf("VM86 end\n");
1694
    munmap(vm86_mem, 0x110000);
1695
}
1696
#endif
1697

    
1698
/* exception tests */
1699
#if defined(__i386__) && !defined(REG_EAX)
1700
#define REG_EAX EAX
1701
#define REG_EBX EBX
1702
#define REG_ECX ECX
1703
#define REG_EDX EDX
1704
#define REG_ESI ESI
1705
#define REG_EDI EDI
1706
#define REG_EBP EBP
1707
#define REG_ESP ESP
1708
#define REG_EIP EIP
1709
#define REG_EFL EFL
1710
#define REG_TRAPNO TRAPNO
1711
#define REG_ERR ERR
1712
#endif
1713

    
1714
#if defined(__x86_64__)
1715
#define REG_EIP REG_RIP
1716
#endif
1717

    
1718
jmp_buf jmp_env;
1719
int v1;
1720
int tab[2];
1721

    
1722
void sig_handler(int sig, siginfo_t *info, void *puc)
1723
{
1724
    struct ucontext *uc = puc;
1725

    
1726
    printf("si_signo=%d si_errno=%d si_code=%d",
1727
           info->si_signo, info->si_errno, info->si_code);
1728
    printf(" si_addr=0x%08lx",
1729
           (unsigned long)info->si_addr);
1730
    printf("\n");
1731

    
1732
    printf("trapno=" FMTLX " err=" FMTLX,
1733
           (long)uc->uc_mcontext.gregs[REG_TRAPNO],
1734
           (long)uc->uc_mcontext.gregs[REG_ERR]);
1735
    printf(" EIP=" FMTLX, (long)uc->uc_mcontext.gregs[REG_EIP]);
1736
    printf("\n");
1737
    longjmp(jmp_env, 1);
1738
}
1739

    
1740
void test_exceptions(void)
1741
{
1742
    struct sigaction act;
1743
    volatile int val;
1744

    
1745
    act.sa_sigaction = sig_handler;
1746
    sigemptyset(&act.sa_mask);
1747
    act.sa_flags = SA_SIGINFO | SA_NODEFER;
1748
    sigaction(SIGFPE, &act, NULL);
1749
    sigaction(SIGILL, &act, NULL);
1750
    sigaction(SIGSEGV, &act, NULL);
1751
    sigaction(SIGBUS, &act, NULL);
1752
    sigaction(SIGTRAP, &act, NULL);
1753

    
1754
    /* test division by zero reporting */
1755
    printf("DIVZ exception:\n");
1756
    if (setjmp(jmp_env) == 0) {
1757
        /* now divide by zero */
1758
        v1 = 0;
1759
        v1 = 2 / v1;
1760
    }
1761

    
1762
#if !defined(__x86_64__)
1763
    printf("BOUND exception:\n");
1764
    if (setjmp(jmp_env) == 0) {
1765
        /* bound exception */
1766
        tab[0] = 1;
1767
        tab[1] = 10;
1768
        asm volatile ("bound %0, %1" : : "r" (11), "m" (tab[0]));
1769
    }
1770
#endif
1771

    
1772
#ifdef TEST_SEGS
1773
    printf("segment exceptions:\n");
1774
    if (setjmp(jmp_env) == 0) {
1775
        /* load an invalid segment */
1776
        asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 1));
1777
    }
1778
    if (setjmp(jmp_env) == 0) {
1779
        /* null data segment is valid */
1780
        asm volatile ("movl %0, %%fs" : : "r" (3));
1781
        /* null stack segment */
1782
        asm volatile ("movl %0, %%ss" : : "r" (3));
1783
    }
1784

    
1785
    {
1786
        struct modify_ldt_ldt_s ldt;
1787
        ldt.entry_number = 1;
1788
        ldt.base_addr = (unsigned long)&seg_data1;
1789
        ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1790
        ldt.seg_32bit = 1;
1791
        ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1792
        ldt.read_exec_only = 0;
1793
        ldt.limit_in_pages = 1;
1794
        ldt.seg_not_present = 1;
1795
        ldt.useable = 1;
1796
        modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1797

    
1798
        if (setjmp(jmp_env) == 0) {
1799
            /* segment not present */
1800
            asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1801
        }
1802
    }
1803
#endif
1804

    
1805
    /* test SEGV reporting */
1806
    printf("PF exception:\n");
1807
    if (setjmp(jmp_env) == 0) {
1808
        val = 1;
1809
        /* we add a nop to test a weird PC retrieval case */
1810
        asm volatile ("nop");
1811
        /* now store in an invalid address */
1812
        *(char *)0x1234 = 1;
1813
    }
1814

    
1815
    /* test SEGV reporting */
1816
    printf("PF exception:\n");
1817
    if (setjmp(jmp_env) == 0) {
1818
        val = 1;
1819
        /* read from an invalid address */
1820
        v1 = *(char *)0x1234;
1821
    }
1822

    
1823
    /* test illegal instruction reporting */
1824
    printf("UD2 exception:\n");
1825
    if (setjmp(jmp_env) == 0) {
1826
        /* now execute an invalid instruction */
1827
        asm volatile("ud2");
1828
    }
1829
    printf("lock nop exception:\n");
1830
    if (setjmp(jmp_env) == 0) {
1831
        /* now execute an invalid instruction */
1832
        asm volatile("lock nop");
1833
    }
1834

    
1835
    printf("INT exception:\n");
1836
    if (setjmp(jmp_env) == 0) {
1837
        asm volatile ("int $0xfd");
1838
    }
1839
    if (setjmp(jmp_env) == 0) {
1840
        asm volatile ("int $0x01");
1841
    }
1842
    if (setjmp(jmp_env) == 0) {
1843
        asm volatile (".byte 0xcd, 0x03");
1844
    }
1845
    if (setjmp(jmp_env) == 0) {
1846
        asm volatile ("int $0x04");
1847
    }
1848
    if (setjmp(jmp_env) == 0) {
1849
        asm volatile ("int $0x05");
1850
    }
1851

    
1852
    printf("INT3 exception:\n");
1853
    if (setjmp(jmp_env) == 0) {
1854
        asm volatile ("int3");
1855
    }
1856

    
1857
    printf("CLI exception:\n");
1858
    if (setjmp(jmp_env) == 0) {
1859
        asm volatile ("cli");
1860
    }
1861

    
1862
    printf("STI exception:\n");
1863
    if (setjmp(jmp_env) == 0) {
1864
        asm volatile ("cli");
1865
    }
1866

    
1867
#if !defined(__x86_64__)
1868
    printf("INTO exception:\n");
1869
    if (setjmp(jmp_env) == 0) {
1870
        /* overflow exception */
1871
        asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff));
1872
    }
1873
#endif
1874

    
1875
    printf("OUTB exception:\n");
1876
    if (setjmp(jmp_env) == 0) {
1877
        asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0));
1878
    }
1879

    
1880
    printf("INB exception:\n");
1881
    if (setjmp(jmp_env) == 0) {
1882
        asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321));
1883
    }
1884

    
1885
    printf("REP OUTSB exception:\n");
1886
    if (setjmp(jmp_env) == 0) {
1887
        asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1));
1888
    }
1889

    
1890
    printf("REP INSB exception:\n");
1891
    if (setjmp(jmp_env) == 0) {
1892
        asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1));
1893
    }
1894

    
1895
    printf("HLT exception:\n");
1896
    if (setjmp(jmp_env) == 0) {
1897
        asm volatile ("hlt");
1898
    }
1899

    
1900
    printf("single step exception:\n");
1901
    val = 0;
1902
    if (setjmp(jmp_env) == 0) {
1903
        asm volatile ("pushf\n"
1904
                      "orl $0x00100, (%%esp)\n"
1905
                      "popf\n"
1906
                      "movl $0xabcd, %0\n"
1907
                      "movl $0x0, %0\n" : "=m" (val) : : "cc", "memory");
1908
    }
1909
    printf("val=0x%x\n", val);
1910
}
1911

    
1912
#if !defined(__x86_64__)
1913
/* specific precise single step test */
1914
void sig_trap_handler(int sig, siginfo_t *info, void *puc)
1915
{
1916
    struct ucontext *uc = puc;
1917
    printf("EIP=" FMTLX "\n", (long)uc->uc_mcontext.gregs[REG_EIP]);
1918
}
1919

    
1920
const uint8_t sstep_buf1[4] = { 1, 2, 3, 4};
1921
uint8_t sstep_buf2[4];
1922

    
1923
void test_single_step(void)
1924
{
1925
    struct sigaction act;
1926
    volatile int val;
1927
    int i;
1928

    
1929
    val = 0;
1930
    act.sa_sigaction = sig_trap_handler;
1931
    sigemptyset(&act.sa_mask);
1932
    act.sa_flags = SA_SIGINFO;
1933
    sigaction(SIGTRAP, &act, NULL);
1934
    asm volatile ("pushf\n"
1935
                  "orl $0x00100, (%%esp)\n"
1936
                  "popf\n"
1937
                  "movl $0xabcd, %0\n"
1938

    
1939
                  /* jmp test */
1940
                  "movl $3, %%ecx\n"
1941
                  "1:\n"
1942
                  "addl $1, %0\n"
1943
                  "decl %%ecx\n"
1944
                  "jnz 1b\n"
1945

    
1946
                  /* movsb: the single step should stop at each movsb iteration */
1947
                  "movl $sstep_buf1, %%esi\n"
1948
                  "movl $sstep_buf2, %%edi\n"
1949
                  "movl $0, %%ecx\n"
1950
                  "rep movsb\n"
1951
                  "movl $3, %%ecx\n"
1952
                  "rep movsb\n"
1953
                  "movl $1, %%ecx\n"
1954
                  "rep movsb\n"
1955

    
1956
                  /* cmpsb: the single step should stop at each cmpsb iteration */
1957
                  "movl $sstep_buf1, %%esi\n"
1958
                  "movl $sstep_buf2, %%edi\n"
1959
                  "movl $0, %%ecx\n"
1960
                  "rep cmpsb\n"
1961
                  "movl $4, %%ecx\n"
1962
                  "rep cmpsb\n"
1963

    
1964
                  /* getpid() syscall: single step should skip one
1965
                     instruction */
1966
                  "movl $20, %%eax\n"
1967
                  "int $0x80\n"
1968
                  "movl $0, %%eax\n"
1969

    
1970
                  /* when modifying SS, trace is not done on the next
1971
                     instruction */
1972
                  "movl %%ss, %%ecx\n"
1973
                  "movl %%ecx, %%ss\n"
1974
                  "addl $1, %0\n"
1975
                  "movl $1, %%eax\n"
1976
                  "movl %%ecx, %%ss\n"
1977
                  "jmp 1f\n"
1978
                  "addl $1, %0\n"
1979
                  "1:\n"
1980
                  "movl $1, %%eax\n"
1981
                  "pushl %%ecx\n"
1982
                  "popl %%ss\n"
1983
                  "addl $1, %0\n"
1984
                  "movl $1, %%eax\n"
1985

    
1986
                  "pushf\n"
1987
                  "andl $~0x00100, (%%esp)\n"
1988
                  "popf\n"
1989
                  : "=m" (val)
1990
                  :
1991
                  : "cc", "memory", "eax", "ecx", "esi", "edi");
1992
    printf("val=%d\n", val);
1993
    for(i = 0; i < 4; i++)
1994
        printf("sstep_buf2[%d] = %d\n", i, sstep_buf2[i]);
1995
}
1996

    
1997
/* self modifying code test */
1998
uint8_t code[] = {
1999
    0xb8, 0x1, 0x00, 0x00, 0x00, /* movl $1, %eax */
2000
    0xc3, /* ret */
2001
};
2002

    
2003
asm(".section \".data\"\n"
2004
    "smc_code2:\n"
2005
    "movl 4(%esp), %eax\n"
2006
    "movl %eax, smc_patch_addr2 + 1\n"
2007
    "nop\n"
2008
    "nop\n"
2009
    "nop\n"
2010
    "nop\n"
2011
    "nop\n"
2012
    "nop\n"
2013
    "nop\n"
2014
    "nop\n"
2015
    "smc_patch_addr2:\n"
2016
    "movl $1, %eax\n"
2017
    "ret\n"
2018
    ".previous\n"
2019
    );
2020

    
2021
typedef int FuncType(void);
2022
extern int smc_code2(int);
2023
void test_self_modifying_code(void)
2024
{
2025
    int i;
2026
    printf("self modifying code:\n");
2027
    printf("func1 = 0x%x\n", ((FuncType *)code)());
2028
    for(i = 2; i <= 4; i++) {
2029
        code[1] = i;
2030
        printf("func%d = 0x%x\n", i, ((FuncType *)code)());
2031
    }
2032

    
2033
    /* more difficult test : the modified code is just after the
2034
       modifying instruction. It is forbidden in Intel specs, but it
2035
       is used by old DOS programs */
2036
    for(i = 2; i <= 4; i++) {
2037
        printf("smc_code2(%d) = %d\n", i, smc_code2(i));
2038
    }
2039
}
2040
#endif
2041

    
2042
long enter_stack[4096];
2043

    
2044
#if defined(__x86_64__)
2045
#define RSP "%%rsp"
2046
#define RBP "%%rbp"
2047
#else
2048
#define RSP "%%esp"
2049
#define RBP "%%ebp"
2050
#endif
2051

    
2052
#define TEST_ENTER(size, stack_type, level)\
2053
{\
2054
    long esp_save, esp_val, ebp_val, ebp_save, i;\
2055
    stack_type *ptr, *stack_end, *stack_ptr;\
2056
    memset(enter_stack, 0, sizeof(enter_stack));\
2057
    stack_end = stack_ptr = (stack_type *)(enter_stack + 4096);\
2058
    ebp_val = (long)stack_ptr;\
2059
    for(i=1;i<=32;i++)\
2060
       *--stack_ptr = i;\
2061
    esp_val = (long)stack_ptr;\
2062
    asm("mov " RSP ", %[esp_save]\n"\
2063
        "mov " RBP ", %[ebp_save]\n"\
2064
        "mov %[esp_val], " RSP "\n"\
2065
        "mov %[ebp_val], " RBP "\n"\
2066
        "enter" size " $8, $" #level "\n"\
2067
        "mov " RSP ", %[esp_val]\n"\
2068
        "mov " RBP ", %[ebp_val]\n"\
2069
        "mov %[esp_save], " RSP "\n"\
2070
        "mov %[ebp_save], " RBP "\n"\
2071
        : [esp_save] "=r" (esp_save),\
2072
        [ebp_save] "=r" (ebp_save),\
2073
        [esp_val] "=r" (esp_val),\
2074
        [ebp_val] "=r" (ebp_val)\
2075
        :  "[esp_val]" (esp_val),\
2076
        "[ebp_val]" (ebp_val));\
2077
    printf("level=%d:\n", level);\
2078
    printf("esp_val=" FMTLX "\n", esp_val - (long)stack_end);\
2079
    printf("ebp_val=" FMTLX "\n", ebp_val - (long)stack_end);\
2080
    for(ptr = (stack_type *)esp_val; ptr < stack_end; ptr++)\
2081
        printf(FMTLX "\n", (long)ptr[0]);\
2082
}
2083

    
2084
static void test_enter(void)
2085
{
2086
#if defined(__x86_64__)
2087
    TEST_ENTER("q", uint64_t, 0);
2088
    TEST_ENTER("q", uint64_t, 1);
2089
    TEST_ENTER("q", uint64_t, 2);
2090
    TEST_ENTER("q", uint64_t, 31);
2091
#else
2092
    TEST_ENTER("l", uint32_t, 0);
2093
    TEST_ENTER("l", uint32_t, 1);
2094
    TEST_ENTER("l", uint32_t, 2);
2095
    TEST_ENTER("l", uint32_t, 31);
2096
#endif
2097

    
2098
    TEST_ENTER("w", uint16_t, 0);
2099
    TEST_ENTER("w", uint16_t, 1);
2100
    TEST_ENTER("w", uint16_t, 2);
2101
    TEST_ENTER("w", uint16_t, 31);
2102
}
2103

    
2104
#ifdef TEST_SSE
2105

    
2106
typedef int __m64 __attribute__ ((__mode__ (__V2SI__)));
2107
typedef float __m128 __attribute__ ((__mode__(__V4SF__)));
2108

    
2109
typedef union {
2110
    double d[2];
2111
    float s[4];
2112
    uint32_t l[4];
2113
    uint64_t q[2];
2114
    __m128 dq;
2115
} XMMReg;
2116

    
2117
static uint64_t __attribute__((aligned(16))) test_values[4][2] = {
2118
    { 0x456723c698694873, 0xdc515cff944a58ec },
2119
    { 0x1f297ccd58bad7ab, 0x41f21efba9e3e146 },
2120
    { 0x007c62c2085427f8, 0x231be9e8cde7438d },
2121
    { 0x0f76255a085427f8, 0xc233e9e8c4c9439a },
2122
};
2123

    
2124
#define SSE_OP(op)\
2125
{\
2126
    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2127
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2128
           #op,\
2129
           a.q[1], a.q[0],\
2130
           b.q[1], b.q[0],\
2131
           r.q[1], r.q[0]);\
2132
}
2133

    
2134
#define SSE_OP2(op)\
2135
{\
2136
    int i;\
2137
    for(i=0;i<2;i++) {\
2138
    a.q[0] = test_values[2*i][0];\
2139
    a.q[1] = test_values[2*i][1];\
2140
    b.q[0] = test_values[2*i+1][0];\
2141
    b.q[1] = test_values[2*i+1][1];\
2142
    SSE_OP(op);\
2143
    }\
2144
}
2145

    
2146
#define MMX_OP2(op)\
2147
{\
2148
    int i;\
2149
    for(i=0;i<2;i++) {\
2150
    a.q[0] = test_values[2*i][0];\
2151
    b.q[0] = test_values[2*i+1][0];\
2152
    asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\
2153
    printf("%-9s: a=" FMT64X " b=" FMT64X " r=" FMT64X "\n",\
2154
           #op,\
2155
           a.q[0],\
2156
           b.q[0],\
2157
           r.q[0]);\
2158
    }\
2159
    SSE_OP2(op);\
2160
}
2161

    
2162
#define SHUF_OP(op, ib)\
2163
{\
2164
    a.q[0] = test_values[0][0];\
2165
    a.q[1] = test_values[0][1];\
2166
    b.q[0] = test_values[1][0];\
2167
    b.q[1] = test_values[1][1];\
2168
    asm volatile (#op " $" #ib ", %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2169
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2170
           #op,\
2171
           a.q[1], a.q[0],\
2172
           b.q[1], b.q[0],\
2173
           ib,\
2174
           r.q[1], r.q[0]);\
2175
}
2176

    
2177
#define PSHUF_OP(op, ib)\
2178
{\
2179
    int i;\
2180
    for(i=0;i<2;i++) {\
2181
    a.q[0] = test_values[2*i][0];\
2182
    a.q[1] = test_values[2*i][1];\
2183
    asm volatile (#op " $" #ib ", %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2184
    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2185
           #op,\
2186
           a.q[1], a.q[0],\
2187
           ib,\
2188
           r.q[1], r.q[0]);\
2189
    }\
2190
}
2191

    
2192
#define SHIFT_IM(op, ib)\
2193
{\
2194
    int i;\
2195
    for(i=0;i<2;i++) {\
2196
    a.q[0] = test_values[2*i][0];\
2197
    a.q[1] = test_values[2*i][1];\
2198
    asm volatile (#op " $" #ib ", %0" : "=x" (r.dq) : "0" (a.dq));\
2199
    printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2200
           #op,\
2201
           a.q[1], a.q[0],\
2202
           ib,\
2203
           r.q[1], r.q[0]);\
2204
    }\
2205
}
2206

    
2207
#define SHIFT_OP(op, ib)\
2208
{\
2209
    int i;\
2210
    SHIFT_IM(op, ib);\
2211
    for(i=0;i<2;i++) {\
2212
    a.q[0] = test_values[2*i][0];\
2213
    a.q[1] = test_values[2*i][1];\
2214
    b.q[0] = ib;\
2215
    b.q[1] = 0;\
2216
    asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2217
    printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2218
           #op,\
2219
           a.q[1], a.q[0],\
2220
           b.q[1], b.q[0],\
2221
           r.q[1], r.q[0]);\
2222
    }\
2223
}
2224

    
2225
#define MOVMSK(op)\
2226
{\
2227
    int i, reg;\
2228
    for(i=0;i<2;i++) {\
2229
    a.q[0] = test_values[2*i][0];\
2230
    a.q[1] = test_values[2*i][1];\
2231
    asm volatile (#op " %1, %0" : "=r" (reg) : "x" (a.dq));\
2232
    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2233
           #op,\
2234
           a.q[1], a.q[0],\
2235
           reg);\
2236
    }\
2237
}
2238

    
2239
#define SSE_OPS(a) \
2240
SSE_OP(a ## ps);\
2241
SSE_OP(a ## ss);
2242

    
2243
#define SSE_OPD(a) \
2244
SSE_OP(a ## pd);\
2245
SSE_OP(a ## sd);
2246

    
2247
#define SSE_COMI(op, field)\
2248
{\
2249
    unsigned int eflags;\
2250
    XMMReg a, b;\
2251
    a.field[0] = a1;\
2252
    b.field[0] = b1;\
2253
    asm volatile (#op " %2, %1\n"\
2254
        "pushf\n"\
2255
        "pop %0\n"\
2256
        : "=m" (eflags)\
2257
        : "x" (a.dq), "x" (b.dq));\
2258
    printf("%-9s: a=%f b=%f cc=%04x\n",\
2259
           #op, a1, b1,\
2260
           eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));\
2261
}
2262

    
2263
void test_sse_comi(double a1, double b1)
2264
{
2265
    SSE_COMI(ucomiss, s);
2266
    SSE_COMI(ucomisd, d);
2267
    SSE_COMI(comiss, s);
2268
    SSE_COMI(comisd, d);
2269
}
2270

    
2271
#define CVT_OP_XMM(op)\
2272
{\
2273
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2274
    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2275
           #op,\
2276
           a.q[1], a.q[0],\
2277
           r.q[1], r.q[0]);\
2278
}
2279

    
2280
/* Force %xmm0 usage to avoid the case where both register index are 0
2281
   to test intruction decoding more extensively */
2282
#define CVT_OP_XMM2MMX(op)\
2283
{\
2284
    asm volatile (#op " %1, %0" : "=y" (r.q[0]) : "x" (a.dq) \
2285
                  : "%xmm0"); \
2286
    asm volatile("emms\n"); \
2287
    printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "\n",\
2288
           #op,\
2289
           a.q[1], a.q[0],\
2290
           r.q[0]);\
2291
}
2292

    
2293
#define CVT_OP_MMX2XMM(op)\
2294
{\
2295
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "y" (a.q[0]));\
2296
    asm volatile("emms\n"); \
2297
    printf("%-9s: a=" FMT64X " r=" FMT64X "" FMT64X "\n",\
2298
           #op,\
2299
           a.q[0],\
2300
           r.q[1], r.q[0]);\
2301
}
2302

    
2303
#define CVT_OP_REG2XMM(op)\
2304
{\
2305
    asm volatile (#op " %1, %0" : "=x" (r.dq) : "r" (a.l[0]));\
2306
    printf("%-9s: a=%08x r=" FMT64X "" FMT64X "\n",\
2307
           #op,\
2308
           a.l[0],\
2309
           r.q[1], r.q[0]);\
2310
}
2311

    
2312
#define CVT_OP_XMM2REG(op)\
2313
{\
2314
    asm volatile (#op " %1, %0" : "=r" (r.l[0]) : "x" (a.dq));\
2315
    printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2316
           #op,\
2317
           a.q[1], a.q[0],\
2318
           r.l[0]);\
2319
}
2320

    
2321
struct fpxstate {
2322
    uint16_t fpuc;
2323
    uint16_t fpus;
2324
    uint16_t fptag;
2325
    uint16_t fop;
2326
    uint32_t fpuip;
2327
    uint16_t cs_sel;
2328
    uint16_t dummy0;
2329
    uint32_t fpudp;
2330
    uint16_t ds_sel;
2331
    uint16_t dummy1;
2332
    uint32_t mxcsr;
2333
    uint32_t mxcsr_mask;
2334
    uint8_t fpregs1[8 * 16];
2335
    uint8_t xmm_regs[8 * 16];
2336
    uint8_t dummy2[224];
2337
};
2338

    
2339
static struct fpxstate fpx_state __attribute__((aligned(16)));
2340
static struct fpxstate fpx_state2 __attribute__((aligned(16)));
2341

    
2342
void test_fxsave(void)
2343
{
2344
    struct fpxstate *fp = &fpx_state;
2345
    struct fpxstate *fp2 = &fpx_state2;
2346
    int i, nb_xmm;
2347
    XMMReg a, b;
2348
    a.q[0] = test_values[0][0];
2349
    a.q[1] = test_values[0][1];
2350
    b.q[0] = test_values[1][0];
2351
    b.q[1] = test_values[1][1];
2352

    
2353
    asm("movdqa %2, %%xmm0\n"
2354
        "movdqa %3, %%xmm7\n"
2355
#if defined(__x86_64__)
2356
        "movdqa %2, %%xmm15\n"
2357
#endif
2358
        " fld1\n"
2359
        " fldpi\n"
2360
        " fldln2\n"
2361
        " fxsave %0\n"
2362
        " fxrstor %0\n"
2363
        " fxsave %1\n"
2364
        " fninit\n"
2365
        : "=m" (*(uint32_t *)fp2), "=m" (*(uint32_t *)fp)
2366
        : "m" (a), "m" (b));
2367
    printf("fpuc=%04x\n", fp->fpuc);
2368
    printf("fpus=%04x\n", fp->fpus);
2369
    printf("fptag=%04x\n", fp->fptag);
2370
    for(i = 0; i < 3; i++) {
2371
        printf("ST%d: " FMT64X " %04x\n",
2372
               i,
2373
               *(uint64_t *)&fp->fpregs1[i * 16],
2374
               *(uint16_t *)&fp->fpregs1[i * 16 + 8]);
2375
    }
2376
    printf("mxcsr=%08x\n", fp->mxcsr & 0x1f80);
2377
#if defined(__x86_64__)
2378
    nb_xmm = 16;
2379
#else
2380
    nb_xmm = 8;
2381
#endif
2382
    for(i = 0; i < nb_xmm; i++) {
2383
        printf("xmm%d: " FMT64X "" FMT64X "\n",
2384
               i,
2385
               *(uint64_t *)&fp->xmm_regs[i * 16],
2386
               *(uint64_t *)&fp->xmm_regs[i * 16 + 8]);
2387
    }
2388
}
2389

    
2390
void test_sse(void)
2391
{
2392
    XMMReg r, a, b;
2393
    int i;
2394

    
2395
    MMX_OP2(punpcklbw);
2396
    MMX_OP2(punpcklwd);
2397
    MMX_OP2(punpckldq);
2398
    MMX_OP2(packsswb);
2399
    MMX_OP2(pcmpgtb);
2400
    MMX_OP2(pcmpgtw);
2401
    MMX_OP2(pcmpgtd);
2402
    MMX_OP2(packuswb);
2403
    MMX_OP2(punpckhbw);
2404
    MMX_OP2(punpckhwd);
2405
    MMX_OP2(punpckhdq);
2406
    MMX_OP2(packssdw);
2407
    MMX_OP2(pcmpeqb);
2408
    MMX_OP2(pcmpeqw);
2409
    MMX_OP2(pcmpeqd);
2410

    
2411
    MMX_OP2(paddq);
2412
    MMX_OP2(pmullw);
2413
    MMX_OP2(psubusb);
2414
    MMX_OP2(psubusw);
2415
    MMX_OP2(pminub);
2416
    MMX_OP2(pand);
2417
    MMX_OP2(paddusb);
2418
    MMX_OP2(paddusw);
2419
    MMX_OP2(pmaxub);
2420
    MMX_OP2(pandn);
2421

    
2422
    MMX_OP2(pmulhuw);
2423
    MMX_OP2(pmulhw);
2424

    
2425
    MMX_OP2(psubsb);
2426
    MMX_OP2(psubsw);
2427
    MMX_OP2(pminsw);
2428
    MMX_OP2(por);
2429
    MMX_OP2(paddsb);
2430
    MMX_OP2(paddsw);
2431
    MMX_OP2(pmaxsw);
2432
    MMX_OP2(pxor);
2433
    MMX_OP2(pmuludq);
2434
    MMX_OP2(pmaddwd);
2435
    MMX_OP2(psadbw);
2436
    MMX_OP2(psubb);
2437
    MMX_OP2(psubw);
2438
    MMX_OP2(psubd);
2439
    MMX_OP2(psubq);
2440
    MMX_OP2(paddb);
2441
    MMX_OP2(paddw);
2442
    MMX_OP2(paddd);
2443

    
2444
    MMX_OP2(pavgb);
2445
    MMX_OP2(pavgw);
2446

    
2447
    asm volatile ("pinsrw $1, %1, %0" : "=y" (r.q[0]) : "r" (0x12345678));
2448
    printf("%-9s: r=" FMT64X "\n", "pinsrw", r.q[0]);
2449

    
2450
    asm volatile ("pinsrw $5, %1, %0" : "=x" (r.dq) : "r" (0x12345678));
2451
    printf("%-9s: r=" FMT64X "" FMT64X "\n", "pinsrw", r.q[1], r.q[0]);
2452

    
2453
    a.q[0] = test_values[0][0];
2454
    a.q[1] = test_values[0][1];
2455
    asm volatile ("pextrw $1, %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2456
    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2457

    
2458
    asm volatile ("pextrw $5, %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2459
    printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2460

    
2461
    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2462
    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2463

    
2464
    asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2465
    printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2466

    
2467
    {
2468
        r.q[0] = -1;
2469
        r.q[1] = -1;
2470

    
2471
        a.q[0] = test_values[0][0];
2472
        a.q[1] = test_values[0][1];
2473
        b.q[0] = test_values[1][0];
2474
        b.q[1] = test_values[1][1];
2475
        asm volatile("maskmovq %1, %0" :
2476
                     : "y" (a.q[0]), "y" (b.q[0]), "D" (&r)
2477
                     : "memory");
2478
        printf("%-9s: r=" FMT64X " a=" FMT64X " b=" FMT64X "\n",
2479
               "maskmov",
2480
               r.q[0],
2481
               a.q[0],
2482
               b.q[0]);
2483
        asm volatile("maskmovdqu %1, %0" :
2484
                     : "x" (a.dq), "x" (b.dq), "D" (&r)
2485
                     : "memory");
2486
        printf("%-9s: r=" FMT64X "" FMT64X " a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X "\n",
2487
               "maskmov",
2488
               r.q[1], r.q[0],
2489
               a.q[1], a.q[0],
2490
               b.q[1], b.q[0]);
2491
    }
2492

    
2493
    asm volatile ("emms");
2494

    
2495
    SSE_OP2(punpcklqdq);
2496
    SSE_OP2(punpckhqdq);
2497
    SSE_OP2(andps);
2498
    SSE_OP2(andpd);
2499
    SSE_OP2(andnps);
2500
    SSE_OP2(andnpd);
2501
    SSE_OP2(orps);
2502
    SSE_OP2(orpd);
2503
    SSE_OP2(xorps);
2504
    SSE_OP2(xorpd);
2505

    
2506
    SSE_OP2(unpcklps);
2507
    SSE_OP2(unpcklpd);
2508
    SSE_OP2(unpckhps);
2509
    SSE_OP2(unpckhpd);
2510

    
2511
    SHUF_OP(shufps, 0x78);
2512
    SHUF_OP(shufpd, 0x02);
2513

    
2514
    PSHUF_OP(pshufd, 0x78);
2515
    PSHUF_OP(pshuflw, 0x78);
2516
    PSHUF_OP(pshufhw, 0x78);
2517

    
2518
    SHIFT_OP(psrlw, 7);
2519
    SHIFT_OP(psrlw, 16);
2520
    SHIFT_OP(psraw, 7);
2521
    SHIFT_OP(psraw, 16);
2522
    SHIFT_OP(psllw, 7);
2523
    SHIFT_OP(psllw, 16);
2524

    
2525
    SHIFT_OP(psrld, 7);
2526
    SHIFT_OP(psrld, 32);
2527
    SHIFT_OP(psrad, 7);
2528
    SHIFT_OP(psrad, 32);
2529
    SHIFT_OP(pslld, 7);
2530
    SHIFT_OP(pslld, 32);
2531

    
2532
    SHIFT_OP(psrlq, 7);
2533
    SHIFT_OP(psrlq, 32);
2534
    SHIFT_OP(psllq, 7);
2535
    SHIFT_OP(psllq, 32);
2536

    
2537
    SHIFT_IM(psrldq, 16);
2538
    SHIFT_IM(psrldq, 7);
2539
    SHIFT_IM(pslldq, 16);
2540
    SHIFT_IM(pslldq, 7);
2541

    
2542
    MOVMSK(movmskps);
2543
    MOVMSK(movmskpd);
2544

    
2545
    /* FPU specific ops */
2546

    
2547
    {
2548
        uint32_t mxcsr;
2549
        asm volatile("stmxcsr %0" : "=m" (mxcsr));
2550
        printf("mxcsr=%08x\n", mxcsr & 0x1f80);
2551
        asm volatile("ldmxcsr %0" : : "m" (mxcsr));
2552
    }
2553

    
2554
    test_sse_comi(2, -1);
2555
    test_sse_comi(2, 2);
2556
    test_sse_comi(2, 3);
2557
    test_sse_comi(2, q_nan.d);
2558
    test_sse_comi(q_nan.d, -1);
2559

    
2560
    for(i = 0; i < 2; i++) {
2561
        a.s[0] = 2.7;
2562
        a.s[1] = 3.4;
2563
        a.s[2] = 4;
2564
        a.s[3] = -6.3;
2565
        b.s[0] = 45.7;
2566
        b.s[1] = 353.4;
2567
        b.s[2] = 4;
2568
        b.s[3] = 56.3;
2569
        if (i == 1) {
2570
            a.s[0] = q_nan.d;
2571
            b.s[3] = q_nan.d;
2572
        }
2573

    
2574
        SSE_OPS(add);
2575
        SSE_OPS(mul);
2576
        SSE_OPS(sub);
2577
        SSE_OPS(min);
2578
        SSE_OPS(div);
2579
        SSE_OPS(max);
2580
        SSE_OPS(sqrt);
2581
        SSE_OPS(cmpeq);
2582
        SSE_OPS(cmplt);
2583
        SSE_OPS(cmple);
2584
        SSE_OPS(cmpunord);
2585
        SSE_OPS(cmpneq);
2586
        SSE_OPS(cmpnlt);
2587
        SSE_OPS(cmpnle);
2588
        SSE_OPS(cmpord);
2589

    
2590

    
2591
        a.d[0] = 2.7;
2592
        a.d[1] = -3.4;
2593
        b.d[0] = 45.7;
2594
        b.d[1] = -53.4;
2595
        if (i == 1) {
2596
            a.d[0] = q_nan.d;
2597
            b.d[1] = q_nan.d;
2598
        }
2599
        SSE_OPD(add);
2600
        SSE_OPD(mul);
2601
        SSE_OPD(sub);
2602
        SSE_OPD(min);
2603
        SSE_OPD(div);
2604
        SSE_OPD(max);
2605
        SSE_OPD(sqrt);
2606
        SSE_OPD(cmpeq);
2607
        SSE_OPD(cmplt);
2608
        SSE_OPD(cmple);
2609
        SSE_OPD(cmpunord);
2610
        SSE_OPD(cmpneq);
2611
        SSE_OPD(cmpnlt);
2612
        SSE_OPD(cmpnle);
2613
        SSE_OPD(cmpord);
2614
    }
2615

    
2616
    /* float to float/int */
2617
    a.s[0] = 2.7;
2618
    a.s[1] = 3.4;
2619
    a.s[2] = 4;
2620
    a.s[3] = -6.3;
2621
    CVT_OP_XMM(cvtps2pd);
2622
    CVT_OP_XMM(cvtss2sd);
2623
    CVT_OP_XMM2MMX(cvtps2pi);
2624
    CVT_OP_XMM2MMX(cvttps2pi);
2625
    CVT_OP_XMM2REG(cvtss2si);
2626
    CVT_OP_XMM2REG(cvttss2si);
2627
    CVT_OP_XMM(cvtps2dq);
2628
    CVT_OP_XMM(cvttps2dq);
2629

    
2630
    a.d[0] = 2.6;
2631
    a.d[1] = -3.4;
2632
    CVT_OP_XMM(cvtpd2ps);
2633
    CVT_OP_XMM(cvtsd2ss);
2634
    CVT_OP_XMM2MMX(cvtpd2pi);
2635
    CVT_OP_XMM2MMX(cvttpd2pi);
2636
    CVT_OP_XMM2REG(cvtsd2si);
2637
    CVT_OP_XMM2REG(cvttsd2si);
2638
    CVT_OP_XMM(cvtpd2dq);
2639
    CVT_OP_XMM(cvttpd2dq);
2640

    
2641
    /* sse/mmx moves */
2642
    CVT_OP_XMM2MMX(movdq2q);
2643
    CVT_OP_MMX2XMM(movq2dq);
2644

    
2645
    /* int to float */
2646
    a.l[0] = -6;
2647
    a.l[1] = 2;
2648
    a.l[2] = 100;
2649
    a.l[3] = -60000;
2650
    CVT_OP_MMX2XMM(cvtpi2ps);
2651
    CVT_OP_MMX2XMM(cvtpi2pd);
2652
    CVT_OP_REG2XMM(cvtsi2ss);
2653
    CVT_OP_REG2XMM(cvtsi2sd);
2654
    CVT_OP_XMM(cvtdq2ps);
2655
    CVT_OP_XMM(cvtdq2pd);
2656

    
2657
    /* XXX: test PNI insns */
2658
#if 0
2659
    SSE_OP2(movshdup);
2660
#endif
2661
    asm volatile ("emms");
2662
}
2663

    
2664
#endif
2665

    
2666
#define TEST_CONV_RAX(op)\
2667
{\
2668
    unsigned long a, r;\
2669
    a = i2l(0x8234a6f8);\
2670
    r = a;\
2671
    asm volatile(#op : "=a" (r) : "0" (r));\
2672
    printf("%-10s A=" FMTLX " R=" FMTLX "\n", #op, a, r);\
2673
}
2674

    
2675
#define TEST_CONV_RAX_RDX(op)\
2676
{\
2677
    unsigned long a, d, r, rh;                   \
2678
    a = i2l(0x8234a6f8);\
2679
    d = i2l(0x8345a1f2);\
2680
    r = a;\
2681
    rh = d;\
2682
    asm volatile(#op : "=a" (r), "=d" (rh) : "0" (r), "1" (rh));   \
2683
    printf("%-10s A=" FMTLX " R=" FMTLX ":" FMTLX "\n", #op, a, r, rh);  \
2684
}
2685

    
2686
void test_conv(void)
2687
{
2688
    TEST_CONV_RAX(cbw);
2689
    TEST_CONV_RAX(cwde);
2690
#if defined(__x86_64__)
2691
    TEST_CONV_RAX(cdqe);
2692
#endif
2693

    
2694
    TEST_CONV_RAX_RDX(cwd);
2695
    TEST_CONV_RAX_RDX(cdq);
2696
#if defined(__x86_64__)
2697
    TEST_CONV_RAX_RDX(cqo);
2698
#endif
2699

    
2700
    {
2701
        unsigned long a, r;
2702
        a = i2l(0x12345678);
2703
        asm volatile("bswapl %k0" : "=r" (r) : "0" (a));
2704
        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapl", a, r);
2705
    }
2706
#if defined(__x86_64__)
2707
    {
2708
        unsigned long a, r;
2709
        a = i2l(0x12345678);
2710
        asm volatile("bswapq %0" : "=r" (r) : "0" (a));
2711
        printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapq", a, r);
2712
    }
2713
#endif
2714
}
2715

    
2716
extern void *__start_initcall;
2717
extern void *__stop_initcall;
2718

    
2719

    
2720
int main(int argc, char **argv)
2721
{
2722
    void **ptr;
2723
    void (*func)(void);
2724

    
2725
    ptr = &__start_initcall;
2726
    while (ptr != &__stop_initcall) {
2727
        func = *ptr++;
2728
        func();
2729
    }
2730
    test_bsx();
2731
    test_mul();
2732
    test_jcc();
2733
    test_loop();
2734
    test_floats();
2735
#if !defined(__x86_64__)
2736
    test_bcd();
2737
#endif
2738
    test_xchg();
2739
    test_string();
2740
    test_misc();
2741
    test_lea();
2742
#ifdef TEST_SEGS
2743
    test_segs();
2744
    test_code16();
2745
#endif
2746
#ifdef TEST_VM86
2747
    test_vm86();
2748
#endif
2749
#if !defined(__x86_64__)
2750
    test_exceptions();
2751
    test_self_modifying_code();
2752
    test_single_step();
2753
#endif
2754
    test_enter();
2755
    test_conv();
2756
#ifdef TEST_SSE
2757
    test_sse();
2758
    test_fxsave();
2759
#endif
2760
    return 0;
2761
}