Statistics
| Branch: | Revision:

root / hw / i386 / pc.c @ 53a89e26

History | View | Annotate | Download (35 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/i386/pc.h"
26
#include "hw/char/serial.h"
27
#include "hw/i386/apic.h"
28
#include "hw/block/fdc.h"
29
#include "hw/ide.h"
30
#include "hw/pci/pci.h"
31
#include "monitor/monitor.h"
32
#include "hw/nvram/fw_cfg.h"
33
#include "hw/timer/hpet.h"
34
#include "hw/i386/smbios.h"
35
#include "hw/loader.h"
36
#include "elf.h"
37
#include "multiboot.h"
38
#include "hw/timer/mc146818rtc.h"
39
#include "hw/timer/i8254.h"
40
#include "hw/audio/pcspk.h"
41
#include "hw/pci/msi.h"
42
#include "hw/sysbus.h"
43
#include "sysemu/sysemu.h"
44
#include "sysemu/kvm.h"
45
#include "kvm_i386.h"
46
#include "hw/xen/xen.h"
47
#include "sysemu/blockdev.h"
48
#include "hw/block/block.h"
49
#include "ui/qemu-spice.h"
50
#include "exec/memory.h"
51
#include "exec/address-spaces.h"
52
#include "sysemu/arch_init.h"
53
#include "qemu/bitmap.h"
54
#include "qemu/config-file.h"
55
#include "hw/acpi/acpi.h"
56
#include "hw/cpu/icc_bus.h"
57

    
58
/* debug PC/ISA interrupts */
59
//#define DEBUG_IRQ
60

    
61
#ifdef DEBUG_IRQ
62
#define DPRINTF(fmt, ...)                                       \
63
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
64
#else
65
#define DPRINTF(fmt, ...)
66
#endif
67

    
68
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
69
#define ACPI_DATA_SIZE       0x10000
70
#define BIOS_CFG_IOPORT 0x510
71
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
72
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
73
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
74
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
75
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
76

    
77
#define IO_APIC_DEFAULT_ADDRESS 0xfec00000
78

    
79
#define E820_NR_ENTRIES                16
80

    
81
struct e820_entry {
82
    uint64_t address;
83
    uint64_t length;
84
    uint32_t type;
85
} QEMU_PACKED __attribute((__aligned__(4)));
86

    
87
struct e820_table {
88
    uint32_t count;
89
    struct e820_entry entry[E820_NR_ENTRIES];
90
} QEMU_PACKED __attribute((__aligned__(4)));
91

    
92
static struct e820_table e820_table;
93
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
94

    
95
void gsi_handler(void *opaque, int n, int level)
96
{
97
    GSIState *s = opaque;
98

    
99
    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
100
    if (n < ISA_NUM_IRQS) {
101
        qemu_set_irq(s->i8259_irq[n], level);
102
    }
103
    qemu_set_irq(s->ioapic_irq[n], level);
104
}
105

    
106
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
107
                           unsigned size)
108
{
109
}
110

    
111
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
112
{
113
    return 0xffffffffffffffffULL;
114
}
115

    
116
/* MSDOS compatibility mode FPU exception support */
117
static qemu_irq ferr_irq;
118

    
119
void pc_register_ferr_irq(qemu_irq irq)
120
{
121
    ferr_irq = irq;
122
}
123

    
124
/* XXX: add IGNNE support */
125
void cpu_set_ferr(CPUX86State *s)
126
{
127
    qemu_irq_raise(ferr_irq);
128
}
129

    
130
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
131
                           unsigned size)
132
{
133
    qemu_irq_lower(ferr_irq);
134
}
135

    
136
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
137
{
138
    return 0xffffffffffffffffULL;
139
}
140

    
141
/* TSC handling */
142
uint64_t cpu_get_tsc(CPUX86State *env)
143
{
144
    return cpu_get_ticks();
145
}
146

    
147
/* SMM support */
148

    
149
static cpu_set_smm_t smm_set;
150
static void *smm_arg;
151

    
152
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
153
{
154
    assert(smm_set == NULL);
155
    assert(smm_arg == NULL);
156
    smm_set = callback;
157
    smm_arg = arg;
158
}
159

    
160
void cpu_smm_update(CPUX86State *env)
161
{
162
    if (smm_set && smm_arg && env == first_cpu)
163
        smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
164
}
165

    
166

    
167
/* IRQ handling */
168
int cpu_get_pic_interrupt(CPUX86State *env)
169
{
170
    int intno;
171

    
172
    intno = apic_get_interrupt(env->apic_state);
173
    if (intno >= 0) {
174
        return intno;
175
    }
176
    /* read the irq from the PIC */
177
    if (!apic_accept_pic_intr(env->apic_state)) {
178
        return -1;
179
    }
180

    
181
    intno = pic_read_irq(isa_pic);
182
    return intno;
183
}
184

    
185
static void pic_irq_request(void *opaque, int irq, int level)
186
{
187
    CPUX86State *env = first_cpu;
188

    
189
    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
190
    if (env->apic_state) {
191
        while (env) {
192
            if (apic_accept_pic_intr(env->apic_state)) {
193
                apic_deliver_pic_intr(env->apic_state, level);
194
            }
195
            env = env->next_cpu;
196
        }
197
    } else {
198
        CPUState *cs = CPU(x86_env_get_cpu(env));
199
        if (level) {
200
            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201
        } else {
202
            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203
        }
204
    }
205
}
206

    
207
/* PC cmos mappings */
208

    
209
#define REG_EQUIPMENT_BYTE          0x14
210

    
211
static int cmos_get_fd_drive_type(FDriveType fd0)
212
{
213
    int val;
214

    
215
    switch (fd0) {
216
    case FDRIVE_DRV_144:
217
        /* 1.44 Mb 3"5 drive */
218
        val = 4;
219
        break;
220
    case FDRIVE_DRV_288:
221
        /* 2.88 Mb 3"5 drive */
222
        val = 5;
223
        break;
224
    case FDRIVE_DRV_120:
225
        /* 1.2 Mb 5"5 drive */
226
        val = 2;
227
        break;
228
    case FDRIVE_DRV_NONE:
229
    default:
230
        val = 0;
231
        break;
232
    }
233
    return val;
234
}
235

    
236
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237
                         int16_t cylinders, int8_t heads, int8_t sectors)
238
{
239
    rtc_set_memory(s, type_ofs, 47);
240
    rtc_set_memory(s, info_ofs, cylinders);
241
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242
    rtc_set_memory(s, info_ofs + 2, heads);
243
    rtc_set_memory(s, info_ofs + 3, 0xff);
244
    rtc_set_memory(s, info_ofs + 4, 0xff);
245
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246
    rtc_set_memory(s, info_ofs + 6, cylinders);
247
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248
    rtc_set_memory(s, info_ofs + 8, sectors);
249
}
250

    
251
/* convert boot_device letter to something recognizable by the bios */
252
static int boot_device2nibble(char boot_device)
253
{
254
    switch(boot_device) {
255
    case 'a':
256
    case 'b':
257
        return 0x01; /* floppy boot */
258
    case 'c':
259
        return 0x02; /* hard drive boot */
260
    case 'd':
261
        return 0x03; /* CD-ROM boot */
262
    case 'n':
263
        return 0x04; /* Network boot */
264
    }
265
    return 0;
266
}
267

    
268
static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
269
{
270
#define PC_MAX_BOOT_DEVICES 3
271
    int nbds, bds[3] = { 0, };
272
    int i;
273

    
274
    nbds = strlen(boot_device);
275
    if (nbds > PC_MAX_BOOT_DEVICES) {
276
        error_report("Too many boot devices for PC");
277
        return(1);
278
    }
279
    for (i = 0; i < nbds; i++) {
280
        bds[i] = boot_device2nibble(boot_device[i]);
281
        if (bds[i] == 0) {
282
            error_report("Invalid boot device for PC: '%c'",
283
                         boot_device[i]);
284
            return(1);
285
        }
286
    }
287
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289
    return(0);
290
}
291

    
292
static int pc_boot_set(void *opaque, const char *boot_device)
293
{
294
    return set_boot_dev(opaque, boot_device, 0);
295
}
296

    
297
typedef struct pc_cmos_init_late_arg {
298
    ISADevice *rtc_state;
299
    BusState *idebus[2];
300
} pc_cmos_init_late_arg;
301

    
302
static void pc_cmos_init_late(void *opaque)
303
{
304
    pc_cmos_init_late_arg *arg = opaque;
305
    ISADevice *s = arg->rtc_state;
306
    int16_t cylinders;
307
    int8_t heads, sectors;
308
    int val;
309
    int i, trans;
310

    
311
    val = 0;
312
    if (ide_get_geometry(arg->idebus[0], 0,
313
                         &cylinders, &heads, &sectors) >= 0) {
314
        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
315
        val |= 0xf0;
316
    }
317
    if (ide_get_geometry(arg->idebus[0], 1,
318
                         &cylinders, &heads, &sectors) >= 0) {
319
        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
320
        val |= 0x0f;
321
    }
322
    rtc_set_memory(s, 0x12, val);
323

    
324
    val = 0;
325
    for (i = 0; i < 4; i++) {
326
        /* NOTE: ide_get_geometry() returns the physical
327
           geometry.  It is always such that: 1 <= sects <= 63, 1
328
           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
329
           geometry can be different if a translation is done. */
330
        if (ide_get_geometry(arg->idebus[i / 2], i % 2,
331
                             &cylinders, &heads, &sectors) >= 0) {
332
            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
333
            assert((trans & ~3) == 0);
334
            val |= trans << (i * 2);
335
        }
336
    }
337
    rtc_set_memory(s, 0x39, val);
338

    
339
    qemu_unregister_reset(pc_cmos_init_late, opaque);
340
}
341

    
342
typedef struct RTCCPUHotplugArg {
343
    Notifier cpu_added_notifier;
344
    ISADevice *rtc_state;
345
} RTCCPUHotplugArg;
346

    
347
static void rtc_notify_cpu_added(Notifier *notifier, void *data)
348
{
349
    RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
350
                                         cpu_added_notifier);
351
    ISADevice *s = arg->rtc_state;
352

    
353
    /* increment the number of CPUs */
354
    rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
355
}
356

    
357
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
358
                  const char *boot_device,
359
                  ISADevice *floppy, BusState *idebus0, BusState *idebus1,
360
                  ISADevice *s)
361
{
362
    int val, nb, i;
363
    FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
364
    static pc_cmos_init_late_arg arg;
365
    static RTCCPUHotplugArg cpu_hotplug_cb;
366

    
367
    /* various important CMOS locations needed by PC/Bochs bios */
368

    
369
    /* memory size */
370
    /* base memory (first MiB) */
371
    val = MIN(ram_size / 1024, 640);
372
    rtc_set_memory(s, 0x15, val);
373
    rtc_set_memory(s, 0x16, val >> 8);
374
    /* extended memory (next 64MiB) */
375
    if (ram_size > 1024 * 1024) {
376
        val = (ram_size - 1024 * 1024) / 1024;
377
    } else {
378
        val = 0;
379
    }
380
    if (val > 65535)
381
        val = 65535;
382
    rtc_set_memory(s, 0x17, val);
383
    rtc_set_memory(s, 0x18, val >> 8);
384
    rtc_set_memory(s, 0x30, val);
385
    rtc_set_memory(s, 0x31, val >> 8);
386
    /* memory between 16MiB and 4GiB */
387
    if (ram_size > 16 * 1024 * 1024) {
388
        val = (ram_size - 16 * 1024 * 1024) / 65536;
389
    } else {
390
        val = 0;
391
    }
392
    if (val > 65535)
393
        val = 65535;
394
    rtc_set_memory(s, 0x34, val);
395
    rtc_set_memory(s, 0x35, val >> 8);
396
    /* memory above 4GiB */
397
    val = above_4g_mem_size / 65536;
398
    rtc_set_memory(s, 0x5b, val);
399
    rtc_set_memory(s, 0x5c, val >> 8);
400
    rtc_set_memory(s, 0x5d, val >> 16);
401

    
402
    /* set the number of CPU */
403
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
404
    /* init CPU hotplug notifier */
405
    cpu_hotplug_cb.rtc_state = s;
406
    cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
407
    qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
408

    
409
    /* set boot devices, and disable floppy signature check if requested */
410
    if (set_boot_dev(s, boot_device, fd_bootchk)) {
411
        exit(1);
412
    }
413

    
414
    /* floppy type */
415
    if (floppy) {
416
        for (i = 0; i < 2; i++) {
417
            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
418
        }
419
    }
420
    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
421
        cmos_get_fd_drive_type(fd_type[1]);
422
    rtc_set_memory(s, 0x10, val);
423

    
424
    val = 0;
425
    nb = 0;
426
    if (fd_type[0] < FDRIVE_DRV_NONE) {
427
        nb++;
428
    }
429
    if (fd_type[1] < FDRIVE_DRV_NONE) {
430
        nb++;
431
    }
432
    switch (nb) {
433
    case 0:
434
        break;
435
    case 1:
436
        val |= 0x01; /* 1 drive, ready for boot */
437
        break;
438
    case 2:
439
        val |= 0x41; /* 2 drives, ready for boot */
440
        break;
441
    }
442
    val |= 0x02; /* FPU is there */
443
    val |= 0x04; /* PS/2 mouse installed */
444
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
445

    
446
    /* hard drives */
447
    arg.rtc_state = s;
448
    arg.idebus[0] = idebus0;
449
    arg.idebus[1] = idebus1;
450
    qemu_register_reset(pc_cmos_init_late, &arg);
451
}
452

    
453
#define TYPE_PORT92 "port92"
454
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
455

    
456
/* port 92 stuff: could be split off */
457
typedef struct Port92State {
458
    ISADevice parent_obj;
459

    
460
    MemoryRegion io;
461
    uint8_t outport;
462
    qemu_irq *a20_out;
463
} Port92State;
464

    
465
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
466
                         unsigned size)
467
{
468
    Port92State *s = opaque;
469

    
470
    DPRINTF("port92: write 0x%02x\n", val);
471
    s->outport = val;
472
    qemu_set_irq(*s->a20_out, (val >> 1) & 1);
473
    if (val & 1) {
474
        qemu_system_reset_request();
475
    }
476
}
477

    
478
static uint64_t port92_read(void *opaque, hwaddr addr,
479
                            unsigned size)
480
{
481
    Port92State *s = opaque;
482
    uint32_t ret;
483

    
484
    ret = s->outport;
485
    DPRINTF("port92: read 0x%02x\n", ret);
486
    return ret;
487
}
488

    
489
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
490
{
491
    Port92State *s = PORT92(dev);
492

    
493
    s->a20_out = a20_out;
494
}
495

    
496
static const VMStateDescription vmstate_port92_isa = {
497
    .name = "port92",
498
    .version_id = 1,
499
    .minimum_version_id = 1,
500
    .minimum_version_id_old = 1,
501
    .fields      = (VMStateField []) {
502
        VMSTATE_UINT8(outport, Port92State),
503
        VMSTATE_END_OF_LIST()
504
    }
505
};
506

    
507
static void port92_reset(DeviceState *d)
508
{
509
    Port92State *s = PORT92(d);
510

    
511
    s->outport &= ~1;
512
}
513

    
514
static const MemoryRegionOps port92_ops = {
515
    .read = port92_read,
516
    .write = port92_write,
517
    .impl = {
518
        .min_access_size = 1,
519
        .max_access_size = 1,
520
    },
521
    .endianness = DEVICE_LITTLE_ENDIAN,
522
};
523

    
524
static int port92_initfn(ISADevice *dev)
525
{
526
    Port92State *s = PORT92(dev);
527

    
528
    memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
529
    isa_register_ioport(dev, &s->io, 0x92);
530

    
531
    s->outport = 0;
532
    return 0;
533
}
534

    
535
static void port92_class_initfn(ObjectClass *klass, void *data)
536
{
537
    DeviceClass *dc = DEVICE_CLASS(klass);
538
    ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
539
    ic->init = port92_initfn;
540
    dc->no_user = 1;
541
    dc->reset = port92_reset;
542
    dc->vmsd = &vmstate_port92_isa;
543
}
544

    
545
static const TypeInfo port92_info = {
546
    .name          = TYPE_PORT92,
547
    .parent        = TYPE_ISA_DEVICE,
548
    .instance_size = sizeof(Port92State),
549
    .class_init    = port92_class_initfn,
550
};
551

    
552
static void port92_register_types(void)
553
{
554
    type_register_static(&port92_info);
555
}
556

    
557
type_init(port92_register_types)
558

    
559
static void handle_a20_line_change(void *opaque, int irq, int level)
560
{
561
    X86CPU *cpu = opaque;
562

    
563
    /* XXX: send to all CPUs ? */
564
    /* XXX: add logic to handle multiple A20 line sources */
565
    x86_cpu_set_a20(cpu, level);
566
}
567

    
568
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
569
{
570
    int index = le32_to_cpu(e820_table.count);
571
    struct e820_entry *entry;
572

    
573
    if (index >= E820_NR_ENTRIES)
574
        return -EBUSY;
575
    entry = &e820_table.entry[index++];
576

    
577
    entry->address = cpu_to_le64(address);
578
    entry->length = cpu_to_le64(length);
579
    entry->type = cpu_to_le32(type);
580

    
581
    e820_table.count = cpu_to_le32(index);
582
    return index;
583
}
584

    
585
/* Calculates the limit to CPU APIC ID values
586
 *
587
 * This function returns the limit for the APIC ID value, so that all
588
 * CPU APIC IDs are < pc_apic_id_limit().
589
 *
590
 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
591
 */
592
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
593
{
594
    return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
595
}
596

    
597
static void *bochs_bios_init(void)
598
{
599
    void *fw_cfg;
600
    uint8_t *smbios_table;
601
    size_t smbios_len;
602
    uint64_t *numa_fw_cfg;
603
    int i, j;
604
    unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
605

    
606
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
607
    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
608
     *
609
     * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
610
     * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
611
     * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
612
     * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
613
     * may see".
614
     *
615
     * So, this means we must not use max_cpus, here, but the maximum possible
616
     * APIC ID value, plus one.
617
     *
618
     * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
619
     *     the APIC ID, not the "CPU index"
620
     */
621
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
622
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
623
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
624
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
625
                     acpi_tables, acpi_tables_len);
626
    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
627

    
628
    smbios_table = smbios_get_table(&smbios_len);
629
    if (smbios_table)
630
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
631
                         smbios_table, smbios_len);
632
    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
633
                     &e820_table, sizeof(e820_table));
634

    
635
    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
636
    /* allocate memory for the NUMA channel: one (64bit) word for the number
637
     * of nodes, one word for each VCPU->node and one word for each node to
638
     * hold the amount of memory.
639
     */
640
    numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
641
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
642
    for (i = 0; i < max_cpus; i++) {
643
        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
644
        assert(apic_id < apic_id_limit);
645
        for (j = 0; j < nb_numa_nodes; j++) {
646
            if (test_bit(i, node_cpumask[j])) {
647
                numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
648
                break;
649
            }
650
        }
651
    }
652
    for (i = 0; i < nb_numa_nodes; i++) {
653
        numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
654
    }
655
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
656
                     (1 + apic_id_limit + nb_numa_nodes) *
657
                     sizeof(*numa_fw_cfg));
658

    
659
    return fw_cfg;
660
}
661

    
662
static long get_file_size(FILE *f)
663
{
664
    long where, size;
665

    
666
    /* XXX: on Unix systems, using fstat() probably makes more sense */
667

    
668
    where = ftell(f);
669
    fseek(f, 0, SEEK_END);
670
    size = ftell(f);
671
    fseek(f, where, SEEK_SET);
672

    
673
    return size;
674
}
675

    
676
static void load_linux(void *fw_cfg,
677
                       const char *kernel_filename,
678
                       const char *initrd_filename,
679
                       const char *kernel_cmdline,
680
                       hwaddr max_ram_size)
681
{
682
    uint16_t protocol;
683
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
684
    uint32_t initrd_max;
685
    uint8_t header[8192], *setup, *kernel, *initrd_data;
686
    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
687
    FILE *f;
688
    char *vmode;
689

    
690
    /* Align to 16 bytes as a paranoia measure */
691
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
692

    
693
    /* load the kernel header */
694
    f = fopen(kernel_filename, "rb");
695
    if (!f || !(kernel_size = get_file_size(f)) ||
696
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
697
        MIN(ARRAY_SIZE(header), kernel_size)) {
698
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
699
                kernel_filename, strerror(errno));
700
        exit(1);
701
    }
702

    
703
    /* kernel protocol version */
704
#if 0
705
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
706
#endif
707
    if (ldl_p(header+0x202) == 0x53726448) {
708
        protocol = lduw_p(header+0x206);
709
    } else {
710
        /* This looks like a multiboot kernel. If it is, let's stop
711
           treating it like a Linux kernel. */
712
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
713
                           kernel_cmdline, kernel_size, header)) {
714
            return;
715
        }
716
        protocol = 0;
717
    }
718

    
719
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
720
        /* Low kernel */
721
        real_addr    = 0x90000;
722
        cmdline_addr = 0x9a000 - cmdline_size;
723
        prot_addr    = 0x10000;
724
    } else if (protocol < 0x202) {
725
        /* High but ancient kernel */
726
        real_addr    = 0x90000;
727
        cmdline_addr = 0x9a000 - cmdline_size;
728
        prot_addr    = 0x100000;
729
    } else {
730
        /* High and recent kernel */
731
        real_addr    = 0x10000;
732
        cmdline_addr = 0x20000;
733
        prot_addr    = 0x100000;
734
    }
735

    
736
#if 0
737
    fprintf(stderr,
738
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
739
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
740
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
741
            real_addr,
742
            cmdline_addr,
743
            prot_addr);
744
#endif
745

    
746
    /* highest address for loading the initrd */
747
    if (protocol >= 0x203) {
748
        initrd_max = ldl_p(header+0x22c);
749
    } else {
750
        initrd_max = 0x37ffffff;
751
    }
752

    
753
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
754
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
755

    
756
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
757
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
758
    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
759

    
760
    if (protocol >= 0x202) {
761
        stl_p(header+0x228, cmdline_addr);
762
    } else {
763
        stw_p(header+0x20, 0xA33F);
764
        stw_p(header+0x22, cmdline_addr-real_addr);
765
    }
766

    
767
    /* handle vga= parameter */
768
    vmode = strstr(kernel_cmdline, "vga=");
769
    if (vmode) {
770
        unsigned int video_mode;
771
        /* skip "vga=" */
772
        vmode += 4;
773
        if (!strncmp(vmode, "normal", 6)) {
774
            video_mode = 0xffff;
775
        } else if (!strncmp(vmode, "ext", 3)) {
776
            video_mode = 0xfffe;
777
        } else if (!strncmp(vmode, "ask", 3)) {
778
            video_mode = 0xfffd;
779
        } else {
780
            video_mode = strtol(vmode, NULL, 0);
781
        }
782
        stw_p(header+0x1fa, video_mode);
783
    }
784

    
785
    /* loader type */
786
    /* High nybble = B reserved for QEMU; low nybble is revision number.
787
       If this code is substantially changed, you may want to consider
788
       incrementing the revision. */
789
    if (protocol >= 0x200) {
790
        header[0x210] = 0xB0;
791
    }
792
    /* heap */
793
    if (protocol >= 0x201) {
794
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
795
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
796
    }
797

    
798
    /* load initrd */
799
    if (initrd_filename) {
800
        if (protocol < 0x200) {
801
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
802
            exit(1);
803
        }
804

    
805
        initrd_size = get_image_size(initrd_filename);
806
        if (initrd_size < 0) {
807
            fprintf(stderr, "qemu: error reading initrd %s\n",
808
                    initrd_filename);
809
            exit(1);
810
        }
811

    
812
        initrd_addr = (initrd_max-initrd_size) & ~4095;
813

    
814
        initrd_data = g_malloc(initrd_size);
815
        load_image(initrd_filename, initrd_data);
816

    
817
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
818
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
819
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
820

    
821
        stl_p(header+0x218, initrd_addr);
822
        stl_p(header+0x21c, initrd_size);
823
    }
824

    
825
    /* load kernel and setup */
826
    setup_size = header[0x1f1];
827
    if (setup_size == 0) {
828
        setup_size = 4;
829
    }
830
    setup_size = (setup_size+1)*512;
831
    kernel_size -= setup_size;
832

    
833
    setup  = g_malloc(setup_size);
834
    kernel = g_malloc(kernel_size);
835
    fseek(f, 0, SEEK_SET);
836
    if (fread(setup, 1, setup_size, f) != setup_size) {
837
        fprintf(stderr, "fread() failed\n");
838
        exit(1);
839
    }
840
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
841
        fprintf(stderr, "fread() failed\n");
842
        exit(1);
843
    }
844
    fclose(f);
845
    memcpy(setup, header, MIN(sizeof(header), setup_size));
846

    
847
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
848
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
849
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
850

    
851
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
852
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
853
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
854

    
855
    option_rom[nb_option_roms].name = "linuxboot.bin";
856
    option_rom[nb_option_roms].bootindex = 0;
857
    nb_option_roms++;
858
}
859

    
860
#define NE2000_NB_MAX 6
861

    
862
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
863
                                              0x280, 0x380 };
864
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
865

    
866
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
867
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
868

    
869
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
870
{
871
    static int nb_ne2k = 0;
872

    
873
    if (nb_ne2k == NE2000_NB_MAX)
874
        return;
875
    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
876
                    ne2000_irq[nb_ne2k], nd);
877
    nb_ne2k++;
878
}
879

    
880
DeviceState *cpu_get_current_apic(void)
881
{
882
    if (cpu_single_env) {
883
        return cpu_single_env->apic_state;
884
    } else {
885
        return NULL;
886
    }
887
}
888

    
889
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
890
{
891
    X86CPU *cpu = opaque;
892

    
893
    if (level) {
894
        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
895
    }
896
}
897

    
898
static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
899
                          DeviceState *icc_bridge, Error **errp)
900
{
901
    X86CPU *cpu;
902
    Error *local_err = NULL;
903

    
904
    cpu = cpu_x86_create(cpu_model, icc_bridge, errp);
905
    if (!cpu) {
906
        return cpu;
907
    }
908

    
909
    object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
910
    object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
911

    
912
    if (local_err) {
913
        if (cpu != NULL) {
914
            object_unref(OBJECT(cpu));
915
            cpu = NULL;
916
        }
917
        error_propagate(errp, local_err);
918
    }
919
    return cpu;
920
}
921

    
922
void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
923
{
924
    int i;
925
    X86CPU *cpu = NULL;
926
    Error *error = NULL;
927

    
928
    /* init CPUs */
929
    if (cpu_model == NULL) {
930
#ifdef TARGET_X86_64
931
        cpu_model = "qemu64";
932
#else
933
        cpu_model = "qemu32";
934
#endif
935
    }
936

    
937
    for (i = 0; i < smp_cpus; i++) {
938
        cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
939
                         icc_bridge, &error);
940
        if (error) {
941
            fprintf(stderr, "%s\n", error_get_pretty(error));
942
            error_free(error);
943
            exit(1);
944
        }
945
    }
946

    
947
    /* map APIC MMIO area if CPU has APIC */
948
    if (cpu && cpu->env.apic_state) {
949
        /* XXX: what if the base changes? */
950
        sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
951
                                APIC_DEFAULT_ADDRESS, 0x1000);
952
    }
953
}
954

    
955
void pc_acpi_init(const char *default_dsdt)
956
{
957
    char *filename;
958

    
959
    if (acpi_tables != NULL) {
960
        /* manually set via -acpitable, leave it alone */
961
        return;
962
    }
963

    
964
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
965
    if (filename == NULL) {
966
        fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
967
    } else {
968
        char *arg;
969
        QemuOpts *opts;
970
        Error *err = NULL;
971

    
972
        arg = g_strdup_printf("file=%s", filename);
973

    
974
        /* creates a deep copy of "arg" */
975
        opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
976
        g_assert(opts != NULL);
977

    
978
        acpi_table_add(opts, &err);
979
        if (err) {
980
            fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
981
                    error_get_pretty(err));
982
            error_free(err);
983
        }
984
        g_free(arg);
985
        g_free(filename);
986
    }
987
}
988

    
989
void *pc_memory_init(MemoryRegion *system_memory,
990
                    const char *kernel_filename,
991
                    const char *kernel_cmdline,
992
                    const char *initrd_filename,
993
                    ram_addr_t below_4g_mem_size,
994
                    ram_addr_t above_4g_mem_size,
995
                    MemoryRegion *rom_memory,
996
                    MemoryRegion **ram_memory)
997
{
998
    int linux_boot, i;
999
    MemoryRegion *ram, *option_rom_mr;
1000
    MemoryRegion *ram_below_4g, *ram_above_4g;
1001
    void *fw_cfg;
1002

    
1003
    linux_boot = (kernel_filename != NULL);
1004

    
1005
    /* Allocate RAM.  We allocate it as a single memory region and use
1006
     * aliases to address portions of it, mostly for backwards compatibility
1007
     * with older qemus that used qemu_ram_alloc().
1008
     */
1009
    ram = g_malloc(sizeof(*ram));
1010
    memory_region_init_ram(ram, "pc.ram",
1011
                           below_4g_mem_size + above_4g_mem_size);
1012
    vmstate_register_ram_global(ram);
1013
    *ram_memory = ram;
1014
    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1015
    memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
1016
                             0, below_4g_mem_size);
1017
    memory_region_add_subregion(system_memory, 0, ram_below_4g);
1018
    if (above_4g_mem_size > 0) {
1019
        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1020
        memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
1021
                                 below_4g_mem_size, above_4g_mem_size);
1022
        memory_region_add_subregion(system_memory, 0x100000000ULL,
1023
                                    ram_above_4g);
1024
    }
1025

    
1026

    
1027
    /* Initialize PC system firmware */
1028
    pc_system_firmware_init(rom_memory);
1029

    
1030
    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1031
    memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
1032
    vmstate_register_ram_global(option_rom_mr);
1033
    memory_region_add_subregion_overlap(rom_memory,
1034
                                        PC_ROM_MIN_VGA,
1035
                                        option_rom_mr,
1036
                                        1);
1037

    
1038
    fw_cfg = bochs_bios_init();
1039
    rom_set_fw(fw_cfg);
1040

    
1041
    if (linux_boot) {
1042
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1043
    }
1044

    
1045
    for (i = 0; i < nb_option_roms; i++) {
1046
        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1047
    }
1048
    return fw_cfg;
1049
}
1050

    
1051
qemu_irq *pc_allocate_cpu_irq(void)
1052
{
1053
    return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1054
}
1055

    
1056
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1057
{
1058
    DeviceState *dev = NULL;
1059

    
1060
    if (pci_bus) {
1061
        PCIDevice *pcidev = pci_vga_init(pci_bus);
1062
        dev = pcidev ? &pcidev->qdev : NULL;
1063
    } else if (isa_bus) {
1064
        ISADevice *isadev = isa_vga_init(isa_bus);
1065
        dev = isadev ? &isadev->qdev : NULL;
1066
    }
1067
    return dev;
1068
}
1069

    
1070
static void cpu_request_exit(void *opaque, int irq, int level)
1071
{
1072
    CPUX86State *env = cpu_single_env;
1073

    
1074
    if (env && level) {
1075
        cpu_exit(env);
1076
    }
1077
}
1078

    
1079
static const MemoryRegionOps ioport80_io_ops = {
1080
    .write = ioport80_write,
1081
    .read = ioport80_read,
1082
    .endianness = DEVICE_NATIVE_ENDIAN,
1083
    .impl = {
1084
        .min_access_size = 1,
1085
        .max_access_size = 1,
1086
    },
1087
};
1088

    
1089
static const MemoryRegionOps ioportF0_io_ops = {
1090
    .write = ioportF0_write,
1091
    .read = ioportF0_read,
1092
    .endianness = DEVICE_NATIVE_ENDIAN,
1093
    .impl = {
1094
        .min_access_size = 1,
1095
        .max_access_size = 1,
1096
    },
1097
};
1098

    
1099
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1100
                          ISADevice **rtc_state,
1101
                          ISADevice **floppy,
1102
                          bool no_vmport)
1103
{
1104
    int i;
1105
    DriveInfo *fd[MAX_FD];
1106
    DeviceState *hpet = NULL;
1107
    int pit_isa_irq = 0;
1108
    qemu_irq pit_alt_irq = NULL;
1109
    qemu_irq rtc_irq = NULL;
1110
    qemu_irq *a20_line;
1111
    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1112
    qemu_irq *cpu_exit_irq;
1113
    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1114
    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1115

    
1116
    memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1117
    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1118

    
1119
    memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1120
    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1121

    
1122
    /*
1123
     * Check if an HPET shall be created.
1124
     *
1125
     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1126
     * when the HPET wants to take over. Thus we have to disable the latter.
1127
     */
1128
    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1129
        hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1130

    
1131
        if (hpet) {
1132
            for (i = 0; i < GSI_NUM_PINS; i++) {
1133
                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1134
            }
1135
            pit_isa_irq = -1;
1136
            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1137
            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1138
        }
1139
    }
1140
    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1141

    
1142
    qemu_register_boot_set(pc_boot_set, *rtc_state);
1143

    
1144
    if (!xen_enabled()) {
1145
        if (kvm_irqchip_in_kernel()) {
1146
            pit = kvm_pit_init(isa_bus, 0x40);
1147
        } else {
1148
            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1149
        }
1150
        if (hpet) {
1151
            /* connect PIT to output control line of the HPET */
1152
            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1153
        }
1154
        pcspk_init(isa_bus, pit);
1155
    }
1156

    
1157
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1158
        if (serial_hds[i]) {
1159
            serial_isa_init(isa_bus, i, serial_hds[i]);
1160
        }
1161
    }
1162

    
1163
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1164
        if (parallel_hds[i]) {
1165
            parallel_init(isa_bus, i, parallel_hds[i]);
1166
        }
1167
    }
1168

    
1169
    a20_line = qemu_allocate_irqs(handle_a20_line_change,
1170
                                  x86_env_get_cpu(first_cpu), 2);
1171
    i8042 = isa_create_simple(isa_bus, "i8042");
1172
    i8042_setup_a20_line(i8042, &a20_line[0]);
1173
    if (!no_vmport) {
1174
        vmport_init(isa_bus);
1175
        vmmouse = isa_try_create(isa_bus, "vmmouse");
1176
    } else {
1177
        vmmouse = NULL;
1178
    }
1179
    if (vmmouse) {
1180
        qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1181
        qdev_init_nofail(&vmmouse->qdev);
1182
    }
1183
    port92 = isa_create_simple(isa_bus, "port92");
1184
    port92_init(port92, &a20_line[1]);
1185

    
1186
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1187
    DMA_init(0, cpu_exit_irq);
1188

    
1189
    for(i = 0; i < MAX_FD; i++) {
1190
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1191
    }
1192
    *floppy = fdctrl_init_isa(isa_bus, fd);
1193
}
1194

    
1195
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1196
{
1197
    int i;
1198

    
1199
    for (i = 0; i < nb_nics; i++) {
1200
        NICInfo *nd = &nd_table[i];
1201

    
1202
        if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1203
            pc_init_ne2k_isa(isa_bus, nd);
1204
        } else {
1205
            pci_nic_init_nofail(nd, "e1000", NULL);
1206
        }
1207
    }
1208
}
1209

    
1210
void pc_pci_device_init(PCIBus *pci_bus)
1211
{
1212
    int max_bus;
1213
    int bus;
1214

    
1215
    max_bus = drive_get_max_bus(IF_SCSI);
1216
    for (bus = 0; bus <= max_bus; bus++) {
1217
        pci_create_simple(pci_bus, -1, "lsi53c895a");
1218
    }
1219
}
1220

    
1221
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1222
{
1223
    DeviceState *dev;
1224
    SysBusDevice *d;
1225
    unsigned int i;
1226

    
1227
    if (kvm_irqchip_in_kernel()) {
1228
        dev = qdev_create(NULL, "kvm-ioapic");
1229
    } else {
1230
        dev = qdev_create(NULL, "ioapic");
1231
    }
1232
    if (parent_name) {
1233
        object_property_add_child(object_resolve_path(parent_name, NULL),
1234
                                  "ioapic", OBJECT(dev), NULL);
1235
    }
1236
    qdev_init_nofail(dev);
1237
    d = SYS_BUS_DEVICE(dev);
1238
    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1239

    
1240
    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1241
        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1242
    }
1243
}