Statistics
| Branch: | Revision:

root / hw / lance.c @ 546fa6ab

History | View | Annotate | Download (13.4 kB)

1
/*
2
 * QEMU Lance emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug LANCE card */
27
//#define DEBUG_LANCE
28

    
29
#ifndef LANCE_LOG_TX_BUFFERS
30
#define LANCE_LOG_TX_BUFFERS 4
31
#define LANCE_LOG_RX_BUFFERS 4
32
#endif
33

    
34
#define CRC_POLYNOMIAL_BE 0x04c11db7UL  /* Ethernet CRC, big endian */
35
#define CRC_POLYNOMIAL_LE 0xedb88320UL  /* Ethernet CRC, little endian */
36

    
37

    
38
#define LE_CSR0 0
39
#define LE_CSR1 1
40
#define LE_CSR2 2
41
#define LE_CSR3 3
42
#define LE_MAXREG (LE_CSR3 + 1)
43

    
44
#define LE_RDP  0
45
#define LE_RAP  1
46

    
47
#define LE_MO_PROM      0x8000  /* Enable promiscuous mode */
48

    
49
#define        LE_C0_ERR        0x8000        /* Error: set if BAB, SQE, MISS or ME is set */
50
#define        LE_C0_BABL        0x4000        /* BAB:  Babble: tx timeout. */
51
#define        LE_C0_CERR        0x2000        /* SQE:  Signal quality error */
52
#define        LE_C0_MISS        0x1000        /* MISS: Missed a packet */
53
#define        LE_C0_MERR        0x0800        /* ME:   Memory error */
54
#define        LE_C0_RINT        0x0400        /* Received interrupt */
55
#define        LE_C0_TINT        0x0200        /* Transmitter Interrupt */
56
#define        LE_C0_IDON        0x0100        /* IFIN: Init finished. */
57
#define        LE_C0_INTR        0x0080        /* Interrupt or error */
58
#define        LE_C0_INEA        0x0040        /* Interrupt enable */
59
#define        LE_C0_RXON        0x0020        /* Receiver on */
60
#define        LE_C0_TXON        0x0010        /* Transmitter on */
61
#define        LE_C0_TDMD        0x0008        /* Transmitter demand */
62
#define        LE_C0_STOP        0x0004        /* Stop the card */
63
#define        LE_C0_STRT        0x0002        /* Start the card */
64
#define        LE_C0_INIT        0x0001        /* Init the card */
65

    
66
#define        LE_C3_BSWP        0x4     /* SWAP */
67
#define        LE_C3_ACON        0x2        /* ALE Control */
68
#define        LE_C3_BCON        0x1        /* Byte control */
69

    
70
/* Receive message descriptor 1 */
71
#define LE_R1_OWN       0x80    /* Who owns the entry */
72
#define LE_R1_ERR       0x40    /* Error: if FRA, OFL, CRC or BUF is set */
73
#define LE_R1_FRA       0x20    /* FRA: Frame error */
74
#define LE_R1_OFL       0x10    /* OFL: Frame overflow */
75
#define LE_R1_CRC       0x08    /* CRC error */
76
#define LE_R1_BUF       0x04    /* BUF: Buffer error */
77
#define LE_R1_SOP       0x02    /* Start of packet */
78
#define LE_R1_EOP       0x01    /* End of packet */
79
#define LE_R1_POK       0x03    /* Packet is complete: SOP + EOP */
80

    
81
#define LE_T1_OWN       0x80    /* Lance owns the packet */
82
#define LE_T1_ERR       0x40    /* Error summary */
83
#define LE_T1_EMORE     0x10    /* Error: more than one retry needed */
84
#define LE_T1_EONE      0x08    /* Error: one retry needed */
85
#define LE_T1_EDEF      0x04    /* Error: deferred */
86
#define LE_T1_SOP       0x02    /* Start of packet */
87
#define LE_T1_EOP       0x01    /* End of packet */
88
#define LE_T1_POK        0x03        /* Packet is complete: SOP + EOP */
89

    
90
#define LE_T3_BUF       0x8000  /* Buffer error */
91
#define LE_T3_UFL       0x4000  /* Error underflow */
92
#define LE_T3_LCOL      0x1000  /* Error late collision */
93
#define LE_T3_CLOS      0x0800  /* Error carrier loss */
94
#define LE_T3_RTY       0x0400  /* Error retry */
95
#define LE_T3_TDR       0x03ff  /* Time Domain Reflectometry counter */
96

    
97
#define TX_RING_SIZE                        (1 << (LANCE_LOG_TX_BUFFERS))
98
#define TX_RING_MOD_MASK                (TX_RING_SIZE - 1)
99
#define TX_RING_LEN_BITS                ((LANCE_LOG_TX_BUFFERS) << 29)
100

    
101
#define RX_RING_SIZE                        (1 << (LANCE_LOG_RX_BUFFERS))
102
#define RX_RING_MOD_MASK                (RX_RING_SIZE - 1)
103
#define RX_RING_LEN_BITS                ((LANCE_LOG_RX_BUFFERS) << 29)
104

    
105
#define PKT_BUF_SZ                1544
106
#define RX_BUFF_SIZE            PKT_BUF_SZ
107
#define TX_BUFF_SIZE            PKT_BUF_SZ
108

    
109
struct lance_rx_desc {
110
        unsigned short rmd0;        /* low address of packet */
111
        unsigned char  rmd1_bits;   /* descriptor bits */
112
        unsigned char  rmd1_hadr;   /* high address of packet */
113
        short    length;                /* This length is 2s complement (negative)!
114
                                     * Buffer length
115
                                     */
116
        unsigned short mblength;    /* This is the actual number of bytes received */
117
};
118

    
119
struct lance_tx_desc {
120
        unsigned short tmd0;        /* low address of packet */
121
        unsigned char  tmd1_bits;   /* descriptor bits */
122
        unsigned char  tmd1_hadr;   /* high address of packet */
123
        short length;                      /* Length is 2s complement (negative)! */
124
        unsigned short misc;
125
};
126

    
127
/* The LANCE initialization block, described in databook. */
128
/* On the Sparc, this block should be on a DMA region     */
129
struct lance_init_block {
130
        unsigned short mode;                /* Pre-set mode (reg. 15) */
131
        unsigned char phys_addr[6];     /* Physical ethernet address */
132
        unsigned filter[2];                /* Multicast filter. */
133

    
134
        /* Receive and transmit ring base, along with extra bits. */
135
        unsigned short rx_ptr;                /* receive descriptor addr */
136
        unsigned short rx_len;                /* receive len and high addr */
137
        unsigned short tx_ptr;                /* transmit descriptor addr */
138
        unsigned short tx_len;                /* transmit len and high addr */
139
    
140
        /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
141
        struct lance_rx_desc brx_ring[RX_RING_SIZE];
142
        struct lance_tx_desc btx_ring[TX_RING_SIZE];
143
    
144
        char   tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
145
        char   pad[2];                        /* align rx_buf for copy_and_sum(). */
146
        char   rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
147
};
148

    
149
#define LEDMA_REGS 4
150
#if 0
151
/* Structure to describe the current status of DMA registers on the Sparc */
152
struct sparc_dma_registers {
153
    uint32_t cond_reg;        /* DMA condition register */
154
    uint32_t st_addr;        /* Start address of this transfer */
155
    uint32_t cnt;        /* How many bytes to transfer */
156
    uint32_t dma_test;        /* DMA test register */
157
};
158
#endif
159

    
160
typedef struct LEDMAState {
161
    uint32_t addr;
162
    uint32_t regs[LEDMA_REGS];
163
} LEDMAState;
164

    
165
typedef struct LANCEState {
166
    uint32_t paddr;
167
    NetDriverState *nd;
168
    uint32_t leptr;
169
    uint16_t addr;
170
    uint16_t regs[LE_MAXREG];
171
    uint8_t phys[6]; /* mac address */
172
    int irq;
173
    LEDMAState *ledma;
174
} LANCEState;
175

    
176
static unsigned int rxptr, txptr;
177

    
178
static void lance_send(void *opaque);
179

    
180
static void lance_reset(LANCEState *s)
181
{
182
    memcpy(s->phys, s->nd->macaddr, 6);
183
    rxptr = 0;
184
    txptr = 0;
185
    s->regs[LE_CSR0] = LE_C0_STOP;
186
}
187

    
188
static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
189
{
190
    LANCEState *s = opaque;
191
    uint32_t saddr;
192

    
193
    saddr = addr - s->paddr;
194
    switch (saddr >> 1) {
195
    case LE_RDP:
196
        return s->regs[s->addr];
197
    case LE_RAP:
198
        return s->addr;
199
    default:
200
        break;
201
    }
202
    return 0;
203
}
204

    
205
static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
206
{
207
    LANCEState *s = opaque;
208
    uint32_t saddr;
209
    uint16_t reg;
210

    
211
    saddr = addr - s->paddr;
212
    switch (saddr >> 1) {
213
    case LE_RDP:
214
        switch(s->addr) {
215
        case LE_CSR0:
216
            if (val & LE_C0_STOP) {
217
                s->regs[LE_CSR0] = LE_C0_STOP;
218
                break;
219
            }
220

    
221
            reg = s->regs[LE_CSR0];
222

    
223
            // 1 = clear for some bits
224
            reg &= ~(val & 0x7f00);
225

    
226
            // generated bits
227
            reg &= ~(LE_C0_ERR | LE_C0_INTR);
228
            if (reg & 0x7100)
229
                reg |= LE_C0_ERR;
230
            if (reg & 0x7f00)
231
                reg |= LE_C0_INTR;
232

    
233
            // direct bit
234
            reg &= ~LE_C0_INEA;
235
            reg |= val & LE_C0_INEA;
236

    
237
            // exclusive bits
238
            if (val & LE_C0_INIT) {
239
                reg |= LE_C0_IDON | LE_C0_INIT;
240
                reg &= ~LE_C0_STOP;
241
            }
242
            else if (val & LE_C0_STRT) {
243
                reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
244
                reg &= ~LE_C0_STOP;
245
            }
246

    
247
            s->regs[LE_CSR0] = reg;
248

    
249
            // trigger bits
250
            //if (val & LE_C0_TDMD)
251

    
252
            if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
253
                pic_set_irq(s->irq, 1);
254
            break;
255
        case LE_CSR1:
256
            s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);
257
            s->regs[s->addr] = val;
258
            break;
259
        case LE_CSR2:
260
            s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);
261
            s->regs[s->addr] = val;
262
            break;
263
        case LE_CSR3:
264
            s->regs[s->addr] = val;
265
            break;
266
        }
267
        break;
268
    case LE_RAP:
269
        if (val < LE_MAXREG)
270
            s->addr = val;
271
        break;
272
    default:
273
        break;
274
    }
275
    lance_send(s);
276
}
277

    
278
static CPUReadMemoryFunc *lance_mem_read[3] = {
279
    lance_mem_readw,
280
    lance_mem_readw,
281
    lance_mem_readw,
282
};
283

    
284
static CPUWriteMemoryFunc *lance_mem_write[3] = {
285
    lance_mem_writew,
286
    lance_mem_writew,
287
    lance_mem_writew,
288
};
289

    
290

    
291
/* return the max buffer size if the LANCE can receive more data */
292
static int lance_can_receive(void *opaque)
293
{
294
    LANCEState *s = opaque;
295
    void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
296
    struct lance_init_block *ib;
297
    int i;
298
    uint16_t temp;
299

    
300
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
301
        return 0;
302

    
303
    ib = (void *) iommu_translate(dmaptr);
304

    
305
    for (i = 0; i < RX_RING_SIZE; i++) {
306
        cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
307
        temp &= 0xff;
308
        if (temp == (LE_R1_OWN)) {
309
#ifdef DEBUG_LANCE
310
            fprintf(stderr, "lance: can receive %d\n", RX_BUFF_SIZE);
311
#endif
312
            return RX_BUFF_SIZE;
313
        }
314
    }
315
#ifdef DEBUG_LANCE
316
    fprintf(stderr, "lance: cannot receive\n");
317
#endif
318
    return 0;
319
}
320

    
321
#define MIN_BUF_SIZE 60
322

    
323
static void lance_receive(void *opaque, const uint8_t *buf, int size)
324
{
325
    LANCEState *s = opaque;
326
    void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
327
    struct lance_init_block *ib;
328
    unsigned int i, old_rxptr, j;
329
    uint16_t temp;
330

    
331
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
332
        return;
333

    
334
    ib = (void *) iommu_translate(dmaptr);
335

    
336
    old_rxptr = rxptr;
337
    for (i = rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
338
        cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
339
        if (temp == (LE_R1_OWN)) {
340
            rxptr = (rxptr + 1) & RX_RING_MOD_MASK;
341
            temp = size;
342
            bswap16s(&temp);
343
            cpu_physical_memory_write(&ib->brx_ring[i].mblength, (void *) &temp, 2);
344
#if 0
345
            cpu_physical_memory_write(&ib->rx_buf[i], buf, size);
346
#else
347
            for (j = 0; j < size; j++) {
348
                cpu_physical_memory_write(((void *)&ib->rx_buf[i]) + j, &buf[j], 1);
349
            }
350
#endif
351
            temp = LE_R1_POK;
352
            cpu_physical_memory_write(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
353
            s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
354
            if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
355
                pic_set_irq(s->irq, 1);
356
#ifdef DEBUG_LANCE
357
            fprintf(stderr, "lance: got packet, len %d\n", size);
358
#endif
359
            return;
360
        }
361
    }
362
}
363

    
364
static void lance_send(void *opaque)
365
{
366
    LANCEState *s = opaque;
367
    void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
368
    struct lance_init_block *ib;
369
    unsigned int i, old_txptr, j;
370
    uint16_t temp;
371
    char pkt_buf[PKT_BUF_SZ];
372

    
373
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
374
        return;
375

    
376
    ib = (void *) iommu_translate(dmaptr);
377

    
378
    old_txptr = txptr;
379
    for (i = txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
380
        cpu_physical_memory_read(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
381
        if (temp == (LE_T1_POK|LE_T1_OWN)) {
382
            cpu_physical_memory_read(&ib->btx_ring[i].length, (void *) &temp, 2);
383
            bswap16s(&temp);
384
            temp = (~temp) + 1;
385
#if 0
386
            cpu_physical_memory_read(&ib->tx_buf[i], pkt_buf, temp);
387
#else
388
            for (j = 0; j < temp; j++) {
389
                cpu_physical_memory_read(((void *)&ib->tx_buf[i]) + j, &pkt_buf[j], 1);
390
            }
391
#endif
392

    
393
#ifdef DEBUG_LANCE
394
            fprintf(stderr, "lance: sending packet, len %d\n", temp);
395
#endif
396
            qemu_send_packet(s->nd, pkt_buf, temp);
397
            temp = LE_T1_POK;
398
            cpu_physical_memory_write(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
399
            txptr = (txptr + 1) & TX_RING_MOD_MASK;
400
            s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
401
        }
402
    }
403
}
404

    
405
static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
406
{
407
    LEDMAState *s = opaque;
408
    uint32_t saddr;
409

    
410
    saddr = (addr - s->addr) >> 2;
411
    if (saddr < LEDMA_REGS)
412
        return s->regs[saddr];
413
    else
414
        return 0;
415
}
416

    
417
static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
418
{
419
    LEDMAState *s = opaque;
420
    uint32_t saddr;
421

    
422
    saddr = (addr - s->addr) >> 2;
423
    if (saddr < LEDMA_REGS)
424
        s->regs[saddr] = val;
425
}
426

    
427
static CPUReadMemoryFunc *ledma_mem_read[3] = {
428
    ledma_mem_readl,
429
    ledma_mem_readl,
430
    ledma_mem_readl,
431
};
432

    
433
static CPUWriteMemoryFunc *ledma_mem_write[3] = {
434
    ledma_mem_writel,
435
    ledma_mem_writel,
436
    ledma_mem_writel,
437
};
438

    
439
void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
440
{
441
    LANCEState *s;
442
    LEDMAState *led;
443
    int lance_io_memory, ledma_io_memory;
444

    
445
    s = qemu_mallocz(sizeof(LANCEState));
446
    if (!s)
447
        return;
448

    
449
    s->paddr = leaddr;
450
    s->nd = nd;
451
    s->irq = irq;
452

    
453
    lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
454
    cpu_register_physical_memory(leaddr, 8, lance_io_memory);
455

    
456
    led = qemu_mallocz(sizeof(LEDMAState));
457
    if (!led)
458
        return;
459

    
460
    s->ledma = led;
461
    led->addr = ledaddr;
462
    ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, led);
463
    cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
464

    
465
    lance_reset(s);
466
    qemu_add_read_packet(nd, lance_can_receive, lance_receive, s);
467
}
468