Statistics
| Branch: | Revision:

root / cpu-exec.c @ 54ca9095

History | View | Annotate | Download (42.7 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#ifndef TARGET_SPARC
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        T0 = 0;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    if (tb_invalidated_flag) {
148
        /* as some TB could have been invalidated because
149
           of memory exceptions while generating the code, we
150
           must recompute the hash index here */
151
        T0 = 0;
152
    }
153
    /* we add the TB in the virtual pc hash table */
154
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
155
    spin_unlock(&tb_lock);
156
    return tb;
157
}
158

    
159
static inline TranslationBlock *tb_find_fast(void)
160
{
161
    TranslationBlock *tb;
162
    target_ulong cs_base, pc;
163
    unsigned int flags;
164

    
165
    /* we record a subset of the CPU state. It will
166
       always be the same before a given translated block
167
       is executed. */
168
#if defined(TARGET_I386)
169
    flags = env->hflags;
170
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
171
    cs_base = env->segs[R_CS].base;
172
    pc = cs_base + env->eip;
173
#elif defined(TARGET_ARM)
174
    flags = env->thumb | (env->vfp.vec_len << 1)
175
            | (env->vfp.vec_stride << 4);
176
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
177
        flags |= (1 << 6);
178
    cs_base = 0;
179
    pc = env->regs[15];
180
#elif defined(TARGET_SPARC)
181
#ifdef TARGET_SPARC64
182
    flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
183
#else
184
    flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
185
#endif
186
    cs_base = env->npc;
187
    pc = env->pc;
188
#elif defined(TARGET_PPC)
189
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
191
    cs_base = 0;
192
    pc = env->nip;
193
#elif defined(TARGET_MIPS)
194
    flags = env->hflags & MIPS_HFLAGS_TMASK;
195
    cs_base = 0;
196
    pc = env->PC;
197
#else
198
#error unsupported CPU
199
#endif
200
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
201
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
202
                         tb->flags != flags, 0)) {
203
        tb = tb_find_slow(pc, cs_base, flags);
204
    }
205
    return tb;
206
}
207

    
208

    
209
/* main execution loop */
210

    
211
int cpu_exec(CPUState *env1)
212
{
213
    int saved_T0, saved_T1;
214
#if defined(reg_T2)
215
    int saved_T2;
216
#endif
217
    CPUState *saved_env;
218
#if defined(TARGET_I386)
219
#ifdef reg_EAX
220
    int saved_EAX;
221
#endif
222
#ifdef reg_ECX
223
    int saved_ECX;
224
#endif
225
#ifdef reg_EDX
226
    int saved_EDX;
227
#endif
228
#ifdef reg_EBX
229
    int saved_EBX;
230
#endif
231
#ifdef reg_ESP
232
    int saved_ESP;
233
#endif
234
#ifdef reg_EBP
235
    int saved_EBP;
236
#endif
237
#ifdef reg_ESI
238
    int saved_ESI;
239
#endif
240
#ifdef reg_EDI
241
    int saved_EDI;
242
#endif
243
#elif defined(TARGET_SPARC)
244
#if defined(reg_REGWPTR)
245
    uint32_t *saved_regwptr;
246
#endif
247
#endif
248
#ifdef __sparc__
249
    int saved_i7, tmp_T0;
250
#endif
251
    int ret, interrupt_request;
252
    void (*gen_func)(void);
253
    TranslationBlock *tb;
254
    uint8_t *tc_ptr;
255

    
256
#if defined(TARGET_I386)
257
    /* handle exit of HALTED state */
258
    if (env1->hflags & HF_HALTED_MASK) {
259
        /* disable halt condition */
260
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
261
            (env1->eflags & IF_MASK)) {
262
            env1->hflags &= ~HF_HALTED_MASK;
263
        } else {
264
            return EXCP_HALTED;
265
        }
266
    }
267
#elif defined(TARGET_PPC)
268
    if (env1->halted) {
269
        if (env1->msr[MSR_EE] && 
270
            (env1->interrupt_request & 
271
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
272
            env1->halted = 0;
273
        } else {
274
            return EXCP_HALTED;
275
        }
276
    }
277
#elif defined(TARGET_ARM)
278
    if (env1->halted) {
279
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
280
           set.  */
281
        if (env1->interrupt_request
282
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
283
            env1->halted = 0;
284
        } else {
285
            return EXCP_HALTED;
286
        }
287
    }
288
#endif
289

    
290
    cpu_single_env = env1; 
291

    
292
    /* first we save global registers */
293
    saved_env = env;
294
    env = env1;
295
    saved_T0 = T0;
296
    saved_T1 = T1;
297
#if defined(reg_T2)
298
    saved_T2 = T2;
299
#endif
300
#ifdef __sparc__
301
    /* we also save i7 because longjmp may not restore it */
302
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
303
#endif
304

    
305
#if defined(TARGET_I386)
306
#ifdef reg_EAX
307
    saved_EAX = EAX;
308
#endif
309
#ifdef reg_ECX
310
    saved_ECX = ECX;
311
#endif
312
#ifdef reg_EDX
313
    saved_EDX = EDX;
314
#endif
315
#ifdef reg_EBX
316
    saved_EBX = EBX;
317
#endif
318
#ifdef reg_ESP
319
    saved_ESP = ESP;
320
#endif
321
#ifdef reg_EBP
322
    saved_EBP = EBP;
323
#endif
324
#ifdef reg_ESI
325
    saved_ESI = ESI;
326
#endif
327
#ifdef reg_EDI
328
    saved_EDI = EDI;
329
#endif
330

    
331
    env_to_regs();
332
    /* put eflags in CPU temporary format */
333
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
334
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
335
    CC_OP = CC_OP_EFLAGS;
336
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
337
#elif defined(TARGET_ARM)
338
#elif defined(TARGET_SPARC)
339
#if defined(reg_REGWPTR)
340
    saved_regwptr = REGWPTR;
341
#endif
342
#elif defined(TARGET_PPC)
343
#elif defined(TARGET_MIPS)
344
#else
345
#error unsupported target CPU
346
#endif
347
    env->exception_index = -1;
348

    
349
    /* prepare setjmp context for exception handling */
350
    for(;;) {
351
        if (setjmp(env->jmp_env) == 0) {
352
            env->current_tb = NULL;
353
            /* if an exception is pending, we execute it here */
354
            if (env->exception_index >= 0) {
355
                if (env->exception_index >= EXCP_INTERRUPT) {
356
                    /* exit request from the cpu execution loop */
357
                    ret = env->exception_index;
358
                    break;
359
                } else if (env->user_mode_only) {
360
                    /* if user mode only, we simulate a fake exception
361
                       which will be hanlded outside the cpu execution
362
                       loop */
363
#if defined(TARGET_I386)
364
                    do_interrupt_user(env->exception_index, 
365
                                      env->exception_is_int, 
366
                                      env->error_code, 
367
                                      env->exception_next_eip);
368
#endif
369
                    ret = env->exception_index;
370
                    break;
371
                } else {
372
#if defined(TARGET_I386)
373
                    /* simulate a real cpu exception. On i386, it can
374
                       trigger new exceptions, but we do not handle
375
                       double or triple faults yet. */
376
                    do_interrupt(env->exception_index, 
377
                                 env->exception_is_int, 
378
                                 env->error_code, 
379
                                 env->exception_next_eip, 0);
380
#elif defined(TARGET_PPC)
381
                    do_interrupt(env);
382
#elif defined(TARGET_MIPS)
383
                    do_interrupt(env);
384
#elif defined(TARGET_SPARC)
385
                    do_interrupt(env->exception_index);
386
#elif defined(TARGET_ARM)
387
                    do_interrupt(env);
388
#endif
389
                }
390
                env->exception_index = -1;
391
            } 
392
#ifdef USE_KQEMU
393
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
394
                int ret;
395
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
396
                ret = kqemu_cpu_exec(env);
397
                /* put eflags in CPU temporary format */
398
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
399
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
400
                CC_OP = CC_OP_EFLAGS;
401
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
402
                if (ret == 1) {
403
                    /* exception */
404
                    longjmp(env->jmp_env, 1);
405
                } else if (ret == 2) {
406
                    /* softmmu execution needed */
407
                } else {
408
                    if (env->interrupt_request != 0) {
409
                        /* hardware interrupt will be executed just after */
410
                    } else {
411
                        /* otherwise, we restart */
412
                        longjmp(env->jmp_env, 1);
413
                    }
414
                }
415
            }
416
#endif
417

    
418
            T0 = 0; /* force lookup of first TB */
419
            for(;;) {
420
#ifdef __sparc__
421
                /* g1 can be modified by some libc? functions */ 
422
                tmp_T0 = T0;
423
#endif            
424
                interrupt_request = env->interrupt_request;
425
                if (__builtin_expect(interrupt_request, 0)) {
426
#if defined(TARGET_I386)
427
                    /* if hardware interrupt pending, we execute it */
428
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
429
                        (env->eflags & IF_MASK) && 
430
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
431
                        int intno;
432
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
433
                        intno = cpu_get_pic_interrupt(env);
434
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
435
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
436
                        }
437
                        do_interrupt(intno, 0, 0, 0, 1);
438
                        /* ensure that no TB jump will be modified as
439
                           the program flow was changed */
440
#ifdef __sparc__
441
                        tmp_T0 = 0;
442
#else
443
                        T0 = 0;
444
#endif
445
                    }
446
#elif defined(TARGET_PPC)
447
#if 0
448
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
449
                        cpu_ppc_reset(env);
450
                    }
451
#endif
452
                    if (msr_ee != 0) {
453
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
454
                            /* Raise it */
455
                            env->exception_index = EXCP_EXTERNAL;
456
                            env->error_code = 0;
457
                            do_interrupt(env);
458
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
459
#ifdef __sparc__
460
                            tmp_T0 = 0;
461
#else
462
                            T0 = 0;
463
#endif
464
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
465
                            /* Raise it */
466
                            env->exception_index = EXCP_DECR;
467
                            env->error_code = 0;
468
                            do_interrupt(env);
469
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
470
#ifdef __sparc__
471
                            tmp_T0 = 0;
472
#else
473
                            T0 = 0;
474
#endif
475
                        }
476
                    }
477
#elif defined(TARGET_MIPS)
478
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
479
                        (env->CP0_Status & (1 << CP0St_IE)) &&
480
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
481
                        !(env->hflags & MIPS_HFLAG_EXL) &&
482
                        !(env->hflags & MIPS_HFLAG_ERL) &&
483
                        !(env->hflags & MIPS_HFLAG_DM)) {
484
                        /* Raise it */
485
                        env->exception_index = EXCP_EXT_INTERRUPT;
486
                        env->error_code = 0;
487
                        do_interrupt(env);
488
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
489
#ifdef __sparc__
490
                        tmp_T0 = 0;
491
#else
492
                        T0 = 0;
493
#endif
494
                    }
495
#elif defined(TARGET_SPARC)
496
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
497
                        (env->psret != 0)) {
498
                        int pil = env->interrupt_index & 15;
499
                        int type = env->interrupt_index & 0xf0;
500

    
501
                        if (((type == TT_EXTINT) &&
502
                             (pil == 15 || pil > env->psrpil)) ||
503
                            type != TT_EXTINT) {
504
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
505
                            do_interrupt(env->interrupt_index);
506
                            env->interrupt_index = 0;
507
#ifdef __sparc__
508
                            tmp_T0 = 0;
509
#else
510
                            T0 = 0;
511
#endif
512
                        }
513
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
514
                        //do_interrupt(0, 0, 0, 0, 0);
515
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
516
                    }
517
#elif defined(TARGET_ARM)
518
                    if (interrupt_request & CPU_INTERRUPT_FIQ
519
                        && !(env->uncached_cpsr & CPSR_F)) {
520
                        env->exception_index = EXCP_FIQ;
521
                        do_interrupt(env);
522
                    }
523
                    if (interrupt_request & CPU_INTERRUPT_HARD
524
                        && !(env->uncached_cpsr & CPSR_I)) {
525
                        env->exception_index = EXCP_IRQ;
526
                        do_interrupt(env);
527
                    }
528
#endif
529
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
530
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
531
                        /* ensure that no TB jump will be modified as
532
                           the program flow was changed */
533
#ifdef __sparc__
534
                        tmp_T0 = 0;
535
#else
536
                        T0 = 0;
537
#endif
538
                    }
539
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
540
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
541
                        env->exception_index = EXCP_INTERRUPT;
542
                        cpu_loop_exit();
543
                    }
544
                }
545
#ifdef DEBUG_EXEC
546
                if ((loglevel & CPU_LOG_TB_CPU)) {
547
#if defined(TARGET_I386)
548
                    /* restore flags in standard format */
549
#ifdef reg_EAX
550
                    env->regs[R_EAX] = EAX;
551
#endif
552
#ifdef reg_EBX
553
                    env->regs[R_EBX] = EBX;
554
#endif
555
#ifdef reg_ECX
556
                    env->regs[R_ECX] = ECX;
557
#endif
558
#ifdef reg_EDX
559
                    env->regs[R_EDX] = EDX;
560
#endif
561
#ifdef reg_ESI
562
                    env->regs[R_ESI] = ESI;
563
#endif
564
#ifdef reg_EDI
565
                    env->regs[R_EDI] = EDI;
566
#endif
567
#ifdef reg_EBP
568
                    env->regs[R_EBP] = EBP;
569
#endif
570
#ifdef reg_ESP
571
                    env->regs[R_ESP] = ESP;
572
#endif
573
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
574
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
575
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
576
#elif defined(TARGET_ARM)
577
                    cpu_dump_state(env, logfile, fprintf, 0);
578
#elif defined(TARGET_SPARC)
579
                    REGWPTR = env->regbase + (env->cwp * 16);
580
                    env->regwptr = REGWPTR;
581
                    cpu_dump_state(env, logfile, fprintf, 0);
582
#elif defined(TARGET_PPC)
583
                    cpu_dump_state(env, logfile, fprintf, 0);
584
#elif defined(TARGET_MIPS)
585
                    cpu_dump_state(env, logfile, fprintf, 0);
586
#else
587
#error unsupported target CPU 
588
#endif
589
                }
590
#endif
591
                tb = tb_find_fast();
592
#ifdef DEBUG_EXEC
593
                if ((loglevel & CPU_LOG_EXEC)) {
594
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
595
                            (long)tb->tc_ptr, tb->pc,
596
                            lookup_symbol(tb->pc));
597
                }
598
#endif
599
#ifdef __sparc__
600
                T0 = tmp_T0;
601
#endif            
602
                /* see if we can patch the calling TB. When the TB
603
                   spans two pages, we cannot safely do a direct
604
                   jump. */
605
                {
606
                    if (T0 != 0 &&
607
                        tb->page_addr[1] == -1
608
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
609
                    && (tb->cflags & CF_CODE_COPY) == 
610
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
611
#endif
612
                    ) {
613
                    spin_lock(&tb_lock);
614
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
615
#if defined(USE_CODE_COPY)
616
                    /* propagates the FP use info */
617
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
618
                        (tb->cflags & CF_FP_USED);
619
#endif
620
                    spin_unlock(&tb_lock);
621
                }
622
                }
623
                tc_ptr = tb->tc_ptr;
624
                env->current_tb = tb;
625
                /* execute the generated code */
626
                gen_func = (void *)tc_ptr;
627
#if defined(__sparc__)
628
                __asm__ __volatile__("call        %0\n\t"
629
                                     "mov        %%o7,%%i0"
630
                                     : /* no outputs */
631
                                     : "r" (gen_func) 
632
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
633
#elif defined(__arm__)
634
                asm volatile ("mov pc, %0\n\t"
635
                              ".global exec_loop\n\t"
636
                              "exec_loop:\n\t"
637
                              : /* no outputs */
638
                              : "r" (gen_func)
639
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
640
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
641
{
642
    if (!(tb->cflags & CF_CODE_COPY)) {
643
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
644
            save_native_fp_state(env);
645
        }
646
        gen_func();
647
    } else {
648
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
649
            restore_native_fp_state(env);
650
        }
651
        /* we work with native eflags */
652
        CC_SRC = cc_table[CC_OP].compute_all();
653
        CC_OP = CC_OP_EFLAGS;
654
        asm(".globl exec_loop\n"
655
            "\n"
656
            "debug1:\n"
657
            "    pushl %%ebp\n"
658
            "    fs movl %10, %9\n"
659
            "    fs movl %11, %%eax\n"
660
            "    andl $0x400, %%eax\n"
661
            "    fs orl %8, %%eax\n"
662
            "    pushl %%eax\n"
663
            "    popf\n"
664
            "    fs movl %%esp, %12\n"
665
            "    fs movl %0, %%eax\n"
666
            "    fs movl %1, %%ecx\n"
667
            "    fs movl %2, %%edx\n"
668
            "    fs movl %3, %%ebx\n"
669
            "    fs movl %4, %%esp\n"
670
            "    fs movl %5, %%ebp\n"
671
            "    fs movl %6, %%esi\n"
672
            "    fs movl %7, %%edi\n"
673
            "    fs jmp *%9\n"
674
            "exec_loop:\n"
675
            "    fs movl %%esp, %4\n"
676
            "    fs movl %12, %%esp\n"
677
            "    fs movl %%eax, %0\n"
678
            "    fs movl %%ecx, %1\n"
679
            "    fs movl %%edx, %2\n"
680
            "    fs movl %%ebx, %3\n"
681
            "    fs movl %%ebp, %5\n"
682
            "    fs movl %%esi, %6\n"
683
            "    fs movl %%edi, %7\n"
684
            "    pushf\n"
685
            "    popl %%eax\n"
686
            "    movl %%eax, %%ecx\n"
687
            "    andl $0x400, %%ecx\n"
688
            "    shrl $9, %%ecx\n"
689
            "    andl $0x8d5, %%eax\n"
690
            "    fs movl %%eax, %8\n"
691
            "    movl $1, %%eax\n"
692
            "    subl %%ecx, %%eax\n"
693
            "    fs movl %%eax, %11\n"
694
            "    fs movl %9, %%ebx\n" /* get T0 value */
695
            "    popl %%ebp\n"
696
            :
697
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
698
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
699
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
700
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
701
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
702
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
703
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
704
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
705
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
706
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
707
            "a" (gen_func),
708
            "m" (*(uint8_t *)offsetof(CPUState, df)),
709
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
710
            : "%ecx", "%edx"
711
            );
712
    }
713
}
714
#elif defined(__ia64)
715
                struct fptr {
716
                        void *ip;
717
                        void *gp;
718
                } fp;
719

    
720
                fp.ip = tc_ptr;
721
                fp.gp = code_gen_buffer + 2 * (1 << 20);
722
                (*(void (*)(void)) &fp)();
723
#else
724
                gen_func();
725
#endif
726
                env->current_tb = NULL;
727
                /* reset soft MMU for next block (it can currently
728
                   only be set by a memory fault) */
729
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
730
                if (env->hflags & HF_SOFTMMU_MASK) {
731
                    env->hflags &= ~HF_SOFTMMU_MASK;
732
                    /* do not allow linking to another block */
733
                    T0 = 0;
734
                }
735
#endif
736
            }
737
        } else {
738
            env_to_regs();
739
        }
740
    } /* for(;;) */
741

    
742

    
743
#if defined(TARGET_I386)
744
#if defined(USE_CODE_COPY)
745
    if (env->native_fp_regs) {
746
        save_native_fp_state(env);
747
    }
748
#endif
749
    /* restore flags in standard format */
750
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
751

    
752
    /* restore global registers */
753
#ifdef reg_EAX
754
    EAX = saved_EAX;
755
#endif
756
#ifdef reg_ECX
757
    ECX = saved_ECX;
758
#endif
759
#ifdef reg_EDX
760
    EDX = saved_EDX;
761
#endif
762
#ifdef reg_EBX
763
    EBX = saved_EBX;
764
#endif
765
#ifdef reg_ESP
766
    ESP = saved_ESP;
767
#endif
768
#ifdef reg_EBP
769
    EBP = saved_EBP;
770
#endif
771
#ifdef reg_ESI
772
    ESI = saved_ESI;
773
#endif
774
#ifdef reg_EDI
775
    EDI = saved_EDI;
776
#endif
777
#elif defined(TARGET_ARM)
778
    /* XXX: Save/restore host fpu exception state?.  */
779
#elif defined(TARGET_SPARC)
780
#if defined(reg_REGWPTR)
781
    REGWPTR = saved_regwptr;
782
#endif
783
#elif defined(TARGET_PPC)
784
#elif defined(TARGET_MIPS)
785
#else
786
#error unsupported target CPU
787
#endif
788
#ifdef __sparc__
789
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
790
#endif
791
    T0 = saved_T0;
792
    T1 = saved_T1;
793
#if defined(reg_T2)
794
    T2 = saved_T2;
795
#endif
796
    env = saved_env;
797
    /* fail safe : never use cpu_single_env outside cpu_exec() */
798
    cpu_single_env = NULL; 
799
    return ret;
800
}
801

    
802
/* must only be called from the generated code as an exception can be
803
   generated */
804
void tb_invalidate_page_range(target_ulong start, target_ulong end)
805
{
806
    /* XXX: cannot enable it yet because it yields to MMU exception
807
       where NIP != read address on PowerPC */
808
#if 0
809
    target_ulong phys_addr;
810
    phys_addr = get_phys_addr_code(env, start);
811
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
812
#endif
813
}
814

    
815
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
816

    
817
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
818
{
819
    CPUX86State *saved_env;
820

    
821
    saved_env = env;
822
    env = s;
823
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
824
        selector &= 0xffff;
825
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
826
                               (selector << 4), 0xffff, 0);
827
    } else {
828
        load_seg(seg_reg, selector);
829
    }
830
    env = saved_env;
831
}
832

    
833
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
834
{
835
    CPUX86State *saved_env;
836

    
837
    saved_env = env;
838
    env = s;
839
    
840
    helper_fsave((target_ulong)ptr, data32);
841

    
842
    env = saved_env;
843
}
844

    
845
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
846
{
847
    CPUX86State *saved_env;
848

    
849
    saved_env = env;
850
    env = s;
851
    
852
    helper_frstor((target_ulong)ptr, data32);
853

    
854
    env = saved_env;
855
}
856

    
857
#endif /* TARGET_I386 */
858

    
859
#if !defined(CONFIG_SOFTMMU)
860

    
861
#if defined(TARGET_I386)
862

    
863
/* 'pc' is the host PC at which the exception was raised. 'address' is
864
   the effective address of the memory exception. 'is_write' is 1 if a
865
   write caused the exception and otherwise 0'. 'old_set' is the
866
   signal set which should be restored */
867
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
868
                                    int is_write, sigset_t *old_set, 
869
                                    void *puc)
870
{
871
    TranslationBlock *tb;
872
    int ret;
873

    
874
    if (cpu_single_env)
875
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
876
#if defined(DEBUG_SIGNAL)
877
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
878
                pc, address, is_write, *(unsigned long *)old_set);
879
#endif
880
    /* XXX: locking issue */
881
    if (is_write && page_unprotect(address, pc, puc)) {
882
        return 1;
883
    }
884

    
885
    /* see if it is an MMU fault */
886
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
887
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
888
    if (ret < 0)
889
        return 0; /* not an MMU fault */
890
    if (ret == 0)
891
        return 1; /* the MMU fault was handled without causing real CPU fault */
892
    /* now we have a real cpu fault */
893
    tb = tb_find_pc(pc);
894
    if (tb) {
895
        /* the PC is inside the translated code. It means that we have
896
           a virtual CPU fault */
897
        cpu_restore_state(tb, env, pc, puc);
898
    }
899
    if (ret == 1) {
900
#if 0
901
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
902
               env->eip, env->cr[2], env->error_code);
903
#endif
904
        /* we restore the process signal mask as the sigreturn should
905
           do it (XXX: use sigsetjmp) */
906
        sigprocmask(SIG_SETMASK, old_set, NULL);
907
        raise_exception_err(env->exception_index, env->error_code);
908
    } else {
909
        /* activate soft MMU for this block */
910
        env->hflags |= HF_SOFTMMU_MASK;
911
        cpu_resume_from_signal(env, puc);
912
    }
913
    /* never comes here */
914
    return 1;
915
}
916

    
917
#elif defined(TARGET_ARM)
918
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
919
                                    int is_write, sigset_t *old_set,
920
                                    void *puc)
921
{
922
    TranslationBlock *tb;
923
    int ret;
924

    
925
    if (cpu_single_env)
926
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
927
#if defined(DEBUG_SIGNAL)
928
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
929
           pc, address, is_write, *(unsigned long *)old_set);
930
#endif
931
    /* XXX: locking issue */
932
    if (is_write && page_unprotect(address, pc, puc)) {
933
        return 1;
934
    }
935
    /* see if it is an MMU fault */
936
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
937
    if (ret < 0)
938
        return 0; /* not an MMU fault */
939
    if (ret == 0)
940
        return 1; /* the MMU fault was handled without causing real CPU fault */
941
    /* now we have a real cpu fault */
942
    tb = tb_find_pc(pc);
943
    if (tb) {
944
        /* the PC is inside the translated code. It means that we have
945
           a virtual CPU fault */
946
        cpu_restore_state(tb, env, pc, puc);
947
    }
948
    /* we restore the process signal mask as the sigreturn should
949
       do it (XXX: use sigsetjmp) */
950
    sigprocmask(SIG_SETMASK, old_set, NULL);
951
    cpu_loop_exit();
952
}
953
#elif defined(TARGET_SPARC)
954
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
955
                                    int is_write, sigset_t *old_set,
956
                                    void *puc)
957
{
958
    TranslationBlock *tb;
959
    int ret;
960

    
961
    if (cpu_single_env)
962
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
963
#if defined(DEBUG_SIGNAL)
964
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
965
           pc, address, is_write, *(unsigned long *)old_set);
966
#endif
967
    /* XXX: locking issue */
968
    if (is_write && page_unprotect(address, pc, puc)) {
969
        return 1;
970
    }
971
    /* see if it is an MMU fault */
972
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
973
    if (ret < 0)
974
        return 0; /* not an MMU fault */
975
    if (ret == 0)
976
        return 1; /* the MMU fault was handled without causing real CPU fault */
977
    /* now we have a real cpu fault */
978
    tb = tb_find_pc(pc);
979
    if (tb) {
980
        /* the PC is inside the translated code. It means that we have
981
           a virtual CPU fault */
982
        cpu_restore_state(tb, env, pc, puc);
983
    }
984
    /* we restore the process signal mask as the sigreturn should
985
       do it (XXX: use sigsetjmp) */
986
    sigprocmask(SIG_SETMASK, old_set, NULL);
987
    cpu_loop_exit();
988
}
989
#elif defined (TARGET_PPC)
990
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
991
                                    int is_write, sigset_t *old_set,
992
                                    void *puc)
993
{
994
    TranslationBlock *tb;
995
    int ret;
996
    
997
    if (cpu_single_env)
998
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
999
#if defined(DEBUG_SIGNAL)
1000
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1001
           pc, address, is_write, *(unsigned long *)old_set);
1002
#endif
1003
    /* XXX: locking issue */
1004
    if (is_write && page_unprotect(address, pc, puc)) {
1005
        return 1;
1006
    }
1007

    
1008
    /* see if it is an MMU fault */
1009
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1010
    if (ret < 0)
1011
        return 0; /* not an MMU fault */
1012
    if (ret == 0)
1013
        return 1; /* the MMU fault was handled without causing real CPU fault */
1014

    
1015
    /* now we have a real cpu fault */
1016
    tb = tb_find_pc(pc);
1017
    if (tb) {
1018
        /* the PC is inside the translated code. It means that we have
1019
           a virtual CPU fault */
1020
        cpu_restore_state(tb, env, pc, puc);
1021
    }
1022
    if (ret == 1) {
1023
#if 0
1024
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1025
               env->nip, env->error_code, tb);
1026
#endif
1027
    /* we restore the process signal mask as the sigreturn should
1028
       do it (XXX: use sigsetjmp) */
1029
        sigprocmask(SIG_SETMASK, old_set, NULL);
1030
        do_raise_exception_err(env->exception_index, env->error_code);
1031
    } else {
1032
        /* activate soft MMU for this block */
1033
        cpu_resume_from_signal(env, puc);
1034
    }
1035
    /* never comes here */
1036
    return 1;
1037
}
1038

    
1039
#elif defined (TARGET_MIPS)
1040
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1041
                                    int is_write, sigset_t *old_set,
1042
                                    void *puc)
1043
{
1044
    TranslationBlock *tb;
1045
    int ret;
1046
    
1047
    if (cpu_single_env)
1048
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1049
#if defined(DEBUG_SIGNAL)
1050
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1051
           pc, address, is_write, *(unsigned long *)old_set);
1052
#endif
1053
    /* XXX: locking issue */
1054
    if (is_write && page_unprotect(address, pc, puc)) {
1055
        return 1;
1056
    }
1057

    
1058
    /* see if it is an MMU fault */
1059
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1060
    if (ret < 0)
1061
        return 0; /* not an MMU fault */
1062
    if (ret == 0)
1063
        return 1; /* the MMU fault was handled without causing real CPU fault */
1064

    
1065
    /* now we have a real cpu fault */
1066
    tb = tb_find_pc(pc);
1067
    if (tb) {
1068
        /* the PC is inside the translated code. It means that we have
1069
           a virtual CPU fault */
1070
        cpu_restore_state(tb, env, pc, puc);
1071
    }
1072
    if (ret == 1) {
1073
#if 0
1074
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1075
               env->nip, env->error_code, tb);
1076
#endif
1077
    /* we restore the process signal mask as the sigreturn should
1078
       do it (XXX: use sigsetjmp) */
1079
        sigprocmask(SIG_SETMASK, old_set, NULL);
1080
        do_raise_exception_err(env->exception_index, env->error_code);
1081
    } else {
1082
        /* activate soft MMU for this block */
1083
        cpu_resume_from_signal(env, puc);
1084
    }
1085
    /* never comes here */
1086
    return 1;
1087
}
1088

    
1089
#else
1090
#error unsupported target CPU
1091
#endif
1092

    
1093
#if defined(__i386__)
1094

    
1095
#if defined(USE_CODE_COPY)
1096
static void cpu_send_trap(unsigned long pc, int trap, 
1097
                          struct ucontext *uc)
1098
{
1099
    TranslationBlock *tb;
1100

    
1101
    if (cpu_single_env)
1102
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1103
    /* now we have a real cpu fault */
1104
    tb = tb_find_pc(pc);
1105
    if (tb) {
1106
        /* the PC is inside the translated code. It means that we have
1107
           a virtual CPU fault */
1108
        cpu_restore_state(tb, env, pc, uc);
1109
    }
1110
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1111
    raise_exception_err(trap, env->error_code);
1112
}
1113
#endif
1114

    
1115
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1116
                       void *puc)
1117
{
1118
    struct ucontext *uc = puc;
1119
    unsigned long pc;
1120
    int trapno;
1121

    
1122
#ifndef REG_EIP
1123
/* for glibc 2.1 */
1124
#define REG_EIP    EIP
1125
#define REG_ERR    ERR
1126
#define REG_TRAPNO TRAPNO
1127
#endif
1128
    pc = uc->uc_mcontext.gregs[REG_EIP];
1129
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1130
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1131
    if (trapno == 0x00 || trapno == 0x05) {
1132
        /* send division by zero or bound exception */
1133
        cpu_send_trap(pc, trapno, uc);
1134
        return 1;
1135
    } else
1136
#endif
1137
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1138
                                 trapno == 0xe ? 
1139
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1140
                                 &uc->uc_sigmask, puc);
1141
}
1142

    
1143
#elif defined(__x86_64__)
1144

    
1145
int cpu_signal_handler(int host_signum, struct siginfo *info,
1146
                       void *puc)
1147
{
1148
    struct ucontext *uc = puc;
1149
    unsigned long pc;
1150

    
1151
    pc = uc->uc_mcontext.gregs[REG_RIP];
1152
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1153
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1154
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1155
                             &uc->uc_sigmask, puc);
1156
}
1157

    
1158
#elif defined(__powerpc__)
1159

    
1160
/***********************************************************************
1161
 * signal context platform-specific definitions
1162
 * From Wine
1163
 */
1164
#ifdef linux
1165
/* All Registers access - only for local access */
1166
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1167
/* Gpr Registers access  */
1168
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1169
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1170
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1171
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1172
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1173
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1174
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1175
/* Float Registers access  */
1176
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1177
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1178
/* Exception Registers access */
1179
# define DAR_sig(context)                        REG_sig(dar, context)
1180
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1181
# define TRAP_sig(context)                        REG_sig(trap, context)
1182
#endif /* linux */
1183

    
1184
#ifdef __APPLE__
1185
# include <sys/ucontext.h>
1186
typedef struct ucontext SIGCONTEXT;
1187
/* All Registers access - only for local access */
1188
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1189
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1190
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1191
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1192
/* Gpr Registers access */
1193
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1194
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1195
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1196
# define CTR_sig(context)                        REG_sig(ctr, context)
1197
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1198
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1199
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1200
/* Float Registers access */
1201
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1202
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1203
/* Exception Registers access */
1204
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1205
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1206
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1207
#endif /* __APPLE__ */
1208

    
1209
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1210
                       void *puc)
1211
{
1212
    struct ucontext *uc = puc;
1213
    unsigned long pc;
1214
    int is_write;
1215

    
1216
    pc = IAR_sig(uc);
1217
    is_write = 0;
1218
#if 0
1219
    /* ppc 4xx case */
1220
    if (DSISR_sig(uc) & 0x00800000)
1221
        is_write = 1;
1222
#else
1223
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1224
        is_write = 1;
1225
#endif
1226
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1227
                             is_write, &uc->uc_sigmask, puc);
1228
}
1229

    
1230
#elif defined(__alpha__)
1231

    
1232
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1233
                           void *puc)
1234
{
1235
    struct ucontext *uc = puc;
1236
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1237
    uint32_t insn = *pc;
1238
    int is_write = 0;
1239

    
1240
    /* XXX: need kernel patch to get write flag faster */
1241
    switch (insn >> 26) {
1242
    case 0x0d: // stw
1243
    case 0x0e: // stb
1244
    case 0x0f: // stq_u
1245
    case 0x24: // stf
1246
    case 0x25: // stg
1247
    case 0x26: // sts
1248
    case 0x27: // stt
1249
    case 0x2c: // stl
1250
    case 0x2d: // stq
1251
    case 0x2e: // stl_c
1252
    case 0x2f: // stq_c
1253
        is_write = 1;
1254
    }
1255

    
1256
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1257
                             is_write, &uc->uc_sigmask, puc);
1258
}
1259
#elif defined(__sparc__)
1260

    
1261
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1262
                       void *puc)
1263
{
1264
    uint32_t *regs = (uint32_t *)(info + 1);
1265
    void *sigmask = (regs + 20);
1266
    unsigned long pc;
1267
    int is_write;
1268
    uint32_t insn;
1269
    
1270
    /* XXX: is there a standard glibc define ? */
1271
    pc = regs[1];
1272
    /* XXX: need kernel patch to get write flag faster */
1273
    is_write = 0;
1274
    insn = *(uint32_t *)pc;
1275
    if ((insn >> 30) == 3) {
1276
      switch((insn >> 19) & 0x3f) {
1277
      case 0x05: // stb
1278
      case 0x06: // sth
1279
      case 0x04: // st
1280
      case 0x07: // std
1281
      case 0x24: // stf
1282
      case 0x27: // stdf
1283
      case 0x25: // stfsr
1284
        is_write = 1;
1285
        break;
1286
      }
1287
    }
1288
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1289
                             is_write, sigmask, NULL);
1290
}
1291

    
1292
#elif defined(__arm__)
1293

    
1294
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1295
                       void *puc)
1296
{
1297
    struct ucontext *uc = puc;
1298
    unsigned long pc;
1299
    int is_write;
1300
    
1301
    pc = uc->uc_mcontext.gregs[R15];
1302
    /* XXX: compute is_write */
1303
    is_write = 0;
1304
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1305
                             is_write,
1306
                             &uc->uc_sigmask);
1307
}
1308

    
1309
#elif defined(__mc68000)
1310

    
1311
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1312
                       void *puc)
1313
{
1314
    struct ucontext *uc = puc;
1315
    unsigned long pc;
1316
    int is_write;
1317
    
1318
    pc = uc->uc_mcontext.gregs[16];
1319
    /* XXX: compute is_write */
1320
    is_write = 0;
1321
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1322
                             is_write,
1323
                             &uc->uc_sigmask, puc);
1324
}
1325

    
1326
#elif defined(__ia64)
1327

    
1328
#ifndef __ISR_VALID
1329
  /* This ought to be in <bits/siginfo.h>... */
1330
# define __ISR_VALID        1
1331
# define si_flags        _sifields._sigfault._si_pad0
1332
#endif
1333

    
1334
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1335
{
1336
    struct ucontext *uc = puc;
1337
    unsigned long ip;
1338
    int is_write = 0;
1339

    
1340
    ip = uc->uc_mcontext.sc_ip;
1341
    switch (host_signum) {
1342
      case SIGILL:
1343
      case SIGFPE:
1344
      case SIGSEGV:
1345
      case SIGBUS:
1346
      case SIGTRAP:
1347
          if (info->si_code && (info->si_flags & __ISR_VALID))
1348
              /* ISR.W (write-access) is bit 33:  */
1349
              is_write = (info->si_isr >> 33) & 1;
1350
          break;
1351

    
1352
      default:
1353
          break;
1354
    }
1355
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1356
                             is_write,
1357
                             &uc->uc_sigmask, puc);
1358
}
1359

    
1360
#elif defined(__s390__)
1361

    
1362
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1363
                       void *puc)
1364
{
1365
    struct ucontext *uc = puc;
1366
    unsigned long pc;
1367
    int is_write;
1368
    
1369
    pc = uc->uc_mcontext.psw.addr;
1370
    /* XXX: compute is_write */
1371
    is_write = 0;
1372
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1373
                             is_write,
1374
                             &uc->uc_sigmask, puc);
1375
}
1376

    
1377
#else
1378

    
1379
#error host CPU specific signal handler needed
1380

    
1381
#endif
1382

    
1383
#endif /* !defined(CONFIG_SOFTMMU) */