Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 551a2dec

History | View | Annotate | Download (32.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "ioport.h"
29

    
30
#ifdef CONFIG_KVM_PARA
31
#include <linux/kvm_para.h>
32
#endif
33
//
34
//#define DEBUG_KVM
35

    
36
#ifdef DEBUG_KVM
37
#define dprintf(fmt, ...) \
38
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39
#else
40
#define dprintf(fmt, ...) \
41
    do { } while (0)
42
#endif
43

    
44
#define MSR_KVM_WALL_CLOCK  0x11
45
#define MSR_KVM_SYSTEM_TIME 0x12
46

    
47
#ifdef KVM_CAP_EXT_CPUID
48

    
49
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50
{
51
    struct kvm_cpuid2 *cpuid;
52
    int r, size;
53

    
54
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56
    cpuid->nent = max;
57
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58
    if (r == 0 && cpuid->nent >= max) {
59
        r = -E2BIG;
60
    }
61
    if (r < 0) {
62
        if (r == -E2BIG) {
63
            qemu_free(cpuid);
64
            return NULL;
65
        } else {
66
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67
                    strerror(-r));
68
            exit(1);
69
        }
70
    }
71
    return cpuid;
72
}
73

    
74
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
75
{
76
    struct kvm_cpuid2 *cpuid;
77
    int i, max;
78
    uint32_t ret = 0;
79
    uint32_t cpuid_1_edx;
80

    
81
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82
        return -1U;
83
    }
84

    
85
    max = 1;
86
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87
        max *= 2;
88
    }
89

    
90
    for (i = 0; i < cpuid->nent; ++i) {
91
        if (cpuid->entries[i].function == function) {
92
            switch (reg) {
93
            case R_EAX:
94
                ret = cpuid->entries[i].eax;
95
                break;
96
            case R_EBX:
97
                ret = cpuid->entries[i].ebx;
98
                break;
99
            case R_ECX:
100
                ret = cpuid->entries[i].ecx;
101
                break;
102
            case R_EDX:
103
                ret = cpuid->entries[i].edx;
104
                switch (function) {
105
                case 1:
106
                    /* KVM before 2.6.30 misreports the following features */
107
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108
                    break;
109
                case 0x80000001:
110
                    /* On Intel, kvm returns cpuid according to the Intel spec,
111
                     * so add missing bits according to the AMD spec:
112
                     */
113
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114
                    ret |= cpuid_1_edx & 0xdfeff7ff;
115
                    break;
116
                }
117
                break;
118
            }
119
        }
120
    }
121

    
122
    qemu_free(cpuid);
123

    
124
    return ret;
125
}
126

    
127
#else
128

    
129
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
130
{
131
    return -1U;
132
}
133

    
134
#endif
135

    
136
#ifdef CONFIG_KVM_PARA
137
struct kvm_para_features {
138
        int cap;
139
        int feature;
140
} para_features[] = {
141
#ifdef KVM_CAP_CLOCKSOURCE
142
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
143
#endif
144
#ifdef KVM_CAP_NOP_IO_DELAY
145
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
146
#endif
147
#ifdef KVM_CAP_PV_MMU
148
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
149
#endif
150
        { -1, -1 }
151
};
152

    
153
static int get_para_features(CPUState *env)
154
{
155
        int i, features = 0;
156

    
157
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
158
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
159
                        features |= (1 << para_features[i].feature);
160
        }
161

    
162
        return features;
163
}
164
#endif
165

    
166
int kvm_arch_init_vcpu(CPUState *env)
167
{
168
    struct {
169
        struct kvm_cpuid2 cpuid;
170
        struct kvm_cpuid_entry2 entries[100];
171
    } __attribute__((packed)) cpuid_data;
172
    uint32_t limit, i, j, cpuid_i;
173
    uint32_t unused;
174
    struct kvm_cpuid_entry2 *c;
175
#ifdef KVM_CPUID_SIGNATURE
176
    uint32_t signature[3];
177
#endif
178

    
179
    env->mp_state = KVM_MP_STATE_RUNNABLE;
180

    
181
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, R_EDX);
182

    
183
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
184
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, R_ECX);
185
    env->cpuid_ext_features |= i;
186

    
187
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
188
                                                             R_EDX);
189
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
190
                                                             R_ECX);
191

    
192
    cpuid_i = 0;
193

    
194
#ifdef CONFIG_KVM_PARA
195
    /* Paravirtualization CPUIDs */
196
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
197
    c = &cpuid_data.entries[cpuid_i++];
198
    memset(c, 0, sizeof(*c));
199
    c->function = KVM_CPUID_SIGNATURE;
200
    c->eax = 0;
201
    c->ebx = signature[0];
202
    c->ecx = signature[1];
203
    c->edx = signature[2];
204

    
205
    c = &cpuid_data.entries[cpuid_i++];
206
    memset(c, 0, sizeof(*c));
207
    c->function = KVM_CPUID_FEATURES;
208
    c->eax = env->cpuid_kvm_features & get_para_features(env);
209
#endif
210

    
211
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
212

    
213
    for (i = 0; i <= limit; i++) {
214
        c = &cpuid_data.entries[cpuid_i++];
215

    
216
        switch (i) {
217
        case 2: {
218
            /* Keep reading function 2 till all the input is received */
219
            int times;
220

    
221
            c->function = i;
222
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
223
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
224
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
225
            times = c->eax & 0xff;
226

    
227
            for (j = 1; j < times; ++j) {
228
                c = &cpuid_data.entries[cpuid_i++];
229
                c->function = i;
230
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
231
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
232
            }
233
            break;
234
        }
235
        case 4:
236
        case 0xb:
237
        case 0xd:
238
            for (j = 0; ; j++) {
239
                c->function = i;
240
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
241
                c->index = j;
242
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
243

    
244
                if (i == 4 && c->eax == 0)
245
                    break;
246
                if (i == 0xb && !(c->ecx & 0xff00))
247
                    break;
248
                if (i == 0xd && c->eax == 0)
249
                    break;
250

    
251
                c = &cpuid_data.entries[cpuid_i++];
252
            }
253
            break;
254
        default:
255
            c->function = i;
256
            c->flags = 0;
257
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
258
            break;
259
        }
260
    }
261
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
262

    
263
    for (i = 0x80000000; i <= limit; i++) {
264
        c = &cpuid_data.entries[cpuid_i++];
265

    
266
        c->function = i;
267
        c->flags = 0;
268
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
269
    }
270

    
271
    cpuid_data.cpuid.nent = cpuid_i;
272

    
273
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
274
}
275

    
276
void kvm_arch_reset_vcpu(CPUState *env)
277
{
278
    env->exception_injected = -1;
279
    env->interrupt_injected = -1;
280
    env->nmi_injected = 0;
281
    env->nmi_pending = 0;
282
}
283

    
284
static int kvm_has_msr_star(CPUState *env)
285
{
286
    static int has_msr_star;
287
    int ret;
288

    
289
    /* first time */
290
    if (has_msr_star == 0) {        
291
        struct kvm_msr_list msr_list, *kvm_msr_list;
292

    
293
        has_msr_star = -1;
294

    
295
        /* Obtain MSR list from KVM.  These are the MSRs that we must
296
         * save/restore */
297
        msr_list.nmsrs = 0;
298
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
299
        if (ret < 0 && ret != -E2BIG) {
300
            return 0;
301
        }
302
        /* Old kernel modules had a bug and could write beyond the provided
303
           memory. Allocate at least a safe amount of 1K. */
304
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
305
                                              msr_list.nmsrs *
306
                                              sizeof(msr_list.indices[0])));
307

    
308
        kvm_msr_list->nmsrs = msr_list.nmsrs;
309
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
310
        if (ret >= 0) {
311
            int i;
312

    
313
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
314
                if (kvm_msr_list->indices[i] == MSR_STAR) {
315
                    has_msr_star = 1;
316
                    break;
317
                }
318
            }
319
        }
320

    
321
        free(kvm_msr_list);
322
    }
323

    
324
    if (has_msr_star == 1)
325
        return 1;
326
    return 0;
327
}
328

    
329
int kvm_arch_init(KVMState *s, int smp_cpus)
330
{
331
    int ret;
332

    
333
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
334
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
335
     * must be part of guest physical memory, we need to allocate it.  Older
336
     * versions of KVM just assumed that it would be at the end of physical
337
     * memory but that doesn't work with more than 4GB of memory.  We simply
338
     * refuse to work with those older versions of KVM. */
339
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
340
    if (ret <= 0) {
341
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
342
        return ret;
343
    }
344

    
345
    /* this address is 3 pages before the bios, and the bios should present
346
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
347
     * this?
348
     */
349
    /*
350
     * Tell fw_cfg to notify the BIOS to reserve the range.
351
     */
352
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
353
        perror("e820_add_entry() table is full");
354
        exit(1);
355
    }
356
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
357
}
358
                    
359
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
360
{
361
    lhs->selector = rhs->selector;
362
    lhs->base = rhs->base;
363
    lhs->limit = rhs->limit;
364
    lhs->type = 3;
365
    lhs->present = 1;
366
    lhs->dpl = 3;
367
    lhs->db = 0;
368
    lhs->s = 1;
369
    lhs->l = 0;
370
    lhs->g = 0;
371
    lhs->avl = 0;
372
    lhs->unusable = 0;
373
}
374

    
375
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
376
{
377
    unsigned flags = rhs->flags;
378
    lhs->selector = rhs->selector;
379
    lhs->base = rhs->base;
380
    lhs->limit = rhs->limit;
381
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
382
    lhs->present = (flags & DESC_P_MASK) != 0;
383
    lhs->dpl = rhs->selector & 3;
384
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
385
    lhs->s = (flags & DESC_S_MASK) != 0;
386
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
387
    lhs->g = (flags & DESC_G_MASK) != 0;
388
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
389
    lhs->unusable = 0;
390
}
391

    
392
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
393
{
394
    lhs->selector = rhs->selector;
395
    lhs->base = rhs->base;
396
    lhs->limit = rhs->limit;
397
    lhs->flags =
398
        (rhs->type << DESC_TYPE_SHIFT)
399
        | (rhs->present * DESC_P_MASK)
400
        | (rhs->dpl << DESC_DPL_SHIFT)
401
        | (rhs->db << DESC_B_SHIFT)
402
        | (rhs->s * DESC_S_MASK)
403
        | (rhs->l << DESC_L_SHIFT)
404
        | (rhs->g * DESC_G_MASK)
405
        | (rhs->avl * DESC_AVL_MASK);
406
}
407

    
408
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
409
{
410
    if (set)
411
        *kvm_reg = *qemu_reg;
412
    else
413
        *qemu_reg = *kvm_reg;
414
}
415

    
416
static int kvm_getput_regs(CPUState *env, int set)
417
{
418
    struct kvm_regs regs;
419
    int ret = 0;
420

    
421
    if (!set) {
422
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
423
        if (ret < 0)
424
            return ret;
425
    }
426

    
427
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
428
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
429
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
430
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
431
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
432
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
433
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
434
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
435
#ifdef TARGET_X86_64
436
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
437
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
438
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
439
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
440
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
441
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
442
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
443
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
444
#endif
445

    
446
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
447
    kvm_getput_reg(&regs.rip, &env->eip, set);
448

    
449
    if (set)
450
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
451

    
452
    return ret;
453
}
454

    
455
static int kvm_put_fpu(CPUState *env)
456
{
457
    struct kvm_fpu fpu;
458
    int i;
459

    
460
    memset(&fpu, 0, sizeof fpu);
461
    fpu.fsw = env->fpus & ~(7 << 11);
462
    fpu.fsw |= (env->fpstt & 7) << 11;
463
    fpu.fcw = env->fpuc;
464
    for (i = 0; i < 8; ++i)
465
        fpu.ftwx |= (!env->fptags[i]) << i;
466
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
467
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
468
    fpu.mxcsr = env->mxcsr;
469

    
470
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
471
}
472

    
473
static int kvm_put_sregs(CPUState *env)
474
{
475
    struct kvm_sregs sregs;
476

    
477
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
478
    if (env->interrupt_injected >= 0) {
479
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
480
                (uint64_t)1 << (env->interrupt_injected % 64);
481
    }
482

    
483
    if ((env->eflags & VM_MASK)) {
484
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
485
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
486
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
487
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
488
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
489
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
490
    } else {
491
            set_seg(&sregs.cs, &env->segs[R_CS]);
492
            set_seg(&sregs.ds, &env->segs[R_DS]);
493
            set_seg(&sregs.es, &env->segs[R_ES]);
494
            set_seg(&sregs.fs, &env->segs[R_FS]);
495
            set_seg(&sregs.gs, &env->segs[R_GS]);
496
            set_seg(&sregs.ss, &env->segs[R_SS]);
497

    
498
            if (env->cr[0] & CR0_PE_MASK) {
499
                /* force ss cpl to cs cpl */
500
                sregs.ss.selector = (sregs.ss.selector & ~3) |
501
                        (sregs.cs.selector & 3);
502
                sregs.ss.dpl = sregs.ss.selector & 3;
503
            }
504
    }
505

    
506
    set_seg(&sregs.tr, &env->tr);
507
    set_seg(&sregs.ldt, &env->ldt);
508

    
509
    sregs.idt.limit = env->idt.limit;
510
    sregs.idt.base = env->idt.base;
511
    sregs.gdt.limit = env->gdt.limit;
512
    sregs.gdt.base = env->gdt.base;
513

    
514
    sregs.cr0 = env->cr[0];
515
    sregs.cr2 = env->cr[2];
516
    sregs.cr3 = env->cr[3];
517
    sregs.cr4 = env->cr[4];
518

    
519
    sregs.cr8 = cpu_get_apic_tpr(env);
520
    sregs.apic_base = cpu_get_apic_base(env);
521

    
522
    sregs.efer = env->efer;
523

    
524
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
525
}
526

    
527
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
528
                              uint32_t index, uint64_t value)
529
{
530
    entry->index = index;
531
    entry->data = value;
532
}
533

    
534
static int kvm_put_msrs(CPUState *env, int level)
535
{
536
    struct {
537
        struct kvm_msrs info;
538
        struct kvm_msr_entry entries[100];
539
    } msr_data;
540
    struct kvm_msr_entry *msrs = msr_data.entries;
541
    int n = 0;
542

    
543
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
544
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
545
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
546
    if (kvm_has_msr_star(env))
547
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
548
#ifdef TARGET_X86_64
549
    /* FIXME if lm capable */
550
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
551
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
552
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
553
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
554
#endif
555
    if (level == KVM_PUT_FULL_STATE) {
556
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
557
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
558
                          env->system_time_msr);
559
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
560
    }
561

    
562
    msr_data.info.nmsrs = n;
563

    
564
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
565

    
566
}
567

    
568

    
569
static int kvm_get_fpu(CPUState *env)
570
{
571
    struct kvm_fpu fpu;
572
    int i, ret;
573

    
574
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
575
    if (ret < 0)
576
        return ret;
577

    
578
    env->fpstt = (fpu.fsw >> 11) & 7;
579
    env->fpus = fpu.fsw;
580
    env->fpuc = fpu.fcw;
581
    for (i = 0; i < 8; ++i)
582
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
583
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
584
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
585
    env->mxcsr = fpu.mxcsr;
586

    
587
    return 0;
588
}
589

    
590
static int kvm_get_sregs(CPUState *env)
591
{
592
    struct kvm_sregs sregs;
593
    uint32_t hflags;
594
    int bit, i, ret;
595

    
596
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
597
    if (ret < 0)
598
        return ret;
599

    
600
    /* There can only be one pending IRQ set in the bitmap at a time, so try
601
       to find it and save its number instead (-1 for none). */
602
    env->interrupt_injected = -1;
603
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
604
        if (sregs.interrupt_bitmap[i]) {
605
            bit = ctz64(sregs.interrupt_bitmap[i]);
606
            env->interrupt_injected = i * 64 + bit;
607
            break;
608
        }
609
    }
610

    
611
    get_seg(&env->segs[R_CS], &sregs.cs);
612
    get_seg(&env->segs[R_DS], &sregs.ds);
613
    get_seg(&env->segs[R_ES], &sregs.es);
614
    get_seg(&env->segs[R_FS], &sregs.fs);
615
    get_seg(&env->segs[R_GS], &sregs.gs);
616
    get_seg(&env->segs[R_SS], &sregs.ss);
617

    
618
    get_seg(&env->tr, &sregs.tr);
619
    get_seg(&env->ldt, &sregs.ldt);
620

    
621
    env->idt.limit = sregs.idt.limit;
622
    env->idt.base = sregs.idt.base;
623
    env->gdt.limit = sregs.gdt.limit;
624
    env->gdt.base = sregs.gdt.base;
625

    
626
    env->cr[0] = sregs.cr0;
627
    env->cr[2] = sregs.cr2;
628
    env->cr[3] = sregs.cr3;
629
    env->cr[4] = sregs.cr4;
630

    
631
    cpu_set_apic_base(env, sregs.apic_base);
632

    
633
    env->efer = sregs.efer;
634
    //cpu_set_apic_tpr(env, sregs.cr8);
635

    
636
#define HFLAG_COPY_MASK ~( \
637
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
638
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
639
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
640
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
641

    
642

    
643

    
644
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
645
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
646
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
647
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
648
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
649
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
650
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
651

    
652
    if (env->efer & MSR_EFER_LMA) {
653
        hflags |= HF_LMA_MASK;
654
    }
655

    
656
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
657
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
658
    } else {
659
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
660
                (DESC_B_SHIFT - HF_CS32_SHIFT);
661
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
662
                (DESC_B_SHIFT - HF_SS32_SHIFT);
663
        if (!(env->cr[0] & CR0_PE_MASK) ||
664
                   (env->eflags & VM_MASK) ||
665
                   !(hflags & HF_CS32_MASK)) {
666
                hflags |= HF_ADDSEG_MASK;
667
            } else {
668
                hflags |= ((env->segs[R_DS].base |
669
                                env->segs[R_ES].base |
670
                                env->segs[R_SS].base) != 0) <<
671
                    HF_ADDSEG_SHIFT;
672
            }
673
    }
674
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
675

    
676
    return 0;
677
}
678

    
679
static int kvm_get_msrs(CPUState *env)
680
{
681
    struct {
682
        struct kvm_msrs info;
683
        struct kvm_msr_entry entries[100];
684
    } msr_data;
685
    struct kvm_msr_entry *msrs = msr_data.entries;
686
    int ret, i, n;
687

    
688
    n = 0;
689
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
690
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
691
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
692
    if (kvm_has_msr_star(env))
693
        msrs[n++].index = MSR_STAR;
694
    msrs[n++].index = MSR_IA32_TSC;
695
#ifdef TARGET_X86_64
696
    /* FIXME lm_capable_kernel */
697
    msrs[n++].index = MSR_CSTAR;
698
    msrs[n++].index = MSR_KERNELGSBASE;
699
    msrs[n++].index = MSR_FMASK;
700
    msrs[n++].index = MSR_LSTAR;
701
#endif
702
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
703
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
704

    
705
    msr_data.info.nmsrs = n;
706
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
707
    if (ret < 0)
708
        return ret;
709

    
710
    for (i = 0; i < ret; i++) {
711
        switch (msrs[i].index) {
712
        case MSR_IA32_SYSENTER_CS:
713
            env->sysenter_cs = msrs[i].data;
714
            break;
715
        case MSR_IA32_SYSENTER_ESP:
716
            env->sysenter_esp = msrs[i].data;
717
            break;
718
        case MSR_IA32_SYSENTER_EIP:
719
            env->sysenter_eip = msrs[i].data;
720
            break;
721
        case MSR_STAR:
722
            env->star = msrs[i].data;
723
            break;
724
#ifdef TARGET_X86_64
725
        case MSR_CSTAR:
726
            env->cstar = msrs[i].data;
727
            break;
728
        case MSR_KERNELGSBASE:
729
            env->kernelgsbase = msrs[i].data;
730
            break;
731
        case MSR_FMASK:
732
            env->fmask = msrs[i].data;
733
            break;
734
        case MSR_LSTAR:
735
            env->lstar = msrs[i].data;
736
            break;
737
#endif
738
        case MSR_IA32_TSC:
739
            env->tsc = msrs[i].data;
740
            break;
741
        case MSR_KVM_SYSTEM_TIME:
742
            env->system_time_msr = msrs[i].data;
743
            break;
744
        case MSR_KVM_WALL_CLOCK:
745
            env->wall_clock_msr = msrs[i].data;
746
            break;
747
        }
748
    }
749

    
750
    return 0;
751
}
752

    
753
static int kvm_put_mp_state(CPUState *env)
754
{
755
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
756

    
757
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
758
}
759

    
760
static int kvm_get_mp_state(CPUState *env)
761
{
762
    struct kvm_mp_state mp_state;
763
    int ret;
764

    
765
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
766
    if (ret < 0) {
767
        return ret;
768
    }
769
    env->mp_state = mp_state.mp_state;
770
    return 0;
771
}
772

    
773
static int kvm_put_vcpu_events(CPUState *env, int level)
774
{
775
#ifdef KVM_CAP_VCPU_EVENTS
776
    struct kvm_vcpu_events events;
777

    
778
    if (!kvm_has_vcpu_events()) {
779
        return 0;
780
    }
781

    
782
    events.exception.injected = (env->exception_injected >= 0);
783
    events.exception.nr = env->exception_injected;
784
    events.exception.has_error_code = env->has_error_code;
785
    events.exception.error_code = env->error_code;
786

    
787
    events.interrupt.injected = (env->interrupt_injected >= 0);
788
    events.interrupt.nr = env->interrupt_injected;
789
    events.interrupt.soft = env->soft_interrupt;
790

    
791
    events.nmi.injected = env->nmi_injected;
792
    events.nmi.pending = env->nmi_pending;
793
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
794

    
795
    events.sipi_vector = env->sipi_vector;
796

    
797
    events.flags = 0;
798
    if (level >= KVM_PUT_RESET_STATE) {
799
        events.flags |=
800
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
801
    }
802

    
803
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
804
#else
805
    return 0;
806
#endif
807
}
808

    
809
static int kvm_get_vcpu_events(CPUState *env)
810
{
811
#ifdef KVM_CAP_VCPU_EVENTS
812
    struct kvm_vcpu_events events;
813
    int ret;
814

    
815
    if (!kvm_has_vcpu_events()) {
816
        return 0;
817
    }
818

    
819
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
820
    if (ret < 0) {
821
       return ret;
822
    }
823
    env->exception_injected =
824
       events.exception.injected ? events.exception.nr : -1;
825
    env->has_error_code = events.exception.has_error_code;
826
    env->error_code = events.exception.error_code;
827

    
828
    env->interrupt_injected =
829
        events.interrupt.injected ? events.interrupt.nr : -1;
830
    env->soft_interrupt = events.interrupt.soft;
831

    
832
    env->nmi_injected = events.nmi.injected;
833
    env->nmi_pending = events.nmi.pending;
834
    if (events.nmi.masked) {
835
        env->hflags2 |= HF2_NMI_MASK;
836
    } else {
837
        env->hflags2 &= ~HF2_NMI_MASK;
838
    }
839

    
840
    env->sipi_vector = events.sipi_vector;
841
#endif
842

    
843
    return 0;
844
}
845

    
846
static int kvm_guest_debug_workarounds(CPUState *env)
847
{
848
    int ret = 0;
849
#ifdef KVM_CAP_SET_GUEST_DEBUG
850
    unsigned long reinject_trap = 0;
851

    
852
    if (!kvm_has_vcpu_events()) {
853
        if (env->exception_injected == 1) {
854
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
855
        } else if (env->exception_injected == 3) {
856
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
857
        }
858
        env->exception_injected = -1;
859
    }
860

    
861
    /*
862
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
863
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
864
     * by updating the debug state once again if single-stepping is on.
865
     * Another reason to call kvm_update_guest_debug here is a pending debug
866
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
867
     * reinject them via SET_GUEST_DEBUG.
868
     */
869
    if (reinject_trap ||
870
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
871
        ret = kvm_update_guest_debug(env, reinject_trap);
872
    }
873
#endif /* KVM_CAP_SET_GUEST_DEBUG */
874
    return ret;
875
}
876

    
877
int kvm_arch_put_registers(CPUState *env, int level)
878
{
879
    int ret;
880

    
881
    ret = kvm_getput_regs(env, 1);
882
    if (ret < 0)
883
        return ret;
884

    
885
    ret = kvm_put_fpu(env);
886
    if (ret < 0)
887
        return ret;
888

    
889
    ret = kvm_put_sregs(env);
890
    if (ret < 0)
891
        return ret;
892

    
893
    ret = kvm_put_msrs(env, level);
894
    if (ret < 0)
895
        return ret;
896

    
897
    if (level >= KVM_PUT_RESET_STATE) {
898
        ret = kvm_put_mp_state(env);
899
        if (ret < 0)
900
            return ret;
901
    }
902

    
903
    ret = kvm_put_vcpu_events(env, level);
904
    if (ret < 0)
905
        return ret;
906

    
907
    /* must be last */
908
    ret = kvm_guest_debug_workarounds(env);
909
    if (ret < 0)
910
        return ret;
911

    
912
    return 0;
913
}
914

    
915
int kvm_arch_get_registers(CPUState *env)
916
{
917
    int ret;
918

    
919
    ret = kvm_getput_regs(env, 0);
920
    if (ret < 0)
921
        return ret;
922

    
923
    ret = kvm_get_fpu(env);
924
    if (ret < 0)
925
        return ret;
926

    
927
    ret = kvm_get_sregs(env);
928
    if (ret < 0)
929
        return ret;
930

    
931
    ret = kvm_get_msrs(env);
932
    if (ret < 0)
933
        return ret;
934

    
935
    ret = kvm_get_mp_state(env);
936
    if (ret < 0)
937
        return ret;
938

    
939
    ret = kvm_get_vcpu_events(env);
940
    if (ret < 0)
941
        return ret;
942

    
943
    return 0;
944
}
945

    
946
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
947
{
948
    /* Try to inject an interrupt if the guest can accept it */
949
    if (run->ready_for_interrupt_injection &&
950
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
951
        (env->eflags & IF_MASK)) {
952
        int irq;
953

    
954
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
955
        irq = cpu_get_pic_interrupt(env);
956
        if (irq >= 0) {
957
            struct kvm_interrupt intr;
958
            intr.irq = irq;
959
            /* FIXME: errors */
960
            dprintf("injected interrupt %d\n", irq);
961
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
962
        }
963
    }
964

    
965
    /* If we have an interrupt but the guest is not ready to receive an
966
     * interrupt, request an interrupt window exit.  This will
967
     * cause a return to userspace as soon as the guest is ready to
968
     * receive interrupts. */
969
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
970
        run->request_interrupt_window = 1;
971
    else
972
        run->request_interrupt_window = 0;
973

    
974
    dprintf("setting tpr\n");
975
    run->cr8 = cpu_get_apic_tpr(env);
976

    
977
    return 0;
978
}
979

    
980
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
981
{
982
    if (run->if_flag)
983
        env->eflags |= IF_MASK;
984
    else
985
        env->eflags &= ~IF_MASK;
986
    
987
    cpu_set_apic_tpr(env, run->cr8);
988
    cpu_set_apic_base(env, run->apic_base);
989

    
990
    return 0;
991
}
992

    
993
static int kvm_handle_halt(CPUState *env)
994
{
995
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
996
          (env->eflags & IF_MASK)) &&
997
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
998
        env->halted = 1;
999
        env->exception_index = EXCP_HLT;
1000
        return 0;
1001
    }
1002

    
1003
    return 1;
1004
}
1005

    
1006
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1007
{
1008
    int ret = 0;
1009

    
1010
    switch (run->exit_reason) {
1011
    case KVM_EXIT_HLT:
1012
        dprintf("handle_hlt\n");
1013
        ret = kvm_handle_halt(env);
1014
        break;
1015
    }
1016

    
1017
    return ret;
1018
}
1019

    
1020
#ifdef KVM_CAP_SET_GUEST_DEBUG
1021
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1022
{
1023
    static const uint8_t int3 = 0xcc;
1024

    
1025
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1026
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1027
        return -EINVAL;
1028
    return 0;
1029
}
1030

    
1031
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1032
{
1033
    uint8_t int3;
1034

    
1035
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1036
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1037
        return -EINVAL;
1038
    return 0;
1039
}
1040

    
1041
static struct {
1042
    target_ulong addr;
1043
    int len;
1044
    int type;
1045
} hw_breakpoint[4];
1046

    
1047
static int nb_hw_breakpoint;
1048

    
1049
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1050
{
1051
    int n;
1052

    
1053
    for (n = 0; n < nb_hw_breakpoint; n++)
1054
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1055
            (hw_breakpoint[n].len == len || len == -1))
1056
            return n;
1057
    return -1;
1058
}
1059

    
1060
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1061
                                  target_ulong len, int type)
1062
{
1063
    switch (type) {
1064
    case GDB_BREAKPOINT_HW:
1065
        len = 1;
1066
        break;
1067
    case GDB_WATCHPOINT_WRITE:
1068
    case GDB_WATCHPOINT_ACCESS:
1069
        switch (len) {
1070
        case 1:
1071
            break;
1072
        case 2:
1073
        case 4:
1074
        case 8:
1075
            if (addr & (len - 1))
1076
                return -EINVAL;
1077
            break;
1078
        default:
1079
            return -EINVAL;
1080
        }
1081
        break;
1082
    default:
1083
        return -ENOSYS;
1084
    }
1085

    
1086
    if (nb_hw_breakpoint == 4)
1087
        return -ENOBUFS;
1088

    
1089
    if (find_hw_breakpoint(addr, len, type) >= 0)
1090
        return -EEXIST;
1091

    
1092
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1093
    hw_breakpoint[nb_hw_breakpoint].len = len;
1094
    hw_breakpoint[nb_hw_breakpoint].type = type;
1095
    nb_hw_breakpoint++;
1096

    
1097
    return 0;
1098
}
1099

    
1100
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1101
                                  target_ulong len, int type)
1102
{
1103
    int n;
1104

    
1105
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1106
    if (n < 0)
1107
        return -ENOENT;
1108

    
1109
    nb_hw_breakpoint--;
1110
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1111

    
1112
    return 0;
1113
}
1114

    
1115
void kvm_arch_remove_all_hw_breakpoints(void)
1116
{
1117
    nb_hw_breakpoint = 0;
1118
}
1119

    
1120
static CPUWatchpoint hw_watchpoint;
1121

    
1122
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1123
{
1124
    int handle = 0;
1125
    int n;
1126

    
1127
    if (arch_info->exception == 1) {
1128
        if (arch_info->dr6 & (1 << 14)) {
1129
            if (cpu_single_env->singlestep_enabled)
1130
                handle = 1;
1131
        } else {
1132
            for (n = 0; n < 4; n++)
1133
                if (arch_info->dr6 & (1 << n))
1134
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1135
                    case 0x0:
1136
                        handle = 1;
1137
                        break;
1138
                    case 0x1:
1139
                        handle = 1;
1140
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1141
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1142
                        hw_watchpoint.flags = BP_MEM_WRITE;
1143
                        break;
1144
                    case 0x3:
1145
                        handle = 1;
1146
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1147
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1148
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1149
                        break;
1150
                    }
1151
        }
1152
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1153
        handle = 1;
1154

    
1155
    if (!handle) {
1156
        cpu_synchronize_state(cpu_single_env);
1157
        assert(cpu_single_env->exception_injected == -1);
1158

    
1159
        cpu_single_env->exception_injected = arch_info->exception;
1160
        cpu_single_env->has_error_code = 0;
1161
    }
1162

    
1163
    return handle;
1164
}
1165

    
1166
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1167
{
1168
    const uint8_t type_code[] = {
1169
        [GDB_BREAKPOINT_HW] = 0x0,
1170
        [GDB_WATCHPOINT_WRITE] = 0x1,
1171
        [GDB_WATCHPOINT_ACCESS] = 0x3
1172
    };
1173
    const uint8_t len_code[] = {
1174
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1175
    };
1176
    int n;
1177

    
1178
    if (kvm_sw_breakpoints_active(env))
1179
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1180

    
1181
    if (nb_hw_breakpoint > 0) {
1182
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1183
        dbg->arch.debugreg[7] = 0x0600;
1184
        for (n = 0; n < nb_hw_breakpoint; n++) {
1185
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1186
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1187
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1188
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1189
        }
1190
    }
1191
}
1192
#endif /* KVM_CAP_SET_GUEST_DEBUG */