Statistics
| Branch: | Revision:

root / hw / pc.c @ 57a46d05

History | View | Annotate | Download (39.5 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "fdc.h"
27
#include "pci.h"
28
#include "block.h"
29
#include "sysemu.h"
30
#include "audio/audio.h"
31
#include "net.h"
32
#include "smbus.h"
33
#include "boards.h"
34
#include "monitor.h"
35
#include "fw_cfg.h"
36
#include "hpet_emul.h"
37
#include "watchdog.h"
38
#include "smbios.h"
39
#include "ide.h"
40
#include "loader.h"
41
#include "elf.h"
42

    
43
/* output Bochs bios info messages */
44
//#define DEBUG_BIOS
45

    
46
/* Show multiboot debug output */
47
//#define DEBUG_MULTIBOOT
48

    
49
#define BIOS_FILENAME "bios.bin"
50

    
51
#define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
52

    
53
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
54
#define ACPI_DATA_SIZE       0x10000
55
#define BIOS_CFG_IOPORT 0x510
56
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
57
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
58
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
59

    
60
#define MAX_IDE_BUS 2
61

    
62
static fdctrl_t *floppy_controller;
63
static RTCState *rtc_state;
64
static PITState *pit;
65
static PCII440FXState *i440fx_state;
66

    
67
typedef struct isa_irq_state {
68
    qemu_irq *i8259;
69
    qemu_irq *ioapic;
70
} IsaIrqState;
71

    
72
static void isa_irq_handler(void *opaque, int n, int level)
73
{
74
    IsaIrqState *isa = (IsaIrqState *)opaque;
75

    
76
    if (n < 16) {
77
        qemu_set_irq(isa->i8259[n], level);
78
    }
79
    if (isa->ioapic)
80
        qemu_set_irq(isa->ioapic[n], level);
81
};
82

    
83
static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
84
{
85
}
86

    
87
/* MSDOS compatibility mode FPU exception support */
88
static qemu_irq ferr_irq;
89
/* XXX: add IGNNE support */
90
void cpu_set_ferr(CPUX86State *s)
91
{
92
    qemu_irq_raise(ferr_irq);
93
}
94

    
95
static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
96
{
97
    qemu_irq_lower(ferr_irq);
98
}
99

    
100
/* TSC handling */
101
uint64_t cpu_get_tsc(CPUX86State *env)
102
{
103
    return cpu_get_ticks();
104
}
105

    
106
/* SMM support */
107
void cpu_smm_update(CPUState *env)
108
{
109
    if (i440fx_state && env == first_cpu)
110
        i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1);
111
}
112

    
113

    
114
/* IRQ handling */
115
int cpu_get_pic_interrupt(CPUState *env)
116
{
117
    int intno;
118

    
119
    intno = apic_get_interrupt(env);
120
    if (intno >= 0) {
121
        /* set irq request if a PIC irq is still pending */
122
        /* XXX: improve that */
123
        pic_update_irq(isa_pic);
124
        return intno;
125
    }
126
    /* read the irq from the PIC */
127
    if (!apic_accept_pic_intr(env))
128
        return -1;
129

    
130
    intno = pic_read_irq(isa_pic);
131
    return intno;
132
}
133

    
134
static void pic_irq_request(void *opaque, int irq, int level)
135
{
136
    CPUState *env = first_cpu;
137

    
138
    if (env->apic_state) {
139
        while (env) {
140
            if (apic_accept_pic_intr(env))
141
                apic_deliver_pic_intr(env, level);
142
            env = env->next_cpu;
143
        }
144
    } else {
145
        if (level)
146
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
147
        else
148
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
149
    }
150
}
151

    
152
/* PC cmos mappings */
153

    
154
#define REG_EQUIPMENT_BYTE          0x14
155

    
156
static int cmos_get_fd_drive_type(int fd0)
157
{
158
    int val;
159

    
160
    switch (fd0) {
161
    case 0:
162
        /* 1.44 Mb 3"5 drive */
163
        val = 4;
164
        break;
165
    case 1:
166
        /* 2.88 Mb 3"5 drive */
167
        val = 5;
168
        break;
169
    case 2:
170
        /* 1.2 Mb 5"5 drive */
171
        val = 2;
172
        break;
173
    default:
174
        val = 0;
175
        break;
176
    }
177
    return val;
178
}
179

    
180
static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd)
181
{
182
    RTCState *s = rtc_state;
183
    int cylinders, heads, sectors;
184
    bdrv_get_geometry_hint(hd, &cylinders, &heads, &sectors);
185
    rtc_set_memory(s, type_ofs, 47);
186
    rtc_set_memory(s, info_ofs, cylinders);
187
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
188
    rtc_set_memory(s, info_ofs + 2, heads);
189
    rtc_set_memory(s, info_ofs + 3, 0xff);
190
    rtc_set_memory(s, info_ofs + 4, 0xff);
191
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
192
    rtc_set_memory(s, info_ofs + 6, cylinders);
193
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
194
    rtc_set_memory(s, info_ofs + 8, sectors);
195
}
196

    
197
/* convert boot_device letter to something recognizable by the bios */
198
static int boot_device2nibble(char boot_device)
199
{
200
    switch(boot_device) {
201
    case 'a':
202
    case 'b':
203
        return 0x01; /* floppy boot */
204
    case 'c':
205
        return 0x02; /* hard drive boot */
206
    case 'd':
207
        return 0x03; /* CD-ROM boot */
208
    case 'n':
209
        return 0x04; /* Network boot */
210
    }
211
    return 0;
212
}
213

    
214
/* copy/pasted from cmos_init, should be made a general function
215
 and used there as well */
216
static int pc_boot_set(void *opaque, const char *boot_device)
217
{
218
    Monitor *mon = cur_mon;
219
#define PC_MAX_BOOT_DEVICES 3
220
    RTCState *s = (RTCState *)opaque;
221
    int nbds, bds[3] = { 0, };
222
    int i;
223

    
224
    nbds = strlen(boot_device);
225
    if (nbds > PC_MAX_BOOT_DEVICES) {
226
        monitor_printf(mon, "Too many boot devices for PC\n");
227
        return(1);
228
    }
229
    for (i = 0; i < nbds; i++) {
230
        bds[i] = boot_device2nibble(boot_device[i]);
231
        if (bds[i] == 0) {
232
            monitor_printf(mon, "Invalid boot device for PC: '%c'\n",
233
                           boot_device[i]);
234
            return(1);
235
        }
236
    }
237
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
238
    rtc_set_memory(s, 0x38, (bds[2] << 4));
239
    return(0);
240
}
241

    
242
/* hd_table must contain 4 block drivers */
243
static void cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
244
                      const char *boot_device, DriveInfo **hd_table)
245
{
246
    RTCState *s = rtc_state;
247
    int nbds, bds[3] = { 0, };
248
    int val;
249
    int fd0, fd1, nb;
250
    int i;
251

    
252
    /* various important CMOS locations needed by PC/Bochs bios */
253

    
254
    /* memory size */
255
    val = 640; /* base memory in K */
256
    rtc_set_memory(s, 0x15, val);
257
    rtc_set_memory(s, 0x16, val >> 8);
258

    
259
    val = (ram_size / 1024) - 1024;
260
    if (val > 65535)
261
        val = 65535;
262
    rtc_set_memory(s, 0x17, val);
263
    rtc_set_memory(s, 0x18, val >> 8);
264
    rtc_set_memory(s, 0x30, val);
265
    rtc_set_memory(s, 0x31, val >> 8);
266

    
267
    if (above_4g_mem_size) {
268
        rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
269
        rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
270
        rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
271
    }
272

    
273
    if (ram_size > (16 * 1024 * 1024))
274
        val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
275
    else
276
        val = 0;
277
    if (val > 65535)
278
        val = 65535;
279
    rtc_set_memory(s, 0x34, val);
280
    rtc_set_memory(s, 0x35, val >> 8);
281

    
282
    /* set the number of CPU */
283
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
284

    
285
    /* set boot devices, and disable floppy signature check if requested */
286
#define PC_MAX_BOOT_DEVICES 3
287
    nbds = strlen(boot_device);
288
    if (nbds > PC_MAX_BOOT_DEVICES) {
289
        fprintf(stderr, "Too many boot devices for PC\n");
290
        exit(1);
291
    }
292
    for (i = 0; i < nbds; i++) {
293
        bds[i] = boot_device2nibble(boot_device[i]);
294
        if (bds[i] == 0) {
295
            fprintf(stderr, "Invalid boot device for PC: '%c'\n",
296
                    boot_device[i]);
297
            exit(1);
298
        }
299
    }
300
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
301
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ?  0x0 : 0x1));
302

    
303
    /* floppy type */
304

    
305
    fd0 = fdctrl_get_drive_type(floppy_controller, 0);
306
    fd1 = fdctrl_get_drive_type(floppy_controller, 1);
307

    
308
    val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1);
309
    rtc_set_memory(s, 0x10, val);
310

    
311
    val = 0;
312
    nb = 0;
313
    if (fd0 < 3)
314
        nb++;
315
    if (fd1 < 3)
316
        nb++;
317
    switch (nb) {
318
    case 0:
319
        break;
320
    case 1:
321
        val |= 0x01; /* 1 drive, ready for boot */
322
        break;
323
    case 2:
324
        val |= 0x41; /* 2 drives, ready for boot */
325
        break;
326
    }
327
    val |= 0x02; /* FPU is there */
328
    val |= 0x04; /* PS/2 mouse installed */
329
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
330

    
331
    /* hard drives */
332

    
333
    rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0));
334
    if (hd_table[0])
335
        cmos_init_hd(0x19, 0x1b, hd_table[0]->bdrv);
336
    if (hd_table[1])
337
        cmos_init_hd(0x1a, 0x24, hd_table[1]->bdrv);
338

    
339
    val = 0;
340
    for (i = 0; i < 4; i++) {
341
        if (hd_table[i]) {
342
            int cylinders, heads, sectors, translation;
343
            /* NOTE: bdrv_get_geometry_hint() returns the physical
344
                geometry.  It is always such that: 1 <= sects <= 63, 1
345
                <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
346
                geometry can be different if a translation is done. */
347
            translation = bdrv_get_translation_hint(hd_table[i]->bdrv);
348
            if (translation == BIOS_ATA_TRANSLATION_AUTO) {
349
                bdrv_get_geometry_hint(hd_table[i]->bdrv, &cylinders, &heads, &sectors);
350
                if (cylinders <= 1024 && heads <= 16 && sectors <= 63) {
351
                    /* No translation. */
352
                    translation = 0;
353
                } else {
354
                    /* LBA translation. */
355
                    translation = 1;
356
                }
357
            } else {
358
                translation--;
359
            }
360
            val |= translation << (i * 2);
361
        }
362
    }
363
    rtc_set_memory(s, 0x39, val);
364
}
365

    
366
void ioport_set_a20(int enable)
367
{
368
    /* XXX: send to all CPUs ? */
369
    cpu_x86_set_a20(first_cpu, enable);
370
}
371

    
372
int ioport_get_a20(void)
373
{
374
    return ((first_cpu->a20_mask >> 20) & 1);
375
}
376

    
377
static void ioport92_write(void *opaque, uint32_t addr, uint32_t val)
378
{
379
    ioport_set_a20((val >> 1) & 1);
380
    /* XXX: bit 0 is fast reset */
381
}
382

    
383
static uint32_t ioport92_read(void *opaque, uint32_t addr)
384
{
385
    return ioport_get_a20() << 1;
386
}
387

    
388
/***********************************************************/
389
/* Bochs BIOS debug ports */
390

    
391
static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
392
{
393
    static const char shutdown_str[8] = "Shutdown";
394
    static int shutdown_index = 0;
395

    
396
    switch(addr) {
397
        /* Bochs BIOS messages */
398
    case 0x400:
399
    case 0x401:
400
        fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
401
        exit(1);
402
    case 0x402:
403
    case 0x403:
404
#ifdef DEBUG_BIOS
405
        fprintf(stderr, "%c", val);
406
#endif
407
        break;
408
    case 0x8900:
409
        /* same as Bochs power off */
410
        if (val == shutdown_str[shutdown_index]) {
411
            shutdown_index++;
412
            if (shutdown_index == 8) {
413
                shutdown_index = 0;
414
                qemu_system_shutdown_request();
415
            }
416
        } else {
417
            shutdown_index = 0;
418
        }
419
        break;
420

    
421
        /* LGPL'ed VGA BIOS messages */
422
    case 0x501:
423
    case 0x502:
424
        fprintf(stderr, "VGA BIOS panic, line %d\n", val);
425
        exit(1);
426
    case 0x500:
427
    case 0x503:
428
#ifdef DEBUG_BIOS
429
        fprintf(stderr, "%c", val);
430
#endif
431
        break;
432
    }
433
}
434

    
435
static void *bochs_bios_init(void)
436
{
437
    void *fw_cfg;
438
    uint8_t *smbios_table;
439
    size_t smbios_len;
440
    uint64_t *numa_fw_cfg;
441
    int i, j;
442

    
443
    register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
444
    register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
445
    register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
446
    register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
447
    register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
448

    
449
    register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
450
    register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
451
    register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
452
    register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
453

    
454
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
455

    
456
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
457
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
458
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
459
                     acpi_tables_len);
460
    fw_cfg_add_bytes(fw_cfg, FW_CFG_IRQ0_OVERRIDE, &irq0override, 1);
461

    
462
    smbios_table = smbios_get_table(&smbios_len);
463
    if (smbios_table)
464
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
465
                         smbios_table, smbios_len);
466

    
467
    /* allocate memory for the NUMA channel: one (64bit) word for the number
468
     * of nodes, one word for each VCPU->node and one word for each node to
469
     * hold the amount of memory.
470
     */
471
    numa_fw_cfg = qemu_mallocz((1 + smp_cpus + nb_numa_nodes) * 8);
472
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
473
    for (i = 0; i < smp_cpus; i++) {
474
        for (j = 0; j < nb_numa_nodes; j++) {
475
            if (node_cpumask[j] & (1 << i)) {
476
                numa_fw_cfg[i + 1] = cpu_to_le64(j);
477
                break;
478
            }
479
        }
480
    }
481
    for (i = 0; i < nb_numa_nodes; i++) {
482
        numa_fw_cfg[smp_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
483
    }
484
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
485
                     (1 + smp_cpus + nb_numa_nodes) * 8);
486

    
487
    return fw_cfg;
488
}
489

    
490
static long get_file_size(FILE *f)
491
{
492
    long where, size;
493

    
494
    /* XXX: on Unix systems, using fstat() probably makes more sense */
495

    
496
    where = ftell(f);
497
    fseek(f, 0, SEEK_END);
498
    size = ftell(f);
499
    fseek(f, where, SEEK_SET);
500

    
501
    return size;
502
}
503

    
504
#define MULTIBOOT_STRUCT_ADDR 0x9000
505

    
506
#if MULTIBOOT_STRUCT_ADDR > 0xf0000
507
#error multiboot struct needs to fit in 16 bit real mode
508
#endif
509

    
510
static int load_multiboot(void *fw_cfg,
511
                          FILE *f,
512
                          const char *kernel_filename,
513
                          const char *initrd_filename,
514
                          const char *kernel_cmdline,
515
                          uint8_t *header)
516
{
517
    int i, is_multiboot = 0;
518
    uint32_t flags = 0;
519
    uint32_t mh_entry_addr;
520
    uint32_t mh_load_addr;
521
    uint32_t mb_kernel_size;
522
    uint32_t mmap_addr = MULTIBOOT_STRUCT_ADDR;
523
    uint32_t mb_bootinfo = MULTIBOOT_STRUCT_ADDR + 0x500;
524
    uint32_t mb_mod_end;
525
    uint8_t bootinfo[0x500];
526
    uint32_t cmdline = 0x200;
527
    uint8_t *mb_kernel_data;
528
    uint8_t *mb_bootinfo_data;
529

    
530
    /* Ok, let's see if it is a multiboot image.
531
       The header is 12x32bit long, so the latest entry may be 8192 - 48. */
532
    for (i = 0; i < (8192 - 48); i += 4) {
533
        if (ldl_p(header+i) == 0x1BADB002) {
534
            uint32_t checksum = ldl_p(header+i+8);
535
            flags = ldl_p(header+i+4);
536
            checksum += flags;
537
            checksum += (uint32_t)0x1BADB002;
538
            if (!checksum) {
539
                is_multiboot = 1;
540
                break;
541
            }
542
        }
543
    }
544

    
545
    if (!is_multiboot)
546
        return 0; /* no multiboot */
547

    
548
#ifdef DEBUG_MULTIBOOT
549
    fprintf(stderr, "qemu: I believe we found a multiboot image!\n");
550
#endif
551
    memset(bootinfo, 0, sizeof(bootinfo));
552

    
553
    if (flags & 0x00000004) { /* MULTIBOOT_HEADER_HAS_VBE */
554
        fprintf(stderr, "qemu: multiboot knows VBE. we don't.\n");
555
    }
556
    if (!(flags & 0x00010000)) { /* MULTIBOOT_HEADER_HAS_ADDR */
557
        uint64_t elf_entry;
558
        int kernel_size;
559
        fclose(f);
560
        kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL,
561
                               0, ELF_MACHINE, 0);
562
        if (kernel_size < 0) {
563
            fprintf(stderr, "Error while loading elf kernel\n");
564
            exit(1);
565
        }
566
        mh_load_addr = mh_entry_addr = elf_entry;
567
        mb_kernel_size = kernel_size;
568

    
569
        mb_kernel_data = qemu_malloc(mb_kernel_size);
570
        if (rom_copy(mb_kernel_data, elf_entry, kernel_size) != kernel_size) {
571
            fprintf(stderr, "Error while fetching elf kernel from rom\n");
572
            exit(1);
573
        }
574

    
575
#ifdef DEBUG_MULTIBOOT
576
        fprintf(stderr, "qemu: loading multiboot-elf kernel (%#x bytes) with entry %#zx\n",
577
                mb_kernel_size, (size_t)mh_entry_addr);
578
#endif
579
    } else {
580
        /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_ADDR. */
581
        uint32_t mh_header_addr = ldl_p(header+i+12);
582
        mh_load_addr = ldl_p(header+i+16);
583
#ifdef DEBUG_MULTIBOOT
584
        uint32_t mh_load_end_addr = ldl_p(header+i+20);
585
        uint32_t mh_bss_end_addr = ldl_p(header+i+24);
586
#endif
587
        uint32_t mb_kernel_text_offset = i - (mh_header_addr - mh_load_addr);
588

    
589
        mh_entry_addr = ldl_p(header+i+28);
590
        mb_kernel_size = get_file_size(f) - mb_kernel_text_offset;
591

    
592
        /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_VBE.
593
        uint32_t mh_mode_type = ldl_p(header+i+32);
594
        uint32_t mh_width = ldl_p(header+i+36);
595
        uint32_t mh_height = ldl_p(header+i+40);
596
        uint32_t mh_depth = ldl_p(header+i+44); */
597

    
598
#ifdef DEBUG_MULTIBOOT
599
        fprintf(stderr, "multiboot: mh_header_addr = %#x\n", mh_header_addr);
600
        fprintf(stderr, "multiboot: mh_load_addr = %#x\n", mh_load_addr);
601
        fprintf(stderr, "multiboot: mh_load_end_addr = %#x\n", mh_load_end_addr);
602
        fprintf(stderr, "multiboot: mh_bss_end_addr = %#x\n", mh_bss_end_addr);
603
        fprintf(stderr, "qemu: loading multiboot kernel (%#x bytes) at %#x\n",
604
                mb_kernel_size, mh_load_addr);
605
#endif
606

    
607
        mb_kernel_data = qemu_malloc(mb_kernel_size);
608
        fseek(f, mb_kernel_text_offset, SEEK_SET);
609
        fread(mb_kernel_data, 1, mb_kernel_size, f);
610
        fclose(f);
611
    }
612

    
613
    /* blob size is only the kernel for now */
614
    mb_mod_end = mh_load_addr + mb_kernel_size;
615

    
616
    /* load modules */
617
    stl_p(bootinfo + 20, 0x0); /* mods_count */
618
    if (initrd_filename) {
619
        uint32_t mb_mod_info = 0x100;
620
        uint32_t mb_mod_cmdline = 0x300;
621
        uint32_t mb_mod_start = mh_load_addr;
622
        uint32_t mb_mod_length = mb_kernel_size;
623
        char *next_initrd;
624
        char *next_space;
625
        int mb_mod_count = 0;
626

    
627
        do {
628
            if (mb_mod_info + 16 > mb_mod_cmdline) {
629
                printf("WARNING: Too many modules loaded, aborting.\n");
630
                break;
631
            }
632
            next_initrd = strchr(initrd_filename, ',');
633
            if (next_initrd)
634
                *next_initrd = '\0';
635
            /* if a space comes after the module filename, treat everything
636
               after that as parameters */
637
            pstrcpy((char*)bootinfo + mb_mod_cmdline,
638
                    sizeof(bootinfo) - mb_mod_cmdline,
639
                    initrd_filename);
640
            stl_p(bootinfo + mb_mod_info + 8, mb_bootinfo + mb_mod_cmdline); /* string */
641
            mb_mod_cmdline += strlen(initrd_filename) + 1;
642
            if (mb_mod_cmdline > sizeof(bootinfo)) {
643
                mb_mod_cmdline = sizeof(bootinfo);
644
                printf("WARNING: Too many module cmdlines loaded, aborting.\n");
645
                break;
646
            }
647
            if ((next_space = strchr(initrd_filename, ' ')))
648
                *next_space = '\0';
649
#ifdef DEBUG_MULTIBOOT
650
            printf("multiboot loading module: %s\n", initrd_filename);
651
#endif
652
            mb_mod_start = (mb_mod_start + mb_mod_length + (TARGET_PAGE_SIZE - 1))
653
                         & (TARGET_PAGE_MASK);
654
            mb_mod_length = get_image_size(initrd_filename);
655
            if (mb_mod_length < 0) {
656
                fprintf(stderr, "failed to get %s image size\n", initrd_filename);
657
                exit(1);
658
            }
659
            mb_mod_end = mb_mod_start + mb_mod_length;
660
            mb_mod_count++;
661

    
662
            /* append module data at the end of last module */
663
            mb_kernel_data = qemu_realloc(mb_kernel_data,
664
                                          mh_load_addr - mb_mod_end);
665
            load_image(initrd_filename,
666
                       mb_kernel_data + mb_mod_start - mh_load_addr);
667

    
668
            stl_p(bootinfo + mb_mod_info + 0, mb_mod_start);
669
            stl_p(bootinfo + mb_mod_info + 4, mb_mod_start + mb_mod_length);
670
            stl_p(bootinfo + mb_mod_info + 12, 0x0); /* reserved */
671
#ifdef DEBUG_MULTIBOOT
672
            printf("mod_start: %#x\nmod_end:   %#x\n", mb_mod_start,
673
                   mb_mod_start + mb_mod_length);
674
#endif
675
            initrd_filename = next_initrd+1;
676
            mb_mod_info += 16;
677
        } while (next_initrd);
678
        stl_p(bootinfo + 20, mb_mod_count); /* mods_count */
679
        stl_p(bootinfo + 24, mb_bootinfo + 0x100); /* mods_addr */
680
    }
681

    
682
    /* Commandline support */
683
    stl_p(bootinfo + 16, mb_bootinfo + cmdline);
684
    snprintf((char*)bootinfo + cmdline, 0x100, "%s %s",
685
             kernel_filename, kernel_cmdline);
686

    
687
    /* the kernel is where we want it to be now */
688
#define MULTIBOOT_FLAGS_MEMORY (1 << 0)
689
#define MULTIBOOT_FLAGS_BOOT_DEVICE (1 << 1)
690
#define MULTIBOOT_FLAGS_CMDLINE (1 << 2)
691
#define MULTIBOOT_FLAGS_MODULES (1 << 3)
692
#define MULTIBOOT_FLAGS_MMAP (1 << 6)
693
    stl_p(bootinfo, MULTIBOOT_FLAGS_MEMORY
694
                  | MULTIBOOT_FLAGS_BOOT_DEVICE
695
                  | MULTIBOOT_FLAGS_CMDLINE
696
                  | MULTIBOOT_FLAGS_MODULES
697
                  | MULTIBOOT_FLAGS_MMAP);
698
    stl_p(bootinfo + 4, 640); /* mem_lower */
699
    stl_p(bootinfo + 8, ram_size / 1024); /* mem_upper */
700
    stl_p(bootinfo + 12, 0x8001ffff); /* XXX: use the -boot switch? */
701
    stl_p(bootinfo + 48, mmap_addr); /* mmap_addr */
702

    
703
#ifdef DEBUG_MULTIBOOT
704
    fprintf(stderr, "multiboot: mh_entry_addr = %#x\n", mh_entry_addr);
705
#endif
706

    
707
    /* save bootinfo off the stack */
708
    mb_bootinfo_data = qemu_malloc(sizeof(bootinfo));
709
    memcpy(mb_bootinfo_data, bootinfo, sizeof(bootinfo));
710

    
711
    /* Pass variables to option rom */
712
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, mh_entry_addr);
713
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
714
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, mb_mod_end - mh_load_addr);
715
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, mb_kernel_data,
716
                     mb_mod_end - mh_load_addr);
717

    
718
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, mb_bootinfo);
719
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, sizeof(bootinfo));
720
    fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, mb_bootinfo_data,
721
                     sizeof(bootinfo));
722

    
723
    option_rom[nb_option_roms] = "multiboot.bin";
724
    nb_option_roms++;
725

    
726
    return 1; /* yes, we are multiboot */
727
}
728

    
729
static void load_linux(void *fw_cfg,
730
                       const char *kernel_filename,
731
                       const char *initrd_filename,
732
                       const char *kernel_cmdline,
733
                       target_phys_addr_t max_ram_size)
734
{
735
    uint16_t protocol;
736
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
737
    uint32_t initrd_max;
738
    uint8_t header[8192], *setup, *kernel, *initrd_data;
739
    target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
740
    FILE *f;
741
    char *vmode;
742

    
743
    /* Align to 16 bytes as a paranoia measure */
744
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
745

    
746
    /* load the kernel header */
747
    f = fopen(kernel_filename, "rb");
748
    if (!f || !(kernel_size = get_file_size(f)) ||
749
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
750
        MIN(ARRAY_SIZE(header), kernel_size)) {
751
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
752
                kernel_filename, strerror(errno));
753
        exit(1);
754
    }
755

    
756
    /* kernel protocol version */
757
#if 0
758
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
759
#endif
760
    if (ldl_p(header+0x202) == 0x53726448)
761
        protocol = lduw_p(header+0x206);
762
    else {
763
        /* This looks like a multiboot kernel. If it is, let's stop
764
           treating it like a Linux kernel. */
765
        if (load_multiboot(fw_cfg, f, kernel_filename,
766
                           initrd_filename, kernel_cmdline, header))
767
            return;
768
        protocol = 0;
769
    }
770

    
771
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
772
        /* Low kernel */
773
        real_addr    = 0x90000;
774
        cmdline_addr = 0x9a000 - cmdline_size;
775
        prot_addr    = 0x10000;
776
    } else if (protocol < 0x202) {
777
        /* High but ancient kernel */
778
        real_addr    = 0x90000;
779
        cmdline_addr = 0x9a000 - cmdline_size;
780
        prot_addr    = 0x100000;
781
    } else {
782
        /* High and recent kernel */
783
        real_addr    = 0x10000;
784
        cmdline_addr = 0x20000;
785
        prot_addr    = 0x100000;
786
    }
787

    
788
#if 0
789
    fprintf(stderr,
790
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
791
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
792
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
793
            real_addr,
794
            cmdline_addr,
795
            prot_addr);
796
#endif
797

    
798
    /* highest address for loading the initrd */
799
    if (protocol >= 0x203)
800
        initrd_max = ldl_p(header+0x22c);
801
    else
802
        initrd_max = 0x37ffffff;
803

    
804
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
805
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
806

    
807
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
808
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
809
    fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
810
                     (uint8_t*)strdup(kernel_cmdline),
811
                     strlen(kernel_cmdline)+1);
812

    
813
    if (protocol >= 0x202) {
814
        stl_p(header+0x228, cmdline_addr);
815
    } else {
816
        stw_p(header+0x20, 0xA33F);
817
        stw_p(header+0x22, cmdline_addr-real_addr);
818
    }
819

    
820
    /* handle vga= parameter */
821
    vmode = strstr(kernel_cmdline, "vga=");
822
    if (vmode) {
823
        unsigned int video_mode;
824
        /* skip "vga=" */
825
        vmode += 4;
826
        if (!strncmp(vmode, "normal", 6)) {
827
            video_mode = 0xffff;
828
        } else if (!strncmp(vmode, "ext", 3)) {
829
            video_mode = 0xfffe;
830
        } else if (!strncmp(vmode, "ask", 3)) {
831
            video_mode = 0xfffd;
832
        } else {
833
            video_mode = strtol(vmode, NULL, 0);
834
        }
835
        stw_p(header+0x1fa, video_mode);
836
    }
837

    
838
    /* loader type */
839
    /* High nybble = B reserved for Qemu; low nybble is revision number.
840
       If this code is substantially changed, you may want to consider
841
       incrementing the revision. */
842
    if (protocol >= 0x200)
843
        header[0x210] = 0xB0;
844

    
845
    /* heap */
846
    if (protocol >= 0x201) {
847
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
848
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
849
    }
850

    
851
    /* load initrd */
852
    if (initrd_filename) {
853
        if (protocol < 0x200) {
854
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
855
            exit(1);
856
        }
857

    
858
        initrd_size = get_image_size(initrd_filename);
859
        initrd_addr = (initrd_max-initrd_size) & ~4095;
860

    
861
        initrd_data = qemu_malloc(initrd_size);
862
        load_image(initrd_filename, initrd_data);
863

    
864
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
865
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
866
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
867

    
868
        stl_p(header+0x218, initrd_addr);
869
        stl_p(header+0x21c, initrd_size);
870
    }
871

    
872
    /* load kernel and setup */
873
    setup_size = header[0x1f1];
874
    if (setup_size == 0)
875
        setup_size = 4;
876
    setup_size = (setup_size+1)*512;
877
    kernel_size -= setup_size;
878

    
879
    setup  = qemu_malloc(setup_size);
880
    kernel = qemu_malloc(kernel_size);
881
    fseek(f, 0, SEEK_SET);
882
    fread(setup, 1, setup_size, f);
883
    fread(kernel, 1, kernel_size, f);
884
    fclose(f);
885
    memcpy(setup, header, MIN(sizeof(header), setup_size));
886

    
887
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
888
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
889
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
890

    
891
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
892
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
893
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
894

    
895
    option_rom[nb_option_roms] = "linuxboot.bin";
896
    nb_option_roms++;
897
}
898

    
899
static const int ide_iobase[2] = { 0x1f0, 0x170 };
900
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
901
static const int ide_irq[2] = { 14, 15 };
902

    
903
#define NE2000_NB_MAX 6
904

    
905
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
906
                                              0x280, 0x380 };
907
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
908

    
909
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
910
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
911

    
912
#ifdef HAS_AUDIO
913
static void audio_init (PCIBus *pci_bus, qemu_irq *pic)
914
{
915
    struct soundhw *c;
916

    
917
    for (c = soundhw; c->name; ++c) {
918
        if (c->enabled) {
919
            if (c->isa) {
920
                c->init.init_isa(pic);
921
            } else {
922
                if (pci_bus) {
923
                    c->init.init_pci(pci_bus);
924
                }
925
            }
926
        }
927
    }
928
}
929
#endif
930

    
931
static void pc_init_ne2k_isa(NICInfo *nd)
932
{
933
    static int nb_ne2k = 0;
934

    
935
    if (nb_ne2k == NE2000_NB_MAX)
936
        return;
937
    isa_ne2000_init(ne2000_io[nb_ne2k],
938
                    ne2000_irq[nb_ne2k], nd);
939
    nb_ne2k++;
940
}
941

    
942
int cpu_is_bsp(CPUState *env)
943
{
944
    return env->cpuid_apic_id == 0;
945
}
946

    
947
static CPUState *pc_new_cpu(const char *cpu_model)
948
{
949
    CPUState *env;
950

    
951
    env = cpu_init(cpu_model);
952
    if (!env) {
953
        fprintf(stderr, "Unable to find x86 CPU definition\n");
954
        exit(1);
955
    }
956
    if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
957
        env->cpuid_apic_id = env->cpu_index;
958
        /* APIC reset callback resets cpu */
959
        apic_init(env);
960
    } else {
961
        qemu_register_reset((QEMUResetHandler*)cpu_reset, env);
962
    }
963
    return env;
964
}
965

    
966
/* PC hardware initialisation */
967
static void pc_init1(ram_addr_t ram_size,
968
                     const char *boot_device,
969
                     const char *kernel_filename,
970
                     const char *kernel_cmdline,
971
                     const char *initrd_filename,
972
                     const char *cpu_model,
973
                     int pci_enabled)
974
{
975
    char *filename;
976
    int ret, linux_boot, i;
977
    ram_addr_t ram_addr, bios_offset, option_rom_offset;
978
    ram_addr_t below_4g_mem_size, above_4g_mem_size = 0;
979
    int bios_size, isa_bios_size;
980
    PCIBus *pci_bus;
981
    ISADevice *isa_dev;
982
    int piix3_devfn = -1;
983
    CPUState *env;
984
    qemu_irq *cpu_irq;
985
    qemu_irq *isa_irq;
986
    qemu_irq *i8259;
987
    IsaIrqState *isa_irq_state;
988
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
989
    DriveInfo *fd[MAX_FD];
990
    void *fw_cfg;
991

    
992
    if (ram_size >= 0xe0000000 ) {
993
        above_4g_mem_size = ram_size - 0xe0000000;
994
        below_4g_mem_size = 0xe0000000;
995
    } else {
996
        below_4g_mem_size = ram_size;
997
    }
998

    
999
    linux_boot = (kernel_filename != NULL);
1000

    
1001
    /* init CPUs */
1002
    if (cpu_model == NULL) {
1003
#ifdef TARGET_X86_64
1004
        cpu_model = "qemu64";
1005
#else
1006
        cpu_model = "qemu32";
1007
#endif
1008
    }
1009

    
1010
    for (i = 0; i < smp_cpus; i++) {
1011
        env = pc_new_cpu(cpu_model);
1012
    }
1013

    
1014
    vmport_init();
1015

    
1016
    /* allocate RAM */
1017
    ram_addr = qemu_ram_alloc(0xa0000);
1018
    cpu_register_physical_memory(0, 0xa0000, ram_addr);
1019

    
1020
    /* Allocate, even though we won't register, so we don't break the
1021
     * phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000),
1022
     * and some bios areas, which will be registered later
1023
     */
1024
    ram_addr = qemu_ram_alloc(0x100000 - 0xa0000);
1025
    ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000);
1026
    cpu_register_physical_memory(0x100000,
1027
                 below_4g_mem_size - 0x100000,
1028
                 ram_addr);
1029

    
1030
    /* above 4giga memory allocation */
1031
    if (above_4g_mem_size > 0) {
1032
#if TARGET_PHYS_ADDR_BITS == 32
1033
        hw_error("To much RAM for 32-bit physical address");
1034
#else
1035
        ram_addr = qemu_ram_alloc(above_4g_mem_size);
1036
        cpu_register_physical_memory(0x100000000ULL,
1037
                                     above_4g_mem_size,
1038
                                     ram_addr);
1039
#endif
1040
    }
1041

    
1042

    
1043
    /* BIOS load */
1044
    if (bios_name == NULL)
1045
        bios_name = BIOS_FILENAME;
1046
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1047
    if (filename) {
1048
        bios_size = get_image_size(filename);
1049
    } else {
1050
        bios_size = -1;
1051
    }
1052
    if (bios_size <= 0 ||
1053
        (bios_size % 65536) != 0) {
1054
        goto bios_error;
1055
    }
1056
    bios_offset = qemu_ram_alloc(bios_size);
1057
    ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size));
1058
    if (ret != 0) {
1059
    bios_error:
1060
        fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1061
        exit(1);
1062
    }
1063
    if (filename) {
1064
        qemu_free(filename);
1065
    }
1066
    /* map the last 128KB of the BIOS in ISA space */
1067
    isa_bios_size = bios_size;
1068
    if (isa_bios_size > (128 * 1024))
1069
        isa_bios_size = 128 * 1024;
1070
    cpu_register_physical_memory(0x100000 - isa_bios_size,
1071
                                 isa_bios_size,
1072
                                 (bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM);
1073

    
1074

    
1075

    
1076
    rom_enable_driver_roms = 1;
1077
    option_rom_offset = qemu_ram_alloc(PC_ROM_SIZE);
1078
    cpu_register_physical_memory(PC_ROM_MIN_VGA, PC_ROM_SIZE, option_rom_offset);
1079

    
1080
    /* map all the bios at the top of memory */
1081
    cpu_register_physical_memory((uint32_t)(-bios_size),
1082
                                 bios_size, bios_offset | IO_MEM_ROM);
1083

    
1084
    fw_cfg = bochs_bios_init();
1085

    
1086
    if (linux_boot) {
1087
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1088
    }
1089

    
1090
    for (i = 0; i < nb_option_roms; i++) {
1091
        rom_add_option(option_rom[i]);
1092
    }
1093

    
1094
    cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1);
1095
    i8259 = i8259_init(cpu_irq[0]);
1096
    isa_irq_state = qemu_mallocz(sizeof(*isa_irq_state));
1097
    isa_irq_state->i8259 = i8259;
1098
    isa_irq = qemu_allocate_irqs(isa_irq_handler, isa_irq_state, 24);
1099

    
1100
    if (pci_enabled) {
1101
        pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, isa_irq);
1102
    } else {
1103
        pci_bus = NULL;
1104
        isa_bus_new(NULL);
1105
    }
1106
    isa_bus_irqs(isa_irq);
1107

    
1108
    ferr_irq = isa_reserve_irq(13);
1109

    
1110
    /* init basic PC hardware */
1111
    register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
1112

    
1113
    register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
1114

    
1115
    if (cirrus_vga_enabled) {
1116
        if (pci_enabled) {
1117
            pci_cirrus_vga_init(pci_bus);
1118
        } else {
1119
            isa_cirrus_vga_init();
1120
        }
1121
    } else if (vmsvga_enabled) {
1122
        if (pci_enabled)
1123
            pci_vmsvga_init(pci_bus);
1124
        else
1125
            fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
1126
    } else if (std_vga_enabled) {
1127
        if (pci_enabled) {
1128
            pci_vga_init(pci_bus, 0, 0);
1129
        } else {
1130
            isa_vga_init();
1131
        }
1132
    }
1133

    
1134
    rtc_state = rtc_init(2000);
1135

    
1136
    qemu_register_boot_set(pc_boot_set, rtc_state);
1137

    
1138
    register_ioport_read(0x92, 1, 1, ioport92_read, NULL);
1139
    register_ioport_write(0x92, 1, 1, ioport92_write, NULL);
1140

    
1141
    if (pci_enabled) {
1142
        isa_irq_state->ioapic = ioapic_init();
1143
    }
1144
    pit = pit_init(0x40, isa_reserve_irq(0));
1145
    pcspk_init(pit);
1146
    if (!no_hpet) {
1147
        hpet_init(isa_irq);
1148
    }
1149

    
1150
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1151
        if (serial_hds[i]) {
1152
            serial_isa_init(i, serial_hds[i]);
1153
        }
1154
    }
1155

    
1156
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1157
        if (parallel_hds[i]) {
1158
            parallel_init(i, parallel_hds[i]);
1159
        }
1160
    }
1161

    
1162
    for(i = 0; i < nb_nics; i++) {
1163
        NICInfo *nd = &nd_table[i];
1164

    
1165
        if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
1166
            pc_init_ne2k_isa(nd);
1167
        else
1168
            pci_nic_init_nofail(nd, "e1000", NULL);
1169
    }
1170

    
1171
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
1172
        fprintf(stderr, "qemu: too many IDE bus\n");
1173
        exit(1);
1174
    }
1175

    
1176
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
1177
        hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
1178
    }
1179

    
1180
    if (pci_enabled) {
1181
        pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
1182
    } else {
1183
        for(i = 0; i < MAX_IDE_BUS; i++) {
1184
            isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
1185
                         hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
1186
        }
1187
    }
1188

    
1189
    isa_dev = isa_create_simple("i8042");
1190
    DMA_init(0);
1191
#ifdef HAS_AUDIO
1192
    audio_init(pci_enabled ? pci_bus : NULL, isa_irq);
1193
#endif
1194

    
1195
    for(i = 0; i < MAX_FD; i++) {
1196
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1197
    }
1198
    floppy_controller = fdctrl_init_isa(fd);
1199

    
1200
    cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device, hd);
1201

    
1202
    if (pci_enabled && usb_enabled) {
1203
        usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
1204
    }
1205

    
1206
    if (pci_enabled && acpi_enabled) {
1207
        uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
1208
        i2c_bus *smbus;
1209

    
1210
        /* TODO: Populate SPD eeprom data.  */
1211
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
1212
                              isa_reserve_irq(9));
1213
        for (i = 0; i < 8; i++) {
1214
            DeviceState *eeprom;
1215
            eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
1216
            qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
1217
            qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
1218
            qdev_init_nofail(eeprom);
1219
        }
1220
        piix4_acpi_system_hot_add_init(pci_bus);
1221
    }
1222

    
1223
    if (i440fx_state) {
1224
        i440fx_init_memory_mappings(i440fx_state);
1225
    }
1226

    
1227
    if (pci_enabled) {
1228
        int max_bus;
1229
        int bus;
1230

    
1231
        max_bus = drive_get_max_bus(IF_SCSI);
1232
        for (bus = 0; bus <= max_bus; bus++) {
1233
            pci_create_simple(pci_bus, -1, "lsi53c895a");
1234
        }
1235
    }
1236

    
1237
    /* Add virtio console devices */
1238
    if (pci_enabled) {
1239
        for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
1240
            if (virtcon_hds[i]) {
1241
                pci_create_simple(pci_bus, -1, "virtio-console-pci");
1242
            }
1243
        }
1244
    }
1245
}
1246

    
1247
static void pc_init_pci(ram_addr_t ram_size,
1248
                        const char *boot_device,
1249
                        const char *kernel_filename,
1250
                        const char *kernel_cmdline,
1251
                        const char *initrd_filename,
1252
                        const char *cpu_model)
1253
{
1254
    pc_init1(ram_size, boot_device,
1255
             kernel_filename, kernel_cmdline,
1256
             initrd_filename, cpu_model, 1);
1257
}
1258

    
1259
static void pc_init_isa(ram_addr_t ram_size,
1260
                        const char *boot_device,
1261
                        const char *kernel_filename,
1262
                        const char *kernel_cmdline,
1263
                        const char *initrd_filename,
1264
                        const char *cpu_model)
1265
{
1266
    if (cpu_model == NULL)
1267
        cpu_model = "486";
1268
    pc_init1(ram_size, boot_device,
1269
             kernel_filename, kernel_cmdline,
1270
             initrd_filename, cpu_model, 0);
1271
}
1272

    
1273
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
1274
   BIOS will read it and start S3 resume at POST Entry */
1275
void cmos_set_s3_resume(void)
1276
{
1277
    if (rtc_state)
1278
        rtc_set_memory(rtc_state, 0xF, 0xFE);
1279
}
1280

    
1281
static QEMUMachine pc_machine = {
1282
    .name = "pc-0.11",
1283
    .alias = "pc",
1284
    .desc = "Standard PC",
1285
    .init = pc_init_pci,
1286
    .max_cpus = 255,
1287
    .is_default = 1,
1288
};
1289

    
1290
static QEMUMachine pc_machine_v0_10 = {
1291
    .name = "pc-0.10",
1292
    .desc = "Standard PC, qemu 0.10",
1293
    .init = pc_init_pci,
1294
    .max_cpus = 255,
1295
    .compat_props = (CompatProperty[]) {
1296
        {
1297
            .driver   = "virtio-blk-pci",
1298
            .property = "class",
1299
            .value    = stringify(PCI_CLASS_STORAGE_OTHER),
1300
        },{
1301
            .driver   = "virtio-console-pci",
1302
            .property = "class",
1303
            .value    = stringify(PCI_CLASS_DISPLAY_OTHER),
1304
        },{
1305
            .driver   = "virtio-net-pci",
1306
            .property = "vectors",
1307
            .value    = stringify(0),
1308
        },{
1309
            .driver   = "virtio-blk-pci",
1310
            .property = "vectors",
1311
            .value    = stringify(0),
1312
        },
1313
        { /* end of list */ }
1314
    },
1315
};
1316

    
1317
static QEMUMachine isapc_machine = {
1318
    .name = "isapc",
1319
    .desc = "ISA-only PC",
1320
    .init = pc_init_isa,
1321
    .max_cpus = 1,
1322
};
1323

    
1324
static void pc_machine_init(void)
1325
{
1326
    qemu_register_machine(&pc_machine);
1327
    qemu_register_machine(&pc_machine_v0_10);
1328
    qemu_register_machine(&isapc_machine);
1329
}
1330

    
1331
machine_init(pc_machine_init);