Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 57ccbabe

History | View | Annotate | Download (19 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug NE2000 card */
27
//#define DEBUG_NE2000
28

    
29
#define MAX_ETH_FRAME_SIZE 1514
30

    
31
#define E8390_CMD        0x00  /* The command register (for all pages) */
32
/* Page 0 register offsets. */
33
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38
#define EN0_TSR                0x04        /* Transmit status reg RD */
39
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40
#define EN0_NCR                0x05        /* Number of collision reg RD */
41
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42
#define EN0_FIFO        0x06        /* FIFO RD */
43
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
51
#define EN0_RSR                0x0c        /* rx status reg RD */
52
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
53
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
54
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
55
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
56
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
57
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
58
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
59

    
60
#define EN1_PHYS        0x11
61
#define EN1_CURPAG      0x17
62
#define EN1_MULT        0x18
63

    
64
/*  Register accessed at EN_CMD, the 8390 base addr.  */
65
#define E8390_STOP        0x01        /* Stop and reset the chip */
66
#define E8390_START        0x02        /* Start the chip, clear reset */
67
#define E8390_TRANS        0x04        /* Transmit a frame */
68
#define E8390_RREAD        0x08        /* Remote read */
69
#define E8390_RWRITE        0x10        /* Remote write  */
70
#define E8390_NODMA        0x20        /* Remote DMA */
71
#define E8390_PAGE0        0x00        /* Select page chip registers */
72
#define E8390_PAGE1        0x40        /* using the two high-order bits */
73
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
74

    
75
/* Bits in EN0_ISR - Interrupt status register */
76
#define ENISR_RX        0x01        /* Receiver, no error */
77
#define ENISR_TX        0x02        /* Transmitter, no error */
78
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
79
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
80
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
81
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
82
#define ENISR_RDC        0x40        /* remote dma complete */
83
#define ENISR_RESET        0x80        /* Reset completed */
84
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
85

    
86
/* Bits in received packet status byte and EN0_RSR*/
87
#define ENRSR_RXOK        0x01        /* Received a good packet */
88
#define ENRSR_CRC        0x02        /* CRC error */
89
#define ENRSR_FAE        0x04        /* frame alignment error */
90
#define ENRSR_FO        0x08        /* FIFO overrun */
91
#define ENRSR_MPA        0x10        /* missed pkt */
92
#define ENRSR_PHY        0x20        /* physical/multicast address */
93
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
94
#define ENRSR_DEF        0x80        /* deferring */
95

    
96
/* Transmitted packet status, EN0_TSR. */
97
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
98
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
99
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
100
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
101
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
102
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
103
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
104
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
105

    
106
#define NE2000_PMEM_SIZE    (32*1024)
107
#define NE2000_PMEM_START   (16*1024)
108
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
109
#define NE2000_MEM_SIZE     NE2000_PMEM_END
110

    
111
typedef struct NE2000State {
112
    uint8_t cmd;
113
    uint32_t start;
114
    uint32_t stop;
115
    uint8_t boundary;
116
    uint8_t tsr;
117
    uint8_t tpsr;
118
    uint16_t tcnt;
119
    uint16_t rcnt;
120
    uint32_t rsar;
121
    uint8_t rsr;
122
    uint8_t isr;
123
    uint8_t dcfg;
124
    uint8_t imr;
125
    uint8_t phys[6]; /* mac address */
126
    uint8_t curpag;
127
    uint8_t mult[8]; /* multicast mask array */
128
    int irq;
129
    PCIDevice *pci_dev;
130
    NetDriverState *nd;
131
    uint8_t mem[NE2000_MEM_SIZE];
132
} NE2000State;
133

    
134
static void ne2000_reset(NE2000State *s)
135
{
136
    int i;
137

    
138
    s->isr = ENISR_RESET;
139
    memcpy(s->mem, s->nd->macaddr, 6);
140
    s->mem[14] = 0x57;
141
    s->mem[15] = 0x57;
142

    
143
    /* duplicate prom data */
144
    for(i = 15;i >= 0; i--) {
145
        s->mem[2 * i] = s->mem[i];
146
        s->mem[2 * i + 1] = s->mem[i];
147
    }
148
}
149

    
150
static void ne2000_update_irq(NE2000State *s)
151
{
152
    int isr;
153
    isr = s->isr & s->imr;
154
#if defined(DEBUG_NE2000)
155
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
156
           s->irq, isr ? 1 : 0, s->isr, s->imr);
157
#endif
158
    if (s->irq == 16) {
159
        /* PCI irq */
160
        pci_set_irq(s->pci_dev, 0, (isr != 0));
161
    } else {
162
        /* ISA irq */
163
        pic_set_irq(s->irq, (isr != 0));
164
    }
165
}
166

    
167
/* return the max buffer size if the NE2000 can receive more data */
168
static int ne2000_can_receive(void *opaque)
169
{
170
    NE2000State *s = opaque;
171
    int avail, index, boundary;
172
    
173
    if (s->cmd & E8390_STOP)
174
        return 0;
175
    index = s->curpag << 8;
176
    boundary = s->boundary << 8;
177
    if (index < boundary)
178
        avail = boundary - index;
179
    else
180
        avail = (s->stop - s->start) - (index - boundary);
181
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
182
        return 0;
183
    return MAX_ETH_FRAME_SIZE;
184
}
185

    
186
#define MIN_BUF_SIZE 60
187

    
188
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
189
{
190
    NE2000State *s = opaque;
191
    uint8_t *p;
192
    int total_len, next, avail, len, index;
193
    uint8_t buf1[60];
194
    
195
#if defined(DEBUG_NE2000)
196
    printf("NE2000: received len=%d\n", size);
197
#endif
198

    
199
    /* if too small buffer, then expand it */
200
    if (size < MIN_BUF_SIZE) {
201
        memcpy(buf1, buf, size);
202
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
203
        buf = buf1;
204
        size = MIN_BUF_SIZE;
205
    }
206

    
207
    index = s->curpag << 8;
208
    /* 4 bytes for header */
209
    total_len = size + 4;
210
    /* address for next packet (4 bytes for CRC) */
211
    next = index + ((total_len + 4 + 255) & ~0xff);
212
    if (next >= s->stop)
213
        next -= (s->stop - s->start);
214
    /* prepare packet header */
215
    p = s->mem + index;
216
    s->rsr = ENRSR_RXOK; /* receive status */
217
    /* XXX: check this */
218
    if (buf[0] & 0x01)
219
        s->rsr |= ENRSR_PHY;
220
    p[0] = s->rsr;
221
    p[1] = next >> 8;
222
    p[2] = total_len;
223
    p[3] = total_len >> 8;
224
    index += 4;
225

    
226
    /* write packet data */
227
    while (size > 0) {
228
        avail = s->stop - index;
229
        len = size;
230
        if (len > avail)
231
            len = avail;
232
        memcpy(s->mem + index, buf, len);
233
        buf += len;
234
        index += len;
235
        if (index == s->stop)
236
            index = s->start;
237
        size -= len;
238
    }
239
    s->curpag = next >> 8;
240

    
241
    /* now we can signal we have receive something */
242
    s->isr |= ENISR_RX;
243
    ne2000_update_irq(s);
244
}
245

    
246
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
247
{
248
    NE2000State *s = opaque;
249
    int offset, page;
250

    
251
    addr &= 0xf;
252
#ifdef DEBUG_NE2000
253
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
254
#endif
255
    if (addr == E8390_CMD) {
256
        /* control register */
257
        s->cmd = val;
258
        if (val & E8390_START) {
259
            s->isr &= ~ENISR_RESET;
260
            /* test specific case: zero length transfert */
261
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
262
                s->rcnt == 0) {
263
                s->isr |= ENISR_RDC;
264
                ne2000_update_irq(s);
265
            }
266
            if (val & E8390_TRANS) {
267
                qemu_send_packet(s->nd, s->mem + (s->tpsr << 8), s->tcnt);
268
                /* signal end of transfert */
269
                s->tsr = ENTSR_PTX;
270
                s->isr |= ENISR_TX;
271
                ne2000_update_irq(s);
272
            }
273
        }
274
    } else {
275
        page = s->cmd >> 6;
276
        offset = addr | (page << 4);
277
        switch(offset) {
278
        case EN0_STARTPG:
279
            s->start = val << 8;
280
            break;
281
        case EN0_STOPPG:
282
            s->stop = val << 8;
283
            break;
284
        case EN0_BOUNDARY:
285
            s->boundary = val;
286
            break;
287
        case EN0_IMR:
288
            s->imr = val;
289
            ne2000_update_irq(s);
290
            break;
291
        case EN0_TPSR:
292
            s->tpsr = val;
293
            break;
294
        case EN0_TCNTLO:
295
            s->tcnt = (s->tcnt & 0xff00) | val;
296
            break;
297
        case EN0_TCNTHI:
298
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
299
            break;
300
        case EN0_RSARLO:
301
            s->rsar = (s->rsar & 0xff00) | val;
302
            break;
303
        case EN0_RSARHI:
304
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
305
            break;
306
        case EN0_RCNTLO:
307
            s->rcnt = (s->rcnt & 0xff00) | val;
308
            break;
309
        case EN0_RCNTHI:
310
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
311
            break;
312
        case EN0_DCFG:
313
            s->dcfg = val;
314
            break;
315
        case EN0_ISR:
316
            s->isr &= ~(val & 0x7f);
317
            ne2000_update_irq(s);
318
            break;
319
        case EN1_PHYS ... EN1_PHYS + 5:
320
            s->phys[offset - EN1_PHYS] = val;
321
            break;
322
        case EN1_CURPAG:
323
            s->curpag = val;
324
            break;
325
        case EN1_MULT ... EN1_MULT + 7:
326
            s->mult[offset - EN1_MULT] = val;
327
            break;
328
        }
329
    }
330
}
331

    
332
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
333
{
334
    NE2000State *s = opaque;
335
    int offset, page, ret;
336

    
337
    addr &= 0xf;
338
    if (addr == E8390_CMD) {
339
        ret = s->cmd;
340
    } else {
341
        page = s->cmd >> 6;
342
        offset = addr | (page << 4);
343
        switch(offset) {
344
        case EN0_TSR:
345
            ret = s->tsr;
346
            break;
347
        case EN0_BOUNDARY:
348
            ret = s->boundary;
349
            break;
350
        case EN0_ISR:
351
            ret = s->isr;
352
            break;
353
        case EN0_RSARLO:
354
            ret = s->rsar & 0x00ff;
355
            break;
356
        case EN0_RSARHI:
357
            ret = s->rsar >> 8;
358
            break;
359
        case EN1_PHYS ... EN1_PHYS + 5:
360
            ret = s->phys[offset - EN1_PHYS];
361
            break;
362
        case EN1_CURPAG:
363
            ret = s->curpag;
364
            break;
365
        case EN1_MULT ... EN1_MULT + 7:
366
            ret = s->mult[offset - EN1_MULT];
367
            break;
368
        case EN0_RSR:
369
            ret = s->rsr;
370
            break;
371
        default:
372
            ret = 0x00;
373
            break;
374
        }
375
    }
376
#ifdef DEBUG_NE2000
377
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
378
#endif
379
    return ret;
380
}
381

    
382
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
383
                                     uint32_t val)
384
{
385
    if (addr < 32 || 
386
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
387
        s->mem[addr] = val;
388
    }
389
}
390

    
391
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
392
                                     uint32_t val)
393
{
394
    addr &= ~1; /* XXX: check exact behaviour if not even */
395
    if (addr < 32 || 
396
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
397
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
398
    }
399
}
400

    
401
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
402
                                     uint32_t val)
403
{
404
    addr &= ~1; /* XXX: check exact behaviour if not even */
405
    if (addr < 32 || 
406
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
407
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
408
    }
409
}
410

    
411
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
412
{
413
    if (addr < 32 || 
414
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
415
        return s->mem[addr];
416
    } else {
417
        return 0xff;
418
    }
419
}
420

    
421
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
422
{
423
    addr &= ~1; /* XXX: check exact behaviour if not even */
424
    if (addr < 32 || 
425
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
426
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
427
    } else {
428
        return 0xffff;
429
    }
430
}
431

    
432
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
433
{
434
    addr &= ~1; /* XXX: check exact behaviour if not even */
435
    if (addr < 32 || 
436
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
437
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
438
    } else {
439
        return 0xffffffff;
440
    }
441
}
442

    
443
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
444
{
445
    NE2000State *s = opaque;
446

    
447
#ifdef DEBUG_NE2000
448
    printf("NE2000: asic write val=0x%04x\n", val);
449
#endif
450
    if (s->rcnt == 0)
451
            return;
452
    if (s->dcfg & 0x01) {
453
        /* 16 bit access */
454
        ne2000_mem_writew(s, s->rsar, val);
455
        s->rsar += 2;
456
        s->rcnt -= 2;
457
    } else {
458
        /* 8 bit access */
459
        ne2000_mem_writeb(s, s->rsar, val);
460
        s->rsar++;
461
        s->rcnt--;
462
    }
463
    /* wrap */
464
    if (s->rsar == s->stop)
465
        s->rsar = s->start;
466
    if (s->rcnt == 0) {
467
        /* signal end of transfert */
468
        s->isr |= ENISR_RDC;
469
        ne2000_update_irq(s);
470
    }
471
}
472

    
473
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
474
{
475
    NE2000State *s = opaque;
476
    int ret;
477

    
478
    if (s->dcfg & 0x01) {
479
        /* 16 bit access */
480
        ret = ne2000_mem_readw(s, s->rsar);
481
        s->rsar += 2;
482
        s->rcnt -= 2;
483
    } else {
484
        /* 8 bit access */
485
        ret = ne2000_mem_readb(s, s->rsar);
486
        s->rsar++;
487
        s->rcnt--;
488
    }
489
    /* wrap */
490
    if (s->rsar == s->stop)
491
        s->rsar = s->start;
492
    if (s->rcnt == 0) {
493
        /* signal end of transfert */
494
        s->isr |= ENISR_RDC;
495
        ne2000_update_irq(s);
496
    }
497
#ifdef DEBUG_NE2000
498
    printf("NE2000: asic read val=0x%04x\n", ret);
499
#endif
500
    return ret;
501
}
502

    
503
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
504
{
505
    NE2000State *s = opaque;
506

    
507
#ifdef DEBUG_NE2000
508
    printf("NE2000: asic writel val=0x%04x\n", val);
509
#endif
510
    if (s->rcnt == 0)
511
            return;
512
    /* 32 bit access */
513
    ne2000_mem_writel(s, s->rsar, val);
514
    s->rsar += 4;
515
    s->rcnt -= 4;
516
    /* wrap */
517
    if (s->rsar == s->stop)
518
        s->rsar = s->start;
519
    if (s->rcnt == 0) {
520
        /* signal end of transfert */
521
        s->isr |= ENISR_RDC;
522
        ne2000_update_irq(s);
523
    }
524
}
525

    
526
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
527
{
528
    NE2000State *s = opaque;
529
    int ret;
530

    
531
    /* 32 bit access */
532
    ret = ne2000_mem_readl(s, s->rsar);
533
    s->rsar += 4;
534
    s->rcnt -= 4;
535

    
536
    /* wrap */
537
    if (s->rsar == s->stop)
538
        s->rsar = s->start;
539
    if (s->rcnt == 0) {
540
        /* signal end of transfert */
541
        s->isr |= ENISR_RDC;
542
        ne2000_update_irq(s);
543
    }
544
#ifdef DEBUG_NE2000
545
    printf("NE2000: asic readl val=0x%04x\n", ret);
546
#endif
547
    return ret;
548
}
549

    
550
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
551
{
552
    /* nothing to do (end of reset pulse) */
553
}
554

    
555
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
556
{
557
    NE2000State *s = opaque;
558
    ne2000_reset(s);
559
    return 0;
560
}
561

    
562
void isa_ne2000_init(int base, int irq, NetDriverState *nd)
563
{
564
    NE2000State *s;
565

    
566
    s = qemu_mallocz(sizeof(NE2000State));
567
    if (!s)
568
        return;
569
    
570
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
571
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
572

    
573
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
574
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
575
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
576
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
577

    
578
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
579
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
580
    s->irq = irq;
581
    s->nd = nd;
582

    
583
    ne2000_reset(s);
584

    
585
    qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
586
}
587

    
588
/***********************************************************/
589
/* PCI NE2000 definitions */
590

    
591
typedef struct PCINE2000State {
592
    PCIDevice dev;
593
    NE2000State ne2000;
594
} PCINE2000State;
595

    
596
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
597
                       uint32_t addr, uint32_t size, int type)
598
{
599
    PCINE2000State *d = (PCINE2000State *)pci_dev;
600
    NE2000State *s = &d->ne2000;
601

    
602
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
603
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
604

    
605
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
606
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
607
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
608
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
609
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
610
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
611

    
612
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
613
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
614
}
615

    
616
void pci_ne2000_init(NetDriverState *nd)
617
{
618
    PCINE2000State *d;
619
    NE2000State *s;
620
    uint8_t *pci_conf;
621
    
622
    d = (PCINE2000State *)pci_register_device("NE2000", sizeof(PCINE2000State),
623
                                              0, -1, 
624
                                              NULL, NULL);
625
    pci_conf = d->dev.config;
626
    pci_conf[0x00] = 0xec; // Realtek 8029
627
    pci_conf[0x01] = 0x10;
628
    pci_conf[0x02] = 0x29;
629
    pci_conf[0x03] = 0x80;
630
    pci_conf[0x0a] = 0x00; // ethernet network controller 
631
    pci_conf[0x0b] = 0x02;
632
    pci_conf[0x0e] = 0x00; // header_type
633
    pci_conf[0x3d] = 1; // interrupt pin 0
634
    
635
    pci_register_io_region((PCIDevice *)d, 0, 0x100, 
636
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
637
    s = &d->ne2000;
638
    s->irq = 16; // PCI interrupt
639
    s->pci_dev = (PCIDevice *)d;
640
    s->nd = nd;
641
    ne2000_reset(s);
642
    qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
643
}