Statistics
| Branch: | Revision:

root / vl.c @ 57e073a3

History | View | Annotate | Download (151.8 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <unistd.h>
25
#include <fcntl.h>
26
#include <signal.h>
27
#include <time.h>
28
#include <errno.h>
29
#include <sys/time.h>
30
#include <zlib.h>
31

    
32
/* Needed early for CONFIG_BSD etc. */
33
#include "config-host.h"
34

    
35
#ifndef _WIN32
36
#include <libgen.h>
37
#include <pwd.h>
38
#include <sys/times.h>
39
#include <sys/wait.h>
40
#include <termios.h>
41
#include <sys/mman.h>
42
#include <sys/ioctl.h>
43
#include <sys/resource.h>
44
#include <sys/socket.h>
45
#include <netinet/in.h>
46
#include <net/if.h>
47
#include <arpa/inet.h>
48
#include <dirent.h>
49
#include <netdb.h>
50
#include <sys/select.h>
51
#ifdef CONFIG_BSD
52
#include <sys/stat.h>
53
#if defined(__FreeBSD__) || defined(__DragonFly__)
54
#include <libutil.h>
55
#else
56
#include <util.h>
57
#endif
58
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
59
#include <freebsd/stdlib.h>
60
#else
61
#ifdef __linux__
62
#include <pty.h>
63
#include <malloc.h>
64
#include <linux/rtc.h>
65
#include <sys/prctl.h>
66

    
67
/* For the benefit of older linux systems which don't supply it,
68
   we use a local copy of hpet.h. */
69
/* #include <linux/hpet.h> */
70
#include "hpet.h"
71

    
72
#include <linux/ppdev.h>
73
#include <linux/parport.h>
74
#endif
75
#ifdef __sun__
76
#include <sys/stat.h>
77
#include <sys/ethernet.h>
78
#include <sys/sockio.h>
79
#include <netinet/arp.h>
80
#include <netinet/in.h>
81
#include <netinet/in_systm.h>
82
#include <netinet/ip.h>
83
#include <netinet/ip_icmp.h> // must come after ip.h
84
#include <netinet/udp.h>
85
#include <netinet/tcp.h>
86
#include <net/if.h>
87
#include <syslog.h>
88
#include <stropts.h>
89
/* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
90
   discussion about Solaris header problems */
91
extern int madvise(caddr_t, size_t, int);
92
#endif
93
#endif
94
#endif
95

    
96
#if defined(__OpenBSD__)
97
#include <util.h>
98
#endif
99

    
100
#if defined(CONFIG_VDE)
101
#include <libvdeplug.h>
102
#endif
103

    
104
#ifdef _WIN32
105
#include <windows.h>
106
#include <mmsystem.h>
107
#endif
108

    
109
#ifdef CONFIG_SDL
110
#if defined(__APPLE__) || defined(main)
111
#include <SDL.h>
112
int qemu_main(int argc, char **argv, char **envp);
113
int main(int argc, char **argv)
114
{
115
    return qemu_main(argc, argv, NULL);
116
}
117
#undef main
118
#define main qemu_main
119
#endif
120
#endif /* CONFIG_SDL */
121

    
122
#ifdef CONFIG_COCOA
123
#undef main
124
#define main qemu_main
125
#endif /* CONFIG_COCOA */
126

    
127
#include "hw/hw.h"
128
#include "hw/boards.h"
129
#include "hw/usb.h"
130
#include "hw/pcmcia.h"
131
#include "hw/pc.h"
132
#include "hw/audiodev.h"
133
#include "hw/isa.h"
134
#include "hw/baum.h"
135
#include "hw/bt.h"
136
#include "hw/watchdog.h"
137
#include "hw/smbios.h"
138
#include "hw/xen.h"
139
#include "hw/qdev.h"
140
#include "hw/loader.h"
141
#include "bt-host.h"
142
#include "net.h"
143
#include "monitor.h"
144
#include "console.h"
145
#include "sysemu.h"
146
#include "gdbstub.h"
147
#include "qemu-timer.h"
148
#include "qemu-char.h"
149
#include "cache-utils.h"
150
#include "block.h"
151
#include "dma.h"
152
#include "audio/audio.h"
153
#include "migration.h"
154
#include "kvm.h"
155
#include "balloon.h"
156
#include "qemu-option.h"
157
#include "qemu-config.h"
158

    
159
#include "disas.h"
160

    
161
#include "exec-all.h"
162

    
163
#include "qemu_socket.h"
164

    
165
#include "slirp/libslirp.h"
166

    
167
#include "qemu-queue.h"
168

    
169
//#define DEBUG_NET
170
//#define DEBUG_SLIRP
171

    
172
#define DEFAULT_RAM_SIZE 128
173

    
174
/* Maximum number of monitor devices */
175
#define MAX_MONITOR_DEVICES 10
176

    
177
static const char *data_dir;
178
const char *bios_name = NULL;
179
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
180
   to store the VM snapshots */
181
struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
182
struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
183
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
184
static DisplayState *display_state;
185
DisplayType display_type = DT_DEFAULT;
186
const char* keyboard_layout = NULL;
187
ram_addr_t ram_size;
188
int nb_nics;
189
NICInfo nd_table[MAX_NICS];
190
int vm_running;
191
int autostart;
192
static int rtc_utc = 1;
193
static int rtc_date_offset = -1; /* -1 means no change */
194
QEMUClock *rtc_clock;
195
int vga_interface_type = VGA_CIRRUS;
196
#ifdef TARGET_SPARC
197
int graphic_width = 1024;
198
int graphic_height = 768;
199
int graphic_depth = 8;
200
#else
201
int graphic_width = 800;
202
int graphic_height = 600;
203
int graphic_depth = 15;
204
#endif
205
static int full_screen = 0;
206
#ifdef CONFIG_SDL
207
static int no_frame = 0;
208
#endif
209
int no_quit = 0;
210
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
211
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
212
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
213
#ifdef TARGET_I386
214
int win2k_install_hack = 0;
215
int rtc_td_hack = 0;
216
#endif
217
int usb_enabled = 0;
218
int singlestep = 0;
219
int smp_cpus = 1;
220
int max_cpus = 0;
221
int smp_cores = 1;
222
int smp_threads = 1;
223
const char *vnc_display;
224
int acpi_enabled = 1;
225
int no_hpet = 0;
226
int fd_bootchk = 1;
227
int no_reboot = 0;
228
int no_shutdown = 0;
229
int cursor_hide = 1;
230
int graphic_rotate = 0;
231
uint8_t irq0override = 1;
232
#ifndef _WIN32
233
int daemonize = 0;
234
#endif
235
const char *watchdog;
236
const char *option_rom[MAX_OPTION_ROMS];
237
int nb_option_roms;
238
int semihosting_enabled = 0;
239
#ifdef TARGET_ARM
240
int old_param = 0;
241
#endif
242
const char *qemu_name;
243
int alt_grab = 0;
244
int ctrl_grab = 0;
245
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
246
unsigned int nb_prom_envs = 0;
247
const char *prom_envs[MAX_PROM_ENVS];
248
#endif
249
int boot_menu;
250

    
251
int nb_numa_nodes;
252
uint64_t node_mem[MAX_NODES];
253
uint64_t node_cpumask[MAX_NODES];
254

    
255
static CPUState *cur_cpu;
256
static CPUState *next_cpu;
257
static int timer_alarm_pending = 1;
258
/* Conversion factor from emulated instructions to virtual clock ticks.  */
259
static int icount_time_shift;
260
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
261
#define MAX_ICOUNT_SHIFT 10
262
/* Compensate for varying guest execution speed.  */
263
static int64_t qemu_icount_bias;
264
static QEMUTimer *icount_rt_timer;
265
static QEMUTimer *icount_vm_timer;
266
static QEMUTimer *nographic_timer;
267

    
268
uint8_t qemu_uuid[16];
269

    
270
static QEMUBootSetHandler *boot_set_handler;
271
static void *boot_set_opaque;
272

    
273
/***********************************************************/
274
/* x86 ISA bus support */
275

    
276
target_phys_addr_t isa_mem_base = 0;
277
PicState2 *isa_pic;
278

    
279
/***********************************************************/
280
void hw_error(const char *fmt, ...)
281
{
282
    va_list ap;
283
    CPUState *env;
284

    
285
    va_start(ap, fmt);
286
    fprintf(stderr, "qemu: hardware error: ");
287
    vfprintf(stderr, fmt, ap);
288
    fprintf(stderr, "\n");
289
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
290
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
291
#ifdef TARGET_I386
292
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
293
#else
294
        cpu_dump_state(env, stderr, fprintf, 0);
295
#endif
296
    }
297
    va_end(ap);
298
    abort();
299
}
300

    
301
static void set_proc_name(const char *s)
302
{
303
#if defined(__linux__) && defined(PR_SET_NAME)
304
    char name[16];
305
    if (!s)
306
        return;
307
    name[sizeof(name) - 1] = 0;
308
    strncpy(name, s, sizeof(name));
309
    /* Could rewrite argv[0] too, but that's a bit more complicated.
310
       This simple way is enough for `top'. */
311
    prctl(PR_SET_NAME, name);
312
#endif            
313
}
314
 
315
/***************/
316
/* ballooning */
317

    
318
static QEMUBalloonEvent *qemu_balloon_event;
319
void *qemu_balloon_event_opaque;
320

    
321
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
322
{
323
    qemu_balloon_event = func;
324
    qemu_balloon_event_opaque = opaque;
325
}
326

    
327
void qemu_balloon(ram_addr_t target)
328
{
329
    if (qemu_balloon_event)
330
        qemu_balloon_event(qemu_balloon_event_opaque, target);
331
}
332

    
333
ram_addr_t qemu_balloon_status(void)
334
{
335
    if (qemu_balloon_event)
336
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
337
    return 0;
338
}
339

    
340
/***********************************************************/
341
/* keyboard/mouse */
342

    
343
static QEMUPutKBDEvent *qemu_put_kbd_event;
344
static void *qemu_put_kbd_event_opaque;
345
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
346
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
347

    
348
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
349
{
350
    qemu_put_kbd_event_opaque = opaque;
351
    qemu_put_kbd_event = func;
352
}
353

    
354
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
355
                                                void *opaque, int absolute,
356
                                                const char *name)
357
{
358
    QEMUPutMouseEntry *s, *cursor;
359

    
360
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
361

    
362
    s->qemu_put_mouse_event = func;
363
    s->qemu_put_mouse_event_opaque = opaque;
364
    s->qemu_put_mouse_event_absolute = absolute;
365
    s->qemu_put_mouse_event_name = qemu_strdup(name);
366
    s->next = NULL;
367

    
368
    if (!qemu_put_mouse_event_head) {
369
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
370
        return s;
371
    }
372

    
373
    cursor = qemu_put_mouse_event_head;
374
    while (cursor->next != NULL)
375
        cursor = cursor->next;
376

    
377
    cursor->next = s;
378
    qemu_put_mouse_event_current = s;
379

    
380
    return s;
381
}
382

    
383
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
384
{
385
    QEMUPutMouseEntry *prev = NULL, *cursor;
386

    
387
    if (!qemu_put_mouse_event_head || entry == NULL)
388
        return;
389

    
390
    cursor = qemu_put_mouse_event_head;
391
    while (cursor != NULL && cursor != entry) {
392
        prev = cursor;
393
        cursor = cursor->next;
394
    }
395

    
396
    if (cursor == NULL) // does not exist or list empty
397
        return;
398
    else if (prev == NULL) { // entry is head
399
        qemu_put_mouse_event_head = cursor->next;
400
        if (qemu_put_mouse_event_current == entry)
401
            qemu_put_mouse_event_current = cursor->next;
402
        qemu_free(entry->qemu_put_mouse_event_name);
403
        qemu_free(entry);
404
        return;
405
    }
406

    
407
    prev->next = entry->next;
408

    
409
    if (qemu_put_mouse_event_current == entry)
410
        qemu_put_mouse_event_current = prev;
411

    
412
    qemu_free(entry->qemu_put_mouse_event_name);
413
    qemu_free(entry);
414
}
415

    
416
void kbd_put_keycode(int keycode)
417
{
418
    if (qemu_put_kbd_event) {
419
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
420
    }
421
}
422

    
423
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
424
{
425
    QEMUPutMouseEvent *mouse_event;
426
    void *mouse_event_opaque;
427
    int width;
428

    
429
    if (!qemu_put_mouse_event_current) {
430
        return;
431
    }
432

    
433
    mouse_event =
434
        qemu_put_mouse_event_current->qemu_put_mouse_event;
435
    mouse_event_opaque =
436
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
437

    
438
    if (mouse_event) {
439
        if (graphic_rotate) {
440
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
441
                width = 0x7fff;
442
            else
443
                width = graphic_width - 1;
444
            mouse_event(mouse_event_opaque,
445
                                 width - dy, dx, dz, buttons_state);
446
        } else
447
            mouse_event(mouse_event_opaque,
448
                                 dx, dy, dz, buttons_state);
449
    }
450
}
451

    
452
int kbd_mouse_is_absolute(void)
453
{
454
    if (!qemu_put_mouse_event_current)
455
        return 0;
456

    
457
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
458
}
459

    
460
void do_info_mice(Monitor *mon)
461
{
462
    QEMUPutMouseEntry *cursor;
463
    int index = 0;
464

    
465
    if (!qemu_put_mouse_event_head) {
466
        monitor_printf(mon, "No mouse devices connected\n");
467
        return;
468
    }
469

    
470
    monitor_printf(mon, "Mouse devices available:\n");
471
    cursor = qemu_put_mouse_event_head;
472
    while (cursor != NULL) {
473
        monitor_printf(mon, "%c Mouse #%d: %s\n",
474
                       (cursor == qemu_put_mouse_event_current ? '*' : ' '),
475
                       index, cursor->qemu_put_mouse_event_name);
476
        index++;
477
        cursor = cursor->next;
478
    }
479
}
480

    
481
void do_mouse_set(Monitor *mon, const QDict *qdict)
482
{
483
    QEMUPutMouseEntry *cursor;
484
    int i = 0;
485
    int index = qdict_get_int(qdict, "index");
486

    
487
    if (!qemu_put_mouse_event_head) {
488
        monitor_printf(mon, "No mouse devices connected\n");
489
        return;
490
    }
491

    
492
    cursor = qemu_put_mouse_event_head;
493
    while (cursor != NULL && index != i) {
494
        i++;
495
        cursor = cursor->next;
496
    }
497

    
498
    if (cursor != NULL)
499
        qemu_put_mouse_event_current = cursor;
500
    else
501
        monitor_printf(mon, "Mouse at given index not found\n");
502
}
503

    
504
/* compute with 96 bit intermediate result: (a*b)/c */
505
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
506
{
507
    union {
508
        uint64_t ll;
509
        struct {
510
#ifdef HOST_WORDS_BIGENDIAN
511
            uint32_t high, low;
512
#else
513
            uint32_t low, high;
514
#endif
515
        } l;
516
    } u, res;
517
    uint64_t rl, rh;
518

    
519
    u.ll = a;
520
    rl = (uint64_t)u.l.low * (uint64_t)b;
521
    rh = (uint64_t)u.l.high * (uint64_t)b;
522
    rh += (rl >> 32);
523
    res.l.high = rh / c;
524
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
525
    return res.ll;
526
}
527

    
528
/***********************************************************/
529
/* real time host monotonic timer */
530

    
531
static int64_t get_clock_realtime(void)
532
{
533
    struct timeval tv;
534

    
535
    gettimeofday(&tv, NULL);
536
    return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
537
}
538

    
539
#ifdef WIN32
540

    
541
static int64_t clock_freq;
542

    
543
static void init_get_clock(void)
544
{
545
    LARGE_INTEGER freq;
546
    int ret;
547
    ret = QueryPerformanceFrequency(&freq);
548
    if (ret == 0) {
549
        fprintf(stderr, "Could not calibrate ticks\n");
550
        exit(1);
551
    }
552
    clock_freq = freq.QuadPart;
553
}
554

    
555
static int64_t get_clock(void)
556
{
557
    LARGE_INTEGER ti;
558
    QueryPerformanceCounter(&ti);
559
    return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
560
}
561

    
562
#else
563

    
564
static int use_rt_clock;
565

    
566
static void init_get_clock(void)
567
{
568
    use_rt_clock = 0;
569
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
570
    || defined(__DragonFly__)
571
    {
572
        struct timespec ts;
573
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
574
            use_rt_clock = 1;
575
        }
576
    }
577
#endif
578
}
579

    
580
static int64_t get_clock(void)
581
{
582
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
583
        || defined(__DragonFly__)
584
    if (use_rt_clock) {
585
        struct timespec ts;
586
        clock_gettime(CLOCK_MONOTONIC, &ts);
587
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
588
    } else
589
#endif
590
    {
591
        /* XXX: using gettimeofday leads to problems if the date
592
           changes, so it should be avoided. */
593
        return get_clock_realtime();
594
    }
595
}
596
#endif
597

    
598
/* Return the virtual CPU time, based on the instruction counter.  */
599
static int64_t cpu_get_icount(void)
600
{
601
    int64_t icount;
602
    CPUState *env = cpu_single_env;;
603
    icount = qemu_icount;
604
    if (env) {
605
        if (!can_do_io(env))
606
            fprintf(stderr, "Bad clock read\n");
607
        icount -= (env->icount_decr.u16.low + env->icount_extra);
608
    }
609
    return qemu_icount_bias + (icount << icount_time_shift);
610
}
611

    
612
/***********************************************************/
613
/* guest cycle counter */
614

    
615
typedef struct TimersState {
616
    int64_t cpu_ticks_prev;
617
    int64_t cpu_ticks_offset;
618
    int64_t cpu_clock_offset;
619
    int32_t cpu_ticks_enabled;
620
    int64_t dummy;
621
} TimersState;
622

    
623
TimersState timers_state;
624

    
625
/* return the host CPU cycle counter and handle stop/restart */
626
int64_t cpu_get_ticks(void)
627
{
628
    if (use_icount) {
629
        return cpu_get_icount();
630
    }
631
    if (!timers_state.cpu_ticks_enabled) {
632
        return timers_state.cpu_ticks_offset;
633
    } else {
634
        int64_t ticks;
635
        ticks = cpu_get_real_ticks();
636
        if (timers_state.cpu_ticks_prev > ticks) {
637
            /* Note: non increasing ticks may happen if the host uses
638
               software suspend */
639
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
640
        }
641
        timers_state.cpu_ticks_prev = ticks;
642
        return ticks + timers_state.cpu_ticks_offset;
643
    }
644
}
645

    
646
/* return the host CPU monotonic timer and handle stop/restart */
647
static int64_t cpu_get_clock(void)
648
{
649
    int64_t ti;
650
    if (!timers_state.cpu_ticks_enabled) {
651
        return timers_state.cpu_clock_offset;
652
    } else {
653
        ti = get_clock();
654
        return ti + timers_state.cpu_clock_offset;
655
    }
656
}
657

    
658
/* enable cpu_get_ticks() */
659
void cpu_enable_ticks(void)
660
{
661
    if (!timers_state.cpu_ticks_enabled) {
662
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
663
        timers_state.cpu_clock_offset -= get_clock();
664
        timers_state.cpu_ticks_enabled = 1;
665
    }
666
}
667

    
668
/* disable cpu_get_ticks() : the clock is stopped. You must not call
669
   cpu_get_ticks() after that.  */
670
void cpu_disable_ticks(void)
671
{
672
    if (timers_state.cpu_ticks_enabled) {
673
        timers_state.cpu_ticks_offset = cpu_get_ticks();
674
        timers_state.cpu_clock_offset = cpu_get_clock();
675
        timers_state.cpu_ticks_enabled = 0;
676
    }
677
}
678

    
679
/***********************************************************/
680
/* timers */
681

    
682
#define QEMU_CLOCK_REALTIME 0
683
#define QEMU_CLOCK_VIRTUAL  1
684
#define QEMU_CLOCK_HOST     2
685

    
686
struct QEMUClock {
687
    int type;
688
    /* XXX: add frequency */
689
};
690

    
691
struct QEMUTimer {
692
    QEMUClock *clock;
693
    int64_t expire_time;
694
    QEMUTimerCB *cb;
695
    void *opaque;
696
    struct QEMUTimer *next;
697
};
698

    
699
struct qemu_alarm_timer {
700
    char const *name;
701
    unsigned int flags;
702

    
703
    int (*start)(struct qemu_alarm_timer *t);
704
    void (*stop)(struct qemu_alarm_timer *t);
705
    void (*rearm)(struct qemu_alarm_timer *t);
706
    void *priv;
707
};
708

    
709
#define ALARM_FLAG_DYNTICKS  0x1
710
#define ALARM_FLAG_EXPIRED   0x2
711

    
712
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
713
{
714
    return t && (t->flags & ALARM_FLAG_DYNTICKS);
715
}
716

    
717
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
718
{
719
    if (!alarm_has_dynticks(t))
720
        return;
721

    
722
    t->rearm(t);
723
}
724

    
725
/* TODO: MIN_TIMER_REARM_US should be optimized */
726
#define MIN_TIMER_REARM_US 250
727

    
728
static struct qemu_alarm_timer *alarm_timer;
729

    
730
#ifdef _WIN32
731

    
732
struct qemu_alarm_win32 {
733
    MMRESULT timerId;
734
    unsigned int period;
735
} alarm_win32_data = {0, -1};
736

    
737
static int win32_start_timer(struct qemu_alarm_timer *t);
738
static void win32_stop_timer(struct qemu_alarm_timer *t);
739
static void win32_rearm_timer(struct qemu_alarm_timer *t);
740

    
741
#else
742

    
743
static int unix_start_timer(struct qemu_alarm_timer *t);
744
static void unix_stop_timer(struct qemu_alarm_timer *t);
745

    
746
#ifdef __linux__
747

    
748
static int dynticks_start_timer(struct qemu_alarm_timer *t);
749
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
750
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
751

    
752
static int hpet_start_timer(struct qemu_alarm_timer *t);
753
static void hpet_stop_timer(struct qemu_alarm_timer *t);
754

    
755
static int rtc_start_timer(struct qemu_alarm_timer *t);
756
static void rtc_stop_timer(struct qemu_alarm_timer *t);
757

    
758
#endif /* __linux__ */
759

    
760
#endif /* _WIN32 */
761

    
762
/* Correlation between real and virtual time is always going to be
763
   fairly approximate, so ignore small variation.
764
   When the guest is idle real and virtual time will be aligned in
765
   the IO wait loop.  */
766
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
767

    
768
static void icount_adjust(void)
769
{
770
    int64_t cur_time;
771
    int64_t cur_icount;
772
    int64_t delta;
773
    static int64_t last_delta;
774
    /* If the VM is not running, then do nothing.  */
775
    if (!vm_running)
776
        return;
777

    
778
    cur_time = cpu_get_clock();
779
    cur_icount = qemu_get_clock(vm_clock);
780
    delta = cur_icount - cur_time;
781
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
782
    if (delta > 0
783
        && last_delta + ICOUNT_WOBBLE < delta * 2
784
        && icount_time_shift > 0) {
785
        /* The guest is getting too far ahead.  Slow time down.  */
786
        icount_time_shift--;
787
    }
788
    if (delta < 0
789
        && last_delta - ICOUNT_WOBBLE > delta * 2
790
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
791
        /* The guest is getting too far behind.  Speed time up.  */
792
        icount_time_shift++;
793
    }
794
    last_delta = delta;
795
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
796
}
797

    
798
static void icount_adjust_rt(void * opaque)
799
{
800
    qemu_mod_timer(icount_rt_timer,
801
                   qemu_get_clock(rt_clock) + 1000);
802
    icount_adjust();
803
}
804

    
805
static void icount_adjust_vm(void * opaque)
806
{
807
    qemu_mod_timer(icount_vm_timer,
808
                   qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
809
    icount_adjust();
810
}
811

    
812
static void init_icount_adjust(void)
813
{
814
    /* Have both realtime and virtual time triggers for speed adjustment.
815
       The realtime trigger catches emulated time passing too slowly,
816
       the virtual time trigger catches emulated time passing too fast.
817
       Realtime triggers occur even when idle, so use them less frequently
818
       than VM triggers.  */
819
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
820
    qemu_mod_timer(icount_rt_timer,
821
                   qemu_get_clock(rt_clock) + 1000);
822
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
823
    qemu_mod_timer(icount_vm_timer,
824
                   qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
825
}
826

    
827
static struct qemu_alarm_timer alarm_timers[] = {
828
#ifndef _WIN32
829
#ifdef __linux__
830
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
831
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
832
    /* HPET - if available - is preferred */
833
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
834
    /* ...otherwise try RTC */
835
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
836
#endif
837
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
838
#else
839
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
840
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
841
    {"win32", 0, win32_start_timer,
842
     win32_stop_timer, NULL, &alarm_win32_data},
843
#endif
844
    {NULL, }
845
};
846

    
847
static void show_available_alarms(void)
848
{
849
    int i;
850

    
851
    printf("Available alarm timers, in order of precedence:\n");
852
    for (i = 0; alarm_timers[i].name; i++)
853
        printf("%s\n", alarm_timers[i].name);
854
}
855

    
856
static void configure_alarms(char const *opt)
857
{
858
    int i;
859
    int cur = 0;
860
    int count = ARRAY_SIZE(alarm_timers) - 1;
861
    char *arg;
862
    char *name;
863
    struct qemu_alarm_timer tmp;
864

    
865
    if (!strcmp(opt, "?")) {
866
        show_available_alarms();
867
        exit(0);
868
    }
869

    
870
    arg = qemu_strdup(opt);
871

    
872
    /* Reorder the array */
873
    name = strtok(arg, ",");
874
    while (name) {
875
        for (i = 0; i < count && alarm_timers[i].name; i++) {
876
            if (!strcmp(alarm_timers[i].name, name))
877
                break;
878
        }
879

    
880
        if (i == count) {
881
            fprintf(stderr, "Unknown clock %s\n", name);
882
            goto next;
883
        }
884

    
885
        if (i < cur)
886
            /* Ignore */
887
            goto next;
888

    
889
        /* Swap */
890
        tmp = alarm_timers[i];
891
        alarm_timers[i] = alarm_timers[cur];
892
        alarm_timers[cur] = tmp;
893

    
894
        cur++;
895
next:
896
        name = strtok(NULL, ",");
897
    }
898

    
899
    qemu_free(arg);
900

    
901
    if (cur) {
902
        /* Disable remaining timers */
903
        for (i = cur; i < count; i++)
904
            alarm_timers[i].name = NULL;
905
    } else {
906
        show_available_alarms();
907
        exit(1);
908
    }
909
}
910

    
911
#define QEMU_NUM_CLOCKS 3
912

    
913
QEMUClock *rt_clock;
914
QEMUClock *vm_clock;
915
QEMUClock *host_clock;
916

    
917
static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
918

    
919
static QEMUClock *qemu_new_clock(int type)
920
{
921
    QEMUClock *clock;
922
    clock = qemu_mallocz(sizeof(QEMUClock));
923
    clock->type = type;
924
    return clock;
925
}
926

    
927
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
928
{
929
    QEMUTimer *ts;
930

    
931
    ts = qemu_mallocz(sizeof(QEMUTimer));
932
    ts->clock = clock;
933
    ts->cb = cb;
934
    ts->opaque = opaque;
935
    return ts;
936
}
937

    
938
void qemu_free_timer(QEMUTimer *ts)
939
{
940
    qemu_free(ts);
941
}
942

    
943
/* stop a timer, but do not dealloc it */
944
void qemu_del_timer(QEMUTimer *ts)
945
{
946
    QEMUTimer **pt, *t;
947

    
948
    /* NOTE: this code must be signal safe because
949
       qemu_timer_expired() can be called from a signal. */
950
    pt = &active_timers[ts->clock->type];
951
    for(;;) {
952
        t = *pt;
953
        if (!t)
954
            break;
955
        if (t == ts) {
956
            *pt = t->next;
957
            break;
958
        }
959
        pt = &t->next;
960
    }
961
}
962

    
963
/* modify the current timer so that it will be fired when current_time
964
   >= expire_time. The corresponding callback will be called. */
965
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
966
{
967
    QEMUTimer **pt, *t;
968

    
969
    qemu_del_timer(ts);
970

    
971
    /* add the timer in the sorted list */
972
    /* NOTE: this code must be signal safe because
973
       qemu_timer_expired() can be called from a signal. */
974
    pt = &active_timers[ts->clock->type];
975
    for(;;) {
976
        t = *pt;
977
        if (!t)
978
            break;
979
        if (t->expire_time > expire_time)
980
            break;
981
        pt = &t->next;
982
    }
983
    ts->expire_time = expire_time;
984
    ts->next = *pt;
985
    *pt = ts;
986

    
987
    /* Rearm if necessary  */
988
    if (pt == &active_timers[ts->clock->type]) {
989
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
990
            qemu_rearm_alarm_timer(alarm_timer);
991
        }
992
        /* Interrupt execution to force deadline recalculation.  */
993
        if (use_icount)
994
            qemu_notify_event();
995
    }
996
}
997

    
998
int qemu_timer_pending(QEMUTimer *ts)
999
{
1000
    QEMUTimer *t;
1001
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1002
        if (t == ts)
1003
            return 1;
1004
    }
1005
    return 0;
1006
}
1007

    
1008
int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1009
{
1010
    if (!timer_head)
1011
        return 0;
1012
    return (timer_head->expire_time <= current_time);
1013
}
1014

    
1015
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1016
{
1017
    QEMUTimer *ts;
1018

    
1019
    for(;;) {
1020
        ts = *ptimer_head;
1021
        if (!ts || ts->expire_time > current_time)
1022
            break;
1023
        /* remove timer from the list before calling the callback */
1024
        *ptimer_head = ts->next;
1025
        ts->next = NULL;
1026

    
1027
        /* run the callback (the timer list can be modified) */
1028
        ts->cb(ts->opaque);
1029
    }
1030
}
1031

    
1032
int64_t qemu_get_clock(QEMUClock *clock)
1033
{
1034
    switch(clock->type) {
1035
    case QEMU_CLOCK_REALTIME:
1036
        return get_clock() / 1000000;
1037
    default:
1038
    case QEMU_CLOCK_VIRTUAL:
1039
        if (use_icount) {
1040
            return cpu_get_icount();
1041
        } else {
1042
            return cpu_get_clock();
1043
        }
1044
    case QEMU_CLOCK_HOST:
1045
        return get_clock_realtime();
1046
    }
1047
}
1048

    
1049
static void init_clocks(void)
1050
{
1051
    init_get_clock();
1052
    rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1053
    vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1054
    host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1055

    
1056
    rtc_clock = host_clock;
1057
}
1058

    
1059
/* save a timer */
1060
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1061
{
1062
    uint64_t expire_time;
1063

    
1064
    if (qemu_timer_pending(ts)) {
1065
        expire_time = ts->expire_time;
1066
    } else {
1067
        expire_time = -1;
1068
    }
1069
    qemu_put_be64(f, expire_time);
1070
}
1071

    
1072
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1073
{
1074
    uint64_t expire_time;
1075

    
1076
    expire_time = qemu_get_be64(f);
1077
    if (expire_time != -1) {
1078
        qemu_mod_timer(ts, expire_time);
1079
    } else {
1080
        qemu_del_timer(ts);
1081
    }
1082
}
1083

    
1084
static const VMStateDescription vmstate_timers = {
1085
    .name = "timer",
1086
    .version_id = 2,
1087
    .minimum_version_id = 1,
1088
    .minimum_version_id_old = 1,
1089
    .fields      = (VMStateField []) {
1090
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
1091
        VMSTATE_INT64(dummy, TimersState),
1092
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1093
        VMSTATE_END_OF_LIST()
1094
    }
1095
};
1096

    
1097
static void qemu_event_increment(void);
1098

    
1099
#ifdef _WIN32
1100
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1101
                                        DWORD_PTR dwUser, DWORD_PTR dw1,
1102
                                        DWORD_PTR dw2)
1103
#else
1104
static void host_alarm_handler(int host_signum)
1105
#endif
1106
{
1107
#if 0
1108
#define DISP_FREQ 1000
1109
    {
1110
        static int64_t delta_min = INT64_MAX;
1111
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1112
        static int count;
1113
        ti = qemu_get_clock(vm_clock);
1114
        if (last_clock != 0) {
1115
            delta = ti - last_clock;
1116
            if (delta < delta_min)
1117
                delta_min = delta;
1118
            if (delta > delta_max)
1119
                delta_max = delta;
1120
            delta_cum += delta;
1121
            if (++count == DISP_FREQ) {
1122
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1123
                       muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1124
                       muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1125
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1126
                       (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1127
                count = 0;
1128
                delta_min = INT64_MAX;
1129
                delta_max = 0;
1130
                delta_cum = 0;
1131
            }
1132
        }
1133
        last_clock = ti;
1134
    }
1135
#endif
1136
    if (alarm_has_dynticks(alarm_timer) ||
1137
        (!use_icount &&
1138
            qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1139
                               qemu_get_clock(vm_clock))) ||
1140
        qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1141
                           qemu_get_clock(rt_clock)) ||
1142
        qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1143
                           qemu_get_clock(host_clock))) {
1144
        qemu_event_increment();
1145
        if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1146

    
1147
#ifndef CONFIG_IOTHREAD
1148
        if (next_cpu) {
1149
            /* stop the currently executing cpu because a timer occured */
1150
            cpu_exit(next_cpu);
1151
        }
1152
#endif
1153
        timer_alarm_pending = 1;
1154
        qemu_notify_event();
1155
    }
1156
}
1157

    
1158
static int64_t qemu_next_deadline(void)
1159
{
1160
    /* To avoid problems with overflow limit this to 2^32.  */
1161
    int64_t delta = INT32_MAX;
1162

    
1163
    if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1164
        delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1165
                     qemu_get_clock(vm_clock);
1166
    }
1167
    if (active_timers[QEMU_CLOCK_HOST]) {
1168
        int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1169
                 qemu_get_clock(host_clock);
1170
        if (hdelta < delta)
1171
            delta = hdelta;
1172
    }
1173

    
1174
    if (delta < 0)
1175
        delta = 0;
1176

    
1177
    return delta;
1178
}
1179

    
1180
#if defined(__linux__)
1181
static uint64_t qemu_next_deadline_dyntick(void)
1182
{
1183
    int64_t delta;
1184
    int64_t rtdelta;
1185

    
1186
    if (use_icount)
1187
        delta = INT32_MAX;
1188
    else
1189
        delta = (qemu_next_deadline() + 999) / 1000;
1190

    
1191
    if (active_timers[QEMU_CLOCK_REALTIME]) {
1192
        rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1193
                 qemu_get_clock(rt_clock))*1000;
1194
        if (rtdelta < delta)
1195
            delta = rtdelta;
1196
    }
1197

    
1198
    if (delta < MIN_TIMER_REARM_US)
1199
        delta = MIN_TIMER_REARM_US;
1200

    
1201
    return delta;
1202
}
1203
#endif
1204

    
1205
#ifndef _WIN32
1206

    
1207
/* Sets a specific flag */
1208
static int fcntl_setfl(int fd, int flag)
1209
{
1210
    int flags;
1211

    
1212
    flags = fcntl(fd, F_GETFL);
1213
    if (flags == -1)
1214
        return -errno;
1215

    
1216
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1217
        return -errno;
1218

    
1219
    return 0;
1220
}
1221

    
1222
#if defined(__linux__)
1223

    
1224
#define RTC_FREQ 1024
1225

    
1226
static void enable_sigio_timer(int fd)
1227
{
1228
    struct sigaction act;
1229

    
1230
    /* timer signal */
1231
    sigfillset(&act.sa_mask);
1232
    act.sa_flags = 0;
1233
    act.sa_handler = host_alarm_handler;
1234

    
1235
    sigaction(SIGIO, &act, NULL);
1236
    fcntl_setfl(fd, O_ASYNC);
1237
    fcntl(fd, F_SETOWN, getpid());
1238
}
1239

    
1240
static int hpet_start_timer(struct qemu_alarm_timer *t)
1241
{
1242
    struct hpet_info info;
1243
    int r, fd;
1244

    
1245
    fd = open("/dev/hpet", O_RDONLY);
1246
    if (fd < 0)
1247
        return -1;
1248

    
1249
    /* Set frequency */
1250
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1251
    if (r < 0) {
1252
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1253
                "error, but for better emulation accuracy type:\n"
1254
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1255
        goto fail;
1256
    }
1257

    
1258
    /* Check capabilities */
1259
    r = ioctl(fd, HPET_INFO, &info);
1260
    if (r < 0)
1261
        goto fail;
1262

    
1263
    /* Enable periodic mode */
1264
    r = ioctl(fd, HPET_EPI, 0);
1265
    if (info.hi_flags && (r < 0))
1266
        goto fail;
1267

    
1268
    /* Enable interrupt */
1269
    r = ioctl(fd, HPET_IE_ON, 0);
1270
    if (r < 0)
1271
        goto fail;
1272

    
1273
    enable_sigio_timer(fd);
1274
    t->priv = (void *)(long)fd;
1275

    
1276
    return 0;
1277
fail:
1278
    close(fd);
1279
    return -1;
1280
}
1281

    
1282
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1283
{
1284
    int fd = (long)t->priv;
1285

    
1286
    close(fd);
1287
}
1288

    
1289
static int rtc_start_timer(struct qemu_alarm_timer *t)
1290
{
1291
    int rtc_fd;
1292
    unsigned long current_rtc_freq = 0;
1293

    
1294
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295
    if (rtc_fd < 0)
1296
        return -1;
1297
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1298
    if (current_rtc_freq != RTC_FREQ &&
1299
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1300
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1301
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1302
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1303
        goto fail;
1304
    }
1305
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1306
    fail:
1307
        close(rtc_fd);
1308
        return -1;
1309
    }
1310

    
1311
    enable_sigio_timer(rtc_fd);
1312

    
1313
    t->priv = (void *)(long)rtc_fd;
1314

    
1315
    return 0;
1316
}
1317

    
1318
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1319
{
1320
    int rtc_fd = (long)t->priv;
1321

    
1322
    close(rtc_fd);
1323
}
1324

    
1325
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1326
{
1327
    struct sigevent ev;
1328
    timer_t host_timer;
1329
    struct sigaction act;
1330

    
1331
    sigfillset(&act.sa_mask);
1332
    act.sa_flags = 0;
1333
    act.sa_handler = host_alarm_handler;
1334

    
1335
    sigaction(SIGALRM, &act, NULL);
1336

    
1337
    /* 
1338
     * Initialize ev struct to 0 to avoid valgrind complaining
1339
     * about uninitialized data in timer_create call
1340
     */
1341
    memset(&ev, 0, sizeof(ev));
1342
    ev.sigev_value.sival_int = 0;
1343
    ev.sigev_notify = SIGEV_SIGNAL;
1344
    ev.sigev_signo = SIGALRM;
1345

    
1346
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1347
        perror("timer_create");
1348

    
1349
        /* disable dynticks */
1350
        fprintf(stderr, "Dynamic Ticks disabled\n");
1351

    
1352
        return -1;
1353
    }
1354

    
1355
    t->priv = (void *)(long)host_timer;
1356

    
1357
    return 0;
1358
}
1359

    
1360
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1361
{
1362
    timer_t host_timer = (timer_t)(long)t->priv;
1363

    
1364
    timer_delete(host_timer);
1365
}
1366

    
1367
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1368
{
1369
    timer_t host_timer = (timer_t)(long)t->priv;
1370
    struct itimerspec timeout;
1371
    int64_t nearest_delta_us = INT64_MAX;
1372
    int64_t current_us;
1373

    
1374
    if (!active_timers[QEMU_CLOCK_REALTIME] &&
1375
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
1376
        !active_timers[QEMU_CLOCK_HOST])
1377
        return;
1378

    
1379
    nearest_delta_us = qemu_next_deadline_dyntick();
1380

    
1381
    /* check whether a timer is already running */
1382
    if (timer_gettime(host_timer, &timeout)) {
1383
        perror("gettime");
1384
        fprintf(stderr, "Internal timer error: aborting\n");
1385
        exit(1);
1386
    }
1387
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1388
    if (current_us && current_us <= nearest_delta_us)
1389
        return;
1390

    
1391
    timeout.it_interval.tv_sec = 0;
1392
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1393
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1394
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1395
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1396
        perror("settime");
1397
        fprintf(stderr, "Internal timer error: aborting\n");
1398
        exit(1);
1399
    }
1400
}
1401

    
1402
#endif /* defined(__linux__) */
1403

    
1404
static int unix_start_timer(struct qemu_alarm_timer *t)
1405
{
1406
    struct sigaction act;
1407
    struct itimerval itv;
1408
    int err;
1409

    
1410
    /* timer signal */
1411
    sigfillset(&act.sa_mask);
1412
    act.sa_flags = 0;
1413
    act.sa_handler = host_alarm_handler;
1414

    
1415
    sigaction(SIGALRM, &act, NULL);
1416

    
1417
    itv.it_interval.tv_sec = 0;
1418
    /* for i386 kernel 2.6 to get 1 ms */
1419
    itv.it_interval.tv_usec = 999;
1420
    itv.it_value.tv_sec = 0;
1421
    itv.it_value.tv_usec = 10 * 1000;
1422

    
1423
    err = setitimer(ITIMER_REAL, &itv, NULL);
1424
    if (err)
1425
        return -1;
1426

    
1427
    return 0;
1428
}
1429

    
1430
static void unix_stop_timer(struct qemu_alarm_timer *t)
1431
{
1432
    struct itimerval itv;
1433

    
1434
    memset(&itv, 0, sizeof(itv));
1435
    setitimer(ITIMER_REAL, &itv, NULL);
1436
}
1437

    
1438
#endif /* !defined(_WIN32) */
1439

    
1440

    
1441
#ifdef _WIN32
1442

    
1443
static int win32_start_timer(struct qemu_alarm_timer *t)
1444
{
1445
    TIMECAPS tc;
1446
    struct qemu_alarm_win32 *data = t->priv;
1447
    UINT flags;
1448

    
1449
    memset(&tc, 0, sizeof(tc));
1450
    timeGetDevCaps(&tc, sizeof(tc));
1451

    
1452
    if (data->period < tc.wPeriodMin)
1453
        data->period = tc.wPeriodMin;
1454

    
1455
    timeBeginPeriod(data->period);
1456

    
1457
    flags = TIME_CALLBACK_FUNCTION;
1458
    if (alarm_has_dynticks(t))
1459
        flags |= TIME_ONESHOT;
1460
    else
1461
        flags |= TIME_PERIODIC;
1462

    
1463
    data->timerId = timeSetEvent(1,         // interval (ms)
1464
                        data->period,       // resolution
1465
                        host_alarm_handler, // function
1466
                        (DWORD)t,           // parameter
1467
                        flags);
1468

    
1469
    if (!data->timerId) {
1470
        fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1471
                GetLastError());
1472
        timeEndPeriod(data->period);
1473
        return -1;
1474
    }
1475

    
1476
    return 0;
1477
}
1478

    
1479
static void win32_stop_timer(struct qemu_alarm_timer *t)
1480
{
1481
    struct qemu_alarm_win32 *data = t->priv;
1482

    
1483
    timeKillEvent(data->timerId);
1484
    timeEndPeriod(data->period);
1485
}
1486

    
1487
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1488
{
1489
    struct qemu_alarm_win32 *data = t->priv;
1490

    
1491
    if (!active_timers[QEMU_CLOCK_REALTIME] &&
1492
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
1493
        !active_timers[QEMU_CLOCK_HOST])
1494
        return;
1495

    
1496
    timeKillEvent(data->timerId);
1497

    
1498
    data->timerId = timeSetEvent(1,
1499
                        data->period,
1500
                        host_alarm_handler,
1501
                        (DWORD)t,
1502
                        TIME_ONESHOT | TIME_PERIODIC);
1503

    
1504
    if (!data->timerId) {
1505
        fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1506
                GetLastError());
1507

    
1508
        timeEndPeriod(data->period);
1509
        exit(1);
1510
    }
1511
}
1512

    
1513
#endif /* _WIN32 */
1514

    
1515
static int init_timer_alarm(void)
1516
{
1517
    struct qemu_alarm_timer *t = NULL;
1518
    int i, err = -1;
1519

    
1520
    for (i = 0; alarm_timers[i].name; i++) {
1521
        t = &alarm_timers[i];
1522

    
1523
        err = t->start(t);
1524
        if (!err)
1525
            break;
1526
    }
1527

    
1528
    if (err) {
1529
        err = -ENOENT;
1530
        goto fail;
1531
    }
1532

    
1533
    alarm_timer = t;
1534

    
1535
    return 0;
1536

    
1537
fail:
1538
    return err;
1539
}
1540

    
1541
static void quit_timers(void)
1542
{
1543
    alarm_timer->stop(alarm_timer);
1544
    alarm_timer = NULL;
1545
}
1546

    
1547
/***********************************************************/
1548
/* host time/date access */
1549
void qemu_get_timedate(struct tm *tm, int offset)
1550
{
1551
    time_t ti;
1552
    struct tm *ret;
1553

    
1554
    time(&ti);
1555
    ti += offset;
1556
    if (rtc_date_offset == -1) {
1557
        if (rtc_utc)
1558
            ret = gmtime(&ti);
1559
        else
1560
            ret = localtime(&ti);
1561
    } else {
1562
        ti -= rtc_date_offset;
1563
        ret = gmtime(&ti);
1564
    }
1565

    
1566
    memcpy(tm, ret, sizeof(struct tm));
1567
}
1568

    
1569
int qemu_timedate_diff(struct tm *tm)
1570
{
1571
    time_t seconds;
1572

    
1573
    if (rtc_date_offset == -1)
1574
        if (rtc_utc)
1575
            seconds = mktimegm(tm);
1576
        else
1577
            seconds = mktime(tm);
1578
    else
1579
        seconds = mktimegm(tm) + rtc_date_offset;
1580

    
1581
    return seconds - time(NULL);
1582
}
1583

    
1584
static void configure_rtc_date_offset(const char *startdate, int legacy)
1585
{
1586
    time_t rtc_start_date;
1587
    struct tm tm;
1588

    
1589
    if (!strcmp(startdate, "now") && legacy) {
1590
        rtc_date_offset = -1;
1591
    } else {
1592
        if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1593
                   &tm.tm_year,
1594
                   &tm.tm_mon,
1595
                   &tm.tm_mday,
1596
                   &tm.tm_hour,
1597
                   &tm.tm_min,
1598
                   &tm.tm_sec) == 6) {
1599
            /* OK */
1600
        } else if (sscanf(startdate, "%d-%d-%d",
1601
                          &tm.tm_year,
1602
                          &tm.tm_mon,
1603
                          &tm.tm_mday) == 3) {
1604
            tm.tm_hour = 0;
1605
            tm.tm_min = 0;
1606
            tm.tm_sec = 0;
1607
        } else {
1608
            goto date_fail;
1609
        }
1610
        tm.tm_year -= 1900;
1611
        tm.tm_mon--;
1612
        rtc_start_date = mktimegm(&tm);
1613
        if (rtc_start_date == -1) {
1614
        date_fail:
1615
            fprintf(stderr, "Invalid date format. Valid formats are:\n"
1616
                            "'2006-06-17T16:01:21' or '2006-06-17'\n");
1617
            exit(1);
1618
        }
1619
        rtc_date_offset = time(NULL) - rtc_start_date;
1620
    }
1621
}
1622

    
1623
static void configure_rtc(QemuOpts *opts)
1624
{
1625
    const char *value;
1626

    
1627
    value = qemu_opt_get(opts, "base");
1628
    if (value) {
1629
        if (!strcmp(value, "utc")) {
1630
            rtc_utc = 1;
1631
        } else if (!strcmp(value, "localtime")) {
1632
            rtc_utc = 0;
1633
        } else {
1634
            configure_rtc_date_offset(value, 0);
1635
        }
1636
    }
1637
    value = qemu_opt_get(opts, "clock");
1638
    if (value) {
1639
        if (!strcmp(value, "host")) {
1640
            rtc_clock = host_clock;
1641
        } else if (!strcmp(value, "vm")) {
1642
            rtc_clock = vm_clock;
1643
        } else {
1644
            fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1645
            exit(1);
1646
        }
1647
    }
1648
#ifdef CONFIG_TARGET_I386
1649
    value = qemu_opt_get(opts, "driftfix");
1650
    if (value) {
1651
        if (!strcmp(buf, "slew")) {
1652
            rtc_td_hack = 1;
1653
        } else if (!strcmp(buf, "none")) {
1654
            rtc_td_hack = 0;
1655
        } else {
1656
            fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1657
            exit(1);
1658
        }
1659
    }
1660
#endif
1661
}
1662

    
1663
#ifdef _WIN32
1664
static void socket_cleanup(void)
1665
{
1666
    WSACleanup();
1667
}
1668

    
1669
static int socket_init(void)
1670
{
1671
    WSADATA Data;
1672
    int ret, err;
1673

    
1674
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1675
    if (ret != 0) {
1676
        err = WSAGetLastError();
1677
        fprintf(stderr, "WSAStartup: %d\n", err);
1678
        return -1;
1679
    }
1680
    atexit(socket_cleanup);
1681
    return 0;
1682
}
1683
#endif
1684

    
1685
/***********************************************************/
1686
/* Bluetooth support */
1687
static int nb_hcis;
1688
static int cur_hci;
1689
static struct HCIInfo *hci_table[MAX_NICS];
1690

    
1691
static struct bt_vlan_s {
1692
    struct bt_scatternet_s net;
1693
    int id;
1694
    struct bt_vlan_s *next;
1695
} *first_bt_vlan;
1696

    
1697
/* find or alloc a new bluetooth "VLAN" */
1698
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1699
{
1700
    struct bt_vlan_s **pvlan, *vlan;
1701
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1702
        if (vlan->id == id)
1703
            return &vlan->net;
1704
    }
1705
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1706
    vlan->id = id;
1707
    pvlan = &first_bt_vlan;
1708
    while (*pvlan != NULL)
1709
        pvlan = &(*pvlan)->next;
1710
    *pvlan = vlan;
1711
    return &vlan->net;
1712
}
1713

    
1714
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1715
{
1716
}
1717

    
1718
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1719
{
1720
    return -ENOTSUP;
1721
}
1722

    
1723
static struct HCIInfo null_hci = {
1724
    .cmd_send = null_hci_send,
1725
    .sco_send = null_hci_send,
1726
    .acl_send = null_hci_send,
1727
    .bdaddr_set = null_hci_addr_set,
1728
};
1729

    
1730
struct HCIInfo *qemu_next_hci(void)
1731
{
1732
    if (cur_hci == nb_hcis)
1733
        return &null_hci;
1734

    
1735
    return hci_table[cur_hci++];
1736
}
1737

    
1738
static struct HCIInfo *hci_init(const char *str)
1739
{
1740
    char *endp;
1741
    struct bt_scatternet_s *vlan = 0;
1742

    
1743
    if (!strcmp(str, "null"))
1744
        /* null */
1745
        return &null_hci;
1746
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1747
        /* host[:hciN] */
1748
        return bt_host_hci(str[4] ? str + 5 : "hci0");
1749
    else if (!strncmp(str, "hci", 3)) {
1750
        /* hci[,vlan=n] */
1751
        if (str[3]) {
1752
            if (!strncmp(str + 3, ",vlan=", 6)) {
1753
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1754
                if (*endp)
1755
                    vlan = 0;
1756
            }
1757
        } else
1758
            vlan = qemu_find_bt_vlan(0);
1759
        if (vlan)
1760
           return bt_new_hci(vlan);
1761
    }
1762

    
1763
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1764

    
1765
    return 0;
1766
}
1767

    
1768
static int bt_hci_parse(const char *str)
1769
{
1770
    struct HCIInfo *hci;
1771
    bdaddr_t bdaddr;
1772

    
1773
    if (nb_hcis >= MAX_NICS) {
1774
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1775
        return -1;
1776
    }
1777

    
1778
    hci = hci_init(str);
1779
    if (!hci)
1780
        return -1;
1781

    
1782
    bdaddr.b[0] = 0x52;
1783
    bdaddr.b[1] = 0x54;
1784
    bdaddr.b[2] = 0x00;
1785
    bdaddr.b[3] = 0x12;
1786
    bdaddr.b[4] = 0x34;
1787
    bdaddr.b[5] = 0x56 + nb_hcis;
1788
    hci->bdaddr_set(hci, bdaddr.b);
1789

    
1790
    hci_table[nb_hcis++] = hci;
1791

    
1792
    return 0;
1793
}
1794

    
1795
static void bt_vhci_add(int vlan_id)
1796
{
1797
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1798

    
1799
    if (!vlan->slave)
1800
        fprintf(stderr, "qemu: warning: adding a VHCI to "
1801
                        "an empty scatternet %i\n", vlan_id);
1802

    
1803
    bt_vhci_init(bt_new_hci(vlan));
1804
}
1805

    
1806
static struct bt_device_s *bt_device_add(const char *opt)
1807
{
1808
    struct bt_scatternet_s *vlan;
1809
    int vlan_id = 0;
1810
    char *endp = strstr(opt, ",vlan=");
1811
    int len = (endp ? endp - opt : strlen(opt)) + 1;
1812
    char devname[10];
1813

    
1814
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
1815

    
1816
    if (endp) {
1817
        vlan_id = strtol(endp + 6, &endp, 0);
1818
        if (*endp) {
1819
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1820
            return 0;
1821
        }
1822
    }
1823

    
1824
    vlan = qemu_find_bt_vlan(vlan_id);
1825

    
1826
    if (!vlan->slave)
1827
        fprintf(stderr, "qemu: warning: adding a slave device to "
1828
                        "an empty scatternet %i\n", vlan_id);
1829

    
1830
    if (!strcmp(devname, "keyboard"))
1831
        return bt_keyboard_init(vlan);
1832

    
1833
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1834
    return 0;
1835
}
1836

    
1837
static int bt_parse(const char *opt)
1838
{
1839
    const char *endp, *p;
1840
    int vlan;
1841

    
1842
    if (strstart(opt, "hci", &endp)) {
1843
        if (!*endp || *endp == ',') {
1844
            if (*endp)
1845
                if (!strstart(endp, ",vlan=", 0))
1846
                    opt = endp + 1;
1847

    
1848
            return bt_hci_parse(opt);
1849
       }
1850
    } else if (strstart(opt, "vhci", &endp)) {
1851
        if (!*endp || *endp == ',') {
1852
            if (*endp) {
1853
                if (strstart(endp, ",vlan=", &p)) {
1854
                    vlan = strtol(p, (char **) &endp, 0);
1855
                    if (*endp) {
1856
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1857
                        return 1;
1858
                    }
1859
                } else {
1860
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1861
                    return 1;
1862
                }
1863
            } else
1864
                vlan = 0;
1865

    
1866
            bt_vhci_add(vlan);
1867
            return 0;
1868
        }
1869
    } else if (strstart(opt, "device:", &endp))
1870
        return !bt_device_add(endp);
1871

    
1872
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1873
    return 1;
1874
}
1875

    
1876
/***********************************************************/
1877
/* QEMU Block devices */
1878

    
1879
#define HD_ALIAS "index=%d,media=disk"
1880
#define CDROM_ALIAS "index=2,media=cdrom"
1881
#define FD_ALIAS "index=%d,if=floppy"
1882
#define PFLASH_ALIAS "if=pflash"
1883
#define MTD_ALIAS "if=mtd"
1884
#define SD_ALIAS "index=0,if=sd"
1885

    
1886
QemuOpts *drive_add(const char *file, const char *fmt, ...)
1887
{
1888
    va_list ap;
1889
    char optstr[1024];
1890
    QemuOpts *opts;
1891

    
1892
    va_start(ap, fmt);
1893
    vsnprintf(optstr, sizeof(optstr), fmt, ap);
1894
    va_end(ap);
1895

    
1896
    opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1897
    if (!opts) {
1898
        fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1899
                __FUNCTION__, optstr);
1900
        return NULL;
1901
    }
1902
    if (file)
1903
        qemu_opt_set(opts, "file", file);
1904
    return opts;
1905
}
1906

    
1907
DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1908
{
1909
    DriveInfo *dinfo;
1910

    
1911
    /* seek interface, bus and unit */
1912

    
1913
    QTAILQ_FOREACH(dinfo, &drives, next) {
1914
        if (dinfo->type == type &&
1915
            dinfo->bus == bus &&
1916
            dinfo->unit == unit)
1917
            return dinfo;
1918
    }
1919

    
1920
    return NULL;
1921
}
1922

    
1923
DriveInfo *drive_get_by_id(const char *id)
1924
{
1925
    DriveInfo *dinfo;
1926

    
1927
    QTAILQ_FOREACH(dinfo, &drives, next) {
1928
        if (strcmp(id, dinfo->id))
1929
            continue;
1930
        return dinfo;
1931
    }
1932
    return NULL;
1933
}
1934

    
1935
int drive_get_max_bus(BlockInterfaceType type)
1936
{
1937
    int max_bus;
1938
    DriveInfo *dinfo;
1939

    
1940
    max_bus = -1;
1941
    QTAILQ_FOREACH(dinfo, &drives, next) {
1942
        if(dinfo->type == type &&
1943
           dinfo->bus > max_bus)
1944
            max_bus = dinfo->bus;
1945
    }
1946
    return max_bus;
1947
}
1948

    
1949
const char *drive_get_serial(BlockDriverState *bdrv)
1950
{
1951
    DriveInfo *dinfo;
1952

    
1953
    QTAILQ_FOREACH(dinfo, &drives, next) {
1954
        if (dinfo->bdrv == bdrv)
1955
            return dinfo->serial;
1956
    }
1957

    
1958
    return "\0";
1959
}
1960

    
1961
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1962
{
1963
    DriveInfo *dinfo;
1964

    
1965
    QTAILQ_FOREACH(dinfo, &drives, next) {
1966
        if (dinfo->bdrv == bdrv)
1967
            return dinfo->onerror;
1968
    }
1969

    
1970
    return BLOCK_ERR_STOP_ENOSPC;
1971
}
1972

    
1973
static void bdrv_format_print(void *opaque, const char *name)
1974
{
1975
    fprintf(stderr, " %s", name);
1976
}
1977

    
1978
void drive_uninit(DriveInfo *dinfo)
1979
{
1980
    qemu_opts_del(dinfo->opts);
1981
    bdrv_delete(dinfo->bdrv);
1982
    QTAILQ_REMOVE(&drives, dinfo, next);
1983
    qemu_free(dinfo);
1984
}
1985

    
1986
DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1987
                      int *fatal_error)
1988
{
1989
    const char *buf;
1990
    const char *file = NULL;
1991
    char devname[128];
1992
    const char *serial;
1993
    const char *mediastr = "";
1994
    BlockInterfaceType type;
1995
    enum { MEDIA_DISK, MEDIA_CDROM } media;
1996
    int bus_id, unit_id;
1997
    int cyls, heads, secs, translation;
1998
    BlockDriver *drv = NULL;
1999
    QEMUMachine *machine = opaque;
2000
    int max_devs;
2001
    int index;
2002
    int cache;
2003
    int aio = 0;
2004
    int ro = 0;
2005
    int bdrv_flags, onerror;
2006
    const char *devaddr;
2007
    DriveInfo *dinfo;
2008
    int snapshot = 0;
2009

    
2010
    *fatal_error = 1;
2011

    
2012
    translation = BIOS_ATA_TRANSLATION_AUTO;
2013
    cache = 1;
2014

    
2015
    if (machine && machine->use_scsi) {
2016
        type = IF_SCSI;
2017
        max_devs = MAX_SCSI_DEVS;
2018
        pstrcpy(devname, sizeof(devname), "scsi");
2019
    } else {
2020
        type = IF_IDE;
2021
        max_devs = MAX_IDE_DEVS;
2022
        pstrcpy(devname, sizeof(devname), "ide");
2023
    }
2024
    media = MEDIA_DISK;
2025

    
2026
    /* extract parameters */
2027
    bus_id  = qemu_opt_get_number(opts, "bus", 0);
2028
    unit_id = qemu_opt_get_number(opts, "unit", -1);
2029
    index   = qemu_opt_get_number(opts, "index", -1);
2030

    
2031
    cyls  = qemu_opt_get_number(opts, "cyls", 0);
2032
    heads = qemu_opt_get_number(opts, "heads", 0);
2033
    secs  = qemu_opt_get_number(opts, "secs", 0);
2034

    
2035
    snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2036
    ro = qemu_opt_get_bool(opts, "readonly", 0);
2037

    
2038
    file = qemu_opt_get(opts, "file");
2039
    serial = qemu_opt_get(opts, "serial");
2040

    
2041
    if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2042
        pstrcpy(devname, sizeof(devname), buf);
2043
        if (!strcmp(buf, "ide")) {
2044
            type = IF_IDE;
2045
            max_devs = MAX_IDE_DEVS;
2046
        } else if (!strcmp(buf, "scsi")) {
2047
            type = IF_SCSI;
2048
            max_devs = MAX_SCSI_DEVS;
2049
        } else if (!strcmp(buf, "floppy")) {
2050
            type = IF_FLOPPY;
2051
            max_devs = 0;
2052
        } else if (!strcmp(buf, "pflash")) {
2053
            type = IF_PFLASH;
2054
            max_devs = 0;
2055
        } else if (!strcmp(buf, "mtd")) {
2056
            type = IF_MTD;
2057
            max_devs = 0;
2058
        } else if (!strcmp(buf, "sd")) {
2059
            type = IF_SD;
2060
            max_devs = 0;
2061
        } else if (!strcmp(buf, "virtio")) {
2062
            type = IF_VIRTIO;
2063
            max_devs = 0;
2064
        } else if (!strcmp(buf, "xen")) {
2065
            type = IF_XEN;
2066
            max_devs = 0;
2067
        } else if (!strcmp(buf, "none")) {
2068
            type = IF_NONE;
2069
            max_devs = 0;
2070
        } else {
2071
            fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2072
            return NULL;
2073
        }
2074
    }
2075

    
2076
    if (cyls || heads || secs) {
2077
        if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2078
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2079
            return NULL;
2080
        }
2081
        if (heads < 1 || (type == IF_IDE && heads > 16)) {
2082
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2083
            return NULL;
2084
        }
2085
        if (secs < 1 || (type == IF_IDE && secs > 63)) {
2086
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2087
            return NULL;
2088
        }
2089
    }
2090

    
2091
    if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2092
        if (!cyls) {
2093
            fprintf(stderr,
2094
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2095
                    buf);
2096
            return NULL;
2097
        }
2098
        if (!strcmp(buf, "none"))
2099
            translation = BIOS_ATA_TRANSLATION_NONE;
2100
        else if (!strcmp(buf, "lba"))
2101
            translation = BIOS_ATA_TRANSLATION_LBA;
2102
        else if (!strcmp(buf, "auto"))
2103
            translation = BIOS_ATA_TRANSLATION_AUTO;
2104
        else {
2105
            fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2106
            return NULL;
2107
        }
2108
    }
2109

    
2110
    if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2111
        if (!strcmp(buf, "disk")) {
2112
            media = MEDIA_DISK;
2113
        } else if (!strcmp(buf, "cdrom")) {
2114
            if (cyls || secs || heads) {
2115
                fprintf(stderr,
2116
                        "qemu: '%s' invalid physical CHS format\n", buf);
2117
                return NULL;
2118
            }
2119
            media = MEDIA_CDROM;
2120
        } else {
2121
            fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2122
            return NULL;
2123
        }
2124
    }
2125

    
2126
    if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2127
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2128
            cache = 0;
2129
        else if (!strcmp(buf, "writethrough"))
2130
            cache = 1;
2131
        else if (!strcmp(buf, "writeback"))
2132
            cache = 2;
2133
        else {
2134
           fprintf(stderr, "qemu: invalid cache option\n");
2135
           return NULL;
2136
        }
2137
    }
2138

    
2139
#ifdef CONFIG_LINUX_AIO
2140
    if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2141
        if (!strcmp(buf, "threads"))
2142
            aio = 0;
2143
        else if (!strcmp(buf, "native"))
2144
            aio = 1;
2145
        else {
2146
           fprintf(stderr, "qemu: invalid aio option\n");
2147
           return NULL;
2148
        }
2149
    }
2150
#endif
2151

    
2152
    if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2153
       if (strcmp(buf, "?") == 0) {
2154
            fprintf(stderr, "qemu: Supported formats:");
2155
            bdrv_iterate_format(bdrv_format_print, NULL);
2156
            fprintf(stderr, "\n");
2157
            return NULL;
2158
        }
2159
        drv = bdrv_find_whitelisted_format(buf);
2160
        if (!drv) {
2161
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2162
            return NULL;
2163
        }
2164
    }
2165

    
2166
    onerror = BLOCK_ERR_STOP_ENOSPC;
2167
    if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2168
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2169
            fprintf(stderr, "werror is no supported by this format\n");
2170
            return NULL;
2171
        }
2172
        if (!strcmp(buf, "ignore"))
2173
            onerror = BLOCK_ERR_IGNORE;
2174
        else if (!strcmp(buf, "enospc"))
2175
            onerror = BLOCK_ERR_STOP_ENOSPC;
2176
        else if (!strcmp(buf, "stop"))
2177
            onerror = BLOCK_ERR_STOP_ANY;
2178
        else if (!strcmp(buf, "report"))
2179
            onerror = BLOCK_ERR_REPORT;
2180
        else {
2181
            fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2182
            return NULL;
2183
        }
2184
    }
2185

    
2186
    if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2187
        if (type != IF_VIRTIO) {
2188
            fprintf(stderr, "addr is not supported\n");
2189
            return NULL;
2190
        }
2191
    }
2192

    
2193
    /* compute bus and unit according index */
2194

    
2195
    if (index != -1) {
2196
        if (bus_id != 0 || unit_id != -1) {
2197
            fprintf(stderr,
2198
                    "qemu: index cannot be used with bus and unit\n");
2199
            return NULL;
2200
        }
2201
        if (max_devs == 0)
2202
        {
2203
            unit_id = index;
2204
            bus_id = 0;
2205
        } else {
2206
            unit_id = index % max_devs;
2207
            bus_id = index / max_devs;
2208
        }
2209
    }
2210

    
2211
    /* if user doesn't specify a unit_id,
2212
     * try to find the first free
2213
     */
2214

    
2215
    if (unit_id == -1) {
2216
       unit_id = 0;
2217
       while (drive_get(type, bus_id, unit_id) != NULL) {
2218
           unit_id++;
2219
           if (max_devs && unit_id >= max_devs) {
2220
               unit_id -= max_devs;
2221
               bus_id++;
2222
           }
2223
       }
2224
    }
2225

    
2226
    /* check unit id */
2227

    
2228
    if (max_devs && unit_id >= max_devs) {
2229
        fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2230
                unit_id, max_devs - 1);
2231
        return NULL;
2232
    }
2233

    
2234
    /*
2235
     * ignore multiple definitions
2236
     */
2237

    
2238
    if (drive_get(type, bus_id, unit_id) != NULL) {
2239
        *fatal_error = 0;
2240
        return NULL;
2241
    }
2242

    
2243
    /* init */
2244

    
2245
    dinfo = qemu_mallocz(sizeof(*dinfo));
2246
    if ((buf = qemu_opts_id(opts)) != NULL) {
2247
        dinfo->id = qemu_strdup(buf);
2248
    } else {
2249
        /* no id supplied -> create one */
2250
        dinfo->id = qemu_mallocz(32);
2251
        if (type == IF_IDE || type == IF_SCSI)
2252
            mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2253
        if (max_devs)
2254
            snprintf(dinfo->id, 32, "%s%i%s%i",
2255
                     devname, bus_id, mediastr, unit_id);
2256
        else
2257
            snprintf(dinfo->id, 32, "%s%s%i",
2258
                     devname, mediastr, unit_id);
2259
    }
2260
    dinfo->bdrv = bdrv_new(dinfo->id);
2261
    dinfo->devaddr = devaddr;
2262
    dinfo->type = type;
2263
    dinfo->bus = bus_id;
2264
    dinfo->unit = unit_id;
2265
    dinfo->onerror = onerror;
2266
    dinfo->opts = opts;
2267
    if (serial)
2268
        strncpy(dinfo->serial, serial, sizeof(serial));
2269
    QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2270

    
2271
    switch(type) {
2272
    case IF_IDE:
2273
    case IF_SCSI:
2274
    case IF_XEN:
2275
    case IF_NONE:
2276
        switch(media) {
2277
        case MEDIA_DISK:
2278
            if (cyls != 0) {
2279
                bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2280
                bdrv_set_translation_hint(dinfo->bdrv, translation);
2281
            }
2282
            break;
2283
        case MEDIA_CDROM:
2284
            bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2285
            break;
2286
        }
2287
        break;
2288
    case IF_SD:
2289
        /* FIXME: This isn't really a floppy, but it's a reasonable
2290
           approximation.  */
2291
    case IF_FLOPPY:
2292
        bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2293
        break;
2294
    case IF_PFLASH:
2295
    case IF_MTD:
2296
        break;
2297
    case IF_VIRTIO:
2298
        /* add virtio block device */
2299
        opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2300
        qemu_opt_set(opts, "driver", "virtio-blk-pci");
2301
        qemu_opt_set(opts, "drive", dinfo->id);
2302
        if (devaddr)
2303
            qemu_opt_set(opts, "addr", devaddr);
2304
        break;
2305
    case IF_COUNT:
2306
        abort();
2307
    }
2308
    if (!file) {
2309
        *fatal_error = 0;
2310
        return NULL;
2311
    }
2312
    bdrv_flags = 0;
2313
    if (snapshot) {
2314
        bdrv_flags |= BDRV_O_SNAPSHOT;
2315
        cache = 2; /* always use write-back with snapshot */
2316
    }
2317
    if (cache == 0) /* no caching */
2318
        bdrv_flags |= BDRV_O_NOCACHE;
2319
    else if (cache == 2) /* write-back */
2320
        bdrv_flags |= BDRV_O_CACHE_WB;
2321

    
2322
    if (aio == 1) {
2323
        bdrv_flags |= BDRV_O_NATIVE_AIO;
2324
    } else {
2325
        bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2326
    }
2327

    
2328
    if (ro == 1) {
2329
        if (type == IF_IDE) {
2330
            fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
2331
            return NULL;
2332
        }
2333
        (void)bdrv_set_read_only(dinfo->bdrv, 1);
2334
    }
2335

    
2336
    if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2337
        fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2338
                        file, strerror(errno));
2339
        return NULL;
2340
    }
2341

    
2342
    if (bdrv_key_required(dinfo->bdrv))
2343
        autostart = 0;
2344
    *fatal_error = 0;
2345
    return dinfo;
2346
}
2347

    
2348
static int drive_init_func(QemuOpts *opts, void *opaque)
2349
{
2350
    QEMUMachine *machine = opaque;
2351
    int fatal_error = 0;
2352

    
2353
    if (drive_init(opts, machine, &fatal_error) == NULL) {
2354
        if (fatal_error)
2355
            return 1;
2356
    }
2357
    return 0;
2358
}
2359

    
2360
static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2361
{
2362
    if (NULL == qemu_opt_get(opts, "snapshot")) {
2363
        qemu_opt_set(opts, "snapshot", "on");
2364
    }
2365
    return 0;
2366
}
2367

    
2368
void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2369
{
2370
    boot_set_handler = func;
2371
    boot_set_opaque = opaque;
2372
}
2373

    
2374
int qemu_boot_set(const char *boot_devices)
2375
{
2376
    if (!boot_set_handler) {
2377
        return -EINVAL;
2378
    }
2379
    return boot_set_handler(boot_set_opaque, boot_devices);
2380
}
2381

    
2382
static int parse_bootdevices(char *devices)
2383
{
2384
    /* We just do some generic consistency checks */
2385
    const char *p;
2386
    int bitmap = 0;
2387

    
2388
    for (p = devices; *p != '\0'; p++) {
2389
        /* Allowed boot devices are:
2390
         * a-b: floppy disk drives
2391
         * c-f: IDE disk drives
2392
         * g-m: machine implementation dependant drives
2393
         * n-p: network devices
2394
         * It's up to each machine implementation to check if the given boot
2395
         * devices match the actual hardware implementation and firmware
2396
         * features.
2397
         */
2398
        if (*p < 'a' || *p > 'p') {
2399
            fprintf(stderr, "Invalid boot device '%c'\n", *p);
2400
            exit(1);
2401
        }
2402
        if (bitmap & (1 << (*p - 'a'))) {
2403
            fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2404
            exit(1);
2405
        }
2406
        bitmap |= 1 << (*p - 'a');
2407
    }
2408
    return bitmap;
2409
}
2410

    
2411
static void restore_boot_devices(void *opaque)
2412
{
2413
    char *standard_boot_devices = opaque;
2414

    
2415
    qemu_boot_set(standard_boot_devices);
2416

    
2417
    qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2418
    qemu_free(standard_boot_devices);
2419
}
2420

    
2421
static void numa_add(const char *optarg)
2422
{
2423
    char option[128];
2424
    char *endptr;
2425
    unsigned long long value, endvalue;
2426
    int nodenr;
2427

    
2428
    optarg = get_opt_name(option, 128, optarg, ',') + 1;
2429
    if (!strcmp(option, "node")) {
2430
        if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2431
            nodenr = nb_numa_nodes;
2432
        } else {
2433
            nodenr = strtoull(option, NULL, 10);
2434
        }
2435

    
2436
        if (get_param_value(option, 128, "mem", optarg) == 0) {
2437
            node_mem[nodenr] = 0;
2438
        } else {
2439
            value = strtoull(option, &endptr, 0);
2440
            switch (*endptr) {
2441
            case 0: case 'M': case 'm':
2442
                value <<= 20;
2443
                break;
2444
            case 'G': case 'g':
2445
                value <<= 30;
2446
                break;
2447
            }
2448
            node_mem[nodenr] = value;
2449
        }
2450
        if (get_param_value(option, 128, "cpus", optarg) == 0) {
2451
            node_cpumask[nodenr] = 0;
2452
        } else {
2453
            value = strtoull(option, &endptr, 10);
2454
            if (value >= 64) {
2455
                value = 63;
2456
                fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2457
            } else {
2458
                if (*endptr == '-') {
2459
                    endvalue = strtoull(endptr+1, &endptr, 10);
2460
                    if (endvalue >= 63) {
2461
                        endvalue = 62;
2462
                        fprintf(stderr,
2463
                            "only 63 CPUs in NUMA mode supported.\n");
2464
                    }
2465
                    value = (1 << (endvalue + 1)) - (1 << value);
2466
                } else {
2467
                    value = 1 << value;
2468
                }
2469
            }
2470
            node_cpumask[nodenr] = value;
2471
        }
2472
        nb_numa_nodes++;
2473
    }
2474
    return;
2475
}
2476

    
2477
static void smp_parse(const char *optarg)
2478
{
2479
    int smp, sockets = 0, threads = 0, cores = 0;
2480
    char *endptr;
2481
    char option[128];
2482

    
2483
    smp = strtoul(optarg, &endptr, 10);
2484
    if (endptr != optarg) {
2485
        if (*endptr == ',') {
2486
            endptr++;
2487
        }
2488
    }
2489
    if (get_param_value(option, 128, "sockets", endptr) != 0)
2490
        sockets = strtoull(option, NULL, 10);
2491
    if (get_param_value(option, 128, "cores", endptr) != 0)
2492
        cores = strtoull(option, NULL, 10);
2493
    if (get_param_value(option, 128, "threads", endptr) != 0)
2494
        threads = strtoull(option, NULL, 10);
2495
    if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2496
        max_cpus = strtoull(option, NULL, 10);
2497

    
2498
    /* compute missing values, prefer sockets over cores over threads */
2499
    if (smp == 0 || sockets == 0) {
2500
        sockets = sockets > 0 ? sockets : 1;
2501
        cores = cores > 0 ? cores : 1;
2502
        threads = threads > 0 ? threads : 1;
2503
        if (smp == 0) {
2504
            smp = cores * threads * sockets;
2505
        } else {
2506
            sockets = smp / (cores * threads);
2507
        }
2508
    } else {
2509
        if (cores == 0) {
2510
            threads = threads > 0 ? threads : 1;
2511
            cores = smp / (sockets * threads);
2512
        } else {
2513
            if (sockets == 0) {
2514
                sockets = smp / (cores * threads);
2515
            } else {
2516
                threads = smp / (cores * sockets);
2517
            }
2518
        }
2519
    }
2520
    smp_cpus = smp;
2521
    smp_cores = cores > 0 ? cores : 1;
2522
    smp_threads = threads > 0 ? threads : 1;
2523
    if (max_cpus == 0)
2524
        max_cpus = smp_cpus;
2525
}
2526

    
2527
/***********************************************************/
2528
/* USB devices */
2529

    
2530
static int usb_device_add(const char *devname, int is_hotplug)
2531
{
2532
    const char *p;
2533
    USBDevice *dev = NULL;
2534

    
2535
    if (!usb_enabled)
2536
        return -1;
2537

    
2538
    /* drivers with .usbdevice_name entry in USBDeviceInfo */
2539
    dev = usbdevice_create(devname);
2540
    if (dev)
2541
        goto done;
2542

    
2543
    /* the other ones */
2544
    if (strstart(devname, "host:", &p)) {
2545
        dev = usb_host_device_open(p);
2546
    } else if (strstart(devname, "net:", &p)) {
2547
        QemuOpts *opts;
2548
        int idx;
2549

    
2550
        opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
2551
        if (!opts) {
2552
            return -1;
2553
        }
2554

    
2555
        qemu_opt_set(opts, "type", "nic");
2556
        qemu_opt_set(opts, "model", "usb");
2557

    
2558
        idx = net_client_init(NULL, opts, 0);
2559
        if (idx == -1) {
2560
            return -1;
2561
        }
2562

    
2563
        dev = usb_net_init(&nd_table[idx]);
2564
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2565
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2566
                        bt_new_hci(qemu_find_bt_vlan(0)));
2567
    } else {
2568
        return -1;
2569
    }
2570
    if (!dev)
2571
        return -1;
2572

    
2573
done:
2574
    return 0;
2575
}
2576

    
2577
static int usb_device_del(const char *devname)
2578
{
2579
    int bus_num, addr;
2580
    const char *p;
2581

    
2582
    if (strstart(devname, "host:", &p))
2583
        return usb_host_device_close(p);
2584

    
2585
    if (!usb_enabled)
2586
        return -1;
2587

    
2588
    p = strchr(devname, '.');
2589
    if (!p)
2590
        return -1;
2591
    bus_num = strtoul(devname, NULL, 0);
2592
    addr = strtoul(p + 1, NULL, 0);
2593

    
2594
    return usb_device_delete_addr(bus_num, addr);
2595
}
2596

    
2597
static int usb_parse(const char *cmdline)
2598
{
2599
    return usb_device_add(cmdline, 0);
2600
}
2601

    
2602
void do_usb_add(Monitor *mon, const QDict *qdict)
2603
{
2604
    usb_device_add(qdict_get_str(qdict, "devname"), 1);
2605
}
2606

    
2607
void do_usb_del(Monitor *mon, const QDict *qdict)
2608
{
2609
    usb_device_del(qdict_get_str(qdict, "devname"));
2610
}
2611

    
2612
/***********************************************************/
2613
/* PCMCIA/Cardbus */
2614

    
2615
static struct pcmcia_socket_entry_s {
2616
    PCMCIASocket *socket;
2617
    struct pcmcia_socket_entry_s *next;
2618
} *pcmcia_sockets = 0;
2619

    
2620
void pcmcia_socket_register(PCMCIASocket *socket)
2621
{
2622
    struct pcmcia_socket_entry_s *entry;
2623

    
2624
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2625
    entry->socket = socket;
2626
    entry->next = pcmcia_sockets;
2627
    pcmcia_sockets = entry;
2628
}
2629

    
2630
void pcmcia_socket_unregister(PCMCIASocket *socket)
2631
{
2632
    struct pcmcia_socket_entry_s *entry, **ptr;
2633

    
2634
    ptr = &pcmcia_sockets;
2635
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2636
        if (entry->socket == socket) {
2637
            *ptr = entry->next;
2638
            qemu_free(entry);
2639
        }
2640
}
2641

    
2642
void pcmcia_info(Monitor *mon)
2643
{
2644
    struct pcmcia_socket_entry_s *iter;
2645

    
2646
    if (!pcmcia_sockets)
2647
        monitor_printf(mon, "No PCMCIA sockets\n");
2648

    
2649
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2650
        monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2651
                       iter->socket->attached ? iter->socket->card_string :
2652
                       "Empty");
2653
}
2654

    
2655
/***********************************************************/
2656
/* register display */
2657

    
2658
struct DisplayAllocator default_allocator = {
2659
    defaultallocator_create_displaysurface,
2660
    defaultallocator_resize_displaysurface,
2661
    defaultallocator_free_displaysurface
2662
};
2663

    
2664
void register_displaystate(DisplayState *ds)
2665
{
2666
    DisplayState **s;
2667
    s = &display_state;
2668
    while (*s != NULL)
2669
        s = &(*s)->next;
2670
    ds->next = NULL;
2671
    *s = ds;
2672
}
2673

    
2674
DisplayState *get_displaystate(void)
2675
{
2676
    return display_state;
2677
}
2678

    
2679
DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2680
{
2681
    if(ds->allocator ==  &default_allocator) ds->allocator = da;
2682
    return ds->allocator;
2683
}
2684

    
2685
/* dumb display */
2686

    
2687
static void dumb_display_init(void)
2688
{
2689
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2690
    ds->allocator = &default_allocator;
2691
    ds->surface = qemu_create_displaysurface(ds, 640, 480);
2692
    register_displaystate(ds);
2693
}
2694

    
2695
/***********************************************************/
2696
/* I/O handling */
2697

    
2698
typedef struct IOHandlerRecord {
2699
    int fd;
2700
    IOCanRWHandler *fd_read_poll;
2701
    IOHandler *fd_read;
2702
    IOHandler *fd_write;
2703
    int deleted;
2704
    void *opaque;
2705
    /* temporary data */
2706
    struct pollfd *ufd;
2707
    struct IOHandlerRecord *next;
2708
} IOHandlerRecord;
2709

    
2710
static IOHandlerRecord *first_io_handler;
2711

    
2712
/* XXX: fd_read_poll should be suppressed, but an API change is
2713
   necessary in the character devices to suppress fd_can_read(). */
2714
int qemu_set_fd_handler2(int fd,
2715
                         IOCanRWHandler *fd_read_poll,
2716
                         IOHandler *fd_read,
2717
                         IOHandler *fd_write,
2718
                         void *opaque)
2719
{
2720
    IOHandlerRecord **pioh, *ioh;
2721

    
2722
    if (!fd_read && !fd_write) {
2723
        pioh = &first_io_handler;
2724
        for(;;) {
2725
            ioh = *pioh;
2726
            if (ioh == NULL)
2727
                break;
2728
            if (ioh->fd == fd) {
2729
                ioh->deleted = 1;
2730
                break;
2731
            }
2732
            pioh = &ioh->next;
2733
        }
2734
    } else {
2735
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2736
            if (ioh->fd == fd)
2737
                goto found;
2738
        }
2739
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2740
        ioh->next = first_io_handler;
2741
        first_io_handler = ioh;
2742
    found:
2743
        ioh->fd = fd;
2744
        ioh->fd_read_poll = fd_read_poll;
2745
        ioh->fd_read = fd_read;
2746
        ioh->fd_write = fd_write;
2747
        ioh->opaque = opaque;
2748
        ioh->deleted = 0;
2749
    }
2750
    return 0;
2751
}
2752

    
2753
int qemu_set_fd_handler(int fd,
2754
                        IOHandler *fd_read,
2755
                        IOHandler *fd_write,
2756
                        void *opaque)
2757
{
2758
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2759
}
2760

    
2761
#ifdef _WIN32
2762
/***********************************************************/
2763
/* Polling handling */
2764

    
2765
typedef struct PollingEntry {
2766
    PollingFunc *func;
2767
    void *opaque;
2768
    struct PollingEntry *next;
2769
} PollingEntry;
2770

    
2771
static PollingEntry *first_polling_entry;
2772

    
2773
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2774
{
2775
    PollingEntry **ppe, *pe;
2776
    pe = qemu_mallocz(sizeof(PollingEntry));
2777
    pe->func = func;
2778
    pe->opaque = opaque;
2779
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2780
    *ppe = pe;
2781
    return 0;
2782
}
2783

    
2784
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2785
{
2786
    PollingEntry **ppe, *pe;
2787
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2788
        pe = *ppe;
2789
        if (pe->func == func && pe->opaque == opaque) {
2790
            *ppe = pe->next;
2791
            qemu_free(pe);
2792
            break;
2793
        }
2794
    }
2795
}
2796

    
2797
/***********************************************************/
2798
/* Wait objects support */
2799
typedef struct WaitObjects {
2800
    int num;
2801
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2802
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2803
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2804
} WaitObjects;
2805

    
2806
static WaitObjects wait_objects = {0};
2807

    
2808
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2809
{
2810
    WaitObjects *w = &wait_objects;
2811

    
2812
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
2813
        return -1;
2814
    w->events[w->num] = handle;
2815
    w->func[w->num] = func;
2816
    w->opaque[w->num] = opaque;
2817
    w->num++;
2818
    return 0;
2819
}
2820

    
2821
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2822
{
2823
    int i, found;
2824
    WaitObjects *w = &wait_objects;
2825

    
2826
    found = 0;
2827
    for (i = 0; i < w->num; i++) {
2828
        if (w->events[i] == handle)
2829
            found = 1;
2830
        if (found) {
2831
            w->events[i] = w->events[i + 1];
2832
            w->func[i] = w->func[i + 1];
2833
            w->opaque[i] = w->opaque[i + 1];
2834
        }
2835
    }
2836
    if (found)
2837
        w->num--;
2838
}
2839
#endif
2840

    
2841
/***********************************************************/
2842
/* ram save/restore */
2843

    
2844
#define RAM_SAVE_FLAG_FULL        0x01 /* Obsolete, not used anymore */
2845
#define RAM_SAVE_FLAG_COMPRESS        0x02
2846
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
2847
#define RAM_SAVE_FLAG_PAGE        0x08
2848
#define RAM_SAVE_FLAG_EOS        0x10
2849

    
2850
static int is_dup_page(uint8_t *page, uint8_t ch)
2851
{
2852
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2853
    uint32_t *array = (uint32_t *)page;
2854
    int i;
2855

    
2856
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2857
        if (array[i] != val)
2858
            return 0;
2859
    }
2860

    
2861
    return 1;
2862
}
2863

    
2864
static int ram_save_block(QEMUFile *f)
2865
{
2866
    static ram_addr_t current_addr = 0;
2867
    ram_addr_t saved_addr = current_addr;
2868
    ram_addr_t addr = 0;
2869
    int found = 0;
2870

    
2871
    while (addr < last_ram_offset) {
2872
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2873
            uint8_t *p;
2874

    
2875
            cpu_physical_memory_reset_dirty(current_addr,
2876
                                            current_addr + TARGET_PAGE_SIZE,
2877
                                            MIGRATION_DIRTY_FLAG);
2878

    
2879
            p = qemu_get_ram_ptr(current_addr);
2880

    
2881
            if (is_dup_page(p, *p)) {
2882
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2883
                qemu_put_byte(f, *p);
2884
            } else {
2885
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2886
                qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2887
            }
2888

    
2889
            found = 1;
2890
            break;
2891
        }
2892
        addr += TARGET_PAGE_SIZE;
2893
        current_addr = (saved_addr + addr) % last_ram_offset;
2894
    }
2895

    
2896
    return found;
2897
}
2898

    
2899
static uint64_t bytes_transferred = 0;
2900

    
2901
static ram_addr_t ram_save_remaining(void)
2902
{
2903
    ram_addr_t addr;
2904
    ram_addr_t count = 0;
2905

    
2906
    for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2907
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2908
            count++;
2909
    }
2910

    
2911
    return count;
2912
}
2913

    
2914
uint64_t ram_bytes_remaining(void)
2915
{
2916
    return ram_save_remaining() * TARGET_PAGE_SIZE;
2917
}
2918

    
2919
uint64_t ram_bytes_transferred(void)
2920
{
2921
    return bytes_transferred;
2922
}
2923

    
2924
uint64_t ram_bytes_total(void)
2925
{
2926
    return last_ram_offset;
2927
}
2928

    
2929
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2930
{
2931
    ram_addr_t addr;
2932
    uint64_t bytes_transferred_last;
2933
    double bwidth = 0;
2934
    uint64_t expected_time = 0;
2935

    
2936
    if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2937
        qemu_file_set_error(f);
2938
        return 0;
2939
    }
2940

    
2941
    if (stage == 1) {
2942
        /* Make sure all dirty bits are set */
2943
        for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2944
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2945
                cpu_physical_memory_set_dirty(addr);
2946
        }
2947

    
2948
        /* Enable dirty memory tracking */
2949
        cpu_physical_memory_set_dirty_tracking(1);
2950

    
2951
        qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2952
    }
2953

    
2954
    bytes_transferred_last = bytes_transferred;
2955
    bwidth = get_clock();
2956

    
2957
    while (!qemu_file_rate_limit(f)) {
2958
        int ret;
2959

    
2960
        ret = ram_save_block(f);
2961
        bytes_transferred += ret * TARGET_PAGE_SIZE;
2962
        if (ret == 0) /* no more blocks */
2963
            break;
2964
    }
2965

    
2966
    bwidth = get_clock() - bwidth;
2967
    bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2968

    
2969
    /* if we haven't transferred anything this round, force expected_time to a
2970
     * a very high value, but without crashing */
2971
    if (bwidth == 0)
2972
        bwidth = 0.000001;
2973

    
2974
    /* try transferring iterative blocks of memory */
2975

    
2976
    if (stage == 3) {
2977

    
2978
        /* flush all remaining blocks regardless of rate limiting */
2979
        while (ram_save_block(f) != 0) {
2980
            bytes_transferred += TARGET_PAGE_SIZE;
2981
        }
2982
        cpu_physical_memory_set_dirty_tracking(0);
2983
    }
2984

    
2985
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2986

    
2987
    expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2988

    
2989
    return (stage == 2) && (expected_time <= migrate_max_downtime());
2990
}
2991

    
2992
static int ram_load(QEMUFile *f, void *opaque, int version_id)
2993
{
2994
    ram_addr_t addr;
2995
    int flags;
2996

    
2997
    if (version_id != 3)
2998
        return -EINVAL;
2999

    
3000
    do {
3001
        addr = qemu_get_be64(f);
3002

    
3003
        flags = addr & ~TARGET_PAGE_MASK;
3004
        addr &= TARGET_PAGE_MASK;
3005

    
3006
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3007
            if (addr != last_ram_offset)
3008
                return -EINVAL;
3009
        }
3010

    
3011
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3012
            uint8_t ch = qemu_get_byte(f);
3013
            memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3014
#ifndef _WIN32
3015
            if (ch == 0 &&
3016
                (!kvm_enabled() || kvm_has_sync_mmu())) {
3017
                madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3018
            }
3019
#endif
3020
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3021
            qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3022
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3023

    
3024
    return 0;
3025
}
3026

    
3027
void qemu_service_io(void)
3028
{
3029
    qemu_notify_event();
3030
}
3031

    
3032
/***********************************************************/
3033
/* machine registration */
3034

    
3035
static QEMUMachine *first_machine = NULL;
3036
QEMUMachine *current_machine = NULL;
3037

    
3038
int qemu_register_machine(QEMUMachine *m)
3039
{
3040
    QEMUMachine **pm;
3041
    pm = &first_machine;
3042
    while (*pm != NULL)
3043
        pm = &(*pm)->next;
3044
    m->next = NULL;
3045
    *pm = m;
3046
    return 0;
3047
}
3048

    
3049
static QEMUMachine *find_machine(const char *name)
3050
{
3051
    QEMUMachine *m;
3052

    
3053
    for(m = first_machine; m != NULL; m = m->next) {
3054
        if (!strcmp(m->name, name))
3055
            return m;
3056
        if (m->alias && !strcmp(m->alias, name))
3057
            return m;
3058
    }
3059
    return NULL;
3060
}
3061

    
3062
static QEMUMachine *find_default_machine(void)
3063
{
3064
    QEMUMachine *m;
3065

    
3066
    for(m = first_machine; m != NULL; m = m->next) {
3067
        if (m->is_default) {
3068
            return m;
3069
        }
3070
    }
3071
    return NULL;
3072
}
3073

    
3074
/***********************************************************/
3075
/* main execution loop */
3076

    
3077
static void gui_update(void *opaque)
3078
{
3079
    uint64_t interval = GUI_REFRESH_INTERVAL;
3080
    DisplayState *ds = opaque;
3081
    DisplayChangeListener *dcl = ds->listeners;
3082

    
3083
    dpy_refresh(ds);
3084

    
3085
    while (dcl != NULL) {
3086
        if (dcl->gui_timer_interval &&
3087
            dcl->gui_timer_interval < interval)
3088
            interval = dcl->gui_timer_interval;
3089
        dcl = dcl->next;
3090
    }
3091
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3092
}
3093

    
3094
static void nographic_update(void *opaque)
3095
{
3096
    uint64_t interval = GUI_REFRESH_INTERVAL;
3097

    
3098
    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3099
}
3100

    
3101
struct vm_change_state_entry {
3102
    VMChangeStateHandler *cb;
3103
    void *opaque;
3104
    QLIST_ENTRY (vm_change_state_entry) entries;
3105
};
3106

    
3107
static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3108

    
3109
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3110
                                                     void *opaque)
3111
{
3112
    VMChangeStateEntry *e;
3113

    
3114
    e = qemu_mallocz(sizeof (*e));
3115

    
3116
    e->cb = cb;
3117
    e->opaque = opaque;
3118
    QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3119
    return e;
3120
}
3121

    
3122
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3123
{
3124
    QLIST_REMOVE (e, entries);
3125
    qemu_free (e);
3126
}
3127

    
3128
static void vm_state_notify(int running, int reason)
3129
{
3130
    VMChangeStateEntry *e;
3131

    
3132
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3133
        e->cb(e->opaque, running, reason);
3134
    }
3135
}
3136

    
3137
static void resume_all_vcpus(void);
3138
static void pause_all_vcpus(void);
3139

    
3140
void vm_start(void)
3141
{
3142
    if (!vm_running) {
3143
        cpu_enable_ticks();
3144
        vm_running = 1;
3145
        vm_state_notify(1, 0);
3146
        qemu_rearm_alarm_timer(alarm_timer);
3147
        resume_all_vcpus();
3148
    }
3149
}
3150

    
3151
/* reset/shutdown handler */
3152

    
3153
typedef struct QEMUResetEntry {
3154
    QTAILQ_ENTRY(QEMUResetEntry) entry;
3155
    QEMUResetHandler *func;
3156
    void *opaque;
3157
} QEMUResetEntry;
3158

    
3159
static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3160
    QTAILQ_HEAD_INITIALIZER(reset_handlers);
3161
static int reset_requested;
3162
static int shutdown_requested;
3163
static int powerdown_requested;
3164
static int debug_requested;
3165
static int vmstop_requested;
3166

    
3167
int qemu_shutdown_requested(void)
3168
{
3169
    int r = shutdown_requested;
3170
    shutdown_requested = 0;
3171
    return r;
3172
}
3173

    
3174
int qemu_reset_requested(void)
3175
{
3176
    int r = reset_requested;
3177
    reset_requested = 0;
3178
    return r;
3179
}
3180

    
3181
int qemu_powerdown_requested(void)
3182
{
3183
    int r = powerdown_requested;
3184
    powerdown_requested = 0;
3185
    return r;
3186
}
3187

    
3188
static int qemu_debug_requested(void)
3189
{
3190
    int r = debug_requested;
3191
    debug_requested = 0;
3192
    return r;
3193
}
3194

    
3195
static int qemu_vmstop_requested(void)
3196
{
3197
    int r = vmstop_requested;
3198
    vmstop_requested = 0;
3199
    return r;
3200
}
3201

    
3202
static void do_vm_stop(int reason)
3203
{
3204
    if (vm_running) {
3205
        cpu_disable_ticks();
3206
        vm_running = 0;
3207
        pause_all_vcpus();
3208
        vm_state_notify(0, reason);
3209
    }
3210
}
3211

    
3212
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3213
{
3214
    QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3215

    
3216
    re->func = func;
3217
    re->opaque = opaque;
3218
    QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3219
}
3220

    
3221
void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3222
{
3223
    QEMUResetEntry *re;
3224

    
3225
    QTAILQ_FOREACH(re, &reset_handlers, entry) {
3226
        if (re->func == func && re->opaque == opaque) {
3227
            QTAILQ_REMOVE(&reset_handlers, re, entry);
3228
            qemu_free(re);
3229
            return;
3230
        }
3231
    }
3232
}
3233

    
3234
void qemu_system_reset(void)
3235
{
3236
    QEMUResetEntry *re, *nre;
3237

    
3238
    /* reset all devices */
3239
    QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3240
        re->func(re->opaque);
3241
    }
3242
}
3243

    
3244
void qemu_system_reset_request(void)
3245
{
3246
    if (no_reboot) {
3247
        shutdown_requested = 1;
3248
    } else {
3249
        reset_requested = 1;
3250
    }
3251
    qemu_notify_event();
3252
}
3253

    
3254
void qemu_system_shutdown_request(void)
3255
{
3256
    shutdown_requested = 1;
3257
    qemu_notify_event();
3258
}
3259

    
3260
void qemu_system_powerdown_request(void)
3261
{
3262
    powerdown_requested = 1;
3263
    qemu_notify_event();
3264
}
3265

    
3266
#ifdef CONFIG_IOTHREAD
3267
static void qemu_system_vmstop_request(int reason)
3268
{
3269
    vmstop_requested = reason;
3270
    qemu_notify_event();
3271
}
3272
#endif
3273

    
3274
#ifndef _WIN32
3275
static int io_thread_fd = -1;
3276

    
3277
static void qemu_event_increment(void)
3278
{
3279
    static const char byte = 0;
3280

    
3281
    if (io_thread_fd == -1)
3282
        return;
3283

    
3284
    write(io_thread_fd, &byte, sizeof(byte));
3285
}
3286

    
3287
static void qemu_event_read(void *opaque)
3288
{
3289
    int fd = (unsigned long)opaque;
3290
    ssize_t len;
3291

    
3292
    /* Drain the notify pipe */
3293
    do {
3294
        char buffer[512];
3295
        len = read(fd, buffer, sizeof(buffer));
3296
    } while ((len == -1 && errno == EINTR) || len > 0);
3297
}
3298

    
3299
static int qemu_event_init(void)
3300
{
3301
    int err;
3302
    int fds[2];
3303

    
3304
    err = pipe(fds);
3305
    if (err == -1)
3306
        return -errno;
3307

    
3308
    err = fcntl_setfl(fds[0], O_NONBLOCK);
3309
    if (err < 0)
3310
        goto fail;
3311

    
3312
    err = fcntl_setfl(fds[1], O_NONBLOCK);
3313
    if (err < 0)
3314
        goto fail;
3315

    
3316
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3317
                         (void *)(unsigned long)fds[0]);
3318

    
3319
    io_thread_fd = fds[1];
3320
    return 0;
3321

    
3322
fail:
3323
    close(fds[0]);
3324
    close(fds[1]);
3325
    return err;
3326
}
3327
#else
3328
HANDLE qemu_event_handle;
3329

    
3330
static void dummy_event_handler(void *opaque)
3331
{
3332
}
3333

    
3334
static int qemu_event_init(void)
3335
{
3336
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3337
    if (!qemu_event_handle) {
3338
        fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3339
        return -1;
3340
    }
3341
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3342
    return 0;
3343
}
3344

    
3345
static void qemu_event_increment(void)
3346
{
3347
    if (!SetEvent(qemu_event_handle)) {
3348
        fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3349
                GetLastError());
3350
        exit (1);
3351
    }
3352
}
3353
#endif
3354

    
3355
static int cpu_can_run(CPUState *env)
3356
{
3357
    if (env->stop)
3358
        return 0;
3359
    if (env->stopped)
3360
        return 0;
3361
    return 1;
3362
}
3363

    
3364
#ifndef CONFIG_IOTHREAD
3365
static int qemu_init_main_loop(void)
3366
{
3367
    return qemu_event_init();
3368
}
3369

    
3370
void qemu_init_vcpu(void *_env)
3371
{
3372
    CPUState *env = _env;
3373

    
3374
    if (kvm_enabled())
3375
        kvm_init_vcpu(env);
3376
    env->nr_cores = smp_cores;
3377
    env->nr_threads = smp_threads;
3378
    return;
3379
}
3380

    
3381
int qemu_cpu_self(void *env)
3382
{
3383
    return 1;
3384
}
3385

    
3386
static void resume_all_vcpus(void)
3387
{
3388
}
3389

    
3390
static void pause_all_vcpus(void)
3391
{
3392
}
3393

    
3394
void qemu_cpu_kick(void *env)
3395
{
3396
    return;
3397
}
3398

    
3399
void qemu_notify_event(void)
3400
{
3401
    CPUState *env = cpu_single_env;
3402

    
3403
    if (env) {
3404
        cpu_exit(env);
3405
    }
3406
}
3407

    
3408
void qemu_mutex_lock_iothread(void) {}
3409
void qemu_mutex_unlock_iothread(void) {}
3410

    
3411
void vm_stop(int reason)
3412
{
3413
    do_vm_stop(reason);
3414
}
3415

    
3416
#else /* CONFIG_IOTHREAD */
3417

    
3418
#include "qemu-thread.h"
3419

    
3420
QemuMutex qemu_global_mutex;
3421
static QemuMutex qemu_fair_mutex;
3422

    
3423
static QemuThread io_thread;
3424

    
3425
static QemuThread *tcg_cpu_thread;
3426
static QemuCond *tcg_halt_cond;
3427

    
3428
static int qemu_system_ready;
3429
/* cpu creation */
3430
static QemuCond qemu_cpu_cond;
3431
/* system init */
3432
static QemuCond qemu_system_cond;
3433
static QemuCond qemu_pause_cond;
3434

    
3435
static void block_io_signals(void);
3436
static void unblock_io_signals(void);
3437
static int tcg_has_work(void);
3438

    
3439
static int qemu_init_main_loop(void)
3440
{
3441
    int ret;
3442

    
3443
    ret = qemu_event_init();
3444
    if (ret)
3445
        return ret;
3446

    
3447
    qemu_cond_init(&qemu_pause_cond);
3448
    qemu_mutex_init(&qemu_fair_mutex);
3449
    qemu_mutex_init(&qemu_global_mutex);
3450
    qemu_mutex_lock(&qemu_global_mutex);
3451

    
3452
    unblock_io_signals();
3453
    qemu_thread_self(&io_thread);
3454

    
3455
    return 0;
3456
}
3457

    
3458
static void qemu_wait_io_event(CPUState *env)
3459
{
3460
    while (!tcg_has_work())
3461
        qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3462

    
3463
    qemu_mutex_unlock(&qemu_global_mutex);
3464

    
3465
    /*
3466
     * Users of qemu_global_mutex can be starved, having no chance
3467
     * to acquire it since this path will get to it first.
3468
     * So use another lock to provide fairness.
3469
     */
3470
    qemu_mutex_lock(&qemu_fair_mutex);
3471
    qemu_mutex_unlock(&qemu_fair_mutex);
3472

    
3473
    qemu_mutex_lock(&qemu_global_mutex);
3474
    if (env->stop) {
3475
        env->stop = 0;
3476
        env->stopped = 1;
3477
        qemu_cond_signal(&qemu_pause_cond);
3478
    }
3479
}
3480

    
3481
static int qemu_cpu_exec(CPUState *env);
3482

    
3483
static void *kvm_cpu_thread_fn(void *arg)
3484
{
3485
    CPUState *env = arg;
3486

    
3487
    block_io_signals();
3488
    qemu_thread_self(env->thread);
3489
    if (kvm_enabled())
3490
        kvm_init_vcpu(env);
3491

    
3492
    /* signal CPU creation */
3493
    qemu_mutex_lock(&qemu_global_mutex);
3494
    env->created = 1;
3495
    qemu_cond_signal(&qemu_cpu_cond);
3496

    
3497
    /* and wait for machine initialization */
3498
    while (!qemu_system_ready)
3499
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3500

    
3501
    while (1) {
3502
        if (cpu_can_run(env))
3503
            qemu_cpu_exec(env);
3504
        qemu_wait_io_event(env);
3505
    }
3506

    
3507
    return NULL;
3508
}
3509

    
3510
static void tcg_cpu_exec(void);
3511

    
3512
static void *tcg_cpu_thread_fn(void *arg)
3513
{
3514
    CPUState *env = arg;
3515

    
3516
    block_io_signals();
3517
    qemu_thread_self(env->thread);
3518

    
3519
    /* signal CPU creation */
3520
    qemu_mutex_lock(&qemu_global_mutex);
3521
    for (env = first_cpu; env != NULL; env = env->next_cpu)
3522
        env->created = 1;
3523
    qemu_cond_signal(&qemu_cpu_cond);
3524

    
3525
    /* and wait for machine initialization */
3526
    while (!qemu_system_ready)
3527
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3528

    
3529
    while (1) {
3530
        tcg_cpu_exec();
3531
        qemu_wait_io_event(cur_cpu);
3532
    }
3533

    
3534
    return NULL;
3535
}
3536

    
3537
void qemu_cpu_kick(void *_env)
3538
{
3539
    CPUState *env = _env;
3540
    qemu_cond_broadcast(env->halt_cond);
3541
    if (kvm_enabled())
3542
        qemu_thread_signal(env->thread, SIGUSR1);
3543
}
3544

    
3545
int qemu_cpu_self(void *_env)
3546
{
3547
    CPUState *env = _env;
3548
    QemuThread this;
3549
 
3550
    qemu_thread_self(&this);
3551
 
3552
    return qemu_thread_equal(&this, env->thread);
3553
}
3554

    
3555
static void cpu_signal(int sig)
3556
{
3557
    if (cpu_single_env)
3558
        cpu_exit(cpu_single_env);
3559
}
3560

    
3561
static void block_io_signals(void)
3562
{
3563
    sigset_t set;
3564
    struct sigaction sigact;
3565

    
3566
    sigemptyset(&set);
3567
    sigaddset(&set, SIGUSR2);
3568
    sigaddset(&set, SIGIO);
3569
    sigaddset(&set, SIGALRM);
3570
    pthread_sigmask(SIG_BLOCK, &set, NULL);
3571

    
3572
    sigemptyset(&set);
3573
    sigaddset(&set, SIGUSR1);
3574
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3575

    
3576
    memset(&sigact, 0, sizeof(sigact));
3577
    sigact.sa_handler = cpu_signal;
3578
    sigaction(SIGUSR1, &sigact, NULL);
3579
}
3580

    
3581
static void unblock_io_signals(void)
3582
{
3583
    sigset_t set;
3584

    
3585
    sigemptyset(&set);
3586
    sigaddset(&set, SIGUSR2);
3587
    sigaddset(&set, SIGIO);
3588
    sigaddset(&set, SIGALRM);
3589
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3590

    
3591
    sigemptyset(&set);
3592
    sigaddset(&set, SIGUSR1);
3593
    pthread_sigmask(SIG_BLOCK, &set, NULL);
3594
}
3595

    
3596
static void qemu_signal_lock(unsigned int msecs)
3597
{
3598
    qemu_mutex_lock(&qemu_fair_mutex);
3599

    
3600
    while (qemu_mutex_trylock(&qemu_global_mutex)) {
3601
        qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3602
        if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3603
            break;
3604
    }
3605
    qemu_mutex_unlock(&qemu_fair_mutex);
3606
}
3607

    
3608
void qemu_mutex_lock_iothread(void)
3609
{
3610
    if (kvm_enabled()) {
3611
        qemu_mutex_lock(&qemu_fair_mutex);
3612
        qemu_mutex_lock(&qemu_global_mutex);
3613
        qemu_mutex_unlock(&qemu_fair_mutex);
3614
    } else
3615
        qemu_signal_lock(100);
3616
}
3617

    
3618
void qemu_mutex_unlock_iothread(void)
3619
{
3620
    qemu_mutex_unlock(&qemu_global_mutex);
3621
}
3622

    
3623
static int all_vcpus_paused(void)
3624
{
3625
    CPUState *penv = first_cpu;
3626

    
3627
    while (penv) {
3628
        if (!penv->stopped)
3629
            return 0;
3630
        penv = (CPUState *)penv->next_cpu;
3631
    }
3632

    
3633
    return 1;
3634
}
3635

    
3636
static void pause_all_vcpus(void)
3637
{
3638
    CPUState *penv = first_cpu;
3639

    
3640
    while (penv) {
3641
        penv->stop = 1;
3642
        qemu_thread_signal(penv->thread, SIGUSR1);
3643
        qemu_cpu_kick(penv);
3644
        penv = (CPUState *)penv->next_cpu;
3645
    }
3646

    
3647
    while (!all_vcpus_paused()) {
3648
        qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3649
        penv = first_cpu;
3650
        while (penv) {
3651
            qemu_thread_signal(penv->thread, SIGUSR1);
3652
            penv = (CPUState *)penv->next_cpu;
3653
        }
3654
    }
3655
}
3656

    
3657
static void resume_all_vcpus(void)
3658
{
3659
    CPUState *penv = first_cpu;
3660

    
3661
    while (penv) {
3662
        penv->stop = 0;
3663
        penv->stopped = 0;
3664
        qemu_thread_signal(penv->thread, SIGUSR1);
3665
        qemu_cpu_kick(penv);
3666
        penv = (CPUState *)penv->next_cpu;
3667
    }
3668
}
3669

    
3670
static void tcg_init_vcpu(void *_env)
3671
{
3672
    CPUState *env = _env;
3673
    /* share a single thread for all cpus with TCG */
3674
    if (!tcg_cpu_thread) {
3675
        env->thread = qemu_mallocz(sizeof(QemuThread));
3676
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3677
        qemu_cond_init(env->halt_cond);
3678
        qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3679
        while (env->created == 0)
3680
            qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3681
        tcg_cpu_thread = env->thread;
3682
        tcg_halt_cond = env->halt_cond;
3683
    } else {
3684
        env->thread = tcg_cpu_thread;
3685
        env->halt_cond = tcg_halt_cond;
3686
    }
3687
}
3688

    
3689
static void kvm_start_vcpu(CPUState *env)
3690
{
3691
    env->thread = qemu_mallocz(sizeof(QemuThread));
3692
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3693
    qemu_cond_init(env->halt_cond);
3694
    qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3695
    while (env->created == 0)
3696
        qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3697
}
3698

    
3699
void qemu_init_vcpu(void *_env)
3700
{
3701
    CPUState *env = _env;
3702

    
3703
    if (kvm_enabled())
3704
        kvm_start_vcpu(env);
3705
    else
3706
        tcg_init_vcpu(env);
3707
    env->nr_cores = smp_cores;
3708
    env->nr_threads = smp_threads;
3709
}
3710

    
3711
void qemu_notify_event(void)
3712
{
3713
    qemu_event_increment();
3714
}
3715

    
3716
void vm_stop(int reason)
3717
{
3718
    QemuThread me;
3719
    qemu_thread_self(&me);
3720

    
3721
    if (!qemu_thread_equal(&me, &io_thread)) {
3722
        qemu_system_vmstop_request(reason);
3723
        /*
3724
         * FIXME: should not return to device code in case
3725
         * vm_stop() has been requested.
3726
         */
3727
        if (cpu_single_env) {
3728
            cpu_exit(cpu_single_env);
3729
            cpu_single_env->stop = 1;
3730
        }
3731
        return;
3732
    }
3733
    do_vm_stop(reason);
3734
}
3735

    
3736
#endif
3737

    
3738

    
3739
#ifdef _WIN32
3740
static void host_main_loop_wait(int *timeout)
3741
{
3742
    int ret, ret2, i;
3743
    PollingEntry *pe;
3744

    
3745

    
3746
    /* XXX: need to suppress polling by better using win32 events */
3747
    ret = 0;
3748
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3749
        ret |= pe->func(pe->opaque);
3750
    }
3751
    if (ret == 0) {
3752
        int err;
3753
        WaitObjects *w = &wait_objects;
3754

    
3755
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3756
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3757
            if (w->func[ret - WAIT_OBJECT_0])
3758
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3759

    
3760
            /* Check for additional signaled events */
3761
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3762

    
3763
                /* Check if event is signaled */
3764
                ret2 = WaitForSingleObject(w->events[i], 0);
3765
                if(ret2 == WAIT_OBJECT_0) {
3766
                    if (w->func[i])
3767
                        w->func[i](w->opaque[i]);
3768
                } else if (ret2 == WAIT_TIMEOUT) {
3769
                } else {
3770
                    err = GetLastError();
3771
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3772
                }
3773
            }
3774
        } else if (ret == WAIT_TIMEOUT) {
3775
        } else {
3776
            err = GetLastError();
3777
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3778
        }
3779
    }
3780

    
3781
    *timeout = 0;
3782
}
3783
#else
3784
static void host_main_loop_wait(int *timeout)
3785
{
3786
}
3787
#endif
3788

    
3789
void main_loop_wait(int timeout)
3790
{
3791
    IOHandlerRecord *ioh;
3792
    fd_set rfds, wfds, xfds;
3793
    int ret, nfds;
3794
    struct timeval tv;
3795

    
3796
    qemu_bh_update_timeout(&timeout);
3797

    
3798
    host_main_loop_wait(&timeout);
3799

    
3800
    /* poll any events */
3801
    /* XXX: separate device handlers from system ones */
3802
    nfds = -1;
3803
    FD_ZERO(&rfds);
3804
    FD_ZERO(&wfds);
3805
    FD_ZERO(&xfds);
3806
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3807
        if (ioh->deleted)
3808
            continue;
3809
        if (ioh->fd_read &&
3810
            (!ioh->fd_read_poll ||
3811
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3812
            FD_SET(ioh->fd, &rfds);
3813
            if (ioh->fd > nfds)
3814
                nfds = ioh->fd;
3815
        }
3816
        if (ioh->fd_write) {
3817
            FD_SET(ioh->fd, &wfds);
3818
            if (ioh->fd > nfds)
3819
                nfds = ioh->fd;
3820
        }
3821
    }
3822

    
3823
    tv.tv_sec = timeout / 1000;
3824
    tv.tv_usec = (timeout % 1000) * 1000;
3825

    
3826
    slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3827

    
3828
    qemu_mutex_unlock_iothread();
3829
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3830
    qemu_mutex_lock_iothread();
3831
    if (ret > 0) {
3832
        IOHandlerRecord **pioh;
3833

    
3834
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3835
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3836
                ioh->fd_read(ioh->opaque);
3837
            }
3838
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3839
                ioh->fd_write(ioh->opaque);
3840
            }
3841
        }
3842

    
3843
        /* remove deleted IO handlers */
3844
        pioh = &first_io_handler;
3845
        while (*pioh) {
3846
            ioh = *pioh;
3847
            if (ioh->deleted) {
3848
                *pioh = ioh->next;
3849
                qemu_free(ioh);
3850
            } else
3851
                pioh = &ioh->next;
3852
        }
3853
    }
3854

    
3855
    slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3856

    
3857
    /* rearm timer, if not periodic */
3858
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3859
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3860
        qemu_rearm_alarm_timer(alarm_timer);
3861
    }
3862

    
3863
    /* vm time timers */
3864
    if (vm_running) {
3865
        if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3866
            qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3867
                            qemu_get_clock(vm_clock));
3868
    }
3869

    
3870
    /* real time timers */
3871
    qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3872
                    qemu_get_clock(rt_clock));
3873

    
3874
    qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3875
                    qemu_get_clock(host_clock));
3876

    
3877
    /* Check bottom-halves last in case any of the earlier events triggered
3878
       them.  */
3879
    qemu_bh_poll();
3880

    
3881
}
3882

    
3883
static int qemu_cpu_exec(CPUState *env)
3884
{
3885
    int ret;
3886
#ifdef CONFIG_PROFILER
3887
    int64_t ti;
3888
#endif
3889

    
3890
#ifdef CONFIG_PROFILER
3891
    ti = profile_getclock();
3892
#endif
3893
    if (use_icount) {
3894
        int64_t count;
3895
        int decr;
3896
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3897
        env->icount_decr.u16.low = 0;
3898
        env->icount_extra = 0;
3899
        count = qemu_next_deadline();
3900
        count = (count + (1 << icount_time_shift) - 1)
3901
                >> icount_time_shift;
3902
        qemu_icount += count;
3903
        decr = (count > 0xffff) ? 0xffff : count;
3904
        count -= decr;
3905
        env->icount_decr.u16.low = decr;
3906
        env->icount_extra = count;
3907
    }
3908
    ret = cpu_exec(env);
3909
#ifdef CONFIG_PROFILER
3910
    qemu_time += profile_getclock() - ti;
3911
#endif
3912
    if (use_icount) {
3913
        /* Fold pending instructions back into the
3914
           instruction counter, and clear the interrupt flag.  */
3915
        qemu_icount -= (env->icount_decr.u16.low
3916
                        + env->icount_extra);
3917
        env->icount_decr.u32 = 0;
3918
        env->icount_extra = 0;
3919
    }
3920
    return ret;
3921
}
3922

    
3923
static void tcg_cpu_exec(void)
3924
{
3925
    int ret = 0;
3926

    
3927
    if (next_cpu == NULL)
3928
        next_cpu = first_cpu;
3929
    for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3930
        CPUState *env = cur_cpu = next_cpu;
3931

    
3932
        if (!vm_running)
3933
            break;
3934
        if (timer_alarm_pending) {
3935
            timer_alarm_pending = 0;
3936
            break;
3937
        }
3938
        if (cpu_can_run(env))
3939
            ret = qemu_cpu_exec(env);
3940
        if (ret == EXCP_DEBUG) {
3941
            gdb_set_stop_cpu(env);
3942
            debug_requested = 1;
3943
            break;
3944
        }
3945
    }
3946
}
3947

    
3948
static int cpu_has_work(CPUState *env)
3949
{
3950
    if (env->stop)
3951
        return 1;
3952
    if (env->stopped)
3953
        return 0;
3954
    if (!env->halted)
3955
        return 1;
3956
    if (qemu_cpu_has_work(env))
3957
        return 1;
3958
    return 0;
3959
}
3960

    
3961
static int tcg_has_work(void)
3962
{
3963
    CPUState *env;
3964

    
3965
    for (env = first_cpu; env != NULL; env = env->next_cpu)
3966
        if (cpu_has_work(env))
3967
            return 1;
3968
    return 0;
3969
}
3970

    
3971
static int qemu_calculate_timeout(void)
3972
{
3973
#ifndef CONFIG_IOTHREAD
3974
    int timeout;
3975

    
3976
    if (!vm_running)
3977
        timeout = 5000;
3978
    else if (tcg_has_work())
3979
        timeout = 0;
3980
    else if (!use_icount)
3981
        timeout = 5000;
3982
    else {
3983
     /* XXX: use timeout computed from timers */
3984
        int64_t add;
3985
        int64_t delta;
3986
        /* Advance virtual time to the next event.  */
3987
        if (use_icount == 1) {
3988
            /* When not using an adaptive execution frequency
3989
               we tend to get badly out of sync with real time,
3990
               so just delay for a reasonable amount of time.  */
3991
            delta = 0;
3992
        } else {
3993
            delta = cpu_get_icount() - cpu_get_clock();
3994
        }
3995
        if (delta > 0) {
3996
            /* If virtual time is ahead of real time then just
3997
               wait for IO.  */
3998
            timeout = (delta / 1000000) + 1;
3999
        } else {
4000
            /* Wait for either IO to occur or the next
4001
               timer event.  */
4002
            add = qemu_next_deadline();
4003
            /* We advance the timer before checking for IO.
4004
               Limit the amount we advance so that early IO
4005
               activity won't get the guest too far ahead.  */
4006
            if (add > 10000000)
4007
                add = 10000000;
4008
            delta += add;
4009
            add = (add + (1 << icount_time_shift) - 1)
4010
                  >> icount_time_shift;
4011
            qemu_icount += add;
4012
            timeout = delta / 1000000;
4013
            if (timeout < 0)
4014
                timeout = 0;
4015
        }
4016
    }
4017

    
4018
    return timeout;
4019
#else /* CONFIG_IOTHREAD */
4020
    return 1000;
4021
#endif
4022
}
4023

    
4024
static int vm_can_run(void)
4025
{
4026
    if (powerdown_requested)
4027
        return 0;
4028
    if (reset_requested)
4029
        return 0;
4030
    if (shutdown_requested)
4031
        return 0;
4032
    if (debug_requested)
4033
        return 0;
4034
    return 1;
4035
}
4036

    
4037
qemu_irq qemu_system_powerdown;
4038

    
4039
static void main_loop(void)
4040
{
4041
    int r;
4042

    
4043
#ifdef CONFIG_IOTHREAD
4044
    qemu_system_ready = 1;
4045
    qemu_cond_broadcast(&qemu_system_cond);
4046
#endif
4047

    
4048
    for (;;) {
4049
        do {
4050
#ifdef CONFIG_PROFILER
4051
            int64_t ti;
4052
#endif
4053
#ifndef CONFIG_IOTHREAD
4054
            tcg_cpu_exec();
4055
#endif
4056
#ifdef CONFIG_PROFILER
4057
            ti = profile_getclock();
4058
#endif
4059
            main_loop_wait(qemu_calculate_timeout());
4060
#ifdef CONFIG_PROFILER
4061
            dev_time += profile_getclock() - ti;
4062
#endif
4063
        } while (vm_can_run());
4064

    
4065
        if (qemu_debug_requested())
4066
            vm_stop(EXCP_DEBUG);
4067
        if (qemu_shutdown_requested()) {
4068
            if (no_shutdown) {
4069
                vm_stop(0);
4070
                no_shutdown = 0;
4071
            } else
4072
                break;
4073
        }
4074
        if (qemu_reset_requested()) {
4075
            pause_all_vcpus();
4076
            qemu_system_reset();
4077
            resume_all_vcpus();
4078
        }
4079
        if (qemu_powerdown_requested()) {
4080
            qemu_irq_raise(qemu_system_powerdown);
4081
        }
4082
        if ((r = qemu_vmstop_requested()))
4083
            vm_stop(r);
4084
    }
4085
    pause_all_vcpus();
4086
}
4087

    
4088
static void version(void)
4089
{
4090
    printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4091
}
4092

    
4093
static void help(int exitcode)
4094
{
4095
    version();
4096
    printf("usage: %s [options] [disk_image]\n"
4097
           "\n"
4098
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4099
           "\n"
4100
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4101
           opt_help
4102
#define DEFHEADING(text) stringify(text) "\n"
4103
#include "qemu-options.h"
4104
#undef DEF
4105
#undef DEFHEADING
4106
#undef GEN_DOCS
4107
           "\n"
4108
           "During emulation, the following keys are useful:\n"
4109
           "ctrl-alt-f      toggle full screen\n"
4110
           "ctrl-alt-n      switch to virtual console 'n'\n"
4111
           "ctrl-alt        toggle mouse and keyboard grab\n"
4112
           "\n"
4113
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
4114
           ,
4115
           "qemu",
4116
           DEFAULT_RAM_SIZE,
4117
#ifndef _WIN32
4118
           DEFAULT_NETWORK_SCRIPT,
4119
           DEFAULT_NETWORK_DOWN_SCRIPT,
4120
#endif
4121
           DEFAULT_GDBSTUB_PORT,
4122
           "/tmp/qemu.log");
4123
    exit(exitcode);
4124
}
4125

    
4126
#define HAS_ARG 0x0001
4127

    
4128
enum {
4129
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4130
    opt_enum,
4131
#define DEFHEADING(text)
4132
#include "qemu-options.h"
4133
#undef DEF
4134
#undef DEFHEADING
4135
#undef GEN_DOCS
4136
};
4137

    
4138
typedef struct QEMUOption {
4139
    const char *name;
4140
    int flags;
4141
    int index;
4142
} QEMUOption;
4143

    
4144
static const QEMUOption qemu_options[] = {
4145
    { "h", 0, QEMU_OPTION_h },
4146
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4147
    { option, opt_arg, opt_enum },
4148
#define DEFHEADING(text)
4149
#include "qemu-options.h"
4150
#undef DEF
4151
#undef DEFHEADING
4152
#undef GEN_DOCS
4153
    { NULL },
4154
};
4155

    
4156
#ifdef HAS_AUDIO
4157
struct soundhw soundhw[] = {
4158
#ifdef HAS_AUDIO_CHOICE
4159
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4160
    {
4161
        "pcspk",
4162
        "PC speaker",
4163
        0,
4164
        1,
4165
        { .init_isa = pcspk_audio_init }
4166
    },
4167
#endif
4168

    
4169
#ifdef CONFIG_SB16
4170
    {
4171
        "sb16",
4172
        "Creative Sound Blaster 16",
4173
        0,
4174
        1,
4175
        { .init_isa = SB16_init }
4176
    },
4177
#endif
4178

    
4179
#ifdef CONFIG_CS4231A
4180
    {
4181
        "cs4231a",
4182
        "CS4231A",
4183
        0,
4184
        1,
4185
        { .init_isa = cs4231a_init }
4186
    },
4187
#endif
4188

    
4189
#ifdef CONFIG_ADLIB
4190
    {
4191
        "adlib",
4192
#ifdef HAS_YMF262
4193
        "Yamaha YMF262 (OPL3)",
4194
#else
4195
        "Yamaha YM3812 (OPL2)",
4196
#endif
4197
        0,
4198
        1,
4199
        { .init_isa = Adlib_init }
4200
    },
4201
#endif
4202

    
4203
#ifdef CONFIG_GUS
4204
    {
4205
        "gus",
4206
        "Gravis Ultrasound GF1",
4207
        0,
4208
        1,
4209
        { .init_isa = GUS_init }
4210
    },
4211
#endif
4212

    
4213
#ifdef CONFIG_AC97
4214
    {
4215
        "ac97",
4216
        "Intel 82801AA AC97 Audio",
4217
        0,
4218
        0,
4219
        { .init_pci = ac97_init }
4220
    },
4221
#endif
4222

    
4223
#ifdef CONFIG_ES1370
4224
    {
4225
        "es1370",
4226
        "ENSONIQ AudioPCI ES1370",
4227
        0,
4228
        0,
4229
        { .init_pci = es1370_init }
4230
    },
4231
#endif
4232

    
4233
#endif /* HAS_AUDIO_CHOICE */
4234

    
4235
    { NULL, NULL, 0, 0, { NULL } }
4236
};
4237

    
4238
static void select_soundhw (const char *optarg)
4239
{
4240
    struct soundhw *c;
4241

    
4242
    if (*optarg == '?') {
4243
    show_valid_cards:
4244

    
4245
        printf ("Valid sound card names (comma separated):\n");
4246
        for (c = soundhw; c->name; ++c) {
4247
            printf ("%-11s %s\n", c->name, c->descr);
4248
        }
4249
        printf ("\n-soundhw all will enable all of the above\n");
4250
        exit (*optarg != '?');
4251
    }
4252
    else {
4253
        size_t l;
4254
        const char *p;
4255
        char *e;
4256
        int bad_card = 0;
4257

    
4258
        if (!strcmp (optarg, "all")) {
4259
            for (c = soundhw; c->name; ++c) {
4260
                c->enabled = 1;
4261
            }
4262
            return;
4263
        }
4264

    
4265
        p = optarg;
4266
        while (*p) {
4267
            e = strchr (p, ',');
4268
            l = !e ? strlen (p) : (size_t) (e - p);
4269

    
4270
            for (c = soundhw; c->name; ++c) {
4271
                if (!strncmp (c->name, p, l) && !c->name[l]) {
4272
                    c->enabled = 1;
4273
                    break;
4274
                }
4275
            }
4276

    
4277
            if (!c->name) {
4278
                if (l > 80) {
4279
                    fprintf (stderr,
4280
                             "Unknown sound card name (too big to show)\n");
4281
                }
4282
                else {
4283
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4284
                             (int) l, p);
4285
                }
4286
                bad_card = 1;
4287
            }
4288
            p += l + (e != NULL);
4289
        }
4290

    
4291
        if (bad_card)
4292
            goto show_valid_cards;
4293
    }
4294
}
4295
#endif
4296

    
4297
static void select_vgahw (const char *p)
4298
{
4299
    const char *opts;
4300

    
4301
    vga_interface_type = VGA_NONE;
4302
    if (strstart(p, "std", &opts)) {
4303
        vga_interface_type = VGA_STD;
4304
    } else if (strstart(p, "cirrus", &opts)) {
4305
        vga_interface_type = VGA_CIRRUS;
4306
    } else if (strstart(p, "vmware", &opts)) {
4307
        vga_interface_type = VGA_VMWARE;
4308
    } else if (strstart(p, "xenfb", &opts)) {
4309
        vga_interface_type = VGA_XENFB;
4310
    } else if (!strstart(p, "none", &opts)) {
4311
    invalid_vga:
4312
        fprintf(stderr, "Unknown vga type: %s\n", p);
4313
        exit(1);
4314
    }
4315
    while (*opts) {
4316
        const char *nextopt;
4317

    
4318
        if (strstart(opts, ",retrace=", &nextopt)) {
4319
            opts = nextopt;
4320
            if (strstart(opts, "dumb", &nextopt))
4321
                vga_retrace_method = VGA_RETRACE_DUMB;
4322
            else if (strstart(opts, "precise", &nextopt))
4323
                vga_retrace_method = VGA_RETRACE_PRECISE;
4324
            else goto invalid_vga;
4325
        } else goto invalid_vga;
4326
        opts = nextopt;
4327
    }
4328
}
4329

    
4330
#ifdef TARGET_I386
4331
static int balloon_parse(const char *arg)
4332
{
4333
    QemuOpts *opts;
4334

    
4335
    if (strcmp(arg, "none") == 0) {
4336
        return 0;
4337
    }
4338

    
4339
    if (!strncmp(arg, "virtio", 6)) {
4340
        if (arg[6] == ',') {
4341
            /* have params -> parse them */
4342
            opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4343
            if (!opts)
4344
                return  -1;
4345
        } else {
4346
            /* create empty opts */
4347
            opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4348
        }
4349
        qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4350
        return 0;
4351
    }
4352

    
4353
    return -1;
4354
}
4355
#endif
4356

    
4357
#ifdef _WIN32
4358
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4359
{
4360
    exit(STATUS_CONTROL_C_EXIT);
4361
    return TRUE;
4362
}
4363
#endif
4364

    
4365
int qemu_uuid_parse(const char *str, uint8_t *uuid)
4366
{
4367
    int ret;
4368

    
4369
    if(strlen(str) != 36)
4370
        return -1;
4371

    
4372
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4373
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4374
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4375

    
4376
    if(ret != 16)
4377
        return -1;
4378

    
4379
#ifdef TARGET_I386
4380
    smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4381
#endif
4382

    
4383
    return 0;
4384
}
4385

    
4386
#ifndef _WIN32
4387

    
4388
static void termsig_handler(int signal)
4389
{
4390
    qemu_system_shutdown_request();
4391
}
4392

    
4393
static void sigchld_handler(int signal)
4394
{
4395
    waitpid(-1, NULL, WNOHANG);
4396
}
4397

    
4398
static void sighandler_setup(void)
4399
{
4400
    struct sigaction act;
4401

    
4402
    memset(&act, 0, sizeof(act));
4403
    act.sa_handler = termsig_handler;
4404
    sigaction(SIGINT,  &act, NULL);
4405
    sigaction(SIGHUP,  &act, NULL);
4406
    sigaction(SIGTERM, &act, NULL);
4407

    
4408
    act.sa_handler = sigchld_handler;
4409
    act.sa_flags = SA_NOCLDSTOP;
4410
    sigaction(SIGCHLD, &act, NULL);
4411
}
4412

    
4413
#endif
4414

    
4415
#ifdef _WIN32
4416
/* Look for support files in the same directory as the executable.  */
4417
static char *find_datadir(const char *argv0)
4418
{
4419
    char *p;
4420
    char buf[MAX_PATH];
4421
    DWORD len;
4422

    
4423
    len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4424
    if (len == 0) {
4425
        return NULL;
4426
    }
4427

    
4428
    buf[len] = 0;
4429
    p = buf + len - 1;
4430
    while (p != buf && *p != '\\')
4431
        p--;
4432
    *p = 0;
4433
    if (access(buf, R_OK) == 0) {
4434
        return qemu_strdup(buf);
4435
    }
4436
    return NULL;
4437
}
4438
#else /* !_WIN32 */
4439

    
4440
/* Find a likely location for support files using the location of the binary.
4441
   For installed binaries this will be "$bindir/../share/qemu".  When
4442
   running from the build tree this will be "$bindir/../pc-bios".  */
4443
#define SHARE_SUFFIX "/share/qemu"
4444
#define BUILD_SUFFIX "/pc-bios"
4445
static char *find_datadir(const char *argv0)
4446
{
4447
    char *dir;
4448
    char *p = NULL;
4449
    char *res;
4450
    char buf[PATH_MAX];
4451
    size_t max_len;
4452

    
4453
#if defined(__linux__)
4454
    {
4455
        int len;
4456
        len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4457
        if (len > 0) {
4458
            buf[len] = 0;
4459
            p = buf;
4460
        }
4461
    }
4462
#elif defined(__FreeBSD__)
4463
    {
4464
        int len;
4465
        len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4466
        if (len > 0) {
4467
            buf[len] = 0;
4468
            p = buf;
4469
        }
4470
    }
4471
#endif
4472
    /* If we don't have any way of figuring out the actual executable
4473
       location then try argv[0].  */
4474
    if (!p) {
4475
        p = realpath(argv0, buf);
4476
        if (!p) {
4477
            return NULL;
4478
        }
4479
    }
4480
    dir = dirname(p);
4481
    dir = dirname(dir);
4482

    
4483
    max_len = strlen(dir) +
4484
        MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4485
    res = qemu_mallocz(max_len);
4486
    snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4487
    if (access(res, R_OK)) {
4488
        snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4489
        if (access(res, R_OK)) {
4490
            qemu_free(res);
4491
            res = NULL;
4492
        }
4493
    }
4494

    
4495
    return res;
4496
}
4497
#undef SHARE_SUFFIX
4498
#undef BUILD_SUFFIX
4499
#endif
4500

    
4501
char *qemu_find_file(int type, const char *name)
4502
{
4503
    int len;
4504
    const char *subdir;
4505
    char *buf;
4506

    
4507
    /* If name contains path separators then try it as a straight path.  */
4508
    if ((strchr(name, '/') || strchr(name, '\\'))
4509
        && access(name, R_OK) == 0) {
4510
        return qemu_strdup(name);
4511
    }
4512
    switch (type) {
4513
    case QEMU_FILE_TYPE_BIOS:
4514
        subdir = "";
4515
        break;
4516
    case QEMU_FILE_TYPE_KEYMAP:
4517
        subdir = "keymaps/";
4518
        break;
4519
    default:
4520
        abort();
4521
    }
4522
    len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4523
    buf = qemu_mallocz(len);
4524
    snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4525
    if (access(buf, R_OK)) {
4526
        qemu_free(buf);
4527
        return NULL;
4528
    }
4529
    return buf;
4530
}
4531

    
4532
static int device_init_func(QemuOpts *opts, void *opaque)
4533
{
4534
    DeviceState *dev;
4535

    
4536
    dev = qdev_device_add(opts);
4537
    if (!dev)
4538
        return -1;
4539
    return 0;
4540
}
4541

    
4542
struct device_config {
4543
    enum {
4544
        DEV_USB,       /* -usbdevice   */
4545
        DEV_BT,        /* -bt          */
4546
    } type;
4547
    const char *cmdline;
4548
    QTAILQ_ENTRY(device_config) next;
4549
};
4550
QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4551

    
4552
static void add_device_config(int type, const char *cmdline)
4553
{
4554
    struct device_config *conf;
4555

    
4556
    conf = qemu_mallocz(sizeof(*conf));
4557
    conf->type = type;
4558
    conf->cmdline = cmdline;
4559
    QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4560
}
4561

    
4562
static int foreach_device_config(int type, int (*func)(const char *cmdline))
4563
{
4564
    struct device_config *conf;
4565
    int rc;
4566

    
4567
    QTAILQ_FOREACH(conf, &device_configs, next) {
4568
        if (conf->type != type)
4569
            continue;
4570
        rc = func(conf->cmdline);
4571
        if (0 != rc)
4572
            return rc;
4573
    }
4574
    return 0;
4575
}
4576

    
4577
int main(int argc, char **argv, char **envp)
4578
{
4579
    const char *gdbstub_dev = NULL;
4580
    uint32_t boot_devices_bitmap = 0;
4581
    int i;
4582
    int snapshot, linux_boot, net_boot;
4583
    const char *initrd_filename;
4584
    const char *kernel_filename, *kernel_cmdline;
4585
    char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4586
    DisplayState *ds;
4587
    DisplayChangeListener *dcl;
4588
    int cyls, heads, secs, translation;
4589
    QemuOpts *hda_opts = NULL, *opts;
4590
    int optind;
4591
    const char *r, *optarg;
4592
    CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4593
    const char *monitor_devices[MAX_MONITOR_DEVICES];
4594
    int monitor_device_index;
4595
    const char *serial_devices[MAX_SERIAL_PORTS];
4596
    int serial_device_index;
4597
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4598
    int parallel_device_index;
4599
    const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4600
    int virtio_console_index;
4601
    const char *loadvm = NULL;
4602
    QEMUMachine *machine;
4603
    const char *cpu_model;
4604
#ifndef _WIN32
4605
    int fds[2];
4606
#endif
4607
    int tb_size;
4608
    const char *pid_file = NULL;
4609
    const char *incoming = NULL;
4610
#ifndef _WIN32
4611
    int fd = 0;
4612
    struct passwd *pwd = NULL;
4613
    const char *chroot_dir = NULL;
4614
    const char *run_as = NULL;
4615
#endif
4616
    CPUState *env;
4617
    int show_vnc_port = 0;
4618

    
4619
    init_clocks();
4620

    
4621
    qemu_errors_to_file(stderr);
4622
    qemu_cache_utils_init(envp);
4623

    
4624
    QLIST_INIT (&vm_change_state_head);
4625
#ifndef _WIN32
4626
    {
4627
        struct sigaction act;
4628
        sigfillset(&act.sa_mask);
4629
        act.sa_flags = 0;
4630
        act.sa_handler = SIG_IGN;
4631
        sigaction(SIGPIPE, &act, NULL);
4632
    }
4633
#else
4634
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4635
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4636
       QEMU to run on a single CPU */
4637
    {
4638
        HANDLE h;
4639
        DWORD mask, smask;
4640
        int i;
4641
        h = GetCurrentProcess();
4642
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4643
            for(i = 0; i < 32; i++) {
4644
                if (mask & (1 << i))
4645
                    break;
4646
            }
4647
            if (i != 32) {
4648
                mask = 1 << i;
4649
                SetProcessAffinityMask(h, mask);
4650
            }
4651
        }
4652
    }
4653
#endif
4654

    
4655
    module_call_init(MODULE_INIT_MACHINE);
4656
    machine = find_default_machine();
4657
    cpu_model = NULL;
4658
    initrd_filename = NULL;
4659
    ram_size = 0;
4660
    snapshot = 0;
4661
    kernel_filename = NULL;
4662
    kernel_cmdline = "";
4663
    cyls = heads = secs = 0;
4664
    translation = BIOS_ATA_TRANSLATION_AUTO;
4665

    
4666
    serial_devices[0] = "vc:80Cx24C";
4667
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4668
        serial_devices[i] = NULL;
4669
    serial_device_index = 0;
4670

    
4671
    parallel_devices[0] = "vc:80Cx24C";
4672
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4673
        parallel_devices[i] = NULL;
4674
    parallel_device_index = 0;
4675

    
4676
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4677
        virtio_consoles[i] = NULL;
4678
    virtio_console_index = 0;
4679

    
4680
    monitor_devices[0] = "vc:80Cx24C";
4681
    for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4682
        monitor_devices[i] = NULL;
4683
    }
4684
    monitor_device_index = 0;
4685

    
4686
    for (i = 0; i < MAX_NODES; i++) {
4687
        node_mem[i] = 0;
4688
        node_cpumask[i] = 0;
4689
    }
4690

    
4691
    nb_numa_nodes = 0;
4692
    nb_nics = 0;
4693

    
4694
    tb_size = 0;
4695
    autostart= 1;
4696

    
4697
    optind = 1;
4698
    for(;;) {
4699
        if (optind >= argc)
4700
            break;
4701
        r = argv[optind];
4702
        if (r[0] != '-') {
4703
            hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4704
        } else {
4705
            const QEMUOption *popt;
4706

    
4707
            optind++;
4708
            /* Treat --foo the same as -foo.  */
4709
            if (r[1] == '-')
4710
                r++;
4711
            popt = qemu_options;
4712
            for(;;) {
4713
                if (!popt->name) {
4714
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4715
                            argv[0], r);
4716
                    exit(1);
4717
                }
4718
                if (!strcmp(popt->name, r + 1))
4719
                    break;
4720
                popt++;
4721
            }
4722
            if (popt->flags & HAS_ARG) {
4723
                if (optind >= argc) {
4724
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4725
                            argv[0], r);
4726
                    exit(1);
4727
                }
4728
                optarg = argv[optind++];
4729
            } else {
4730
                optarg = NULL;
4731
            }
4732

    
4733
            switch(popt->index) {
4734
            case QEMU_OPTION_M:
4735
                machine = find_machine(optarg);
4736
                if (!machine) {
4737
                    QEMUMachine *m;
4738
                    printf("Supported machines are:\n");
4739
                    for(m = first_machine; m != NULL; m = m->next) {
4740
                        if (m->alias)
4741
                            printf("%-10s %s (alias of %s)\n",
4742
                                   m->alias, m->desc, m->name);
4743
                        printf("%-10s %s%s\n",
4744
                               m->name, m->desc,
4745
                               m->is_default ? " (default)" : "");
4746
                    }
4747
                    exit(*optarg != '?');
4748
                }
4749
                break;
4750
            case QEMU_OPTION_cpu:
4751
                /* hw initialization will check this */
4752
                if (*optarg == '?') {
4753
/* XXX: implement xxx_cpu_list for targets that still miss it */
4754
#if defined(cpu_list)
4755
                    cpu_list(stdout, &fprintf);
4756
#endif
4757
                    exit(0);
4758
                } else {
4759
                    cpu_model = optarg;
4760
                }
4761
                break;
4762
            case QEMU_OPTION_initrd:
4763
                initrd_filename = optarg;
4764
                break;
4765
            case QEMU_OPTION_hda:
4766
                if (cyls == 0)
4767
                    hda_opts = drive_add(optarg, HD_ALIAS, 0);
4768
                else
4769
                    hda_opts = drive_add(optarg, HD_ALIAS
4770
                             ",cyls=%d,heads=%d,secs=%d%s",
4771
                             0, cyls, heads, secs,
4772
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4773
                                 ",trans=lba" :
4774
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4775
                                 ",trans=none" : "");
4776
                 break;
4777
            case QEMU_OPTION_hdb:
4778
            case QEMU_OPTION_hdc:
4779
            case QEMU_OPTION_hdd:
4780
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4781
                break;
4782
            case QEMU_OPTION_drive:
4783
                drive_add(NULL, "%s", optarg);
4784
                break;
4785
            case QEMU_OPTION_set:
4786
                if (qemu_set_option(optarg) != 0)
4787
                    exit(1);
4788
                break;
4789
            case QEMU_OPTION_mtdblock:
4790
                drive_add(optarg, MTD_ALIAS);
4791
                break;
4792
            case QEMU_OPTION_sd:
4793
                drive_add(optarg, SD_ALIAS);
4794
                break;
4795
            case QEMU_OPTION_pflash:
4796
                drive_add(optarg, PFLASH_ALIAS);
4797
                break;
4798
            case QEMU_OPTION_snapshot:
4799
                snapshot = 1;
4800
                break;
4801
            case QEMU_OPTION_hdachs:
4802
                {
4803
                    const char *p;
4804
                    p = optarg;
4805
                    cyls = strtol(p, (char **)&p, 0);
4806
                    if (cyls < 1 || cyls > 16383)
4807
                        goto chs_fail;
4808
                    if (*p != ',')
4809
                        goto chs_fail;
4810
                    p++;
4811
                    heads = strtol(p, (char **)&p, 0);
4812
                    if (heads < 1 || heads > 16)
4813
                        goto chs_fail;
4814
                    if (*p != ',')
4815
                        goto chs_fail;
4816
                    p++;
4817
                    secs = strtol(p, (char **)&p, 0);
4818
                    if (secs < 1 || secs > 63)
4819
                        goto chs_fail;
4820
                    if (*p == ',') {
4821
                        p++;
4822
                        if (!strcmp(p, "none"))
4823
                            translation = BIOS_ATA_TRANSLATION_NONE;
4824
                        else if (!strcmp(p, "lba"))
4825
                            translation = BIOS_ATA_TRANSLATION_LBA;
4826
                        else if (!strcmp(p, "auto"))
4827
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4828
                        else
4829
                            goto chs_fail;
4830
                    } else if (*p != '\0') {
4831
                    chs_fail:
4832
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4833
                        exit(1);
4834
                    }
4835
                    if (hda_opts != NULL) {
4836
                        char num[16];
4837
                        snprintf(num, sizeof(num), "%d", cyls);
4838
                        qemu_opt_set(hda_opts, "cyls", num);
4839
                        snprintf(num, sizeof(num), "%d", heads);
4840
                        qemu_opt_set(hda_opts, "heads", num);
4841
                        snprintf(num, sizeof(num), "%d", secs);
4842
                        qemu_opt_set(hda_opts, "secs", num);
4843
                        if (translation == BIOS_ATA_TRANSLATION_LBA)
4844
                            qemu_opt_set(hda_opts, "trans", "lba");
4845
                        if (translation == BIOS_ATA_TRANSLATION_NONE)
4846
                            qemu_opt_set(hda_opts, "trans", "none");
4847
                    }
4848
                }
4849
                break;
4850
            case QEMU_OPTION_numa:
4851
                if (nb_numa_nodes >= MAX_NODES) {
4852
                    fprintf(stderr, "qemu: too many NUMA nodes\n");
4853
                    exit(1);
4854
                }
4855
                numa_add(optarg);
4856
                break;
4857
            case QEMU_OPTION_nographic:
4858
                display_type = DT_NOGRAPHIC;
4859
                break;
4860
#ifdef CONFIG_CURSES
4861
            case QEMU_OPTION_curses:
4862
                display_type = DT_CURSES;
4863
                break;
4864
#endif
4865
            case QEMU_OPTION_portrait:
4866
                graphic_rotate = 1;
4867
                break;
4868
            case QEMU_OPTION_kernel:
4869
                kernel_filename = optarg;
4870
                break;
4871
            case QEMU_OPTION_append:
4872
                kernel_cmdline = optarg;
4873
                break;
4874
            case QEMU_OPTION_cdrom:
4875
                drive_add(optarg, CDROM_ALIAS);
4876
                break;
4877
            case QEMU_OPTION_boot:
4878
                {
4879
                    static const char * const params[] = {
4880
                        "order", "once", "menu", NULL
4881
                    };
4882
                    char buf[sizeof(boot_devices)];
4883
                    char *standard_boot_devices;
4884
                    int legacy = 0;
4885

    
4886
                    if (!strchr(optarg, '=')) {
4887
                        legacy = 1;
4888
                        pstrcpy(buf, sizeof(buf), optarg);
4889
                    } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
4890
                        fprintf(stderr,
4891
                                "qemu: unknown boot parameter '%s' in '%s'\n",
4892
                                buf, optarg);
4893
                        exit(1);
4894
                    }
4895

    
4896
                    if (legacy ||
4897
                        get_param_value(buf, sizeof(buf), "order", optarg)) {
4898
                        boot_devices_bitmap = parse_bootdevices(buf);
4899
                        pstrcpy(boot_devices, sizeof(boot_devices), buf);
4900
                    }
4901
                    if (!legacy) {
4902
                        if (get_param_value(buf, sizeof(buf),
4903
                                            "once", optarg)) {
4904
                            boot_devices_bitmap |= parse_bootdevices(buf);
4905
                            standard_boot_devices = qemu_strdup(boot_devices);
4906
                            pstrcpy(boot_devices, sizeof(boot_devices), buf);
4907
                            qemu_register_reset(restore_boot_devices,
4908
                                                standard_boot_devices);
4909
                        }
4910
                        if (get_param_value(buf, sizeof(buf),
4911
                                            "menu", optarg)) {
4912
                            if (!strcmp(buf, "on")) {
4913
                                boot_menu = 1;
4914
                            } else if (!strcmp(buf, "off")) {
4915
                                boot_menu = 0;
4916
                            } else {
4917
                                fprintf(stderr,
4918
                                        "qemu: invalid option value '%s'\n",
4919
                                        buf);
4920
                                exit(1);
4921
                            }
4922
                        }
4923
                    }
4924
                }
4925
                break;
4926
            case QEMU_OPTION_fda:
4927
            case QEMU_OPTION_fdb:
4928
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4929
                break;
4930
#ifdef TARGET_I386
4931
            case QEMU_OPTION_no_fd_bootchk:
4932
                fd_bootchk = 0;
4933
                break;
4934
#endif
4935
            case QEMU_OPTION_netdev:
4936
                if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
4937
                    exit(1);
4938
                }
4939
                break;
4940
            case QEMU_OPTION_net:
4941
                if (net_client_parse(&qemu_net_opts, optarg) == -1) {
4942
                    exit(1);
4943
                }
4944
                break;
4945
#ifdef CONFIG_SLIRP
4946
            case QEMU_OPTION_tftp:
4947
                legacy_tftp_prefix = optarg;
4948
                break;
4949
            case QEMU_OPTION_bootp:
4950
                legacy_bootp_filename = optarg;
4951
                break;
4952
#ifndef _WIN32
4953
            case QEMU_OPTION_smb:
4954
                if (net_slirp_smb(optarg) < 0)
4955
                    exit(1);
4956
                break;
4957
#endif
4958
            case QEMU_OPTION_redir:
4959
                if (net_slirp_redir(optarg) < 0)
4960
                    exit(1);
4961
                break;
4962
#endif
4963
            case QEMU_OPTION_bt:
4964
                add_device_config(DEV_BT, optarg);
4965
                break;
4966
#ifdef HAS_AUDIO
4967
            case QEMU_OPTION_audio_help:
4968
                AUD_help ();
4969
                exit (0);
4970
                break;
4971
            case QEMU_OPTION_soundhw:
4972
                select_soundhw (optarg);
4973
                break;
4974
#endif
4975
            case QEMU_OPTION_h:
4976
                help(0);
4977
                break;
4978
            case QEMU_OPTION_version:
4979
                version();
4980
                exit(0);
4981
                break;
4982
            case QEMU_OPTION_m: {
4983
                uint64_t value;
4984
                char *ptr;
4985

    
4986
                value = strtoul(optarg, &ptr, 10);
4987
                switch (*ptr) {
4988
                case 0: case 'M': case 'm':
4989
                    value <<= 20;
4990
                    break;
4991
                case 'G': case 'g':
4992
                    value <<= 30;
4993
                    break;
4994
                default:
4995
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4996
                    exit(1);
4997
                }
4998

    
4999
                /* On 32-bit hosts, QEMU is limited by virtual address space */
5000
                if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5001
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5002
                    exit(1);
5003
                }
5004
                if (value != (uint64_t)(ram_addr_t)value) {
5005
                    fprintf(stderr, "qemu: ram size too large\n");
5006
                    exit(1);
5007
                }
5008
                ram_size = value;
5009
                break;
5010
            }
5011
            case QEMU_OPTION_d:
5012
                {
5013
                    int mask;
5014
                    const CPULogItem *item;
5015

    
5016
                    mask = cpu_str_to_log_mask(optarg);
5017
                    if (!mask) {
5018
                        printf("Log items (comma separated):\n");
5019
                    for(item = cpu_log_items; item->mask != 0; item++) {
5020
                        printf("%-10s %s\n", item->name, item->help);
5021
                    }
5022
                    exit(1);
5023
                    }
5024
                    cpu_set_log(mask);
5025
                }
5026
                break;
5027
            case QEMU_OPTION_s:
5028
                gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5029
                break;
5030
            case QEMU_OPTION_gdb:
5031
                gdbstub_dev = optarg;
5032
                break;
5033
            case QEMU_OPTION_L:
5034
                data_dir = optarg;
5035
                break;
5036
            case QEMU_OPTION_bios:
5037
                bios_name = optarg;
5038
                break;
5039
            case QEMU_OPTION_singlestep:
5040
                singlestep = 1;
5041
                break;
5042
            case QEMU_OPTION_S:
5043
                autostart = 0;
5044
                break;
5045
#ifndef _WIN32
5046
            case QEMU_OPTION_k:
5047
                keyboard_layout = optarg;
5048
                break;
5049
#endif
5050
            case QEMU_OPTION_localtime:
5051
                rtc_utc = 0;
5052
                break;
5053
            case QEMU_OPTION_vga:
5054
                select_vgahw (optarg);
5055
                break;
5056
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
5057
            case QEMU_OPTION_g:
5058
                {
5059
                    const char *p;
5060
                    int w, h, depth;
5061
                    p = optarg;
5062
                    w = strtol(p, (char **)&p, 10);
5063
                    if (w <= 0) {
5064
                    graphic_error:
5065
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
5066
                        exit(1);
5067
                    }
5068
                    if (*p != 'x')
5069
                        goto graphic_error;
5070
                    p++;
5071
                    h = strtol(p, (char **)&p, 10);
5072
                    if (h <= 0)
5073
                        goto graphic_error;
5074
                    if (*p == 'x') {
5075
                        p++;
5076
                        depth = strtol(p, (char **)&p, 10);
5077
                        if (depth != 8 && depth != 15 && depth != 16 &&
5078
                            depth != 24 && depth != 32)
5079
                            goto graphic_error;
5080
                    } else if (*p == '\0') {
5081
                        depth = graphic_depth;
5082
                    } else {
5083
                        goto graphic_error;
5084
                    }
5085

    
5086
                    graphic_width = w;
5087
                    graphic_height = h;
5088
                    graphic_depth = depth;
5089
                }
5090
                break;
5091
#endif
5092
            case QEMU_OPTION_echr:
5093
                {
5094
                    char *r;
5095
                    term_escape_char = strtol(optarg, &r, 0);
5096
                    if (r == optarg)
5097
                        printf("Bad argument to echr\n");
5098
                    break;
5099
                }
5100
            case QEMU_OPTION_monitor:
5101
                if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5102
                    fprintf(stderr, "qemu: too many monitor devices\n");
5103
                    exit(1);
5104
                }
5105
                monitor_devices[monitor_device_index] = optarg;
5106
                monitor_device_index++;
5107
                break;
5108
            case QEMU_OPTION_chardev:
5109
                opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5110
                if (!opts) {
5111
                    fprintf(stderr, "parse error: %s\n", optarg);
5112
                    exit(1);
5113
                }
5114
                if (qemu_chr_open_opts(opts, NULL) == NULL) {
5115
                    exit(1);
5116
                }
5117
                break;
5118
            case QEMU_OPTION_serial:
5119
                if (serial_device_index >= MAX_SERIAL_PORTS) {
5120
                    fprintf(stderr, "qemu: too many serial ports\n");
5121
                    exit(1);
5122
                }
5123
                serial_devices[serial_device_index] = optarg;
5124
                serial_device_index++;
5125
                break;
5126
            case QEMU_OPTION_watchdog:
5127
                if (watchdog) {
5128
                    fprintf(stderr,
5129
                            "qemu: only one watchdog option may be given\n");
5130
                    return 1;
5131
                }
5132
                watchdog = optarg;
5133
                break;
5134
            case QEMU_OPTION_watchdog_action:
5135
                if (select_watchdog_action(optarg) == -1) {
5136
                    fprintf(stderr, "Unknown -watchdog-action parameter\n");
5137
                    exit(1);
5138
                }
5139
                break;
5140
            case QEMU_OPTION_virtiocon:
5141
                if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5142
                    fprintf(stderr, "qemu: too many virtio consoles\n");
5143
                    exit(1);
5144
                }
5145
                virtio_consoles[virtio_console_index] = optarg;
5146
                virtio_console_index++;
5147
                break;
5148
            case QEMU_OPTION_parallel:
5149
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5150
                    fprintf(stderr, "qemu: too many parallel ports\n");
5151
                    exit(1);
5152
                }
5153
                parallel_devices[parallel_device_index] = optarg;
5154
                parallel_device_index++;
5155
                break;
5156
            case QEMU_OPTION_loadvm:
5157
                loadvm = optarg;
5158
                break;
5159
            case QEMU_OPTION_full_screen:
5160
                full_screen = 1;
5161
                break;
5162
#ifdef CONFIG_SDL
5163
            case QEMU_OPTION_no_frame:
5164
                no_frame = 1;
5165
                break;
5166
            case QEMU_OPTION_alt_grab:
5167
                alt_grab = 1;
5168
                break;
5169
            case QEMU_OPTION_ctrl_grab:
5170
                ctrl_grab = 1;
5171
                break;
5172
            case QEMU_OPTION_no_quit:
5173
                no_quit = 1;
5174
                break;
5175
            case QEMU_OPTION_sdl:
5176
                display_type = DT_SDL;
5177
                break;
5178
#endif
5179
            case QEMU_OPTION_pidfile:
5180
                pid_file = optarg;
5181
                break;
5182
#ifdef TARGET_I386
5183
            case QEMU_OPTION_win2k_hack:
5184
                win2k_install_hack = 1;
5185
                break;
5186
            case QEMU_OPTION_rtc_td_hack:
5187
                rtc_td_hack = 1;
5188
                break;
5189
            case QEMU_OPTION_acpitable:
5190
                if(acpi_table_add(optarg) < 0) {
5191
                    fprintf(stderr, "Wrong acpi table provided\n");
5192
                    exit(1);
5193
                }
5194
                break;
5195
            case QEMU_OPTION_smbios:
5196
                if(smbios_entry_add(optarg) < 0) {
5197
                    fprintf(stderr, "Wrong smbios provided\n");
5198
                    exit(1);
5199
                }
5200
                break;
5201
#endif
5202
#ifdef CONFIG_KVM
5203
            case QEMU_OPTION_enable_kvm:
5204
                kvm_allowed = 1;
5205
                break;
5206
#endif
5207
            case QEMU_OPTION_usb:
5208
                usb_enabled = 1;
5209
                break;
5210
            case QEMU_OPTION_usbdevice:
5211
                usb_enabled = 1;
5212
                add_device_config(DEV_USB, optarg);
5213
                break;
5214
            case QEMU_OPTION_device:
5215
                if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5216
                    exit(1);
5217
                }
5218
                break;
5219
            case QEMU_OPTION_smp:
5220
                smp_parse(optarg);
5221
                if (smp_cpus < 1) {
5222
                    fprintf(stderr, "Invalid number of CPUs\n");
5223
                    exit(1);
5224
                }
5225
                if (max_cpus < smp_cpus) {
5226
                    fprintf(stderr, "maxcpus must be equal to or greater than "
5227
                            "smp\n");
5228
                    exit(1);
5229
                }
5230
                if (max_cpus > 255) {
5231
                    fprintf(stderr, "Unsupported number of maxcpus\n");
5232
                    exit(1);
5233
                }
5234
                break;
5235
            case QEMU_OPTION_vnc:
5236
                display_type = DT_VNC;
5237
                vnc_display = optarg;
5238
                break;
5239
#ifdef TARGET_I386
5240
            case QEMU_OPTION_no_acpi:
5241
                acpi_enabled = 0;
5242
                break;
5243
            case QEMU_OPTION_no_hpet:
5244
                no_hpet = 1;
5245
                break;
5246
            case QEMU_OPTION_balloon:
5247
                if (balloon_parse(optarg) < 0) {
5248
                    fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5249
                    exit(1);
5250
                }
5251
                break;
5252
#endif
5253
            case QEMU_OPTION_no_reboot:
5254
                no_reboot = 1;
5255
                break;
5256
            case QEMU_OPTION_no_shutdown:
5257
                no_shutdown = 1;
5258
                break;
5259
            case QEMU_OPTION_show_cursor:
5260
                cursor_hide = 0;
5261
                break;
5262
            case QEMU_OPTION_uuid:
5263
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5264
                    fprintf(stderr, "Fail to parse UUID string."
5265
                            " Wrong format.\n");
5266
                    exit(1);
5267
                }
5268
                break;
5269
#ifndef _WIN32
5270
            case QEMU_OPTION_daemonize:
5271
                daemonize = 1;
5272
                break;
5273
#endif
5274
            case QEMU_OPTION_option_rom:
5275
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5276
                    fprintf(stderr, "Too many option ROMs\n");
5277
                    exit(1);
5278
                }
5279
                option_rom[nb_option_roms] = optarg;
5280
                nb_option_roms++;
5281
                break;
5282
#if defined(TARGET_ARM) || defined(TARGET_M68K)
5283
            case QEMU_OPTION_semihosting:
5284
                semihosting_enabled = 1;
5285
                break;
5286
#endif
5287
            case QEMU_OPTION_name:
5288
                qemu_name = qemu_strdup(optarg);
5289
                 {
5290
                     char *p = strchr(qemu_name, ',');
5291
                     if (p != NULL) {
5292
                        *p++ = 0;
5293
                        if (strncmp(p, "process=", 8)) {
5294
                            fprintf(stderr, "Unknown subargument %s to -name", p);
5295
                            exit(1);
5296
                        }
5297
                        p += 8;
5298
                        set_proc_name(p);
5299
                     }        
5300
                 }        
5301
                break;
5302
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5303
            case QEMU_OPTION_prom_env:
5304
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5305
                    fprintf(stderr, "Too many prom variables\n");
5306
                    exit(1);
5307
                }
5308
                prom_envs[nb_prom_envs] = optarg;
5309
                nb_prom_envs++;
5310
                break;
5311
#endif
5312
#ifdef TARGET_ARM
5313
            case QEMU_OPTION_old_param:
5314
                old_param = 1;
5315
                break;
5316
#endif
5317
            case QEMU_OPTION_clock:
5318
                configure_alarms(optarg);
5319
                break;
5320
            case QEMU_OPTION_startdate:
5321
                configure_rtc_date_offset(optarg, 1);
5322
                break;
5323
            case QEMU_OPTION_rtc:
5324
                opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5325
                if (!opts) {
5326
                    fprintf(stderr, "parse error: %s\n", optarg);
5327
                    exit(1);
5328
                }
5329
                configure_rtc(opts);
5330
                break;
5331
            case QEMU_OPTION_tb_size:
5332
                tb_size = strtol(optarg, NULL, 0);
5333
                if (tb_size < 0)
5334
                    tb_size = 0;
5335
                break;
5336
            case QEMU_OPTION_icount:
5337
                use_icount = 1;
5338
                if (strcmp(optarg, "auto") == 0) {
5339
                    icount_time_shift = -1;
5340
                } else {
5341
                    icount_time_shift = strtol(optarg, NULL, 0);
5342
                }
5343
                break;
5344
            case QEMU_OPTION_incoming:
5345
                incoming = optarg;
5346
                break;
5347
#ifndef _WIN32
5348
            case QEMU_OPTION_chroot:
5349
                chroot_dir = optarg;
5350
                break;
5351
            case QEMU_OPTION_runas:
5352
                run_as = optarg;
5353
                break;
5354
#endif
5355
#ifdef CONFIG_XEN
5356
            case QEMU_OPTION_xen_domid:
5357
                xen_domid = atoi(optarg);
5358
                break;
5359
            case QEMU_OPTION_xen_create:
5360
                xen_mode = XEN_CREATE;
5361
                break;
5362
            case QEMU_OPTION_xen_attach:
5363
                xen_mode = XEN_ATTACH;
5364
                break;
5365
#endif
5366
            case QEMU_OPTION_readconfig:
5367
                {
5368
                    FILE *fp;
5369
                    fp = fopen(optarg, "r");
5370
                    if (fp == NULL) {
5371
                        fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5372
                        exit(1);
5373
                    }
5374
                    if (qemu_config_parse(fp) != 0) {
5375
                        exit(1);
5376
                    }
5377
                    fclose(fp);
5378
                    break;
5379
                }
5380
            case QEMU_OPTION_writeconfig:
5381
                {
5382
                    FILE *fp;
5383
                    if (strcmp(optarg, "-") == 0) {
5384
                        fp = stdout;
5385
                    } else {
5386
                        fp = fopen(optarg, "w");
5387
                        if (fp == NULL) {
5388
                            fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5389
                            exit(1);
5390
                        }
5391
                    }
5392
                    qemu_config_write(fp);
5393
                    fclose(fp);
5394
                    break;
5395
                }
5396
            }
5397
        }
5398
    }
5399

    
5400
    /* If no data_dir is specified then try to find it relative to the
5401
       executable path.  */
5402
    if (!data_dir) {
5403
        data_dir = find_datadir(argv[0]);
5404
    }
5405
    /* If all else fails use the install patch specified when building.  */
5406
    if (!data_dir) {
5407
        data_dir = CONFIG_QEMU_SHAREDIR;
5408
    }
5409

    
5410
    /*
5411
     * Default to max_cpus = smp_cpus, in case the user doesn't
5412
     * specify a max_cpus value.
5413
     */
5414
    if (!max_cpus)
5415
        max_cpus = smp_cpus;
5416

    
5417
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5418
    if (smp_cpus > machine->max_cpus) {
5419
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5420
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5421
                machine->max_cpus);
5422
        exit(1);
5423
    }
5424

    
5425
    if (display_type == DT_NOGRAPHIC) {
5426
       if (serial_device_index == 0)
5427
           serial_devices[0] = "stdio";
5428
       if (parallel_device_index == 0)
5429
           parallel_devices[0] = "null";
5430
       if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5431
           monitor_devices[0] = "stdio";
5432
       }
5433
    }
5434

    
5435
#ifndef _WIN32
5436
    if (daemonize) {
5437
        pid_t pid;
5438

    
5439
        if (pipe(fds) == -1)
5440
            exit(1);
5441

    
5442
        pid = fork();
5443
        if (pid > 0) {
5444
            uint8_t status;
5445
            ssize_t len;
5446

    
5447
            close(fds[1]);
5448

    
5449
        again:
5450
            len = read(fds[0], &status, 1);
5451
            if (len == -1 && (errno == EINTR))
5452
                goto again;
5453

    
5454
            if (len != 1)
5455
                exit(1);
5456
            else if (status == 1) {
5457
                fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5458
                exit(1);
5459
            } else
5460
                exit(0);
5461
        } else if (pid < 0)
5462
            exit(1);
5463

    
5464
        setsid();
5465

    
5466
        pid = fork();
5467
        if (pid > 0)
5468
            exit(0);
5469
        else if (pid < 0)
5470
            exit(1);
5471

    
5472
        umask(027);
5473

    
5474
        signal(SIGTSTP, SIG_IGN);
5475
        signal(SIGTTOU, SIG_IGN);
5476
        signal(SIGTTIN, SIG_IGN);
5477
    }
5478

    
5479
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5480
        if (daemonize) {
5481
            uint8_t status = 1;
5482
            write(fds[1], &status, 1);
5483
        } else
5484
            fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5485
        exit(1);
5486
    }
5487
#endif
5488

    
5489
    if (kvm_enabled()) {
5490
        int ret;
5491

    
5492
        ret = kvm_init(smp_cpus);
5493
        if (ret < 0) {
5494
            fprintf(stderr, "failed to initialize KVM\n");
5495
            exit(1);
5496
        }
5497
    }
5498

    
5499
    if (qemu_init_main_loop()) {
5500
        fprintf(stderr, "qemu_init_main_loop failed\n");
5501
        exit(1);
5502
    }
5503
    linux_boot = (kernel_filename != NULL);
5504

    
5505
    if (!linux_boot && *kernel_cmdline != '\0') {
5506
        fprintf(stderr, "-append only allowed with -kernel option\n");
5507
        exit(1);
5508
    }
5509

    
5510
    if (!linux_boot && initrd_filename != NULL) {
5511
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5512
        exit(1);
5513
    }
5514

    
5515
#ifndef _WIN32
5516
    /* Win32 doesn't support line-buffering and requires size >= 2 */
5517
    setvbuf(stdout, NULL, _IOLBF, 0);
5518
#endif
5519

    
5520
    if (init_timer_alarm() < 0) {
5521
        fprintf(stderr, "could not initialize alarm timer\n");
5522
        exit(1);
5523
    }
5524
    if (use_icount && icount_time_shift < 0) {
5525
        use_icount = 2;
5526
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5527
           It will be corrected fairly quickly anyway.  */
5528
        icount_time_shift = 3;
5529
        init_icount_adjust();
5530
    }
5531

    
5532
#ifdef _WIN32
5533
    socket_init();
5534
#endif
5535

    
5536
    if (net_init_clients() < 0) {
5537
        exit(1);
5538
    }
5539

    
5540
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5541
    net_set_boot_mask(net_boot);
5542

    
5543
    /* init the bluetooth world */
5544
    if (foreach_device_config(DEV_BT, bt_parse))
5545
        exit(1);
5546

    
5547
    /* init the memory */
5548
    if (ram_size == 0)
5549
        ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5550

    
5551
    /* init the dynamic translator */
5552
    cpu_exec_init_all(tb_size * 1024 * 1024);
5553

    
5554
    bdrv_init_with_whitelist();
5555

    
5556
    /* we always create the cdrom drive, even if no disk is there */
5557
    drive_add(NULL, CDROM_ALIAS);
5558

    
5559
    /* we always create at least one floppy */
5560
    drive_add(NULL, FD_ALIAS, 0);
5561

    
5562
    /* we always create one sd slot, even if no card is in it */
5563
    drive_add(NULL, SD_ALIAS);
5564

    
5565
    /* open the virtual block devices */
5566
    if (snapshot)
5567
        qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5568
    if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5569
        exit(1);
5570

    
5571
    vmstate_register(0, &vmstate_timers ,&timers_state);
5572
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5573

    
5574
    /* Maintain compatibility with multiple stdio monitors */
5575
    if (!strcmp(monitor_devices[0],"stdio")) {
5576
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5577
            const char *devname = serial_devices[i];
5578
            if (devname && !strcmp(devname,"mon:stdio")) {
5579
                monitor_devices[0] = NULL;
5580
                break;
5581
            } else if (devname && !strcmp(devname,"stdio")) {
5582
                monitor_devices[0] = NULL;
5583
                serial_devices[i] = "mon:stdio";
5584
                break;
5585
            }
5586
        }
5587
    }
5588

    
5589
    if (nb_numa_nodes > 0) {
5590
        int i;
5591

    
5592
        if (nb_numa_nodes > smp_cpus) {
5593
            nb_numa_nodes = smp_cpus;
5594
        }
5595

    
5596
        /* If no memory size if given for any node, assume the default case
5597
         * and distribute the available memory equally across all nodes
5598
         */
5599
        for (i = 0; i < nb_numa_nodes; i++) {
5600
            if (node_mem[i] != 0)
5601
                break;
5602
        }
5603
        if (i == nb_numa_nodes) {
5604
            uint64_t usedmem = 0;
5605

    
5606
            /* On Linux, the each node's border has to be 8MB aligned,
5607
             * the final node gets the rest.
5608
             */
5609
            for (i = 0; i < nb_numa_nodes - 1; i++) {
5610
                node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5611
                usedmem += node_mem[i];
5612
            }
5613
            node_mem[i] = ram_size - usedmem;
5614
        }
5615

    
5616
        for (i = 0; i < nb_numa_nodes; i++) {
5617
            if (node_cpumask[i] != 0)
5618
                break;
5619
        }
5620
        /* assigning the VCPUs round-robin is easier to implement, guest OSes
5621
         * must cope with this anyway, because there are BIOSes out there in
5622
         * real machines which also use this scheme.
5623
         */
5624
        if (i == nb_numa_nodes) {
5625
            for (i = 0; i < smp_cpus; i++) {
5626
                node_cpumask[i % nb_numa_nodes] |= 1 << i;
5627
            }
5628
        }
5629
    }
5630

    
5631
    for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5632
        const char *devname = monitor_devices[i];
5633
        if (devname && strcmp(devname, "none")) {
5634
            char label[32];
5635
            if (i == 0) {
5636
                snprintf(label, sizeof(label), "monitor");
5637
            } else {
5638
                snprintf(label, sizeof(label), "monitor%d", i);
5639
            }
5640
            monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5641
            if (!monitor_hds[i]) {
5642
                fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5643
                        devname);
5644
                exit(1);
5645
            }
5646
        }
5647
    }
5648

    
5649
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5650
        const char *devname = serial_devices[i];
5651
        if (devname && strcmp(devname, "none")) {
5652
            char label[32];
5653
            snprintf(label, sizeof(label), "serial%d", i);
5654
            serial_hds[i] = qemu_chr_open(label, devname, NULL);
5655
            if (!serial_hds[i]) {
5656
                fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
5657
                        devname, strerror(errno));
5658
                exit(1);
5659
            }
5660
        }
5661
    }
5662

    
5663
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5664
        const char *devname = parallel_devices[i];
5665
        if (devname && strcmp(devname, "none")) {
5666
            char label[32];
5667
            snprintf(label, sizeof(label), "parallel%d", i);
5668
            parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5669
            if (!parallel_hds[i]) {
5670
                fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
5671
                        devname, strerror(errno));
5672
                exit(1);
5673
            }
5674
        }
5675
    }
5676

    
5677
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5678
        const char *devname = virtio_consoles[i];
5679
        if (devname && strcmp(devname, "none")) {
5680
            char label[32];
5681
            snprintf(label, sizeof(label), "virtcon%d", i);
5682
            virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5683
            if (!virtcon_hds[i]) {
5684
                fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
5685
                        devname, strerror(errno));
5686
                exit(1);
5687
            }
5688
        }
5689
    }
5690

    
5691
    module_call_init(MODULE_INIT_DEVICE);
5692

    
5693
    if (watchdog) {
5694
        i = select_watchdog(watchdog);
5695
        if (i > 0)
5696
            exit (i == 1 ? 1 : 0);
5697
    }
5698

    
5699
    if (machine->compat_props) {
5700
        qdev_prop_register_compat(machine->compat_props);
5701
    }
5702
    machine->init(ram_size, boot_devices,
5703
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5704

    
5705

    
5706
#ifndef _WIN32
5707
    /* must be after terminal init, SDL library changes signal handlers */
5708
    sighandler_setup();
5709
#endif
5710

    
5711
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
5712
        for (i = 0; i < nb_numa_nodes; i++) {
5713
            if (node_cpumask[i] & (1 << env->cpu_index)) {
5714
                env->numa_node = i;
5715
            }
5716
        }
5717
    }
5718

    
5719
    current_machine = machine;
5720

    
5721
    /* init USB devices */
5722
    if (usb_enabled) {
5723
        if (foreach_device_config(DEV_USB, usb_parse) < 0)
5724
            exit(1);
5725
    }
5726

    
5727
    /* init generic devices */
5728
    if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5729
        exit(1);
5730

    
5731
    if (!display_state)
5732
        dumb_display_init();
5733
    /* just use the first displaystate for the moment */
5734
    ds = display_state;
5735

    
5736
    if (display_type == DT_DEFAULT) {
5737
#if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5738
        display_type = DT_SDL;
5739
#else
5740
        display_type = DT_VNC;
5741
        vnc_display = "localhost:0,to=99";
5742
        show_vnc_port = 1;
5743
#endif
5744
    }
5745
        
5746

    
5747
    switch (display_type) {
5748
    case DT_NOGRAPHIC:
5749
        break;
5750
#if defined(CONFIG_CURSES)
5751
    case DT_CURSES:
5752
        curses_display_init(ds, full_screen);
5753
        break;
5754
#endif
5755
#if defined(CONFIG_SDL)
5756
    case DT_SDL:
5757
        sdl_display_init(ds, full_screen, no_frame);
5758
        break;
5759
#elif defined(CONFIG_COCOA)
5760
    case DT_SDL:
5761
        cocoa_display_init(ds, full_screen);
5762
        break;
5763
#endif
5764
    case DT_VNC:
5765
        vnc_display_init(ds);
5766
        if (vnc_display_open(ds, vnc_display) < 0)
5767
            exit(1);
5768

    
5769
        if (show_vnc_port) {
5770
            printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5771
        }
5772
        break;
5773
    default:
5774
        break;
5775
    }
5776
    dpy_resize(ds);
5777

    
5778
    dcl = ds->listeners;
5779
    while (dcl != NULL) {
5780
        if (dcl->dpy_refresh != NULL) {
5781
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5782
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5783
        }
5784
        dcl = dcl->next;
5785
    }
5786

    
5787
    if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5788
        nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5789
        qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5790
    }
5791

    
5792
    text_consoles_set_display(display_state);
5793

    
5794
    for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5795
        if (monitor_devices[i] && monitor_hds[i]) {
5796
            monitor_init(monitor_hds[i],
5797
                         MONITOR_USE_READLINE |
5798
                         ((i == 0) ? MONITOR_IS_DEFAULT : 0));
5799
        }
5800
    }
5801

    
5802
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5803
        const char *devname = serial_devices[i];
5804
        if (devname && strcmp(devname, "none")) {
5805
            if (strstart(devname, "vc", 0))
5806
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5807
        }
5808
    }
5809

    
5810
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5811
        const char *devname = parallel_devices[i];
5812
        if (devname && strcmp(devname, "none")) {
5813
            if (strstart(devname, "vc", 0))
5814
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5815
        }
5816
    }
5817

    
5818
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5819
        const char *devname = virtio_consoles[i];
5820
        if (virtcon_hds[i] && devname) {
5821
            if (strstart(devname, "vc", 0))
5822
                qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5823
        }
5824
    }
5825

    
5826
    if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5827
        fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5828
                gdbstub_dev);
5829
        exit(1);
5830
    }
5831

    
5832
    qdev_machine_creation_done();
5833

    
5834
    rom_load_all();
5835

    
5836
    qemu_system_reset();
5837
    if (loadvm) {
5838
        if (load_vmstate(cur_mon, loadvm) < 0) {
5839
            autostart = 0;
5840
        }
5841
    }
5842

    
5843
    if (incoming) {
5844
        qemu_start_incoming_migration(incoming);
5845
    } else if (autostart) {
5846
        vm_start();
5847
    }
5848

    
5849
#ifndef _WIN32
5850
    if (daemonize) {
5851
        uint8_t status = 0;
5852
        ssize_t len;
5853

    
5854
    again1:
5855
        len = write(fds[1], &status, 1);
5856
        if (len == -1 && (errno == EINTR))
5857
            goto again1;
5858

    
5859
        if (len != 1)
5860
            exit(1);
5861

    
5862
        chdir("/");
5863
        TFR(fd = open("/dev/null", O_RDWR));
5864
        if (fd == -1)
5865
            exit(1);
5866
    }
5867

    
5868
    if (run_as) {
5869
        pwd = getpwnam(run_as);
5870
        if (!pwd) {
5871
            fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5872
            exit(1);
5873
        }
5874
    }
5875

    
5876
    if (chroot_dir) {
5877
        if (chroot(chroot_dir) < 0) {
5878
            fprintf(stderr, "chroot failed\n");
5879
            exit(1);
5880
        }
5881
        chdir("/");
5882
    }
5883

    
5884
    if (run_as) {
5885
        if (setgid(pwd->pw_gid) < 0) {
5886
            fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5887
            exit(1);
5888
        }
5889
        if (setuid(pwd->pw_uid) < 0) {
5890
            fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5891
            exit(1);
5892
        }
5893
        if (setuid(0) != -1) {
5894
            fprintf(stderr, "Dropping privileges failed\n");
5895
            exit(1);
5896
        }
5897
    }
5898

    
5899
    if (daemonize) {
5900
        dup2(fd, 0);
5901
        dup2(fd, 1);
5902
        dup2(fd, 2);
5903

    
5904
        close(fd);
5905
    }
5906
#endif
5907

    
5908
    main_loop();
5909
    quit_timers();
5910
    net_cleanup();
5911

    
5912
    return 0;
5913
}