Statistics
| Branch: | Revision:

root / exec-all.h @ 57fec1fe

History | View | Annotate | Download (15.9 kB)

1
/*
2
 * internal execution defines for qemu
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22
#define DEBUG_DISAS
23

    
24
/* is_jmp field values */
25
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29

    
30
struct TranslationBlock;
31

    
32
/* XXX: make safe guess about sizes */
33
#define MAX_OP_PER_INSTR 32
34
#define OPC_BUF_SIZE 512
35
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
36

    
37
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
38

    
39
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
40
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
41
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
42
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
43
extern target_ulong gen_opc_jump_pc[2];
44
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
45

    
46
typedef void (GenOpFunc)(void);
47
typedef void (GenOpFunc1)(long);
48
typedef void (GenOpFunc2)(long, long);
49
typedef void (GenOpFunc3)(long, long, long);
50

    
51
#if defined(TARGET_I386)
52

    
53
void optimize_flags_init(void);
54

    
55
#endif
56

    
57
extern FILE *logfile;
58
extern int loglevel;
59

    
60
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
61
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
62
unsigned long code_gen_max_block_size(void);
63
void cpu_gen_init(void);
64
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
65
                 int *gen_code_size_ptr);
66
int cpu_restore_state(struct TranslationBlock *tb,
67
                      CPUState *env, unsigned long searched_pc,
68
                      void *puc);
69
int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
70
                      int max_code_size, int *gen_code_size_ptr);
71
int cpu_restore_state_copy(struct TranslationBlock *tb,
72
                           CPUState *env, unsigned long searched_pc,
73
                           void *puc);
74
void cpu_resume_from_signal(CPUState *env1, void *puc);
75
void cpu_exec_init(CPUState *env);
76
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
77
void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
78
                                   int is_cpu_write_access);
79
void tb_invalidate_page_range(target_ulong start, target_ulong end);
80
void tlb_flush_page(CPUState *env, target_ulong addr);
81
void tlb_flush(CPUState *env, int flush_global);
82
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
83
                      target_phys_addr_t paddr, int prot,
84
                      int mmu_idx, int is_softmmu);
85
static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
86
                               target_phys_addr_t paddr, int prot,
87
                               int mmu_idx, int is_softmmu)
88
{
89
    if (prot & PAGE_READ)
90
        prot |= PAGE_EXEC;
91
    return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
92
}
93

    
94
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
95

    
96
#define CODE_GEN_PHYS_HASH_BITS     15
97
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
98

    
99
/* maximum total translate dcode allocated */
100

    
101
/* NOTE: the translated code area cannot be too big because on some
102
   archs the range of "fast" function calls is limited. Here is a
103
   summary of the ranges:
104

105
   i386  : signed 32 bits
106
   arm   : signed 26 bits
107
   ppc   : signed 24 bits
108
   sparc : signed 32 bits
109
   alpha : signed 23 bits
110
*/
111

    
112
#if defined(__alpha__)
113
#define CODE_GEN_BUFFER_SIZE     (2 * 1024 * 1024)
114
#elif defined(__ia64)
115
#define CODE_GEN_BUFFER_SIZE     (4 * 1024 * 1024)        /* range of addl */
116
#elif defined(__powerpc__)
117
#define CODE_GEN_BUFFER_SIZE     (6 * 1024 * 1024)
118
#else
119
/* XXX: make it dynamic on x86 */
120
#define CODE_GEN_BUFFER_SIZE     (16 * 1024 * 1024)
121
#endif
122

    
123
//#define CODE_GEN_BUFFER_SIZE     (128 * 1024)
124

    
125
/* estimated block size for TB allocation */
126
/* XXX: use a per code average code fragment size and modulate it
127
   according to the host CPU */
128
#if defined(CONFIG_SOFTMMU)
129
#define CODE_GEN_AVG_BLOCK_SIZE 128
130
#else
131
#define CODE_GEN_AVG_BLOCK_SIZE 64
132
#endif
133

    
134
#define CODE_GEN_MAX_BLOCKS    (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
135

    
136
#if defined(__powerpc__) || defined(__x86_64__)
137
#define USE_DIRECT_JUMP
138
#endif
139
#if defined(__i386__) && !defined(_WIN32)
140
#define USE_DIRECT_JUMP
141
#endif
142

    
143
typedef struct TranslationBlock {
144
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
145
    target_ulong cs_base; /* CS base for this block */
146
    uint64_t flags; /* flags defining in which context the code was generated */
147
    uint16_t size;      /* size of target code for this block (1 <=
148
                           size <= TARGET_PAGE_SIZE) */
149
    uint16_t cflags;    /* compile flags */
150
#define CF_CODE_COPY   0x0001 /* block was generated in code copy mode */
151
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
152
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
153
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
154

    
155
    uint8_t *tc_ptr;    /* pointer to the translated code */
156
    /* next matching tb for physical address. */
157
    struct TranslationBlock *phys_hash_next;
158
    /* first and second physical page containing code. The lower bit
159
       of the pointer tells the index in page_next[] */
160
    struct TranslationBlock *page_next[2];
161
    target_ulong page_addr[2];
162

    
163
    /* the following data are used to directly call another TB from
164
       the code of this one. */
165
    uint16_t tb_next_offset[2]; /* offset of original jump target */
166
#ifdef USE_DIRECT_JUMP
167
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
168
#else
169
    unsigned long tb_next[2]; /* address of jump generated code */
170
#endif
171
    /* list of TBs jumping to this one. This is a circular list using
172
       the two least significant bits of the pointers to tell what is
173
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
174
       jmp_first */
175
    struct TranslationBlock *jmp_next[2];
176
    struct TranslationBlock *jmp_first;
177
} TranslationBlock;
178

    
179
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
180
{
181
    target_ulong tmp;
182
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
183
    return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
184
}
185

    
186
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
187
{
188
    target_ulong tmp;
189
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
190
    return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
191
            (tmp & TB_JMP_ADDR_MASK));
192
}
193

    
194
static inline unsigned int tb_phys_hash_func(unsigned long pc)
195
{
196
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
197
}
198

    
199
TranslationBlock *tb_alloc(target_ulong pc);
200
void tb_flush(CPUState *env);
201
void tb_link_phys(TranslationBlock *tb,
202
                  target_ulong phys_pc, target_ulong phys_page2);
203

    
204
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
205

    
206
extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
207
extern uint8_t *code_gen_ptr;
208

    
209
#if defined(USE_DIRECT_JUMP)
210

    
211
#if defined(__powerpc__)
212
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
213
{
214
    uint32_t val, *ptr;
215

    
216
    /* patch the branch destination */
217
    ptr = (uint32_t *)jmp_addr;
218
    val = *ptr;
219
    val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
220
    *ptr = val;
221
    /* flush icache */
222
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
223
    asm volatile ("sync" : : : "memory");
224
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
225
    asm volatile ("sync" : : : "memory");
226
    asm volatile ("isync" : : : "memory");
227
}
228
#elif defined(__i386__) || defined(__x86_64__)
229
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
230
{
231
    /* patch the branch destination */
232
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
233
    /* no need to flush icache explicitely */
234
}
235
#endif
236

    
237
static inline void tb_set_jmp_target(TranslationBlock *tb,
238
                                     int n, unsigned long addr)
239
{
240
    unsigned long offset;
241

    
242
    offset = tb->tb_jmp_offset[n];
243
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
244
    offset = tb->tb_jmp_offset[n + 2];
245
    if (offset != 0xffff)
246
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
247
}
248

    
249
#else
250

    
251
/* set the jump target */
252
static inline void tb_set_jmp_target(TranslationBlock *tb,
253
                                     int n, unsigned long addr)
254
{
255
    tb->tb_next[n] = addr;
256
}
257

    
258
#endif
259

    
260
static inline void tb_add_jump(TranslationBlock *tb, int n,
261
                               TranslationBlock *tb_next)
262
{
263
    /* NOTE: this test is only needed for thread safety */
264
    if (!tb->jmp_next[n]) {
265
        /* patch the native jump address */
266
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
267

    
268
        /* add in TB jmp circular list */
269
        tb->jmp_next[n] = tb_next->jmp_first;
270
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
271
    }
272
}
273

    
274
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
275

    
276
#ifndef offsetof
277
#define offsetof(type, field) ((size_t) &((type *)0)->field)
278
#endif
279

    
280
#if defined(_WIN32)
281
#define ASM_DATA_SECTION ".section \".data\"\n"
282
#define ASM_PREVIOUS_SECTION ".section .text\n"
283
#elif defined(__APPLE__)
284
#define ASM_DATA_SECTION ".data\n"
285
#define ASM_PREVIOUS_SECTION ".text\n"
286
#else
287
#define ASM_DATA_SECTION ".section \".data\"\n"
288
#define ASM_PREVIOUS_SECTION ".previous\n"
289
#endif
290

    
291
#define ASM_OP_LABEL_NAME(n, opname) \
292
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
293

    
294
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
295
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
296
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
297

    
298
#if defined(__powerpc__)
299
static inline int testandset (int *p)
300
{
301
    int ret;
302
    __asm__ __volatile__ (
303
                          "0:    lwarx %0,0,%1\n"
304
                          "      xor. %0,%3,%0\n"
305
                          "      bne 1f\n"
306
                          "      stwcx. %2,0,%1\n"
307
                          "      bne- 0b\n"
308
                          "1:    "
309
                          : "=&r" (ret)
310
                          : "r" (p), "r" (1), "r" (0)
311
                          : "cr0", "memory");
312
    return ret;
313
}
314
#elif defined(__i386__)
315
static inline int testandset (int *p)
316
{
317
    long int readval = 0;
318

    
319
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
320
                          : "+m" (*p), "+a" (readval)
321
                          : "r" (1)
322
                          : "cc");
323
    return readval;
324
}
325
#elif defined(__x86_64__)
326
static inline int testandset (int *p)
327
{
328
    long int readval = 0;
329

    
330
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
331
                          : "+m" (*p), "+a" (readval)
332
                          : "r" (1)
333
                          : "cc");
334
    return readval;
335
}
336
#elif defined(__s390__)
337
static inline int testandset (int *p)
338
{
339
    int ret;
340

    
341
    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
342
                          "   jl    0b"
343
                          : "=&d" (ret)
344
                          : "r" (1), "a" (p), "0" (*p)
345
                          : "cc", "memory" );
346
    return ret;
347
}
348
#elif defined(__alpha__)
349
static inline int testandset (int *p)
350
{
351
    int ret;
352
    unsigned long one;
353

    
354
    __asm__ __volatile__ ("0:        mov 1,%2\n"
355
                          "        ldl_l %0,%1\n"
356
                          "        stl_c %2,%1\n"
357
                          "        beq %2,1f\n"
358
                          ".subsection 2\n"
359
                          "1:        br 0b\n"
360
                          ".previous"
361
                          : "=r" (ret), "=m" (*p), "=r" (one)
362
                          : "m" (*p));
363
    return ret;
364
}
365
#elif defined(__sparc__)
366
static inline int testandset (int *p)
367
{
368
        int ret;
369

    
370
        __asm__ __volatile__("ldstub        [%1], %0"
371
                             : "=r" (ret)
372
                             : "r" (p)
373
                             : "memory");
374

    
375
        return (ret ? 1 : 0);
376
}
377
#elif defined(__arm__)
378
static inline int testandset (int *spinlock)
379
{
380
    register unsigned int ret;
381
    __asm__ __volatile__("swp %0, %1, [%2]"
382
                         : "=r"(ret)
383
                         : "0"(1), "r"(spinlock));
384

    
385
    return ret;
386
}
387
#elif defined(__mc68000)
388
static inline int testandset (int *p)
389
{
390
    char ret;
391
    __asm__ __volatile__("tas %1; sne %0"
392
                         : "=r" (ret)
393
                         : "m" (p)
394
                         : "cc","memory");
395
    return ret;
396
}
397
#elif defined(__ia64)
398

    
399
#include <ia64intrin.h>
400

    
401
static inline int testandset (int *p)
402
{
403
    return __sync_lock_test_and_set (p, 1);
404
}
405
#elif defined(__mips__)
406
static inline int testandset (int *p)
407
{
408
    int ret;
409

    
410
    __asm__ __volatile__ (
411
        "        .set push                \n"
412
        "        .set noat                \n"
413
        "        .set mips2                \n"
414
        "1:        li        $1, 1                \n"
415
        "        ll        %0, %1                \n"
416
        "        sc        $1, %1                \n"
417
        "        beqz        $1, 1b                \n"
418
        "        .set pop                "
419
        : "=r" (ret), "+R" (*p)
420
        :
421
        : "memory");
422

    
423
    return ret;
424
}
425
#else
426
#error unimplemented CPU support
427
#endif
428

    
429
typedef int spinlock_t;
430

    
431
#define SPIN_LOCK_UNLOCKED 0
432

    
433
#if defined(CONFIG_USER_ONLY)
434
static inline void spin_lock(spinlock_t *lock)
435
{
436
    while (testandset(lock));
437
}
438

    
439
static inline void spin_unlock(spinlock_t *lock)
440
{
441
    *lock = 0;
442
}
443

    
444
static inline int spin_trylock(spinlock_t *lock)
445
{
446
    return !testandset(lock);
447
}
448
#else
449
static inline void spin_lock(spinlock_t *lock)
450
{
451
}
452

    
453
static inline void spin_unlock(spinlock_t *lock)
454
{
455
}
456

    
457
static inline int spin_trylock(spinlock_t *lock)
458
{
459
    return 1;
460
}
461
#endif
462

    
463
extern spinlock_t tb_lock;
464

    
465
extern int tb_invalidated_flag;
466

    
467
#if !defined(CONFIG_USER_ONLY)
468

    
469
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
470
              void *retaddr);
471

    
472
#define ACCESS_TYPE (NB_MMU_MODES + 1)
473
#define MEMSUFFIX _code
474
#define env cpu_single_env
475

    
476
#define DATA_SIZE 1
477
#include "softmmu_header.h"
478

    
479
#define DATA_SIZE 2
480
#include "softmmu_header.h"
481

    
482
#define DATA_SIZE 4
483
#include "softmmu_header.h"
484

    
485
#define DATA_SIZE 8
486
#include "softmmu_header.h"
487

    
488
#undef ACCESS_TYPE
489
#undef MEMSUFFIX
490
#undef env
491

    
492
#endif
493

    
494
#if defined(CONFIG_USER_ONLY)
495
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
496
{
497
    return addr;
498
}
499
#else
500
/* NOTE: this function can trigger an exception */
501
/* NOTE2: the returned address is not exactly the physical address: it
502
   is the offset relative to phys_ram_base */
503
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
504
{
505
    int mmu_idx, index, pd;
506

    
507
    index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
508
    mmu_idx = cpu_mmu_index(env);
509
    if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
510
                         (addr & TARGET_PAGE_MASK), 0)) {
511
        ldub_code(addr);
512
    }
513
    pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
514
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
515
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
516
        do_unassigned_access(addr, 0, 1, 0);
517
#else
518
        cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
519
#endif
520
    }
521
    return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
522
}
523
#endif
524

    
525
#ifdef USE_KQEMU
526
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
527

    
528
int kqemu_init(CPUState *env);
529
int kqemu_cpu_exec(CPUState *env);
530
void kqemu_flush_page(CPUState *env, target_ulong addr);
531
void kqemu_flush(CPUState *env, int global);
532
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
533
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
534
void kqemu_cpu_interrupt(CPUState *env);
535
void kqemu_record_dump(void);
536

    
537
static inline int kqemu_is_ok(CPUState *env)
538
{
539
    return(env->kqemu_enabled &&
540
           (env->cr[0] & CR0_PE_MASK) &&
541
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
542
           (env->eflags & IF_MASK) &&
543
           !(env->eflags & VM_MASK) &&
544
           (env->kqemu_enabled == 2 ||
545
            ((env->hflags & HF_CPL_MASK) == 3 &&
546
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
547
}
548

    
549
#endif