Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ 587eabfa

History | View | Annotate | Download (24.8 kB)

1
/*
2
 * QEMU float support
3
 *
4
 * Derived from SoftFloat.
5
 */
6

    
7
/*============================================================================
8

9
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10
Package, Release 2b.
11

12
Written by John R. Hauser.  This work was made possible in part by the
13
International Computer Science Institute, located at Suite 600, 1947 Center
14
Street, Berkeley, California 94704.  Funding was partially provided by the
15
National Science Foundation under grant MIP-9311980.  The original version
16
of this code was written as part of a project to build a fixed-point vector
17
processor in collaboration with the University of California at Berkeley,
18
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20
arithmetic/SoftFloat.html'.
21

22
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30

31
Derivative works are acceptable, even for commercial purposes, so long as
32
(1) the source code for the derivative work includes prominent notice that
33
the work is derivative, and (2) the source code includes prominent notice with
34
these four paragraphs for those parts of this code that are retained.
35

36
=============================================================================*/
37

    
38
#ifndef SOFTFLOAT_H
39
#define SOFTFLOAT_H
40

    
41
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42
#include <sunmath.h>
43
#endif
44

    
45
#include <inttypes.h>
46
#include "config.h"
47

    
48
/*----------------------------------------------------------------------------
49
| Each of the following `typedef's defines the most convenient type that holds
50
| integers of at least as many bits as specified.  For example, `uint8' should
51
| be the most convenient type that can hold unsigned integers of as many as
52
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
53
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54
| to the same as `int'.
55
*----------------------------------------------------------------------------*/
56
typedef uint8_t flag;
57
typedef uint8_t uint8;
58
typedef int8_t int8;
59
#ifndef _AIX
60
typedef int uint16;
61
typedef int int16;
62
#endif
63
typedef unsigned int uint32;
64
typedef signed int int32;
65
typedef uint64_t uint64;
66
typedef int64_t int64;
67

    
68
#define LIT64( a ) a##LL
69
#define INLINE static inline
70

    
71
#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
72
#define SNAN_BIT_IS_ONE                1
73
#else
74
#define SNAN_BIT_IS_ONE                0
75
#endif
76

    
77
#define STATUS_PARAM , float_status *status
78
#define STATUS(field) status->field
79
#define STATUS_VAR , status
80

    
81
/*----------------------------------------------------------------------------
82
| Software IEC/IEEE floating-point ordering relations
83
*----------------------------------------------------------------------------*/
84
enum {
85
    float_relation_less      = -1,
86
    float_relation_equal     =  0,
87
    float_relation_greater   =  1,
88
    float_relation_unordered =  2
89
};
90

    
91
/*----------------------------------------------------------------------------
92
| Software IEC/IEEE floating-point types.
93
*----------------------------------------------------------------------------*/
94
/* Use structures for soft-float types.  This prevents accidentally mixing
95
   them with native int/float types.  A sufficiently clever compiler and
96
   sane ABI should be able to see though these structs.  However
97
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
98
//#define USE_SOFTFLOAT_STRUCT_TYPES
99
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
100
typedef struct {
101
    uint16_t v;
102
} float16;
103
#define float16_val(x) (((float16)(x)).v)
104
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
105
#define const_float16(x) { x }
106
typedef struct {
107
    uint32_t v;
108
} float32;
109
/* The cast ensures an error if the wrong type is passed.  */
110
#define float32_val(x) (((float32)(x)).v)
111
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
112
#define const_float32(x) { x }
113
typedef struct {
114
    uint64_t v;
115
} float64;
116
#define float64_val(x) (((float64)(x)).v)
117
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
118
#define const_float64(x) { x }
119
#else
120
typedef uint16_t float16;
121
typedef uint32_t float32;
122
typedef uint64_t float64;
123
#define float16_val(x) (x)
124
#define float32_val(x) (x)
125
#define float64_val(x) (x)
126
#define make_float16(x) (x)
127
#define make_float32(x) (x)
128
#define make_float64(x) (x)
129
#define const_float16(x) (x)
130
#define const_float32(x) (x)
131
#define const_float64(x) (x)
132
#endif
133
typedef struct {
134
    uint64_t low;
135
    uint16_t high;
136
} floatx80;
137
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
138
typedef struct {
139
#ifdef HOST_WORDS_BIGENDIAN
140
    uint64_t high, low;
141
#else
142
    uint64_t low, high;
143
#endif
144
} float128;
145

    
146
/*----------------------------------------------------------------------------
147
| Software IEC/IEEE floating-point underflow tininess-detection mode.
148
*----------------------------------------------------------------------------*/
149
enum {
150
    float_tininess_after_rounding  = 0,
151
    float_tininess_before_rounding = 1
152
};
153

    
154
/*----------------------------------------------------------------------------
155
| Software IEC/IEEE floating-point rounding mode.
156
*----------------------------------------------------------------------------*/
157
enum {
158
    float_round_nearest_even = 0,
159
    float_round_down         = 1,
160
    float_round_up           = 2,
161
    float_round_to_zero      = 3
162
};
163

    
164
/*----------------------------------------------------------------------------
165
| Software IEC/IEEE floating-point exception flags.
166
*----------------------------------------------------------------------------*/
167
enum {
168
    float_flag_invalid   =  1,
169
    float_flag_divbyzero =  4,
170
    float_flag_overflow  =  8,
171
    float_flag_underflow = 16,
172
    float_flag_inexact   = 32,
173
    float_flag_input_denormal = 64,
174
    float_flag_output_denormal = 128
175
};
176

    
177
typedef struct float_status {
178
    signed char float_detect_tininess;
179
    signed char float_rounding_mode;
180
    signed char float_exception_flags;
181
    signed char floatx80_rounding_precision;
182
    /* should denormalised results go to zero and set the inexact flag? */
183
    flag flush_to_zero;
184
    /* should denormalised inputs go to zero and set the input_denormal flag? */
185
    flag flush_inputs_to_zero;
186
    flag default_nan_mode;
187
} float_status;
188

    
189
void set_float_rounding_mode(int val STATUS_PARAM);
190
void set_float_exception_flags(int val STATUS_PARAM);
191
INLINE void set_float_detect_tininess(int val STATUS_PARAM)
192
{
193
    STATUS(float_detect_tininess) = val;
194
}
195
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
196
{
197
    STATUS(flush_to_zero) = val;
198
}
199
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
200
{
201
    STATUS(flush_inputs_to_zero) = val;
202
}
203
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
204
{
205
    STATUS(default_nan_mode) = val;
206
}
207
INLINE int get_float_exception_flags(float_status *status)
208
{
209
    return STATUS(float_exception_flags);
210
}
211
void set_floatx80_rounding_precision(int val STATUS_PARAM);
212

    
213
/*----------------------------------------------------------------------------
214
| Routine to raise any or all of the software IEC/IEEE floating-point
215
| exception flags.
216
*----------------------------------------------------------------------------*/
217
void float_raise( int8 flags STATUS_PARAM);
218

    
219
/*----------------------------------------------------------------------------
220
| Software IEC/IEEE integer-to-floating-point conversion routines.
221
*----------------------------------------------------------------------------*/
222
float32 int32_to_float32( int32 STATUS_PARAM );
223
float64 int32_to_float64( int32 STATUS_PARAM );
224
float32 uint32_to_float32( unsigned int STATUS_PARAM );
225
float64 uint32_to_float64( unsigned int STATUS_PARAM );
226
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
227
float128 int32_to_float128( int32 STATUS_PARAM );
228
float32 int64_to_float32( int64 STATUS_PARAM );
229
float32 uint64_to_float32( uint64 STATUS_PARAM );
230
float64 int64_to_float64( int64 STATUS_PARAM );
231
float64 uint64_to_float64( uint64 STATUS_PARAM );
232
floatx80 int64_to_floatx80( int64 STATUS_PARAM );
233
float128 int64_to_float128( int64 STATUS_PARAM );
234

    
235
/*----------------------------------------------------------------------------
236
| Software half-precision conversion routines.
237
*----------------------------------------------------------------------------*/
238
float16 float32_to_float16( float32, flag STATUS_PARAM );
239
float32 float16_to_float32( float16, flag STATUS_PARAM );
240

    
241
/*----------------------------------------------------------------------------
242
| Software half-precision operations.
243
*----------------------------------------------------------------------------*/
244
int float16_is_quiet_nan( float16 );
245
int float16_is_signaling_nan( float16 );
246
float16 float16_maybe_silence_nan( float16 );
247

    
248
/*----------------------------------------------------------------------------
249
| The pattern for a default generated half-precision NaN.
250
*----------------------------------------------------------------------------*/
251
#if defined(TARGET_ARM)
252
#define float16_default_nan make_float16(0x7E00)
253
#elif SNAN_BIT_IS_ONE
254
#define float16_default_nan make_float16(0x7DFF)
255
#else
256
#define float16_default_nan make_float16(0xFE00)
257
#endif
258

    
259
/*----------------------------------------------------------------------------
260
| Software IEC/IEEE single-precision conversion routines.
261
*----------------------------------------------------------------------------*/
262
int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
263
unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
264
int32 float32_to_int32( float32 STATUS_PARAM );
265
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
266
uint32 float32_to_uint32( float32 STATUS_PARAM );
267
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
268
int64 float32_to_int64( float32 STATUS_PARAM );
269
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
270
float64 float32_to_float64( float32 STATUS_PARAM );
271
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
272
float128 float32_to_float128( float32 STATUS_PARAM );
273

    
274
/*----------------------------------------------------------------------------
275
| Software IEC/IEEE single-precision operations.
276
*----------------------------------------------------------------------------*/
277
float32 float32_round_to_int( float32 STATUS_PARAM );
278
float32 float32_add( float32, float32 STATUS_PARAM );
279
float32 float32_sub( float32, float32 STATUS_PARAM );
280
float32 float32_mul( float32, float32 STATUS_PARAM );
281
float32 float32_div( float32, float32 STATUS_PARAM );
282
float32 float32_rem( float32, float32 STATUS_PARAM );
283
float32 float32_sqrt( float32 STATUS_PARAM );
284
float32 float32_exp2( float32 STATUS_PARAM );
285
float32 float32_log2( float32 STATUS_PARAM );
286
int float32_eq( float32, float32 STATUS_PARAM );
287
int float32_le( float32, float32 STATUS_PARAM );
288
int float32_lt( float32, float32 STATUS_PARAM );
289
int float32_unordered( float32, float32 STATUS_PARAM );
290
int float32_eq_quiet( float32, float32 STATUS_PARAM );
291
int float32_le_quiet( float32, float32 STATUS_PARAM );
292
int float32_lt_quiet( float32, float32 STATUS_PARAM );
293
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
294
int float32_compare( float32, float32 STATUS_PARAM );
295
int float32_compare_quiet( float32, float32 STATUS_PARAM );
296
float32 float32_min(float32, float32 STATUS_PARAM);
297
float32 float32_max(float32, float32 STATUS_PARAM);
298
int float32_is_quiet_nan( float32 );
299
int float32_is_signaling_nan( float32 );
300
float32 float32_maybe_silence_nan( float32 );
301
float32 float32_scalbn( float32, int STATUS_PARAM );
302

    
303
INLINE float32 float32_abs(float32 a)
304
{
305
    /* Note that abs does *not* handle NaN specially, nor does
306
     * it flush denormal inputs to zero.
307
     */
308
    return make_float32(float32_val(a) & 0x7fffffff);
309
}
310

    
311
INLINE float32 float32_chs(float32 a)
312
{
313
    /* Note that chs does *not* handle NaN specially, nor does
314
     * it flush denormal inputs to zero.
315
     */
316
    return make_float32(float32_val(a) ^ 0x80000000);
317
}
318

    
319
INLINE int float32_is_infinity(float32 a)
320
{
321
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
322
}
323

    
324
INLINE int float32_is_neg(float32 a)
325
{
326
    return float32_val(a) >> 31;
327
}
328

    
329
INLINE int float32_is_zero(float32 a)
330
{
331
    return (float32_val(a) & 0x7fffffff) == 0;
332
}
333

    
334
INLINE int float32_is_any_nan(float32 a)
335
{
336
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
337
}
338

    
339
INLINE int float32_is_zero_or_denormal(float32 a)
340
{
341
    return (float32_val(a) & 0x7f800000) == 0;
342
}
343

    
344
INLINE float32 float32_set_sign(float32 a, int sign)
345
{
346
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
347
}
348

    
349
#define float32_zero make_float32(0)
350
#define float32_one make_float32(0x3f800000)
351
#define float32_ln2 make_float32(0x3f317218)
352
#define float32_pi make_float32(0x40490fdb)
353
#define float32_half make_float32(0x3f000000)
354
#define float32_infinity make_float32(0x7f800000)
355

    
356

    
357
/*----------------------------------------------------------------------------
358
| The pattern for a default generated single-precision NaN.
359
*----------------------------------------------------------------------------*/
360
#if defined(TARGET_SPARC)
361
#define float32_default_nan make_float32(0x7FFFFFFF)
362
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
363
#define float32_default_nan make_float32(0x7FC00000)
364
#elif SNAN_BIT_IS_ONE
365
#define float32_default_nan make_float32(0x7FBFFFFF)
366
#else
367
#define float32_default_nan make_float32(0xFFC00000)
368
#endif
369

    
370
/*----------------------------------------------------------------------------
371
| Software IEC/IEEE double-precision conversion routines.
372
*----------------------------------------------------------------------------*/
373
int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
374
unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
375
int32 float64_to_int32( float64 STATUS_PARAM );
376
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
377
uint32 float64_to_uint32( float64 STATUS_PARAM );
378
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
379
int64 float64_to_int64( float64 STATUS_PARAM );
380
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
381
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
382
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
383
float32 float64_to_float32( float64 STATUS_PARAM );
384
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
385
float128 float64_to_float128( float64 STATUS_PARAM );
386

    
387
/*----------------------------------------------------------------------------
388
| Software IEC/IEEE double-precision operations.
389
*----------------------------------------------------------------------------*/
390
float64 float64_round_to_int( float64 STATUS_PARAM );
391
float64 float64_trunc_to_int( float64 STATUS_PARAM );
392
float64 float64_add( float64, float64 STATUS_PARAM );
393
float64 float64_sub( float64, float64 STATUS_PARAM );
394
float64 float64_mul( float64, float64 STATUS_PARAM );
395
float64 float64_div( float64, float64 STATUS_PARAM );
396
float64 float64_rem( float64, float64 STATUS_PARAM );
397
float64 float64_sqrt( float64 STATUS_PARAM );
398
float64 float64_log2( float64 STATUS_PARAM );
399
int float64_eq( float64, float64 STATUS_PARAM );
400
int float64_le( float64, float64 STATUS_PARAM );
401
int float64_lt( float64, float64 STATUS_PARAM );
402
int float64_unordered( float64, float64 STATUS_PARAM );
403
int float64_eq_quiet( float64, float64 STATUS_PARAM );
404
int float64_le_quiet( float64, float64 STATUS_PARAM );
405
int float64_lt_quiet( float64, float64 STATUS_PARAM );
406
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
407
int float64_compare( float64, float64 STATUS_PARAM );
408
int float64_compare_quiet( float64, float64 STATUS_PARAM );
409
float64 float64_min(float64, float64 STATUS_PARAM);
410
float64 float64_max(float64, float64 STATUS_PARAM);
411
int float64_is_quiet_nan( float64 a );
412
int float64_is_signaling_nan( float64 );
413
float64 float64_maybe_silence_nan( float64 );
414
float64 float64_scalbn( float64, int STATUS_PARAM );
415

    
416
INLINE float64 float64_abs(float64 a)
417
{
418
    /* Note that abs does *not* handle NaN specially, nor does
419
     * it flush denormal inputs to zero.
420
     */
421
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
422
}
423

    
424
INLINE float64 float64_chs(float64 a)
425
{
426
    /* Note that chs does *not* handle NaN specially, nor does
427
     * it flush denormal inputs to zero.
428
     */
429
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
430
}
431

    
432
INLINE int float64_is_infinity(float64 a)
433
{
434
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
435
}
436

    
437
INLINE int float64_is_neg(float64 a)
438
{
439
    return float64_val(a) >> 63;
440
}
441

    
442
INLINE int float64_is_zero(float64 a)
443
{
444
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
445
}
446

    
447
INLINE int float64_is_any_nan(float64 a)
448
{
449
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
450
}
451

    
452
INLINE int float64_is_zero_or_denormal(float64 a)
453
{
454
    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
455
}
456

    
457
INLINE float64 float64_set_sign(float64 a, int sign)
458
{
459
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
460
                        | ((int64_t)sign << 63));
461
}
462

    
463
#define float64_zero make_float64(0)
464
#define float64_one make_float64(0x3ff0000000000000LL)
465
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
466
#define float64_pi make_float64(0x400921fb54442d18LL)
467
#define float64_half make_float64(0x3fe0000000000000LL)
468
#define float64_infinity make_float64(0x7ff0000000000000LL)
469

    
470
/*----------------------------------------------------------------------------
471
| The pattern for a default generated double-precision NaN.
472
*----------------------------------------------------------------------------*/
473
#if defined(TARGET_SPARC)
474
#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
475
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
476
#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
477
#elif SNAN_BIT_IS_ONE
478
#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
479
#else
480
#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
481
#endif
482

    
483
/*----------------------------------------------------------------------------
484
| Software IEC/IEEE extended double-precision conversion routines.
485
*----------------------------------------------------------------------------*/
486
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
487
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
488
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
489
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
490
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
491
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
492
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
493

    
494
/*----------------------------------------------------------------------------
495
| Software IEC/IEEE extended double-precision operations.
496
*----------------------------------------------------------------------------*/
497
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
498
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
499
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
500
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
501
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
502
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
503
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
504
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
505
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
506
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
507
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
508
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
509
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
510
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
511
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
512
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
513
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
514
int floatx80_is_quiet_nan( floatx80 );
515
int floatx80_is_signaling_nan( floatx80 );
516
floatx80 floatx80_maybe_silence_nan( floatx80 );
517
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
518

    
519
INLINE floatx80 floatx80_abs(floatx80 a)
520
{
521
    a.high &= 0x7fff;
522
    return a;
523
}
524

    
525
INLINE floatx80 floatx80_chs(floatx80 a)
526
{
527
    a.high ^= 0x8000;
528
    return a;
529
}
530

    
531
INLINE int floatx80_is_infinity(floatx80 a)
532
{
533
    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
534
}
535

    
536
INLINE int floatx80_is_neg(floatx80 a)
537
{
538
    return a.high >> 15;
539
}
540

    
541
INLINE int floatx80_is_zero(floatx80 a)
542
{
543
    return (a.high & 0x7fff) == 0 && a.low == 0;
544
}
545

    
546
INLINE int floatx80_is_zero_or_denormal(floatx80 a)
547
{
548
    return (a.high & 0x7fff) == 0;
549
}
550

    
551
INLINE int floatx80_is_any_nan(floatx80 a)
552
{
553
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
554
}
555

    
556
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
557
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
558
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
559
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
560
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
561
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
562

    
563
/*----------------------------------------------------------------------------
564
| The pattern for a default generated extended double-precision NaN.  The
565
| `high' and `low' values hold the most- and least-significant bits,
566
| respectively.
567
*----------------------------------------------------------------------------*/
568
#if SNAN_BIT_IS_ONE
569
#define floatx80_default_nan_high 0x7FFF
570
#define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
571
#else
572
#define floatx80_default_nan_high 0xFFFF
573
#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
574
#endif
575

    
576
/*----------------------------------------------------------------------------
577
| Software IEC/IEEE quadruple-precision conversion routines.
578
*----------------------------------------------------------------------------*/
579
int32 float128_to_int32( float128 STATUS_PARAM );
580
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
581
int64 float128_to_int64( float128 STATUS_PARAM );
582
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
583
float32 float128_to_float32( float128 STATUS_PARAM );
584
float64 float128_to_float64( float128 STATUS_PARAM );
585
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
586

    
587
/*----------------------------------------------------------------------------
588
| Software IEC/IEEE quadruple-precision operations.
589
*----------------------------------------------------------------------------*/
590
float128 float128_round_to_int( float128 STATUS_PARAM );
591
float128 float128_add( float128, float128 STATUS_PARAM );
592
float128 float128_sub( float128, float128 STATUS_PARAM );
593
float128 float128_mul( float128, float128 STATUS_PARAM );
594
float128 float128_div( float128, float128 STATUS_PARAM );
595
float128 float128_rem( float128, float128 STATUS_PARAM );
596
float128 float128_sqrt( float128 STATUS_PARAM );
597
int float128_eq( float128, float128 STATUS_PARAM );
598
int float128_le( float128, float128 STATUS_PARAM );
599
int float128_lt( float128, float128 STATUS_PARAM );
600
int float128_unordered( float128, float128 STATUS_PARAM );
601
int float128_eq_quiet( float128, float128 STATUS_PARAM );
602
int float128_le_quiet( float128, float128 STATUS_PARAM );
603
int float128_lt_quiet( float128, float128 STATUS_PARAM );
604
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
605
int float128_compare( float128, float128 STATUS_PARAM );
606
int float128_compare_quiet( float128, float128 STATUS_PARAM );
607
int float128_is_quiet_nan( float128 );
608
int float128_is_signaling_nan( float128 );
609
float128 float128_maybe_silence_nan( float128 );
610
float128 float128_scalbn( float128, int STATUS_PARAM );
611

    
612
INLINE float128 float128_abs(float128 a)
613
{
614
    a.high &= 0x7fffffffffffffffLL;
615
    return a;
616
}
617

    
618
INLINE float128 float128_chs(float128 a)
619
{
620
    a.high ^= 0x8000000000000000LL;
621
    return a;
622
}
623

    
624
INLINE int float128_is_infinity(float128 a)
625
{
626
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
627
}
628

    
629
INLINE int float128_is_neg(float128 a)
630
{
631
    return a.high >> 63;
632
}
633

    
634
INLINE int float128_is_zero(float128 a)
635
{
636
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
637
}
638

    
639
INLINE int float128_is_zero_or_denormal(float128 a)
640
{
641
    return (a.high & 0x7fff000000000000LL) == 0;
642
}
643

    
644
INLINE int float128_is_any_nan(float128 a)
645
{
646
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
647
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
648
}
649

    
650
/*----------------------------------------------------------------------------
651
| The pattern for a default generated quadruple-precision NaN.  The `high' and
652
| `low' values hold the most- and least-significant bits, respectively.
653
*----------------------------------------------------------------------------*/
654
#if SNAN_BIT_IS_ONE
655
#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
656
#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
657
#else
658
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
659
#define float128_default_nan_low  LIT64( 0x0000000000000000 )
660
#endif
661

    
662
#endif /* !SOFTFLOAT_H */