Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 5a2e3c2e

History | View | Annotate | Download (9.3 kB)

1
/*
2
 *  i386 execution defines
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#include "config.h"
20
#include "dyngen-exec.h"
21

    
22
/* XXX: factorize this mess */
23
#ifdef TARGET_X86_64
24
#define TARGET_LONG_BITS 64
25
#else
26
#define TARGET_LONG_BITS 32
27
#endif
28

    
29
#include "cpu-defs.h"
30

    
31
register struct CPUX86State *env asm(AREG0);
32

    
33
#include "qemu-common.h"
34
#include "qemu-log.h"
35

    
36
#undef EAX
37
#define EAX (env->regs[R_EAX])
38
#undef ECX
39
#define ECX (env->regs[R_ECX])
40
#undef EDX
41
#define EDX (env->regs[R_EDX])
42
#undef EBX
43
#define EBX (env->regs[R_EBX])
44
#undef ESP
45
#define ESP (env->regs[R_ESP])
46
#undef EBP
47
#define EBP (env->regs[R_EBP])
48
#undef ESI
49
#define ESI (env->regs[R_ESI])
50
#undef EDI
51
#define EDI (env->regs[R_EDI])
52
#undef EIP
53
#define EIP (env->eip)
54
#define DF  (env->df)
55

    
56
#define CC_SRC (env->cc_src)
57
#define CC_DST (env->cc_dst)
58
#define CC_OP  (env->cc_op)
59

    
60
/* float macros */
61
#define FT0    (env->ft0)
62
#define ST0    (env->fpregs[env->fpstt].d)
63
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
64
#define ST1    ST(1)
65

    
66
#include "cpu.h"
67
#include "exec-all.h"
68

    
69
/* op_helper.c */
70
void do_interrupt(int intno, int is_int, int error_code,
71
                  target_ulong next_eip, int is_hw);
72
void do_interrupt_user(int intno, int is_int, int error_code,
73
                       target_ulong next_eip);
74
void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
75
void QEMU_NORETURN raise_exception(int exception_index);
76
void do_smm_enter(void);
77

    
78
/* n must be a constant to be efficient */
79
static inline target_long lshift(target_long x, int n)
80
{
81
    if (n >= 0)
82
        return x << n;
83
    else
84
        return x >> (-n);
85
}
86

    
87
#include "helper.h"
88

    
89
static inline void svm_check_intercept(uint32_t type)
90
{
91
    helper_svm_check_intercept_param(type, 0);
92
}
93

    
94
#if !defined(CONFIG_USER_ONLY)
95

    
96
#include "softmmu_exec.h"
97

    
98
#endif /* !defined(CONFIG_USER_ONLY) */
99

    
100
#ifdef USE_X86LDOUBLE
101
/* use long double functions */
102
#define floatx_to_int32 floatx80_to_int32
103
#define floatx_to_int64 floatx80_to_int64
104
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
105
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
106
#define int32_to_floatx int32_to_floatx80
107
#define int64_to_floatx int64_to_floatx80
108
#define float32_to_floatx float32_to_floatx80
109
#define float64_to_floatx float64_to_floatx80
110
#define floatx_to_float32 floatx80_to_float32
111
#define floatx_to_float64 floatx80_to_float64
112
#define floatx_abs floatx80_abs
113
#define floatx_chs floatx80_chs
114
#define floatx_round_to_int floatx80_round_to_int
115
#define floatx_compare floatx80_compare
116
#define floatx_compare_quiet floatx80_compare_quiet
117
#else
118
#define floatx_to_int32 float64_to_int32
119
#define floatx_to_int64 float64_to_int64
120
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
121
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
122
#define int32_to_floatx int32_to_float64
123
#define int64_to_floatx int64_to_float64
124
#define float32_to_floatx float32_to_float64
125
#define float64_to_floatx(x, e) (x)
126
#define floatx_to_float32 float64_to_float32
127
#define floatx_to_float64(x, e) (x)
128
#define floatx_abs float64_abs
129
#define floatx_chs float64_chs
130
#define floatx_round_to_int float64_round_to_int
131
#define floatx_compare float64_compare
132
#define floatx_compare_quiet float64_compare_quiet
133
#endif
134

    
135
#define RC_MASK         0xc00
136
#define RC_NEAR                0x000
137
#define RC_DOWN                0x400
138
#define RC_UP                0x800
139
#define RC_CHOP                0xc00
140

    
141
#define MAXTAN 9223372036854775808.0
142

    
143
#ifdef USE_X86LDOUBLE
144

    
145
/* only for x86 */
146
typedef union {
147
    long double d;
148
    struct {
149
        unsigned long long lower;
150
        unsigned short upper;
151
    } l;
152
} CPU86_LDoubleU;
153

    
154
/* the following deal with x86 long double-precision numbers */
155
#define MAXEXPD 0x7fff
156
#define EXPBIAS 16383
157
#define EXPD(fp)        (fp.l.upper & 0x7fff)
158
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
159
#define MANTD(fp)       (fp.l.lower)
160
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
161

    
162
#else
163

    
164
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
165
typedef union {
166
    double d;
167
#if !defined(HOST_WORDS_BIGENDIAN) && !defined(__arm__)
168
    struct {
169
        uint32_t lower;
170
        int32_t upper;
171
    } l;
172
#else
173
    struct {
174
        int32_t upper;
175
        uint32_t lower;
176
    } l;
177
#endif
178
#ifndef __arm__
179
    int64_t ll;
180
#endif
181
} CPU86_LDoubleU;
182

    
183
/* the following deal with IEEE double-precision numbers */
184
#define MAXEXPD 0x7ff
185
#define EXPBIAS 1023
186
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
187
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
188
#ifdef __arm__
189
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
190
#else
191
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
192
#endif
193
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
194
#endif
195

    
196
static inline void fpush(void)
197
{
198
    env->fpstt = (env->fpstt - 1) & 7;
199
    env->fptags[env->fpstt] = 0; /* validate stack entry */
200
}
201

    
202
static inline void fpop(void)
203
{
204
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
205
    env->fpstt = (env->fpstt + 1) & 7;
206
}
207

    
208
#ifndef USE_X86LDOUBLE
209
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
210
{
211
    CPU86_LDoubleU temp;
212
    int upper, e;
213
    uint64_t ll;
214

    
215
    /* mantissa */
216
    upper = lduw(ptr + 8);
217
    /* XXX: handle overflow ? */
218
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
219
    e |= (upper >> 4) & 0x800; /* sign */
220
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
221
#ifdef __arm__
222
    temp.l.upper = (e << 20) | (ll >> 32);
223
    temp.l.lower = ll;
224
#else
225
    temp.ll = ll | ((uint64_t)e << 52);
226
#endif
227
    return temp.d;
228
}
229

    
230
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
231
{
232
    CPU86_LDoubleU temp;
233
    int e;
234

    
235
    temp.d = f;
236
    /* mantissa */
237
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
238
    /* exponent + sign */
239
    e = EXPD(temp) - EXPBIAS + 16383;
240
    e |= SIGND(temp) >> 16;
241
    stw(ptr + 8, e);
242
}
243
#else
244

    
245
/* we use memory access macros */
246

    
247
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
248
{
249
    CPU86_LDoubleU temp;
250

    
251
    temp.l.lower = ldq(ptr);
252
    temp.l.upper = lduw(ptr + 8);
253
    return temp.d;
254
}
255

    
256
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
257
{
258
    CPU86_LDoubleU temp;
259

    
260
    temp.d = f;
261
    stq(ptr, temp.l.lower);
262
    stw(ptr + 8, temp.l.upper);
263
}
264

    
265
#endif /* USE_X86LDOUBLE */
266

    
267
#define FPUS_IE (1 << 0)
268
#define FPUS_DE (1 << 1)
269
#define FPUS_ZE (1 << 2)
270
#define FPUS_OE (1 << 3)
271
#define FPUS_UE (1 << 4)
272
#define FPUS_PE (1 << 5)
273
#define FPUS_SF (1 << 6)
274
#define FPUS_SE (1 << 7)
275
#define FPUS_B  (1 << 15)
276

    
277
#define FPUC_EM 0x3f
278

    
279
static inline uint32_t compute_eflags(void)
280
{
281
    return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
282
}
283

    
284
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
285
static inline void load_eflags(int eflags, int update_mask)
286
{
287
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
288
    DF = 1 - (2 * ((eflags >> 10) & 1));
289
    env->eflags = (env->eflags & ~update_mask) |
290
        (eflags & update_mask) | 0x2;
291
}
292

    
293
static inline void env_to_regs(void)
294
{
295
#ifdef reg_EAX
296
    EAX = env->regs[R_EAX];
297
#endif
298
#ifdef reg_ECX
299
    ECX = env->regs[R_ECX];
300
#endif
301
#ifdef reg_EDX
302
    EDX = env->regs[R_EDX];
303
#endif
304
#ifdef reg_EBX
305
    EBX = env->regs[R_EBX];
306
#endif
307
#ifdef reg_ESP
308
    ESP = env->regs[R_ESP];
309
#endif
310
#ifdef reg_EBP
311
    EBP = env->regs[R_EBP];
312
#endif
313
#ifdef reg_ESI
314
    ESI = env->regs[R_ESI];
315
#endif
316
#ifdef reg_EDI
317
    EDI = env->regs[R_EDI];
318
#endif
319
}
320

    
321
static inline void regs_to_env(void)
322
{
323
#ifdef reg_EAX
324
    env->regs[R_EAX] = EAX;
325
#endif
326
#ifdef reg_ECX
327
    env->regs[R_ECX] = ECX;
328
#endif
329
#ifdef reg_EDX
330
    env->regs[R_EDX] = EDX;
331
#endif
332
#ifdef reg_EBX
333
    env->regs[R_EBX] = EBX;
334
#endif
335
#ifdef reg_ESP
336
    env->regs[R_ESP] = ESP;
337
#endif
338
#ifdef reg_EBP
339
    env->regs[R_EBP] = EBP;
340
#endif
341
#ifdef reg_ESI
342
    env->regs[R_ESI] = ESI;
343
#endif
344
#ifdef reg_EDI
345
    env->regs[R_EDI] = EDI;
346
#endif
347
}
348

    
349
static inline int cpu_has_work(CPUState *env)
350
{
351
    int work;
352

    
353
    work = (env->interrupt_request & CPU_INTERRUPT_HARD) &&
354
           (env->eflags & IF_MASK);
355
    work |= env->interrupt_request & CPU_INTERRUPT_NMI;
356
    work |= env->interrupt_request & CPU_INTERRUPT_INIT;
357
    work |= env->interrupt_request & CPU_INTERRUPT_SIPI;
358

    
359
    return work;
360
}
361

    
362
static inline int cpu_halted(CPUState *env) {
363
    /* handle exit of HALTED state */
364
    if (!env->halted)
365
        return 0;
366
    /* disable halt condition */
367
    if (cpu_has_work(env)) {
368
        env->halted = 0;
369
        return 0;
370
    }
371
    return EXCP_HALTED;
372
}
373

    
374
/* load efer and update the corresponding hflags. XXX: do consistency
375
   checks with cpuid bits ? */
376
static inline void cpu_load_efer(CPUState *env, uint64_t val)
377
{
378
    env->efer = val;
379
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
380
    if (env->efer & MSR_EFER_LMA)
381
        env->hflags |= HF_LMA_MASK;
382
    if (env->efer & MSR_EFER_SVME)
383
        env->hflags |= HF_SVME_MASK;
384
}