Statistics
| Branch: | Revision:

root / hw / arm / virt.c @ 5a4348d1

History | View | Annotate | Download (15.5 kB)

1
/*
2
 * ARM mach-virt emulation
3
 *
4
 * Copyright (c) 2013 Linaro Limited
5
 *
6
 * This program is free software; you can redistribute it and/or modify it
7
 * under the terms and conditions of the GNU General Public License,
8
 * version 2 or later, as published by the Free Software Foundation.
9
 *
10
 * This program is distributed in the hope it will be useful, but WITHOUT
11
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13
 * more details.
14
 *
15
 * You should have received a copy of the GNU General Public License along with
16
 * this program.  If not, see <http://www.gnu.org/licenses/>.
17
 *
18
 * Emulate a virtual board which works by passing Linux all the information
19
 * it needs about what devices are present via the device tree.
20
 * There are some restrictions about what we can do here:
21
 *  + we can only present devices whose Linux drivers will work based
22
 *    purely on the device tree with no platform data at all
23
 *  + we want to present a very stripped-down minimalist platform,
24
 *    both because this reduces the security attack surface from the guest
25
 *    and also because it reduces our exposure to being broken when
26
 *    the kernel updates its device tree bindings and requires further
27
 *    information in a device binding that we aren't providing.
28
 * This is essentially the same approach kvmtool uses.
29
 */
30

    
31
#include "hw/sysbus.h"
32
#include "hw/arm/arm.h"
33
#include "hw/arm/primecell.h"
34
#include "hw/devices.h"
35
#include "net/net.h"
36
#include "sysemu/device_tree.h"
37
#include "sysemu/sysemu.h"
38
#include "sysemu/kvm.h"
39
#include "hw/boards.h"
40
#include "exec/address-spaces.h"
41
#include "qemu/bitops.h"
42
#include "qemu/error-report.h"
43

    
44
#define NUM_VIRTIO_TRANSPORTS 32
45

    
46
/* Number of external interrupt lines to configure the GIC with */
47
#define NUM_IRQS 128
48

    
49
#define GIC_FDT_IRQ_TYPE_SPI 0
50
#define GIC_FDT_IRQ_TYPE_PPI 1
51

    
52
#define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53
#define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54
#define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55
#define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
56

    
57
#define GIC_FDT_IRQ_PPI_CPU_START 8
58
#define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
59

    
60
enum {
61
    VIRT_FLASH,
62
    VIRT_MEM,
63
    VIRT_CPUPERIPHS,
64
    VIRT_GIC_DIST,
65
    VIRT_GIC_CPU,
66
    VIRT_UART,
67
    VIRT_MMIO,
68
};
69

    
70
typedef struct MemMapEntry {
71
    hwaddr base;
72
    hwaddr size;
73
} MemMapEntry;
74

    
75
typedef struct VirtBoardInfo {
76
    struct arm_boot_info bootinfo;
77
    const char *cpu_model;
78
    const char *qdevname;
79
    const char *gic_compatible;
80
    const MemMapEntry *memmap;
81
    const int *irqmap;
82
    int smp_cpus;
83
    void *fdt;
84
    int fdt_size;
85
    uint32_t clock_phandle;
86
} VirtBoardInfo;
87

    
88
/* Addresses and sizes of our components.
89
 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
90
 * 128MB..256MB is used for miscellaneous device I/O.
91
 * 256MB..1GB is reserved for possible future PCI support (ie where the
92
 * PCI memory window will go if we add a PCI host controller).
93
 * 1GB and up is RAM (which may happily spill over into the
94
 * high memory region beyond 4GB).
95
 * This represents a compromise between how much RAM can be given to
96
 * a 32 bit VM and leaving space for expansion and in particular for PCI.
97
 */
98
static const MemMapEntry a15memmap[] = {
99
    /* Space up to 0x8000000 is reserved for a boot ROM */
100
    [VIRT_FLASH] = { 0, 0x8000000 },
101
    [VIRT_CPUPERIPHS] = { 0x8000000, 0x8000 },
102
    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
103
    [VIRT_GIC_DIST] = { 0x8001000, 0x1000 },
104
    [VIRT_GIC_CPU] = { 0x8002000, 0x1000 },
105
    [VIRT_UART] = { 0x9000000, 0x1000 },
106
    [VIRT_MMIO] = { 0xa000000, 0x200 },
107
    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
108
    /* 0x10000000 .. 0x40000000 reserved for PCI */
109
    [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
110
};
111

    
112
static const int a15irqmap[] = {
113
    [VIRT_UART] = 1,
114
    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
115
};
116

    
117
static VirtBoardInfo machines[] = {
118
    {
119
        .cpu_model = "cortex-a15",
120
        .qdevname = "a15mpcore_priv",
121
        .gic_compatible = "arm,cortex-a15-gic",
122
        .memmap = a15memmap,
123
        .irqmap = a15irqmap,
124
    },
125
    {
126
        .cpu_model = "host",
127
        /* We use the A15 private peripheral model to get a V2 GIC */
128
        .qdevname = "a15mpcore_priv",
129
        .gic_compatible = "arm,cortex-a15-gic",
130
        .memmap = a15memmap,
131
        .irqmap = a15irqmap,
132
    },
133
};
134

    
135
static VirtBoardInfo *find_machine_info(const char *cpu)
136
{
137
    int i;
138

    
139
    for (i = 0; i < ARRAY_SIZE(machines); i++) {
140
        if (strcmp(cpu, machines[i].cpu_model) == 0) {
141
            return &machines[i];
142
        }
143
    }
144
    return NULL;
145
}
146

    
147
static void create_fdt(VirtBoardInfo *vbi)
148
{
149
    void *fdt = create_device_tree(&vbi->fdt_size);
150

    
151
    if (!fdt) {
152
        error_report("create_device_tree() failed");
153
        exit(1);
154
    }
155

    
156
    vbi->fdt = fdt;
157

    
158
    /* Header */
159
    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
160
    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
161
    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
162

    
163
    /*
164
     * /chosen and /memory nodes must exist for load_dtb
165
     * to fill in necessary properties later
166
     */
167
    qemu_fdt_add_subnode(fdt, "/chosen");
168
    qemu_fdt_add_subnode(fdt, "/memory");
169
    qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
170

    
171
    /* Clock node, for the benefit of the UART. The kernel device tree
172
     * binding documentation claims the PL011 node clock properties are
173
     * optional but in practice if you omit them the kernel refuses to
174
     * probe for the device.
175
     */
176
    vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
177
    qemu_fdt_add_subnode(fdt, "/apb-pclk");
178
    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
179
    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
180
    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
181
    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
182
                                "clk24mhz");
183
    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
184

    
185
    /* No PSCI for TCG yet */
186
    if (kvm_enabled()) {
187
        qemu_fdt_add_subnode(fdt, "/psci");
188
        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
189
        qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
190
        qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
191
                                  PSCI_FN_CPU_SUSPEND);
192
        qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
193
        qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
194
        qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
195
    }
196
}
197

    
198
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
199
{
200
    /* Note that on A15 h/w these interrupts are level-triggered,
201
     * but for the GIC implementation provided by both QEMU and KVM
202
     * they are edge-triggered.
203
     */
204
    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
205

    
206
    irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
207
                         GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
208

    
209
    qemu_fdt_add_subnode(vbi->fdt, "/timer");
210
    qemu_fdt_setprop_string(vbi->fdt, "/timer",
211
                                "compatible", "arm,armv7-timer");
212
    qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
213
                               GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
214
                               GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
215
                               GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
216
                               GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
217
}
218

    
219
static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
220
{
221
    int cpu;
222

    
223
    qemu_fdt_add_subnode(vbi->fdt, "/cpus");
224
    qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
225
    qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
226

    
227
    for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
228
        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
229
        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
230

    
231
        qemu_fdt_add_subnode(vbi->fdt, nodename);
232
        qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
233
        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
234
                                    armcpu->dtb_compatible);
235

    
236
        if (vbi->smp_cpus > 1) {
237
            qemu_fdt_setprop_string(vbi->fdt, nodename,
238
                                        "enable-method", "psci");
239
        }
240

    
241
        qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
242
        g_free(nodename);
243
    }
244
}
245

    
246
static void fdt_add_gic_node(const VirtBoardInfo *vbi)
247
{
248
    uint32_t gic_phandle;
249

    
250
    gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
251
    qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
252

    
253
    qemu_fdt_add_subnode(vbi->fdt, "/intc");
254
    qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
255
                                vbi->gic_compatible);
256
    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
257
    qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
258
    qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
259
                                     2, vbi->memmap[VIRT_GIC_DIST].base,
260
                                     2, vbi->memmap[VIRT_GIC_DIST].size,
261
                                     2, vbi->memmap[VIRT_GIC_CPU].base,
262
                                     2, vbi->memmap[VIRT_GIC_CPU].size);
263
    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
264
}
265

    
266
static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
267
{
268
    char *nodename;
269
    hwaddr base = vbi->memmap[VIRT_UART].base;
270
    hwaddr size = vbi->memmap[VIRT_UART].size;
271
    int irq = vbi->irqmap[VIRT_UART];
272
    const char compat[] = "arm,pl011\0arm,primecell";
273
    const char clocknames[] = "uartclk\0apb_pclk";
274

    
275
    sysbus_create_simple("pl011", base, pic[irq]);
276

    
277
    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
278
    qemu_fdt_add_subnode(vbi->fdt, nodename);
279
    /* Note that we can't use setprop_string because of the embedded NUL */
280
    qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
281
                         compat, sizeof(compat));
282
    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
283
                                     2, base, 2, size);
284
    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
285
                               GIC_FDT_IRQ_TYPE_SPI, irq,
286
                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
287
    qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
288
                               vbi->clock_phandle, vbi->clock_phandle);
289
    qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
290
                         clocknames, sizeof(clocknames));
291
    g_free(nodename);
292
}
293

    
294
static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
295
{
296
    int i;
297
    hwaddr size = vbi->memmap[VIRT_MMIO].size;
298

    
299
    /* Note that we have to create the transports in forwards order
300
     * so that command line devices are inserted lowest address first,
301
     * and then add dtb nodes in reverse order so that they appear in
302
     * the finished device tree lowest address first.
303
     */
304
    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
305
        int irq = vbi->irqmap[VIRT_MMIO] + i;
306
        hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
307

    
308
        sysbus_create_simple("virtio-mmio", base, pic[irq]);
309
    }
310

    
311
    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
312
        char *nodename;
313
        int irq = vbi->irqmap[VIRT_MMIO] + i;
314
        hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
315

    
316
        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
317
        qemu_fdt_add_subnode(vbi->fdt, nodename);
318
        qemu_fdt_setprop_string(vbi->fdt, nodename,
319
                                "compatible", "virtio,mmio");
320
        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
321
                                     2, base, 2, size);
322
        qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
323
                               GIC_FDT_IRQ_TYPE_SPI, irq,
324
                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
325
        g_free(nodename);
326
    }
327
}
328

    
329
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
330
{
331
    const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
332

    
333
    *fdt_size = board->fdt_size;
334
    return board->fdt;
335
}
336

    
337
static void machvirt_init(QEMUMachineInitArgs *args)
338
{
339
    qemu_irq pic[NUM_IRQS];
340
    MemoryRegion *sysmem = get_system_memory();
341
    int n;
342
    MemoryRegion *ram = g_new(MemoryRegion, 1);
343
    DeviceState *dev;
344
    SysBusDevice *busdev;
345
    const char *cpu_model = args->cpu_model;
346
    VirtBoardInfo *vbi;
347

    
348
    if (!cpu_model) {
349
        cpu_model = "cortex-a15";
350
    }
351

    
352
    vbi = find_machine_info(cpu_model);
353

    
354
    if (!vbi) {
355
        error_report("mach-virt: CPU %s not supported", cpu_model);
356
        exit(1);
357
    }
358

    
359
    vbi->smp_cpus = smp_cpus;
360

    
361
    /*
362
     * Only supported method of starting secondary CPUs is PSCI and
363
     * PSCI is not yet supported with TCG, so limit smp_cpus to 1
364
     * if we're not using KVM.
365
     */
366
    if (!kvm_enabled() && smp_cpus > 1) {
367
        error_report("mach-virt: must enable KVM to use multiple CPUs");
368
        exit(1);
369
    }
370

    
371
    if (args->ram_size > vbi->memmap[VIRT_MEM].size) {
372
        error_report("mach-virt: cannot model more than 30GB RAM");
373
        exit(1);
374
    }
375

    
376
    create_fdt(vbi);
377
    fdt_add_timer_nodes(vbi);
378

    
379
    for (n = 0; n < smp_cpus; n++) {
380
        ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
381
        Object *cpuobj;
382

    
383
        if (!oc) {
384
            fprintf(stderr, "Unable to find CPU definition\n");
385
            exit(1);
386
        }
387
        cpuobj = object_new(object_class_get_name(oc));
388

    
389
        /* Secondary CPUs start in PSCI powered-down state */
390
        if (n > 0) {
391
            object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
392
        }
393
        object_property_set_bool(cpuobj, true, "realized", NULL);
394
    }
395
    fdt_add_cpu_nodes(vbi);
396

    
397
    memory_region_init_ram(ram, NULL, "mach-virt.ram", args->ram_size);
398
    vmstate_register_ram_global(ram);
399
    memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
400

    
401
    dev = qdev_create(NULL, vbi->qdevname);
402
    qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
403
    /* Note that the num-irq property counts both internal and external
404
     * interrupts; there are always 32 of the former (mandated by GIC spec).
405
     */
406
    qdev_prop_set_uint32(dev, "num-irq", NUM_IRQS + 32);
407
    qdev_init_nofail(dev);
408
    busdev = SYS_BUS_DEVICE(dev);
409
    sysbus_mmio_map(busdev, 0, vbi->memmap[VIRT_CPUPERIPHS].base);
410
    fdt_add_gic_node(vbi);
411
    for (n = 0; n < smp_cpus; n++) {
412
        DeviceState *cpudev = DEVICE(qemu_get_cpu(n));
413

    
414
        sysbus_connect_irq(busdev, n, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
415
    }
416

    
417
    for (n = 0; n < NUM_IRQS; n++) {
418
        pic[n] = qdev_get_gpio_in(dev, n);
419
    }
420

    
421
    create_uart(vbi, pic);
422

    
423
    /* Create mmio transports, so the user can create virtio backends
424
     * (which will be automatically plugged in to the transports). If
425
     * no backend is created the transport will just sit harmlessly idle.
426
     */
427
    create_virtio_devices(vbi, pic);
428

    
429
    vbi->bootinfo.ram_size = args->ram_size;
430
    vbi->bootinfo.kernel_filename = args->kernel_filename;
431
    vbi->bootinfo.kernel_cmdline = args->kernel_cmdline;
432
    vbi->bootinfo.initrd_filename = args->initrd_filename;
433
    vbi->bootinfo.nb_cpus = smp_cpus;
434
    vbi->bootinfo.board_id = -1;
435
    vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
436
    vbi->bootinfo.get_dtb = machvirt_dtb;
437
    arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
438
}
439

    
440
static QEMUMachine machvirt_a15_machine = {
441
    .name = "virt",
442
    .desc = "ARM Virtual Machine",
443
    .init = machvirt_init,
444
    .max_cpus = 4,
445
};
446

    
447
static void machvirt_machine_init(void)
448
{
449
    qemu_register_machine(&machvirt_a15_machine);
450
}
451

    
452
machine_init(machvirt_machine_init);