Statistics
| Branch: | Revision:

root / vl.c @ 5a67135a

History | View | Annotate | Download (104.1 kB)

1
/*
2
 * QEMU PC System Emulator
3
 * 
4
 * Copyright (c) 2003 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <string.h>
28
#include <getopt.h>
29
#include <inttypes.h>
30
#include <unistd.h>
31
#include <sys/mman.h>
32
#include <fcntl.h>
33
#include <signal.h>
34
#include <time.h>
35
#include <sys/time.h>
36
#include <malloc.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <errno.h>
40
#include <sys/wait.h>
41

    
42
#include <sys/ioctl.h>
43
#include <sys/socket.h>
44
#include <linux/if.h>
45
#include <linux/if_tun.h>
46

    
47
#include "cpu.h"
48
#include "disas.h"
49
#include "thunk.h"
50

    
51
#include "vl.h"
52

    
53
#define DEBUG_LOGFILE "/tmp/vl.log"
54
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
55
#define BIOS_FILENAME "bios.bin"
56
#define VGABIOS_FILENAME "vgabios.bin"
57

    
58
//#define DEBUG_UNUSED_IOPORT
59

    
60
//#define DEBUG_IRQ_LATENCY
61

    
62
/* output Bochs bios info messages */
63
//#define DEBUG_BIOS
64

    
65
/* debug IDE devices */
66
//#define DEBUG_IDE
67

    
68
/* debug PIC */
69
//#define DEBUG_PIC
70

    
71
/* debug NE2000 card */
72
//#define DEBUG_NE2000
73

    
74
/* debug PC keyboard */
75
//#define DEBUG_KBD
76

    
77
/* debug PC keyboard : only mouse */
78
//#define DEBUG_MOUSE
79

    
80
#define PHYS_RAM_BASE     0xac000000
81
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
82

    
83
#define KERNEL_LOAD_ADDR   0x00100000
84
#define INITRD_LOAD_ADDR   0x00400000
85
#define KERNEL_PARAMS_ADDR 0x00090000
86

    
87
#define GUI_REFRESH_INTERVAL 30 
88

    
89
#define MAX_DISKS 2
90

    
91
/* from plex86 (BSD license) */
92
struct  __attribute__ ((packed)) linux_params {
93
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
94
  // I just padded out the VESA parts, rather than define them.
95

    
96
  /* 0x000 */ uint8_t   orig_x;
97
  /* 0x001 */ uint8_t   orig_y;
98
  /* 0x002 */ uint16_t  ext_mem_k;
99
  /* 0x004 */ uint16_t  orig_video_page;
100
  /* 0x006 */ uint8_t   orig_video_mode;
101
  /* 0x007 */ uint8_t   orig_video_cols;
102
  /* 0x008 */ uint16_t  unused1;
103
  /* 0x00a */ uint16_t  orig_video_ega_bx;
104
  /* 0x00c */ uint16_t  unused2;
105
  /* 0x00e */ uint8_t   orig_video_lines;
106
  /* 0x00f */ uint8_t   orig_video_isVGA;
107
  /* 0x010 */ uint16_t  orig_video_points;
108
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
109
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
110
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
111
                                 // is calculated as 0x90000 + cl_offset, bu
112
                                 // only if cl_magic == 0xA33F.
113
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.
114

    
115
  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
116
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];
117

    
118
  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
119
  // Might be truncated?
120
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
121
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46
122

    
123
  // System description table truncated to 16 bytes
124
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
125
  /* 0x0a0 */ uint16_t  sys_description_len;
126
  /* 0x0a2 */ uint8_t   sys_description_table[14];
127
                        // [0] machine id
128
                        // [1] machine submodel id
129
                        // [2] BIOS revision
130
                        // [3] bit1: MCA bus
131

    
132
  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
133
  /* 0x1e0 */ uint32_t  alt_mem_k;
134
  /* 0x1e4 */ uint8_t   pad4[4];
135
  /* 0x1e8 */ uint8_t   e820map_entries;
136
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
137
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
138
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
139
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
140
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
141
                                // (b)zImage-file (in 16 byte units, rounded up)
142
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
143
  /* 0x1f8 */ uint16_t  ramdisk_flags;
144
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
145
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
146
  /* 0x1fe */ uint8_t   pad6[1];
147
  /* 0x1ff */ uint8_t   aux_device_info;
148
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
149
                                  // aka "reserved" field.
150
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
151
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
152
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
153
                                        // boot loaders, look there.
154
  /* 0x210 */ uint8_t   loader_type;
155
                        // 0 for old one.
156
                        // else 0xTV:
157
                        //   T=0: LILO
158
                        //   T=1: Loadlin
159
                        //   T=2: bootsect-loader
160
                        //   T=3: SYSLINUX
161
                        //   T=4: ETHERBOOT
162
                        //   V=version
163
  /* 0x211 */ uint8_t   loadflags;
164
                        // bit0 = 1: kernel is loaded high (bzImage)
165
                        // bit7 = 1: Heap and pointer (see below) set by boot
166
                        //   loader.
167
  /* 0x212 */ uint16_t  setup_S_temp1;
168
  /* 0x214 */ uint32_t  kernel_start;
169
  /* 0x218 */ uint32_t  initrd_start;
170
  /* 0x21c */ uint32_t  initrd_size;
171
  /* 0x220 */ uint8_t   setup_S_temp2[4];
172
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
173
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];
174

    
175
  /* 0x2d0 : Int 15, ax=e820 memory map. */
176
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
177
#define E820MAX  32
178
#define E820_RAM  1
179
#define E820_RESERVED 2
180
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
181
#define E820_NVS  4
182
  struct {
183
    uint64_t addr;
184
    uint64_t size;
185
    uint32_t type;
186
    } e820map[E820MAX];
187

    
188
  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];
189

    
190
  // BIOS Enhanced Disk Drive Services.
191
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
192
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
193
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];
194

    
195
  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
196
  /* 0x800 */ uint8_t   commandline[0x800];
197

    
198
  /* 0x1000 */
199
  uint64_t gdt_table[256];
200
  uint64_t idt_table[48];
201
};
202

    
203
#define KERNEL_CS     0x10
204
#define KERNEL_DS     0x18
205

    
206
#define MAX_IOPORTS 4096
207

    
208
static const char *bios_dir = CONFIG_QEMU_SHAREDIR;
209
char phys_ram_file[1024];
210
CPUX86State *global_env;
211
CPUX86State *cpu_single_env;
212
FILE *logfile = NULL;
213
int loglevel;
214
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
215
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
216
BlockDriverState *bs_table[MAX_DISKS];
217
int vga_ram_size;
218
static DisplayState display_state;
219
int nographic;
220
int term_inited;
221
int64_t ticks_per_sec;
222

    
223
/***********************************************************/
224
/* x86 io ports */
225

    
226
uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
227
{
228
#ifdef DEBUG_UNUSED_IOPORT
229
    fprintf(stderr, "inb: port=0x%04x\n", address);
230
#endif
231
    return 0xff;
232
}
233

    
234
void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
235
{
236
#ifdef DEBUG_UNUSED_IOPORT
237
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
238
#endif
239
}
240

    
241
/* default is to make two byte accesses */
242
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
243
{
244
    uint32_t data;
245
    data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
246
    data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
247
    return data;
248
}
249

    
250
void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
251
{
252
    ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
253
    ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
254
}
255

    
256
uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
257
{
258
#ifdef DEBUG_UNUSED_IOPORT
259
    fprintf(stderr, "inl: port=0x%04x\n", address);
260
#endif
261
    return 0xffffffff;
262
}
263

    
264
void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
265
{
266
#ifdef DEBUG_UNUSED_IOPORT
267
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
268
#endif
269
}
270

    
271
void init_ioports(void)
272
{
273
    int i;
274

    
275
    for(i = 0; i < MAX_IOPORTS; i++) {
276
        ioport_read_table[0][i] = default_ioport_readb;
277
        ioport_write_table[0][i] = default_ioport_writeb;
278
        ioport_read_table[1][i] = default_ioport_readw;
279
        ioport_write_table[1][i] = default_ioport_writew;
280
        ioport_read_table[2][i] = default_ioport_readl;
281
        ioport_write_table[2][i] = default_ioport_writel;
282
    }
283
}
284

    
285
/* size is the word size in byte */
286
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
287
{
288
    int i, bsize;
289

    
290
    if (size == 1)
291
        bsize = 0;
292
    else if (size == 2)
293
        bsize = 1;
294
    else if (size == 4)
295
        bsize = 2;
296
    else
297
        return -1;
298
    for(i = start; i < start + length; i += size)
299
        ioport_read_table[bsize][i] = func;
300
    return 0;
301
}
302

    
303
/* size is the word size in byte */
304
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
305
{
306
    int i, bsize;
307

    
308
    if (size == 1)
309
        bsize = 0;
310
    else if (size == 2)
311
        bsize = 1;
312
    else if (size == 4)
313
        bsize = 2;
314
    else
315
        return -1;
316
    for(i = start; i < start + length; i += size)
317
        ioport_write_table[bsize][i] = func;
318
    return 0;
319
}
320

    
321
void pstrcpy(char *buf, int buf_size, const char *str)
322
{
323
    int c;
324
    char *q = buf;
325

    
326
    if (buf_size <= 0)
327
        return;
328

    
329
    for(;;) {
330
        c = *str++;
331
        if (c == 0 || q >= buf + buf_size - 1)
332
            break;
333
        *q++ = c;
334
    }
335
    *q = '\0';
336
}
337

    
338
/* strcat and truncate. */
339
char *pstrcat(char *buf, int buf_size, const char *s)
340
{
341
    int len;
342
    len = strlen(buf);
343
    if (len < buf_size) 
344
        pstrcpy(buf + len, buf_size - len, s);
345
    return buf;
346
}
347

    
348
int load_kernel(const char *filename, uint8_t *addr)
349
{
350
    int fd, size, setup_sects;
351
    uint8_t bootsect[512];
352

    
353
    fd = open(filename, O_RDONLY);
354
    if (fd < 0)
355
        return -1;
356
    if (read(fd, bootsect, 512) != 512)
357
        goto fail;
358
    setup_sects = bootsect[0x1F1];
359
    if (!setup_sects)
360
        setup_sects = 4;
361
    /* skip 16 bit setup code */
362
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
363
    size = read(fd, addr, 16 * 1024 * 1024);
364
    if (size < 0)
365
        goto fail;
366
    close(fd);
367
    return size;
368
 fail:
369
    close(fd);
370
    return -1;
371
}
372

    
373
/* return the size or -1 if error */
374
int load_image(const char *filename, uint8_t *addr)
375
{
376
    int fd, size;
377
    fd = open(filename, O_RDONLY);
378
    if (fd < 0)
379
        return -1;
380
    size = lseek(fd, 0, SEEK_END);
381
    lseek(fd, 0, SEEK_SET);
382
    if (read(fd, addr, size) != size) {
383
        close(fd);
384
        return -1;
385
    }
386
    close(fd);
387
    return size;
388
}
389

    
390
void cpu_x86_outb(CPUX86State *env, int addr, int val)
391
{
392
    ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
393
}
394

    
395
void cpu_x86_outw(CPUX86State *env, int addr, int val)
396
{
397
    ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
398
}
399

    
400
void cpu_x86_outl(CPUX86State *env, int addr, int val)
401
{
402
    ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
403
}
404

    
405
int cpu_x86_inb(CPUX86State *env, int addr)
406
{
407
    return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
408
}
409

    
410
int cpu_x86_inw(CPUX86State *env, int addr)
411
{
412
    return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
413
}
414

    
415
int cpu_x86_inl(CPUX86State *env, int addr)
416
{
417
    return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
418
}
419

    
420
/***********************************************************/
421
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
422
{
423
}
424

    
425
void hw_error(const char *fmt, ...)
426
{
427
    va_list ap;
428

    
429
    va_start(ap, fmt);
430
    fprintf(stderr, "qemu: hardware error: ");
431
    vfprintf(stderr, fmt, ap);
432
    fprintf(stderr, "\n");
433
#ifdef TARGET_I386
434
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
435
#endif
436
    va_end(ap);
437
    abort();
438
}
439

    
440
/***********************************************************/
441
/* cmos emulation */
442

    
443
#define RTC_SECONDS             0
444
#define RTC_SECONDS_ALARM       1
445
#define RTC_MINUTES             2
446
#define RTC_MINUTES_ALARM       3
447
#define RTC_HOURS               4
448
#define RTC_HOURS_ALARM         5
449
#define RTC_ALARM_DONT_CARE    0xC0
450

    
451
#define RTC_DAY_OF_WEEK         6
452
#define RTC_DAY_OF_MONTH        7
453
#define RTC_MONTH               8
454
#define RTC_YEAR                9
455

    
456
#define RTC_REG_A               10
457
#define RTC_REG_B               11
458
#define RTC_REG_C               12
459
#define RTC_REG_D               13
460

    
461
/* PC cmos mappings */
462
#define REG_EQUIPMENT_BYTE          0x14
463

    
464
uint8_t cmos_data[128];
465
uint8_t cmos_index;
466

    
467
void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
468
{
469
    if (addr == 0x70) {
470
        cmos_index = data & 0x7f;
471
    }
472
}
473

    
474
uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
475
{
476
    int ret;
477

    
478
    if (addr == 0x70) {
479
        return 0xff;
480
    } else {
481
        /* toggle update-in-progress bit for Linux (same hack as
482
           plex86) */
483
        ret = cmos_data[cmos_index];
484
        if (cmos_index == RTC_REG_A)
485
            cmos_data[RTC_REG_A] ^= 0x80; 
486
        else if (cmos_index == RTC_REG_C)
487
            cmos_data[RTC_REG_C] = 0x00; 
488
        return ret;
489
    }
490
}
491

    
492

    
493
static inline int to_bcd(int a)
494
{
495
    return ((a / 10) << 4) | (a % 10);
496
}
497

    
498
void cmos_init(void)
499
{
500
    struct tm *tm;
501
    time_t ti;
502
    int val;
503

    
504
    ti = time(NULL);
505
    tm = gmtime(&ti);
506
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
507
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
508
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
509
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
510
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
511
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
512
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
513

    
514
    cmos_data[RTC_REG_A] = 0x26;
515
    cmos_data[RTC_REG_B] = 0x02;
516
    cmos_data[RTC_REG_C] = 0x00;
517
    cmos_data[RTC_REG_D] = 0x80;
518

    
519
    /* various important CMOS locations needed by PC/Bochs bios */
520

    
521
    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
522
    cmos_data[REG_EQUIPMENT_BYTE] |= 0x04; /* PS/2 mouse installed */
523

    
524
    /* memory size */
525
    val = (phys_ram_size / 1024) - 1024;
526
    if (val > 65535)
527
        val = 65535;
528
    cmos_data[0x17] = val;
529
    cmos_data[0x18] = val >> 8;
530
    cmos_data[0x30] = val;
531
    cmos_data[0x31] = val >> 8;
532

    
533
    val = (phys_ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
534
    if (val > 65535)
535
        val = 65535;
536
    cmos_data[0x34] = val;
537
    cmos_data[0x35] = val >> 8;
538
    
539
    cmos_data[0x3d] = 0x02; /* hard drive boot */
540
    
541
    register_ioport_write(0x70, 2, cmos_ioport_write, 1);
542
    register_ioport_read(0x70, 2, cmos_ioport_read, 1);
543
}
544

    
545
/***********************************************************/
546
/* 8259 pic emulation */
547

    
548
typedef struct PicState {
549
    uint8_t last_irr; /* edge detection */
550
    uint8_t irr; /* interrupt request register */
551
    uint8_t imr; /* interrupt mask register */
552
    uint8_t isr; /* interrupt service register */
553
    uint8_t priority_add; /* used to compute irq priority */
554
    uint8_t irq_base;
555
    uint8_t read_reg_select;
556
    uint8_t special_mask;
557
    uint8_t init_state;
558
    uint8_t auto_eoi;
559
    uint8_t rotate_on_autoeoi;
560
    uint8_t init4; /* true if 4 byte init */
561
} PicState;
562

    
563
/* 0 is master pic, 1 is slave pic */
564
PicState pics[2];
565
int pic_irq_requested;
566

    
567
/* set irq level. If an edge is detected, then the IRR is set to 1 */
568
static inline void pic_set_irq1(PicState *s, int irq, int level)
569
{
570
    int mask;
571
    mask = 1 << irq;
572
    if (level) {
573
        if ((s->last_irr & mask) == 0)
574
            s->irr |= mask;
575
        s->last_irr |= mask;
576
    } else {
577
        s->last_irr &= ~mask;
578
    }
579
}
580

    
581
static inline int get_priority(PicState *s, int mask)
582
{
583
    int priority;
584
    if (mask == 0)
585
        return -1;
586
    priority = 7;
587
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
588
        priority--;
589
    return priority;
590
}
591

    
592
/* return the pic wanted interrupt. return -1 if none */
593
static int pic_get_irq(PicState *s)
594
{
595
    int mask, cur_priority, priority;
596

    
597
    mask = s->irr & ~s->imr;
598
    priority = get_priority(s, mask);
599
    if (priority < 0)
600
        return -1;
601
    /* compute current priority */
602
    cur_priority = get_priority(s, s->isr);
603
    if (priority > cur_priority) {
604
        /* higher priority found: an irq should be generated */
605
        return priority;
606
    } else {
607
        return -1;
608
    }
609
}
610

    
611
/* raise irq to CPU if necessary. must be called every time the active
612
   irq may change */
613
static void pic_update_irq(void)
614
{
615
    int irq2, irq;
616

    
617
    /* first look at slave pic */
618
    irq2 = pic_get_irq(&pics[1]);
619
    if (irq2 >= 0) {
620
        /* if irq request by slave pic, signal master PIC */
621
        pic_set_irq1(&pics[0], 2, 1);
622
        pic_set_irq1(&pics[0], 2, 0);
623
    }
624
    /* look at requested irq */
625
    irq = pic_get_irq(&pics[0]);
626
    if (irq >= 0) {
627
        if (irq == 2) {
628
            /* from slave pic */
629
            pic_irq_requested = 8 + irq2;
630
        } else {
631
            /* from master pic */
632
            pic_irq_requested = irq;
633
        }
634
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
635
    }
636
}
637

    
638
#ifdef DEBUG_IRQ_LATENCY
639
int64_t irq_time[16];
640
int64_t cpu_get_ticks(void);
641
#endif
642
#if defined(DEBUG_PIC)
643
int irq_level[16];
644
#endif
645

    
646
void pic_set_irq(int irq, int level)
647
{
648
#if defined(DEBUG_PIC)
649
    if (level != irq_level[irq]) {
650
        printf("pic_set_irq: irq=%d level=%d\n", irq, level);
651
        irq_level[irq] = level;
652
    }
653
#endif
654
#ifdef DEBUG_IRQ_LATENCY
655
    if (level) {
656
        irq_time[irq] = cpu_get_ticks();
657
    }
658
#endif
659
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
660
    pic_update_irq();
661
}
662

    
663
int cpu_x86_get_pic_interrupt(CPUX86State *env)
664
{
665
    int irq, irq2, intno;
666

    
667
    /* signal the pic that the irq was acked by the CPU */
668
    irq = pic_irq_requested;
669
#ifdef DEBUG_IRQ_LATENCY
670
    printf("IRQ%d latency=%0.3fus\n", 
671
           irq, 
672
           (double)(cpu_get_ticks() - irq_time[irq]) * 1000000.0 / ticks_per_sec);
673
#endif
674
#ifdef DEBUG_PIC
675
    printf("pic_interrupt: irq=%d\n", irq);
676
#endif
677

    
678
    if (irq >= 8) {
679
        irq2 = irq & 7;
680
        pics[1].isr |= (1 << irq2);
681
        pics[1].irr &= ~(1 << irq2);
682
        irq = 2;
683
        intno = pics[1].irq_base + irq2;
684
    } else {
685
        intno = pics[0].irq_base + irq;
686
    }
687
    pics[0].isr |= (1 << irq);
688
    pics[0].irr &= ~(1 << irq);
689
    return intno;
690
}
691

    
692
void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
693
{
694
    PicState *s;
695
    int priority;
696

    
697
#ifdef DEBUG_PIC
698
    printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
699
#endif
700
    s = &pics[addr >> 7];
701
    addr &= 1;
702
    if (addr == 0) {
703
        if (val & 0x10) {
704
            /* init */
705
            memset(s, 0, sizeof(PicState));
706
            s->init_state = 1;
707
            s->init4 = val & 1;
708
            if (val & 0x02)
709
                hw_error("single mode not supported");
710
            if (val & 0x08)
711
                hw_error("level sensitive irq not supported");
712
        } else if (val & 0x08) {
713
            if (val & 0x02)
714
                s->read_reg_select = val & 1;
715
            if (val & 0x40)
716
                s->special_mask = (val >> 5) & 1;
717
        } else {
718
            switch(val) {
719
            case 0x00:
720
            case 0x80:
721
                s->rotate_on_autoeoi = val >> 7;
722
                break;
723
            case 0x20: /* end of interrupt */
724
            case 0xa0:
725
                priority = get_priority(s, s->isr);
726
                if (priority >= 0) {
727
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
728
                }
729
                if (val == 0xa0)
730
                    s->priority_add = (s->priority_add + 1) & 7;
731
                pic_update_irq();
732
                break;
733
            case 0x60 ... 0x67:
734
                priority = val & 7;
735
                s->isr &= ~(1 << priority);
736
                pic_update_irq();
737
                break;
738
            case 0xc0 ... 0xc7:
739
                s->priority_add = (val + 1) & 7;
740
                pic_update_irq();
741
                break;
742
            case 0xe0 ... 0xe7:
743
                priority = val & 7;
744
                s->isr &= ~(1 << priority);
745
                s->priority_add = (priority + 1) & 7;
746
                pic_update_irq();
747
                break;
748
            }
749
        }
750
    } else {
751
        switch(s->init_state) {
752
        case 0:
753
            /* normal mode */
754
            s->imr = val;
755
            pic_update_irq();
756
            break;
757
        case 1:
758
            s->irq_base = val & 0xf8;
759
            s->init_state = 2;
760
            break;
761
        case 2:
762
            if (s->init4) {
763
                s->init_state = 3;
764
            } else {
765
                s->init_state = 0;
766
            }
767
            break;
768
        case 3:
769
            s->auto_eoi = (val >> 1) & 1;
770
            s->init_state = 0;
771
            break;
772
        }
773
    }
774
}
775

    
776
uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
777
{
778
    PicState *s;
779
    unsigned int addr;
780
    int ret;
781

    
782
    addr = addr1;
783
    s = &pics[addr >> 7];
784
    addr &= 1;
785
    if (addr == 0) {
786
        if (s->read_reg_select)
787
            ret = s->isr;
788
        else
789
            ret = s->irr;
790
    } else {
791
        ret = s->imr;
792
    }
793
#ifdef DEBUG_PIC
794
    printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
795
#endif
796
    return ret;
797
}
798

    
799
void pic_init(void)
800
{
801
    register_ioport_write(0x20, 2, pic_ioport_write, 1);
802
    register_ioport_read(0x20, 2, pic_ioport_read, 1);
803
    register_ioport_write(0xa0, 2, pic_ioport_write, 1);
804
    register_ioport_read(0xa0, 2, pic_ioport_read, 1);
805
}
806

    
807
/***********************************************************/
808
/* 8253 PIT emulation */
809

    
810
#define PIT_FREQ 1193182
811

    
812
#define RW_STATE_LSB 0
813
#define RW_STATE_MSB 1
814
#define RW_STATE_WORD0 2
815
#define RW_STATE_WORD1 3
816
#define RW_STATE_LATCHED_WORD0 4
817
#define RW_STATE_LATCHED_WORD1 5
818

    
819
typedef struct PITChannelState {
820
    int count; /* can be 65536 */
821
    uint16_t latched_count;
822
    uint8_t rw_state;
823
    uint8_t mode;
824
    uint8_t bcd; /* not supported */
825
    uint8_t gate; /* timer start */
826
    int64_t count_load_time;
827
    int64_t count_last_edge_check_time;
828
} PITChannelState;
829

    
830
PITChannelState pit_channels[3];
831
int speaker_data_on;
832
int dummy_refresh_clock;
833
int pit_min_timer_count = 0;
834

    
835
int64_t get_clock(void)
836
{
837
    struct timeval tv;
838
    gettimeofday(&tv, NULL);
839
    return tv.tv_sec * 1000000LL + tv.tv_usec;
840
}
841

    
842
int64_t cpu_get_ticks(void)
843
{
844
    int64_t val;
845
    asm("rdtsc" : "=A" (val));
846
    return val;
847
}
848

    
849
void cpu_calibrate_ticks(void)
850
{
851
    int64_t usec, ticks;
852

    
853
    usec = get_clock();
854
    ticks = cpu_get_ticks();
855
    usleep(50 * 1000);
856
    usec = get_clock() - usec;
857
    ticks = cpu_get_ticks() - ticks;
858
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
859
}
860

    
861
/* compute with 96 bit intermediate result: (a*b)/c */
862
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
863
{
864
    union {
865
        uint64_t ll;
866
        struct {
867
#ifdef WORDS_BIGENDIAN
868
            uint32_t high, low;
869
#else
870
            uint32_t low, high;
871
#endif            
872
        } l;
873
    } u, res;
874
    uint64_t rl, rh;
875

    
876
    u.ll = a;
877
    rl = (uint64_t)u.l.low * (uint64_t)b;
878
    rh = (uint64_t)u.l.high * (uint64_t)b;
879
    rh += (rl >> 32);
880
    res.l.high = rh / c;
881
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
882
    return res.ll;
883
}
884

    
885
static int pit_get_count(PITChannelState *s)
886
{
887
    uint64_t d;
888
    int counter;
889

    
890
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
891
    switch(s->mode) {
892
    case 0:
893
    case 1:
894
    case 4:
895
    case 5:
896
        counter = (s->count - d) & 0xffff;
897
        break;
898
    default:
899
        counter = s->count - (d % s->count);
900
        break;
901
    }
902
    return counter;
903
}
904

    
905
/* get pit output bit */
906
static int pit_get_out(PITChannelState *s)
907
{
908
    uint64_t d;
909
    int out;
910

    
911
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
912
    switch(s->mode) {
913
    default:
914
    case 0:
915
        out = (d >= s->count);
916
        break;
917
    case 1:
918
        out = (d < s->count);
919
        break;
920
    case 2:
921
        if ((d % s->count) == 0 && d != 0)
922
            out = 1;
923
        else
924
            out = 0;
925
        break;
926
    case 3:
927
        out = (d % s->count) < (s->count >> 1);
928
        break;
929
    case 4:
930
    case 5:
931
        out = (d == s->count);
932
        break;
933
    }
934
    return out;
935
}
936

    
937
/* get the number of 0 to 1 transitions we had since we call this
938
   function */
939
/* XXX: maybe better to use ticks precision to avoid getting edges
940
   twice if checks are done at very small intervals */
941
static int pit_get_out_edges(PITChannelState *s)
942
{
943
    uint64_t d1, d2;
944
    int64_t ticks;
945
    int ret, v;
946

    
947
    ticks = cpu_get_ticks();
948
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
949
                 PIT_FREQ, ticks_per_sec);
950
    d2 = muldiv64(ticks - s->count_load_time, 
951
                  PIT_FREQ, ticks_per_sec);
952
    s->count_last_edge_check_time = ticks;
953
    switch(s->mode) {
954
    default:
955
    case 0:
956
        if (d1 < s->count && d2 >= s->count)
957
            ret = 1;
958
        else
959
            ret = 0;
960
        break;
961
    case 1:
962
        ret = 0;
963
        break;
964
    case 2:
965
        d1 /= s->count;
966
        d2 /= s->count;
967
        ret = d2 - d1;
968
        break;
969
    case 3:
970
        v = s->count - (s->count >> 1);
971
        d1 = (d1 + v) / s->count;
972
        d2 = (d2 + v) / s->count;
973
        ret = d2 - d1;
974
        break;
975
    case 4:
976
    case 5:
977
        if (d1 < s->count && d2 >= s->count)
978
            ret = 1;
979
        else
980
            ret = 0;
981
        break;
982
    }
983
    return ret;
984
}
985

    
986
static inline void pit_load_count(PITChannelState *s, int val)
987
{
988
    if (val == 0)
989
        val = 0x10000;
990
    s->count_load_time = cpu_get_ticks();
991
    s->count_last_edge_check_time = s->count_load_time;
992
    s->count = val;
993
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
994
        fprintf(stderr, 
995
                "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
996
                PIT_FREQ / pit_min_timer_count);
997
    }
998
}
999

    
1000
void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1001
{
1002
    int channel, access;
1003
    PITChannelState *s;
1004

    
1005
    addr &= 3;
1006
    if (addr == 3) {
1007
        channel = val >> 6;
1008
        if (channel == 3)
1009
            return;
1010
        s = &pit_channels[channel];
1011
        access = (val >> 4) & 3;
1012
        switch(access) {
1013
        case 0:
1014
            s->latched_count = pit_get_count(s);
1015
            s->rw_state = RW_STATE_LATCHED_WORD0;
1016
            break;
1017
        default:
1018
            s->mode = (val >> 1) & 7;
1019
            s->bcd = val & 1;
1020
            s->rw_state = access - 1 +  RW_STATE_LSB;
1021
            break;
1022
        }
1023
    } else {
1024
        s = &pit_channels[addr];
1025
        switch(s->rw_state) {
1026
        case RW_STATE_LSB:
1027
            pit_load_count(s, val);
1028
            break;
1029
        case RW_STATE_MSB:
1030
            pit_load_count(s, val << 8);
1031
            break;
1032
        case RW_STATE_WORD0:
1033
        case RW_STATE_WORD1:
1034
            if (s->rw_state & 1) {
1035
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1036
            } else {
1037
                s->latched_count = val;
1038
            }
1039
            s->rw_state ^= 1;
1040
            break;
1041
        }
1042
    }
1043
}
1044

    
1045
uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1046
{
1047
    int ret, count;
1048
    PITChannelState *s;
1049
    
1050
    addr &= 3;
1051
    s = &pit_channels[addr];
1052
    switch(s->rw_state) {
1053
    case RW_STATE_LSB:
1054
    case RW_STATE_MSB:
1055
    case RW_STATE_WORD0:
1056
    case RW_STATE_WORD1:
1057
        count = pit_get_count(s);
1058
        if (s->rw_state & 1)
1059
            ret = (count >> 8) & 0xff;
1060
        else
1061
            ret = count & 0xff;
1062
        if (s->rw_state & 2)
1063
            s->rw_state ^= 1;
1064
        break;
1065
    default:
1066
    case RW_STATE_LATCHED_WORD0:
1067
    case RW_STATE_LATCHED_WORD1:
1068
        if (s->rw_state & 1)
1069
            ret = s->latched_count >> 8;
1070
        else
1071
            ret = s->latched_count & 0xff;
1072
        s->rw_state ^= 1;
1073
        break;
1074
    }
1075
    return ret;
1076
}
1077

    
1078
void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1079
{
1080
    speaker_data_on = (val >> 1) & 1;
1081
    pit_channels[2].gate = val & 1;
1082
}
1083

    
1084
uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1085
{
1086
    int out;
1087
    out = pit_get_out(&pit_channels[2]);
1088
    dummy_refresh_clock ^= 1;
1089
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5) |
1090
      (dummy_refresh_clock << 4);
1091
}
1092

    
1093
void pit_init(void)
1094
{
1095
    PITChannelState *s;
1096
    int i;
1097

    
1098
    cpu_calibrate_ticks();
1099

    
1100
    for(i = 0;i < 3; i++) {
1101
        s = &pit_channels[i];
1102
        s->mode = 3;
1103
        s->gate = (i != 2);
1104
        pit_load_count(s, 0);
1105
    }
1106

    
1107
    register_ioport_write(0x40, 4, pit_ioport_write, 1);
1108
    register_ioport_read(0x40, 3, pit_ioport_read, 1);
1109

    
1110
    register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1111
    register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1112
}
1113

    
1114
/***********************************************************/
1115
/* serial port emulation */
1116

    
1117
#define UART_IRQ        4
1118

    
1119
#define UART_LCR_DLAB        0x80        /* Divisor latch access bit */
1120

    
1121
#define UART_IER_MSI        0x08        /* Enable Modem status interrupt */
1122
#define UART_IER_RLSI        0x04        /* Enable receiver line status interrupt */
1123
#define UART_IER_THRI        0x02        /* Enable Transmitter holding register int. */
1124
#define UART_IER_RDI        0x01        /* Enable receiver data interrupt */
1125

    
1126
#define UART_IIR_NO_INT        0x01        /* No interrupts pending */
1127
#define UART_IIR_ID        0x06        /* Mask for the interrupt ID */
1128

    
1129
#define UART_IIR_MSI        0x00        /* Modem status interrupt */
1130
#define UART_IIR_THRI        0x02        /* Transmitter holding register empty */
1131
#define UART_IIR_RDI        0x04        /* Receiver data interrupt */
1132
#define UART_IIR_RLSI        0x06        /* Receiver line status interrupt */
1133

    
1134
#define UART_LSR_TEMT        0x40        /* Transmitter empty */
1135
#define UART_LSR_THRE        0x20        /* Transmit-hold-register empty */
1136
#define UART_LSR_BI        0x10        /* Break interrupt indicator */
1137
#define UART_LSR_FE        0x08        /* Frame error indicator */
1138
#define UART_LSR_PE        0x04        /* Parity error indicator */
1139
#define UART_LSR_OE        0x02        /* Overrun error indicator */
1140
#define UART_LSR_DR        0x01        /* Receiver data ready */
1141

    
1142
typedef struct SerialState {
1143
    uint8_t divider;
1144
    uint8_t rbr; /* receive register */
1145
    uint8_t ier;
1146
    uint8_t iir; /* read only */
1147
    uint8_t lcr;
1148
    uint8_t mcr;
1149
    uint8_t lsr; /* read only */
1150
    uint8_t msr;
1151
    uint8_t scr;
1152
} SerialState;
1153

    
1154
SerialState serial_ports[1];
1155

    
1156
void serial_update_irq(void)
1157
{
1158
    SerialState *s = &serial_ports[0];
1159

    
1160
    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1161
        s->iir = UART_IIR_RDI;
1162
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1163
        s->iir = UART_IIR_THRI;
1164
    } else {
1165
        s->iir = UART_IIR_NO_INT;
1166
    }
1167
    if (s->iir != UART_IIR_NO_INT) {
1168
        pic_set_irq(UART_IRQ, 1);
1169
    } else {
1170
        pic_set_irq(UART_IRQ, 0);
1171
    }
1172
}
1173

    
1174
void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1175
{
1176
    SerialState *s = &serial_ports[0];
1177
    unsigned char ch;
1178
    int ret;
1179
    
1180
    addr &= 7;
1181
    switch(addr) {
1182
    default:
1183
    case 0:
1184
        if (s->lcr & UART_LCR_DLAB) {
1185
            s->divider = (s->divider & 0xff00) | val;
1186
        } else {
1187
            s->lsr &= ~UART_LSR_THRE;
1188
            serial_update_irq();
1189

    
1190
            ch = val;
1191
            do {
1192
                ret = write(1, &ch, 1);
1193
            } while (ret != 1);
1194
            s->lsr |= UART_LSR_THRE;
1195
            s->lsr |= UART_LSR_TEMT;
1196
            serial_update_irq();
1197
        }
1198
        break;
1199
    case 1:
1200
        if (s->lcr & UART_LCR_DLAB) {
1201
            s->divider = (s->divider & 0x00ff) | (val << 8);
1202
        } else {
1203
            s->ier = val;
1204
            serial_update_irq();
1205
        }
1206
        break;
1207
    case 2:
1208
        break;
1209
    case 3:
1210
        s->lcr = val;
1211
        break;
1212
    case 4:
1213
        s->mcr = val;
1214
        break;
1215
    case 5:
1216
        break;
1217
    case 6:
1218
        s->msr = val;
1219
        break;
1220
    case 7:
1221
        s->scr = val;
1222
        break;
1223
    }
1224
}
1225

    
1226
uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1227
{
1228
    SerialState *s = &serial_ports[0];
1229
    uint32_t ret;
1230

    
1231
    addr &= 7;
1232
    switch(addr) {
1233
    default:
1234
    case 0:
1235
        if (s->lcr & UART_LCR_DLAB) {
1236
            ret = s->divider & 0xff; 
1237
        } else {
1238
            ret = s->rbr;
1239
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1240
            serial_update_irq();
1241
        }
1242
        break;
1243
    case 1:
1244
        if (s->lcr & UART_LCR_DLAB) {
1245
            ret = (s->divider >> 8) & 0xff;
1246
        } else {
1247
            ret = s->ier;
1248
        }
1249
        break;
1250
    case 2:
1251
        ret = s->iir;
1252
        break;
1253
    case 3:
1254
        ret = s->lcr;
1255
        break;
1256
    case 4:
1257
        ret = s->mcr;
1258
        break;
1259
    case 5:
1260
        ret = s->lsr;
1261
        break;
1262
    case 6:
1263
        ret = s->msr;
1264
        break;
1265
    case 7:
1266
        ret = s->scr;
1267
        break;
1268
    }
1269
    return ret;
1270
}
1271

    
1272
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1273
static int term_got_escape;
1274

    
1275
void term_print_help(void)
1276
{
1277
    printf("\n"
1278
           "C-a h    print this help\n"
1279
           "C-a x    exit emulatior\n"
1280
           "C-a s    save disk data back to file (if -snapshot)\n"
1281
           "C-a b    send break (magic sysrq)\n"
1282
           "C-a C-a  send C-a\n"
1283
           );
1284
}
1285

    
1286
/* called when a char is received */
1287
void serial_received_byte(SerialState *s, int ch)
1288
{
1289
    if (term_got_escape) {
1290
        term_got_escape = 0;
1291
        switch(ch) {
1292
        case 'h':
1293
            term_print_help();
1294
            break;
1295
        case 'x':
1296
            exit(0);
1297
            break;
1298
        case 's': 
1299
            {
1300
                int i;
1301
                for (i = 0; i < MAX_DISKS; i++) {
1302
                    if (bs_table[i])
1303
                        bdrv_commit(bs_table[i]);
1304
                }
1305
            }
1306
            break;
1307
        case 'b':
1308
            /* send break */
1309
            s->rbr = 0;
1310
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
1311
            serial_update_irq();
1312
            break;
1313
        case TERM_ESCAPE:
1314
            goto send_char;
1315
        }
1316
    } else if (ch == TERM_ESCAPE) {
1317
        term_got_escape = 1;
1318
    } else {
1319
    send_char:
1320
        s->rbr = ch;
1321
        s->lsr |= UART_LSR_DR;
1322
        serial_update_irq();
1323
    }
1324
}
1325

    
1326
void serial_init(void)
1327
{
1328
    SerialState *s = &serial_ports[0];
1329

    
1330
    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1331

    
1332
    register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1333
    register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1334
}
1335

    
1336
/***********************************************************/
1337
/* ne2000 emulation */
1338

    
1339
#define NE2000_IOPORT   0x300
1340
#define NE2000_IRQ      9
1341

    
1342
#define MAX_ETH_FRAME_SIZE 1514
1343

    
1344
#define E8390_CMD        0x00  /* The command register (for all pages) */
1345
/* Page 0 register offsets. */
1346
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
1347
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
1348
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
1349
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
1350
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
1351
#define EN0_TSR                0x04        /* Transmit status reg RD */
1352
#define EN0_TPSR        0x04        /* Transmit starting page WR */
1353
#define EN0_NCR                0x05        /* Number of collision reg RD */
1354
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
1355
#define EN0_FIFO        0x06        /* FIFO RD */
1356
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
1357
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
1358
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
1359
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
1360
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
1361
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
1362
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
1363
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
1364
#define EN0_RSR                0x0c        /* rx status reg RD */
1365
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
1366
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
1367
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
1368
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
1369
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
1370
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
1371
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
1372

    
1373
#define EN1_PHYS        0x11
1374
#define EN1_CURPAG      0x17
1375
#define EN1_MULT        0x18
1376

    
1377
/*  Register accessed at EN_CMD, the 8390 base addr.  */
1378
#define E8390_STOP        0x01        /* Stop and reset the chip */
1379
#define E8390_START        0x02        /* Start the chip, clear reset */
1380
#define E8390_TRANS        0x04        /* Transmit a frame */
1381
#define E8390_RREAD        0x08        /* Remote read */
1382
#define E8390_RWRITE        0x10        /* Remote write  */
1383
#define E8390_NODMA        0x20        /* Remote DMA */
1384
#define E8390_PAGE0        0x00        /* Select page chip registers */
1385
#define E8390_PAGE1        0x40        /* using the two high-order bits */
1386
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
1387

    
1388
/* Bits in EN0_ISR - Interrupt status register */
1389
#define ENISR_RX        0x01        /* Receiver, no error */
1390
#define ENISR_TX        0x02        /* Transmitter, no error */
1391
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
1392
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
1393
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
1394
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
1395
#define ENISR_RDC        0x40        /* remote dma complete */
1396
#define ENISR_RESET        0x80        /* Reset completed */
1397
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
1398

    
1399
/* Bits in received packet status byte and EN0_RSR*/
1400
#define ENRSR_RXOK        0x01        /* Received a good packet */
1401
#define ENRSR_CRC        0x02        /* CRC error */
1402
#define ENRSR_FAE        0x04        /* frame alignment error */
1403
#define ENRSR_FO        0x08        /* FIFO overrun */
1404
#define ENRSR_MPA        0x10        /* missed pkt */
1405
#define ENRSR_PHY        0x20        /* physical/multicast address */
1406
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
1407
#define ENRSR_DEF        0x80        /* deferring */
1408

    
1409
/* Transmitted packet status, EN0_TSR. */
1410
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
1411
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
1412
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
1413
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
1414
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
1415
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
1416
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
1417
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
1418

    
1419
#define NE2000_MEM_SIZE 32768
1420

    
1421
typedef struct NE2000State {
1422
    uint8_t cmd;
1423
    uint32_t start;
1424
    uint32_t stop;
1425
    uint8_t boundary;
1426
    uint8_t tsr;
1427
    uint8_t tpsr;
1428
    uint16_t tcnt;
1429
    uint16_t rcnt;
1430
    uint32_t rsar;
1431
    uint8_t isr;
1432
    uint8_t dcfg;
1433
    uint8_t imr;
1434
    uint8_t phys[6]; /* mac address */
1435
    uint8_t curpag;
1436
    uint8_t mult[8]; /* multicast mask array */
1437
    uint8_t mem[NE2000_MEM_SIZE];
1438
} NE2000State;
1439

    
1440
NE2000State ne2000_state;
1441
int net_fd = -1;
1442
char network_script[1024];
1443

    
1444
void ne2000_reset(void)
1445
{
1446
    NE2000State *s = &ne2000_state;
1447
    int i;
1448

    
1449
    s->isr = ENISR_RESET;
1450
    s->mem[0] = 0x52;
1451
    s->mem[1] = 0x54;
1452
    s->mem[2] = 0x00;
1453
    s->mem[3] = 0x12;
1454
    s->mem[4] = 0x34;
1455
    s->mem[5] = 0x56;
1456
    s->mem[14] = 0x57;
1457
    s->mem[15] = 0x57;
1458

    
1459
    /* duplicate prom data */
1460
    for(i = 15;i >= 0; i--) {
1461
        s->mem[2 * i] = s->mem[i];
1462
        s->mem[2 * i + 1] = s->mem[i];
1463
    }
1464
}
1465

    
1466
void ne2000_update_irq(NE2000State *s)
1467
{
1468
    int isr;
1469
    isr = s->isr & s->imr;
1470
    if (isr)
1471
        pic_set_irq(NE2000_IRQ, 1);
1472
    else
1473
        pic_set_irq(NE2000_IRQ, 0);
1474
}
1475

    
1476
int net_init(void)
1477
{
1478
    struct ifreq ifr;
1479
    int fd, ret, pid, status;
1480
    
1481
    fd = open("/dev/net/tun", O_RDWR);
1482
    if (fd < 0) {
1483
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1484
        return -1;
1485
    }
1486
    memset(&ifr, 0, sizeof(ifr));
1487
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1488
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1489
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1490
    if (ret != 0) {
1491
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1492
        close(fd);
1493
        return -1;
1494
    }
1495
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
1496
    fcntl(fd, F_SETFL, O_NONBLOCK);
1497
    net_fd = fd;
1498

    
1499
    /* try to launch network init script */
1500
    pid = fork();
1501
    if (pid >= 0) {
1502
        if (pid == 0) {
1503
            execl(network_script, network_script, ifr.ifr_name, NULL);
1504
            exit(1);
1505
        }
1506
        while (waitpid(pid, &status, 0) != pid);
1507
        if (!WIFEXITED(status) ||
1508
            WEXITSTATUS(status) != 0) {
1509
            fprintf(stderr, "%s: could not launch network script for '%s'\n",
1510
                    network_script, ifr.ifr_name);
1511
        }
1512
    }
1513
    return 0;
1514
}
1515

    
1516
void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1517
{
1518
#ifdef DEBUG_NE2000
1519
    printf("NE2000: sending packet size=%d\n", size);
1520
#endif
1521
    write(net_fd, buf, size);
1522
}
1523

    
1524
/* return true if the NE2000 can receive more data */
1525
int ne2000_can_receive(NE2000State *s)
1526
{
1527
    int avail, index, boundary;
1528
    
1529
    if (s->cmd & E8390_STOP)
1530
        return 0;
1531
    index = s->curpag << 8;
1532
    boundary = s->boundary << 8;
1533
    if (index < boundary)
1534
        avail = boundary - index;
1535
    else
1536
        avail = (s->stop - s->start) - (index - boundary);
1537
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
1538
        return 0;
1539
    return 1;
1540
}
1541

    
1542
void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1543
{
1544
    uint8_t *p;
1545
    int total_len, next, avail, len, index;
1546

    
1547
#if defined(DEBUG_NE2000)
1548
    printf("NE2000: received len=%d\n", size);
1549
#endif
1550

    
1551
    index = s->curpag << 8;
1552
    /* 4 bytes for header */
1553
    total_len = size + 4;
1554
    /* address for next packet (4 bytes for CRC) */
1555
    next = index + ((total_len + 4 + 255) & ~0xff);
1556
    if (next >= s->stop)
1557
        next -= (s->stop - s->start);
1558
    /* prepare packet header */
1559
    p = s->mem + index;
1560
    p[0] = ENRSR_RXOK; /* receive status */
1561
    p[1] = next >> 8;
1562
    p[2] = total_len;
1563
    p[3] = total_len >> 8;
1564
    index += 4;
1565

    
1566
    /* write packet data */
1567
    while (size > 0) {
1568
        avail = s->stop - index;
1569
        len = size;
1570
        if (len > avail)
1571
            len = avail;
1572
        memcpy(s->mem + index, buf, len);
1573
        buf += len;
1574
        index += len;
1575
        if (index == s->stop)
1576
            index = s->start;
1577
        size -= len;
1578
    }
1579
    s->curpag = next >> 8;
1580
    
1581
    /* now we can signal we have receive something */
1582
    s->isr |= ENISR_RX;
1583
    ne2000_update_irq(s);
1584
}
1585

    
1586
void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1587
{
1588
    NE2000State *s = &ne2000_state;
1589
    int offset, page;
1590

    
1591
    addr &= 0xf;
1592
#ifdef DEBUG_NE2000
1593
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1594
#endif
1595
    if (addr == E8390_CMD) {
1596
        /* control register */
1597
        s->cmd = val;
1598
        if (val & E8390_START) {
1599
            /* test specific case: zero length transfert */
1600
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1601
                s->rcnt == 0) {
1602
                s->isr |= ENISR_RDC;
1603
                ne2000_update_irq(s);
1604
            }
1605
            if (val & E8390_TRANS) {
1606
                net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1607
                /* signal end of transfert */
1608
                s->tsr = ENTSR_PTX;
1609
                s->isr |= ENISR_TX;
1610
                ne2000_update_irq(s);
1611
            }
1612
        }
1613
    } else {
1614
        page = s->cmd >> 6;
1615
        offset = addr | (page << 4);
1616
        switch(offset) {
1617
        case EN0_STARTPG:
1618
            s->start = val << 8;
1619
            break;
1620
        case EN0_STOPPG:
1621
            s->stop = val << 8;
1622
            break;
1623
        case EN0_BOUNDARY:
1624
            s->boundary = val;
1625
            break;
1626
        case EN0_IMR:
1627
            s->imr = val;
1628
            ne2000_update_irq(s);
1629
            break;
1630
        case EN0_TPSR:
1631
            s->tpsr = val;
1632
            break;
1633
        case EN0_TCNTLO:
1634
            s->tcnt = (s->tcnt & 0xff00) | val;
1635
            break;
1636
        case EN0_TCNTHI:
1637
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1638
            break;
1639
        case EN0_RSARLO:
1640
            s->rsar = (s->rsar & 0xff00) | val;
1641
            break;
1642
        case EN0_RSARHI:
1643
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
1644
            break;
1645
        case EN0_RCNTLO:
1646
            s->rcnt = (s->rcnt & 0xff00) | val;
1647
            break;
1648
        case EN0_RCNTHI:
1649
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1650
            break;
1651
        case EN0_DCFG:
1652
            s->dcfg = val;
1653
            break;
1654
        case EN0_ISR:
1655
            s->isr &= ~val;
1656
            ne2000_update_irq(s);
1657
            break;
1658
        case EN1_PHYS ... EN1_PHYS + 5:
1659
            s->phys[offset - EN1_PHYS] = val;
1660
            break;
1661
        case EN1_CURPAG:
1662
            s->curpag = val;
1663
            break;
1664
        case EN1_MULT ... EN1_MULT + 7:
1665
            s->mult[offset - EN1_MULT] = val;
1666
            break;
1667
        }
1668
    }
1669
}
1670

    
1671
uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1672
{
1673
    NE2000State *s = &ne2000_state;
1674
    int offset, page, ret;
1675

    
1676
    addr &= 0xf;
1677
    if (addr == E8390_CMD) {
1678
        ret = s->cmd;
1679
    } else {
1680
        page = s->cmd >> 6;
1681
        offset = addr | (page << 4);
1682
        switch(offset) {
1683
        case EN0_TSR:
1684
            ret = s->tsr;
1685
            break;
1686
        case EN0_BOUNDARY:
1687
            ret = s->boundary;
1688
            break;
1689
        case EN0_ISR:
1690
            ret = s->isr;
1691
            break;
1692
        case EN1_PHYS ... EN1_PHYS + 5:
1693
            ret = s->phys[offset - EN1_PHYS];
1694
            break;
1695
        case EN1_CURPAG:
1696
            ret = s->curpag;
1697
            break;
1698
        case EN1_MULT ... EN1_MULT + 7:
1699
            ret = s->mult[offset - EN1_MULT];
1700
            break;
1701
        default:
1702
            ret = 0x00;
1703
            break;
1704
        }
1705
    }
1706
#ifdef DEBUG_NE2000
1707
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1708
#endif
1709
    return ret;
1710
}
1711

    
1712
void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1713
{
1714
    NE2000State *s = &ne2000_state;
1715
    uint8_t *p;
1716

    
1717
#ifdef DEBUG_NE2000
1718
    printf("NE2000: asic write val=0x%04x\n", val);
1719
#endif
1720
    p = s->mem + s->rsar;
1721
    if (s->dcfg & 0x01) {
1722
        /* 16 bit access */
1723
        p[0] = val;
1724
        p[1] = val >> 8;
1725
        s->rsar += 2;
1726
        s->rcnt -= 2;
1727
    } else {
1728
        /* 8 bit access */
1729
        p[0] = val;
1730
        s->rsar++;
1731
        s->rcnt--;
1732
    }
1733
    /* wrap */
1734
    if (s->rsar == s->stop)
1735
        s->rsar = s->start;
1736
    if (s->rcnt == 0) {
1737
        /* signal end of transfert */
1738
        s->isr |= ENISR_RDC;
1739
        ne2000_update_irq(s);
1740
    }
1741
}
1742

    
1743
uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1744
{
1745
    NE2000State *s = &ne2000_state;
1746
    uint8_t *p;
1747
    int ret;
1748

    
1749
    p = s->mem + s->rsar;
1750
    if (s->dcfg & 0x01) {
1751
        /* 16 bit access */
1752
        ret = p[0] | (p[1] << 8);
1753
        s->rsar += 2;
1754
        s->rcnt -= 2;
1755
    } else {
1756
        /* 8 bit access */
1757
        ret = p[0];
1758
        s->rsar++;
1759
        s->rcnt--;
1760
    }
1761
    /* wrap */
1762
    if (s->rsar == s->stop)
1763
        s->rsar = s->start;
1764
    if (s->rcnt == 0) {
1765
        /* signal end of transfert */
1766
        s->isr |= ENISR_RDC;
1767
        ne2000_update_irq(s);
1768
    }
1769
#ifdef DEBUG_NE2000
1770
    printf("NE2000: asic read val=0x%04x\n", ret);
1771
#endif
1772
    return ret;
1773
}
1774

    
1775
void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1776
{
1777
    /* nothing to do (end of reset pulse) */
1778
}
1779

    
1780
uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1781
{
1782
    ne2000_reset();
1783
    return 0;
1784
}
1785

    
1786
void ne2000_init(void)
1787
{
1788
    register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1789
    register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1790

    
1791
    register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1792
    register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1793
    register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1794
    register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1795

    
1796
    register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1797
    register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1798
    ne2000_reset();
1799
}
1800

    
1801
/***********************************************************/
1802
/* ide emulation */
1803

    
1804
/* Bits of HD_STATUS */
1805
#define ERR_STAT                0x01
1806
#define INDEX_STAT                0x02
1807
#define ECC_STAT                0x04        /* Corrected error */
1808
#define DRQ_STAT                0x08
1809
#define SEEK_STAT                0x10
1810
#define SRV_STAT                0x10
1811
#define WRERR_STAT                0x20
1812
#define READY_STAT                0x40
1813
#define BUSY_STAT                0x80
1814

    
1815
/* Bits for HD_ERROR */
1816
#define MARK_ERR                0x01        /* Bad address mark */
1817
#define TRK0_ERR                0x02        /* couldn't find track 0 */
1818
#define ABRT_ERR                0x04        /* Command aborted */
1819
#define MCR_ERR                        0x08        /* media change request */
1820
#define ID_ERR                        0x10        /* ID field not found */
1821
#define MC_ERR                        0x20        /* media changed */
1822
#define ECC_ERR                        0x40        /* Uncorrectable ECC error */
1823
#define BBD_ERR                        0x80        /* pre-EIDE meaning:  block marked bad */
1824
#define ICRC_ERR                0x80        /* new meaning:  CRC error during transfer */
1825

    
1826
/* Bits of HD_NSECTOR */
1827
#define CD                        0x01
1828
#define IO                        0x02
1829
#define REL                        0x04
1830
#define TAG_MASK                0xf8
1831

    
1832
#define IDE_CMD_RESET           0x04
1833
#define IDE_CMD_DISABLE_IRQ     0x02
1834

    
1835
/* ATA/ATAPI Commands pre T13 Spec */
1836
#define WIN_NOP                                0x00
1837
/*
1838
 *        0x01->0x02 Reserved
1839
 */
1840
#define CFA_REQ_EXT_ERROR_CODE                0x03 /* CFA Request Extended Error Code */
1841
/*
1842
 *        0x04->0x07 Reserved
1843
 */
1844
#define WIN_SRST                        0x08 /* ATAPI soft reset command */
1845
#define WIN_DEVICE_RESET                0x08
1846
/*
1847
 *        0x09->0x0F Reserved
1848
 */
1849
#define WIN_RECAL                        0x10
1850
#define WIN_RESTORE                        WIN_RECAL
1851
/*
1852
 *        0x10->0x1F Reserved
1853
 */
1854
#define WIN_READ                        0x20 /* 28-Bit */
1855
#define WIN_READ_ONCE                        0x21 /* 28-Bit without retries */
1856
#define WIN_READ_LONG                        0x22 /* 28-Bit */
1857
#define WIN_READ_LONG_ONCE                0x23 /* 28-Bit without retries */
1858
#define WIN_READ_EXT                        0x24 /* 48-Bit */
1859
#define WIN_READDMA_EXT                        0x25 /* 48-Bit */
1860
#define WIN_READDMA_QUEUED_EXT                0x26 /* 48-Bit */
1861
#define WIN_READ_NATIVE_MAX_EXT                0x27 /* 48-Bit */
1862
/*
1863
 *        0x28
1864
 */
1865
#define WIN_MULTREAD_EXT                0x29 /* 48-Bit */
1866
/*
1867
 *        0x2A->0x2F Reserved
1868
 */
1869
#define WIN_WRITE                        0x30 /* 28-Bit */
1870
#define WIN_WRITE_ONCE                        0x31 /* 28-Bit without retries */
1871
#define WIN_WRITE_LONG                        0x32 /* 28-Bit */
1872
#define WIN_WRITE_LONG_ONCE                0x33 /* 28-Bit without retries */
1873
#define WIN_WRITE_EXT                        0x34 /* 48-Bit */
1874
#define WIN_WRITEDMA_EXT                0x35 /* 48-Bit */
1875
#define WIN_WRITEDMA_QUEUED_EXT                0x36 /* 48-Bit */
1876
#define WIN_SET_MAX_EXT                        0x37 /* 48-Bit */
1877
#define CFA_WRITE_SECT_WO_ERASE                0x38 /* CFA Write Sectors without erase */
1878
#define WIN_MULTWRITE_EXT                0x39 /* 48-Bit */
1879
/*
1880
 *        0x3A->0x3B Reserved
1881
 */
1882
#define WIN_WRITE_VERIFY                0x3C /* 28-Bit */
1883
/*
1884
 *        0x3D->0x3F Reserved
1885
 */
1886
#define WIN_VERIFY                        0x40 /* 28-Bit - Read Verify Sectors */
1887
#define WIN_VERIFY_ONCE                        0x41 /* 28-Bit - without retries */
1888
#define WIN_VERIFY_EXT                        0x42 /* 48-Bit */
1889
/*
1890
 *        0x43->0x4F Reserved
1891
 */
1892
#define WIN_FORMAT                        0x50
1893
/*
1894
 *        0x51->0x5F Reserved
1895
 */
1896
#define WIN_INIT                        0x60
1897
/*
1898
 *        0x61->0x5F Reserved
1899
 */
1900
#define WIN_SEEK                        0x70 /* 0x70-0x7F Reserved */
1901
#define CFA_TRANSLATE_SECTOR                0x87 /* CFA Translate Sector */
1902
#define WIN_DIAGNOSE                        0x90
1903
#define WIN_SPECIFY                        0x91 /* set drive geometry translation */
1904
#define WIN_DOWNLOAD_MICROCODE                0x92
1905
#define WIN_STANDBYNOW2                        0x94
1906
#define WIN_STANDBY2                        0x96
1907
#define WIN_SETIDLE2                        0x97
1908
#define WIN_CHECKPOWERMODE2                0x98
1909
#define WIN_SLEEPNOW2                        0x99
1910
/*
1911
 *        0x9A VENDOR
1912
 */
1913
#define WIN_PACKETCMD                        0xA0 /* Send a packet command. */
1914
#define WIN_PIDENTIFY                        0xA1 /* identify ATAPI device        */
1915
#define WIN_QUEUED_SERVICE                0xA2
1916
#define WIN_SMART                        0xB0 /* self-monitoring and reporting */
1917
#define CFA_ERASE_SECTORS               0xC0
1918
#define WIN_MULTREAD                        0xC4 /* read sectors using multiple mode*/
1919
#define WIN_MULTWRITE                        0xC5 /* write sectors using multiple mode */
1920
#define WIN_SETMULT                        0xC6 /* enable/disable multiple mode */
1921
#define WIN_READDMA_QUEUED                0xC7 /* read sectors using Queued DMA transfers */
1922
#define WIN_READDMA                        0xC8 /* read sectors using DMA transfers */
1923
#define WIN_READDMA_ONCE                0xC9 /* 28-Bit - without retries */
1924
#define WIN_WRITEDMA                        0xCA /* write sectors using DMA transfers */
1925
#define WIN_WRITEDMA_ONCE                0xCB /* 28-Bit - without retries */
1926
#define WIN_WRITEDMA_QUEUED                0xCC /* write sectors using Queued DMA transfers */
1927
#define CFA_WRITE_MULTI_WO_ERASE        0xCD /* CFA Write multiple without erase */
1928
#define WIN_GETMEDIASTATUS                0xDA        
1929
#define WIN_ACKMEDIACHANGE                0xDB /* ATA-1, ATA-2 vendor */
1930
#define WIN_POSTBOOT                        0xDC
1931
#define WIN_PREBOOT                        0xDD
1932
#define WIN_DOORLOCK                        0xDE /* lock door on removable drives */
1933
#define WIN_DOORUNLOCK                        0xDF /* unlock door on removable drives */
1934
#define WIN_STANDBYNOW1                        0xE0
1935
#define WIN_IDLEIMMEDIATE                0xE1 /* force drive to become "ready" */
1936
#define WIN_STANDBY                     0xE2 /* Set device in Standby Mode */
1937
#define WIN_SETIDLE1                        0xE3
1938
#define WIN_READ_BUFFER                        0xE4 /* force read only 1 sector */
1939
#define WIN_CHECKPOWERMODE1                0xE5
1940
#define WIN_SLEEPNOW1                        0xE6
1941
#define WIN_FLUSH_CACHE                        0xE7
1942
#define WIN_WRITE_BUFFER                0xE8 /* force write only 1 sector */
1943
#define WIN_WRITE_SAME                        0xE9 /* read ata-2 to use */
1944
        /* SET_FEATURES 0x22 or 0xDD */
1945
#define WIN_FLUSH_CACHE_EXT                0xEA /* 48-Bit */
1946
#define WIN_IDENTIFY                        0xEC /* ask drive to identify itself        */
1947
#define WIN_MEDIAEJECT                        0xED
1948
#define WIN_IDENTIFY_DMA                0xEE /* same as WIN_IDENTIFY, but DMA */
1949
#define WIN_SETFEATURES                        0xEF /* set special drive features */
1950
#define EXABYTE_ENABLE_NEST                0xF0
1951
#define WIN_SECURITY_SET_PASS                0xF1
1952
#define WIN_SECURITY_UNLOCK                0xF2
1953
#define WIN_SECURITY_ERASE_PREPARE        0xF3
1954
#define WIN_SECURITY_ERASE_UNIT                0xF4
1955
#define WIN_SECURITY_FREEZE_LOCK        0xF5
1956
#define WIN_SECURITY_DISABLE                0xF6
1957
#define WIN_READ_NATIVE_MAX                0xF8 /* return the native maximum address */
1958
#define WIN_SET_MAX                        0xF9
1959
#define DISABLE_SEAGATE                        0xFB
1960

    
1961
/* set to 1 set disable mult support */
1962
#define MAX_MULT_SECTORS 8
1963

    
1964
struct IDEState;
1965

    
1966
typedef void EndTransferFunc(struct IDEState *);
1967

    
1968
typedef struct IDEState {
1969
    /* ide config */
1970
    int cylinders, heads, sectors;
1971
    int64_t nb_sectors;
1972
    int mult_sectors;
1973
    int irq;
1974
    /* ide regs */
1975
    uint8_t feature;
1976
    uint8_t error;
1977
    uint16_t nsector; /* 0 is 256 to ease computations */
1978
    uint8_t sector;
1979
    uint8_t lcyl;
1980
    uint8_t hcyl;
1981
    uint8_t select;
1982
    uint8_t status;
1983
    /* 0x3f6 command, only meaningful for drive 0 */
1984
    uint8_t cmd;
1985
    /* depends on bit 4 in select, only meaningful for drive 0 */
1986
    struct IDEState *cur_drive; 
1987
    BlockDriverState *bs;
1988
    int req_nb_sectors; /* number of sectors per interrupt */
1989
    EndTransferFunc *end_transfer_func;
1990
    uint8_t *data_ptr;
1991
    uint8_t *data_end;
1992
    uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
1993
} IDEState;
1994

    
1995
IDEState ide_state[MAX_DISKS];
1996

    
1997
static void padstr(char *str, const char *src, int len)
1998
{
1999
    int i, v;
2000
    for(i = 0; i < len; i++) {
2001
        if (*src)
2002
            v = *src++;
2003
        else
2004
            v = ' ';
2005
        *(char *)((long)str ^ 1) = v;
2006
        str++;
2007
    }
2008
}
2009

    
2010
static void ide_identify(IDEState *s)
2011
{
2012
    uint16_t *p;
2013
    unsigned int oldsize;
2014

    
2015
    memset(s->io_buffer, 0, 512);
2016
    p = (uint16_t *)s->io_buffer;
2017
    stw(p + 0, 0x0040);
2018
    stw(p + 1, s->cylinders); 
2019
    stw(p + 3, s->heads);
2020
    stw(p + 4, 512 * s->sectors); /* sectors */
2021
    stw(p + 5, 512); /* sector size */
2022
    stw(p + 6, s->sectors); 
2023
    stw(p + 20, 3); /* buffer type */
2024
    stw(p + 21, 512); /* cache size in sectors */
2025
    stw(p + 22, 4); /* ecc bytes */
2026
    padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
2027
#if MAX_MULT_SECTORS > 1    
2028
    stw(p + 47, MAX_MULT_SECTORS);
2029
#endif
2030
    stw(p + 48, 1); /* dword I/O */
2031
    stw(p + 49, 1 << 9); /* LBA supported, no DMA */
2032
    stw(p + 51, 0x200); /* PIO transfer cycle */
2033
    stw(p + 52, 0x200); /* DMA transfer cycle */
2034
    stw(p + 54, s->cylinders);
2035
    stw(p + 55, s->heads);
2036
    stw(p + 56, s->sectors);
2037
    oldsize = s->cylinders * s->heads * s->sectors;
2038
    stw(p + 57, oldsize);
2039
    stw(p + 58, oldsize >> 16);
2040
    if (s->mult_sectors)
2041
        stw(p + 59, 0x100 | s->mult_sectors);
2042
    stw(p + 60, s->nb_sectors);
2043
    stw(p + 61, s->nb_sectors >> 16);
2044
    stw(p + 80, (1 << 1) | (1 << 2));
2045
    stw(p + 82, (1 << 14));
2046
    stw(p + 83, (1 << 14));
2047
    stw(p + 84, (1 << 14));
2048
    stw(p + 85, (1 << 14));
2049
    stw(p + 86, 0);
2050
    stw(p + 87, (1 << 14));
2051
}
2052

    
2053
static inline void ide_abort_command(IDEState *s)
2054
{
2055
    s->status = READY_STAT | ERR_STAT;
2056
    s->error = ABRT_ERR;
2057
}
2058

    
2059
static inline void ide_set_irq(IDEState *s)
2060
{
2061
    if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
2062
        pic_set_irq(s->irq, 1);
2063
    }
2064
}
2065

    
2066
/* prepare data transfer and tell what to do after */
2067
static void ide_transfer_start(IDEState *s, int size, 
2068
                               EndTransferFunc *end_transfer_func)
2069
{
2070
    s->end_transfer_func = end_transfer_func;
2071
    s->data_ptr = s->io_buffer;
2072
    s->data_end = s->io_buffer + size;
2073
    s->status |= DRQ_STAT;
2074
}
2075

    
2076
static void ide_transfer_stop(IDEState *s)
2077
{
2078
    s->end_transfer_func = ide_transfer_stop;
2079
    s->data_ptr = s->io_buffer;
2080
    s->data_end = s->io_buffer;
2081
    s->status &= ~DRQ_STAT;
2082
}
2083

    
2084
static int64_t ide_get_sector(IDEState *s)
2085
{
2086
    int64_t sector_num;
2087
    if (s->select & 0x40) {
2088
        /* lba */
2089
        sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) | 
2090
            (s->lcyl << 8) | s->sector;
2091
    } else {
2092
        sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
2093
            (s->select & 0x0f) * s->sectors + 
2094
            (s->sector - 1);
2095
    }
2096
    return sector_num;
2097
}
2098

    
2099
static void ide_set_sector(IDEState *s, int64_t sector_num)
2100
{
2101
    unsigned int cyl, r;
2102
    if (s->select & 0x40) {
2103
        s->select = (s->select & 0xf0) | (sector_num >> 24);
2104
        s->hcyl = (sector_num >> 16);
2105
        s->lcyl = (sector_num >> 8);
2106
        s->sector = (sector_num);
2107
    } else {
2108
        cyl = sector_num / (s->heads * s->sectors);
2109
        r = sector_num % (s->heads * s->sectors);
2110
        s->hcyl = cyl >> 8;
2111
        s->lcyl = cyl;
2112
        s->select = (s->select & 0xf0) | (r / s->sectors);
2113
        s->sector = (r % s->sectors) + 1;
2114
    }
2115
}
2116

    
2117
static void ide_sector_read(IDEState *s)
2118
{
2119
    int64_t sector_num;
2120
    int ret, n;
2121

    
2122
    s->status = READY_STAT | SEEK_STAT;
2123
    sector_num = ide_get_sector(s);
2124
    n = s->nsector;
2125
    if (n == 0) {
2126
        /* no more sector to read from disk */
2127
        ide_transfer_stop(s);
2128
    } else {
2129
#if defined(DEBUG_IDE)
2130
        printf("read sector=%Ld\n", sector_num);
2131
#endif
2132
        if (n > s->req_nb_sectors)
2133
            n = s->req_nb_sectors;
2134
        ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
2135
        ide_transfer_start(s, 512 * n, ide_sector_read);
2136
        ide_set_irq(s);
2137
        ide_set_sector(s, sector_num + n);
2138
        s->nsector -= n;
2139
    }
2140
}
2141

    
2142
static void ide_sector_write(IDEState *s)
2143
{
2144
    int64_t sector_num;
2145
    int ret, n, n1;
2146

    
2147
    s->status = READY_STAT | SEEK_STAT;
2148
    sector_num = ide_get_sector(s);
2149
#if defined(DEBUG_IDE)
2150
    printf("write sector=%Ld\n", sector_num);
2151
#endif
2152
    n = s->nsector;
2153
    if (n > s->req_nb_sectors)
2154
        n = s->req_nb_sectors;
2155
    ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
2156
    s->nsector -= n;
2157
    if (s->nsector == 0) {
2158
        /* no more sector to write */
2159
        ide_transfer_stop(s);
2160
    } else {
2161
        n1 = s->nsector;
2162
        if (n1 > s->req_nb_sectors)
2163
            n1 = s->req_nb_sectors;
2164
        ide_transfer_start(s, 512 * n1, ide_sector_write);
2165
    }
2166
    ide_set_sector(s, sector_num + n);
2167
    ide_set_irq(s);
2168
}
2169

    
2170
void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
2171
{
2172
    IDEState *s = ide_state[0].cur_drive;
2173
    int unit, n;
2174

    
2175
    addr &= 7;
2176
#ifdef DEBUG_IDE
2177
    printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
2178
#endif
2179
    switch(addr) {
2180
    case 0:
2181
        break;
2182
    case 1:
2183
        s->feature = val;
2184
        break;
2185
    case 2:
2186
        if (val == 0)
2187
            val = 256;
2188
        s->nsector = val;
2189
        break;
2190
    case 3:
2191
        s->sector = val;
2192
        break;
2193
    case 4:
2194
        s->lcyl = val;
2195
        break;
2196
    case 5:
2197
        s->hcyl = val;
2198
        break;
2199
    case 6:
2200
        /* select drive */
2201
        unit = (val >> 4) & 1;
2202
        s = &ide_state[unit];
2203
        ide_state[0].cur_drive = s;
2204
        s->select = val;
2205
        break;
2206
    default:
2207
    case 7:
2208
        /* command */
2209
#if defined(DEBUG_IDE)
2210
        printf("ide: CMD=%02x\n", val);
2211
#endif
2212
        switch(val) {
2213
        case WIN_PIDENTIFY:
2214
        case WIN_IDENTIFY:
2215
            if (s->bs) {
2216
                ide_identify(s);
2217
                s->status = READY_STAT;
2218
                ide_transfer_start(s, 512, ide_transfer_stop);
2219
            } else {
2220
                ide_abort_command(s);
2221
            }
2222
            ide_set_irq(s);
2223
            break;
2224
        case WIN_SPECIFY:
2225
        case WIN_RECAL:
2226
            s->status = READY_STAT;
2227
            ide_set_irq(s);
2228
            break;
2229
        case WIN_SETMULT:
2230
            if (s->nsector > MAX_MULT_SECTORS || 
2231
                s->nsector == 0 ||
2232
                (s->nsector & (s->nsector - 1)) != 0) {
2233
                ide_abort_command(s);
2234
            } else {
2235
                s->mult_sectors = s->nsector;
2236
                s->status = READY_STAT;
2237
            }
2238
            ide_set_irq(s);
2239
            break;
2240
        case WIN_READ:
2241
        case WIN_READ_ONCE:
2242
            s->req_nb_sectors = 1;
2243
            ide_sector_read(s);
2244
            break;
2245
        case WIN_WRITE:
2246
        case WIN_WRITE_ONCE:
2247
            s->status = SEEK_STAT;
2248
            s->req_nb_sectors = 1;
2249
            ide_transfer_start(s, 512, ide_sector_write);
2250
            break;
2251
        case WIN_MULTREAD:
2252
            if (!s->mult_sectors)
2253
                goto abort_cmd;
2254
            s->req_nb_sectors = s->mult_sectors;
2255
            ide_sector_read(s);
2256
            break;
2257
        case WIN_MULTWRITE:
2258
            if (!s->mult_sectors)
2259
                goto abort_cmd;
2260
            s->status = SEEK_STAT;
2261
            s->req_nb_sectors = s->mult_sectors;
2262
            n = s->nsector;
2263
            if (n > s->req_nb_sectors)
2264
                n = s->req_nb_sectors;
2265
            ide_transfer_start(s, 512 * n, ide_sector_write);
2266
            break;
2267
        case WIN_READ_NATIVE_MAX:
2268
            ide_set_sector(s, s->nb_sectors - 1);
2269
            s->status = READY_STAT;
2270
            ide_set_irq(s);
2271
            break;
2272
        default:
2273
        abort_cmd:
2274
            ide_abort_command(s);
2275
            ide_set_irq(s);
2276
            break;
2277
        }
2278
    }
2279
}
2280

    
2281
uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
2282
{
2283
    IDEState *s = ide_state[0].cur_drive;
2284
    int ret;
2285

    
2286
    addr &= 7;
2287
    switch(addr) {
2288
    case 0:
2289
        ret = 0xff;
2290
        break;
2291
    case 1:
2292
        ret = s->error;
2293
        break;
2294
    case 2:
2295
        ret = s->nsector & 0xff;
2296
        break;
2297
    case 3:
2298
        ret = s->sector;
2299
        break;
2300
    case 4:
2301
        ret = s->lcyl;
2302
        break;
2303
    case 5:
2304
        ret = s->hcyl;
2305
        break;
2306
    case 6:
2307
        ret = s->select;
2308
        break;
2309
    default:
2310
    case 7:
2311
        ret = s->status;
2312
        pic_set_irq(s->irq, 0);
2313
        break;
2314
    }
2315
#ifdef DEBUG_IDE
2316
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2317
#endif
2318
    return ret;
2319
}
2320

    
2321
uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
2322
{
2323
    IDEState *s = ide_state[0].cur_drive;
2324
    int ret;
2325
    ret = s->status;
2326
#ifdef DEBUG_IDE
2327
    printf("ide: read status val=%02x\n", ret);
2328
#endif
2329
    return ret;
2330
}
2331

    
2332
void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
2333
{
2334
    IDEState *s;
2335
    int i;
2336

    
2337
#ifdef DEBUG_IDE
2338
    printf("ide: write control val=%02x\n", val);
2339
#endif
2340
    /* common for both drives */
2341
    if (!(ide_state[0].cmd & IDE_CMD_RESET) &&
2342
        (val & IDE_CMD_RESET)) {
2343
        /* reset low to high */
2344
        for(i = 0;i < 2; i++) {
2345
            s = &ide_state[i];
2346
            s->status = BUSY_STAT | SEEK_STAT;
2347
            s->error = 0x01;
2348
        }
2349
    } else if ((ide_state[0].cmd & IDE_CMD_RESET) &&
2350
               !(val & IDE_CMD_RESET)) {
2351
        /* high to low */
2352
        for(i = 0;i < 2; i++) {
2353
            s = &ide_state[i];
2354
            s->status = READY_STAT;
2355
            /* set hard disk drive ID */
2356
            s->select &= 0xf0; /* clear head */
2357
            s->nsector = 1;
2358
            s->sector = 1;
2359
            if (s->nb_sectors == 0) {
2360
                /* no disk present */
2361
                s->lcyl = 0x12;
2362
                s->hcyl = 0x34;
2363
            } else {
2364
                s->lcyl = 0;
2365
                s->hcyl = 0;
2366
            }
2367
        }
2368
    }
2369

    
2370
    ide_state[0].cmd = val;
2371
}
2372

    
2373
void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
2374
{
2375
    IDEState *s = ide_state[0].cur_drive;
2376
    uint8_t *p;
2377

    
2378
    p = s->data_ptr;
2379
    *(uint16_t *)p = tswap16(val);
2380
    p += 2;
2381
    s->data_ptr = p;
2382
    if (p >= s->data_end)
2383
        s->end_transfer_func(s);
2384
}
2385

    
2386
uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
2387
{
2388
    IDEState *s = ide_state[0].cur_drive;
2389
    uint8_t *p;
2390
    int ret;
2391
    
2392
    p = s->data_ptr;
2393
    ret = tswap16(*(uint16_t *)p);
2394
    p += 2;
2395
    s->data_ptr = p;
2396
    if (p >= s->data_end)
2397
        s->end_transfer_func(s);
2398
    return ret;
2399
}
2400

    
2401
void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
2402
{
2403
    IDEState *s = ide_state[0].cur_drive;
2404
    uint8_t *p;
2405

    
2406
    p = s->data_ptr;
2407
    *(uint32_t *)p = tswap32(val);
2408
    p += 4;
2409
    s->data_ptr = p;
2410
    if (p >= s->data_end)
2411
        s->end_transfer_func(s);
2412
}
2413

    
2414
uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
2415
{
2416
    IDEState *s = ide_state[0].cur_drive;
2417
    uint8_t *p;
2418
    int ret;
2419
    
2420
    p = s->data_ptr;
2421
    ret = tswap32(*(uint32_t *)p);
2422
    p += 4;
2423
    s->data_ptr = p;
2424
    if (p >= s->data_end)
2425
        s->end_transfer_func(s);
2426
    return ret;
2427
}
2428

    
2429
void ide_reset(IDEState *s)
2430
{
2431
    s->mult_sectors = MAX_MULT_SECTORS;
2432
    s->status = READY_STAT;
2433
    s->cur_drive = s;
2434
    s->select = 0xa0;
2435
}
2436

    
2437
struct partition {
2438
        uint8_t boot_ind;                /* 0x80 - active */
2439
        uint8_t head;                /* starting head */
2440
        uint8_t sector;                /* starting sector */
2441
        uint8_t cyl;                /* starting cylinder */
2442
        uint8_t sys_ind;                /* What partition type */
2443
        uint8_t end_head;                /* end head */
2444
        uint8_t end_sector;        /* end sector */
2445
        uint8_t end_cyl;                /* end cylinder */
2446
        uint32_t start_sect;        /* starting sector counting from 0 */
2447
        uint32_t nr_sects;                /* nr of sectors in partition */
2448
} __attribute__((packed));
2449

    
2450
/* try to guess the IDE geometry from the MSDOS partition table */
2451
void ide_guess_geometry(IDEState *s)
2452
{
2453
    uint8_t buf[512];
2454
    int ret, i;
2455
    struct partition *p;
2456
    uint32_t nr_sects;
2457

    
2458
    if (s->cylinders != 0)
2459
        return;
2460
    ret = bdrv_read(s->bs, 0, buf, 1);
2461
    if (ret < 0)
2462
        return;
2463
    /* test msdos magic */
2464
    if (buf[510] != 0x55 || buf[511] != 0xaa)
2465
        return;
2466
    for(i = 0; i < 4; i++) {
2467
        p = ((struct partition *)(buf + 0x1be)) + i;
2468
        nr_sects = tswap32(p->nr_sects);
2469
        if (nr_sects && p->end_head) {
2470
            /* We make the assumption that the partition terminates on
2471
               a cylinder boundary */
2472
            s->heads = p->end_head + 1;
2473
            s->sectors = p->end_sector & 63;
2474
            s->cylinders = s->nb_sectors / (s->heads * s->sectors);
2475
#if 0
2476
            printf("guessed partition: CHS=%d %d %d\n", 
2477
                   s->cylinders, s->heads, s->sectors);
2478
#endif
2479
        }
2480
    }
2481
}
2482

    
2483
void ide_init(void)
2484
{
2485
    IDEState *s;
2486
    int i, cylinders;
2487
    int64_t nb_sectors;
2488

    
2489
    for(i = 0; i < MAX_DISKS; i++) {
2490
        s = &ide_state[i];
2491
        s->bs = bs_table[i];
2492
        if (s->bs) {
2493
            bdrv_get_geometry(s->bs, &nb_sectors);
2494
            s->nb_sectors = nb_sectors;
2495
            ide_guess_geometry(s);
2496
            if (s->cylinders == 0) {
2497
                /* if no geometry, use a LBA compatible one */
2498
                cylinders = nb_sectors / (16 * 63);
2499
                if (cylinders > 16383)
2500
                    cylinders = 16383;
2501
                else if (cylinders < 2)
2502
                    cylinders = 2;
2503
                s->cylinders = cylinders;
2504
                s->heads = 16;
2505
                s->sectors = 63;
2506
            }
2507
        }
2508
        s->irq = 14;
2509
        ide_reset(s);
2510
    }
2511
    register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
2512
    register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
2513
    register_ioport_read(0x3f6, 1, ide_status_read, 1);
2514
    register_ioport_write(0x3f6, 1, ide_cmd_write, 1);
2515

    
2516
    /* data ports */
2517
    register_ioport_write(0x1f0, 2, ide_data_writew, 2);
2518
    register_ioport_read(0x1f0, 2, ide_data_readw, 2);
2519
    register_ioport_write(0x1f0, 4, ide_data_writel, 4);
2520
    register_ioport_read(0x1f0, 4, ide_data_readl, 4);
2521
}
2522

    
2523
/***********************************************************/
2524
/* keyboard emulation */
2525

    
2526
/*        Keyboard Controller Commands */
2527
#define KBD_CCMD_READ_MODE        0x20        /* Read mode bits */
2528
#define KBD_CCMD_WRITE_MODE        0x60        /* Write mode bits */
2529
#define KBD_CCMD_GET_VERSION        0xA1        /* Get controller version */
2530
#define KBD_CCMD_MOUSE_DISABLE        0xA7        /* Disable mouse interface */
2531
#define KBD_CCMD_MOUSE_ENABLE        0xA8        /* Enable mouse interface */
2532
#define KBD_CCMD_TEST_MOUSE        0xA9        /* Mouse interface test */
2533
#define KBD_CCMD_SELF_TEST        0xAA        /* Controller self test */
2534
#define KBD_CCMD_KBD_TEST        0xAB        /* Keyboard interface test */
2535
#define KBD_CCMD_KBD_DISABLE        0xAD        /* Keyboard interface disable */
2536
#define KBD_CCMD_KBD_ENABLE        0xAE        /* Keyboard interface enable */
2537
#define KBD_CCMD_READ_INPORT    0xC0    /* read input port */
2538
#define KBD_CCMD_READ_OUTPORT        0xD0    /* read output port */
2539
#define KBD_CCMD_WRITE_OUTPORT        0xD1    /* write output port */
2540
#define KBD_CCMD_WRITE_OBUF        0xD2
2541
#define KBD_CCMD_WRITE_AUX_OBUF        0xD3    /* Write to output buffer as if
2542
                                           initiated by the auxiliary device */
2543
#define KBD_CCMD_WRITE_MOUSE        0xD4        /* Write the following byte to the mouse */
2544
#define KBD_CCMD_ENABLE_A20     0xDD
2545
#define KBD_CCMD_DISABLE_A20    0xDF
2546
#define KBD_CCMD_RESET                0xFE
2547

    
2548
/* Keyboard Commands */
2549
#define KBD_CMD_SET_LEDS        0xED        /* Set keyboard leds */
2550
#define KBD_CMD_ECHO             0xEE
2551
#define KBD_CMD_SET_RATE        0xF3        /* Set typematic rate */
2552
#define KBD_CMD_ENABLE                0xF4        /* Enable scanning */
2553
#define KBD_CMD_RESET_DISABLE        0xF5        /* reset and disable scanning */
2554
#define KBD_CMD_RESET_ENABLE           0xF6    /* reset and enable scanning */
2555
#define KBD_CMD_RESET                0xFF        /* Reset */
2556

    
2557
/* Keyboard Replies */
2558
#define KBD_REPLY_POR                0xAA        /* Power on reset */
2559
#define KBD_REPLY_ACK                0xFA        /* Command ACK */
2560
#define KBD_REPLY_RESEND        0xFE        /* Command NACK, send the cmd again */
2561

    
2562
/* Status Register Bits */
2563
#define KBD_STAT_OBF                 0x01        /* Keyboard output buffer full */
2564
#define KBD_STAT_IBF                 0x02        /* Keyboard input buffer full */
2565
#define KBD_STAT_SELFTEST        0x04        /* Self test successful */
2566
#define KBD_STAT_CMD                0x08        /* Last write was a command write (0=data) */
2567
#define KBD_STAT_UNLOCKED        0x10        /* Zero if keyboard locked */
2568
#define KBD_STAT_MOUSE_OBF        0x20        /* Mouse output buffer full */
2569
#define KBD_STAT_GTO                 0x40        /* General receive/xmit timeout */
2570
#define KBD_STAT_PERR                 0x80        /* Parity error */
2571

    
2572
/* Controller Mode Register Bits */
2573
#define KBD_MODE_KBD_INT        0x01        /* Keyboard data generate IRQ1 */
2574
#define KBD_MODE_MOUSE_INT        0x02        /* Mouse data generate IRQ12 */
2575
#define KBD_MODE_SYS                 0x04        /* The system flag (?) */
2576
#define KBD_MODE_NO_KEYLOCK        0x08        /* The keylock doesn't affect the keyboard if set */
2577
#define KBD_MODE_DISABLE_KBD        0x10        /* Disable keyboard interface */
2578
#define KBD_MODE_DISABLE_MOUSE        0x20        /* Disable mouse interface */
2579
#define KBD_MODE_KCC                 0x40        /* Scan code conversion to PC format */
2580
#define KBD_MODE_RFU                0x80
2581

    
2582
/* Mouse Commands */
2583
#define AUX_SET_SCALE11                0xE6        /* Set 1:1 scaling */
2584
#define AUX_SET_SCALE21                0xE7        /* Set 2:1 scaling */
2585
#define AUX_SET_RES                0xE8        /* Set resolution */
2586
#define AUX_GET_SCALE                0xE9        /* Get scaling factor */
2587
#define AUX_SET_STREAM                0xEA        /* Set stream mode */
2588
#define AUX_POLL                0xEB        /* Poll */
2589
#define AUX_RESET_WRAP                0xEC        /* Reset wrap mode */
2590
#define AUX_SET_WRAP                0xEE        /* Set wrap mode */
2591
#define AUX_SET_REMOTE                0xF0        /* Set remote mode */
2592
#define AUX_GET_TYPE                0xF2        /* Get type */
2593
#define AUX_SET_SAMPLE                0xF3        /* Set sample rate */
2594
#define AUX_ENABLE_DEV                0xF4        /* Enable aux device */
2595
#define AUX_DISABLE_DEV                0xF5        /* Disable aux device */
2596
#define AUX_SET_DEFAULT                0xF6
2597
#define AUX_RESET                0xFF        /* Reset aux device */
2598
#define AUX_ACK                        0xFA        /* Command byte ACK. */
2599

    
2600
#define MOUSE_STATUS_REMOTE     0x40
2601
#define MOUSE_STATUS_ENABLED    0x20
2602
#define MOUSE_STATUS_SCALE21    0x10
2603

    
2604
#define KBD_QUEUE_SIZE 256
2605

    
2606
typedef struct {
2607
    uint8_t data[KBD_QUEUE_SIZE];
2608
    int rptr, wptr, count;
2609
} KBDQueue;
2610

    
2611
typedef struct KBDState {
2612
    KBDQueue queues[2];
2613
    uint8_t write_cmd; /* if non zero, write data to port 60 is expected */
2614
    uint8_t status;
2615
    uint8_t mode;
2616
    /* keyboard state */
2617
    int kbd_write_cmd;
2618
    int scan_enabled;
2619
    /* mouse state */
2620
    int mouse_write_cmd;
2621
    uint8_t mouse_status;
2622
    uint8_t mouse_resolution;
2623
    uint8_t mouse_sample_rate;
2624
    uint8_t mouse_wrap;
2625
    uint8_t mouse_type; /* 0 = PS2, 3 = IMPS/2, 4 = IMEX */
2626
    uint8_t mouse_detect_state;
2627
    int mouse_dx; /* current values, needed for 'poll' mode */
2628
    int mouse_dy;
2629
    int mouse_dz;
2630
    uint8_t mouse_buttons;
2631
} KBDState;
2632

    
2633
KBDState kbd_state;
2634
int reset_requested;
2635
int a20_enabled;
2636

    
2637
/* update irq and KBD_STAT_[MOUSE_]OBF */
2638
static void kbd_update_irq(KBDState *s)
2639
{
2640
    int irq12_level, irq1_level;
2641

    
2642
    irq1_level = 0;    
2643
    irq12_level = 0;    
2644
    s->status &= ~(KBD_STAT_OBF | KBD_STAT_MOUSE_OBF);
2645
    if (s->queues[0].count != 0 ||
2646
        s->queues[1].count != 0) {
2647
        s->status |= KBD_STAT_OBF;
2648
        if (s->queues[1].count != 0) {
2649
            s->status |= KBD_STAT_MOUSE_OBF;
2650
            if (s->mode & KBD_MODE_MOUSE_INT)
2651
                irq12_level = 1;
2652
        } else {
2653
            if (s->mode & KBD_MODE_KBD_INT)
2654
                irq1_level = 1;
2655
        }
2656
    }
2657
    pic_set_irq(1, irq1_level);
2658
    pic_set_irq(12, irq12_level);
2659
}
2660

    
2661
static void kbd_queue(KBDState *s, int b, int aux)
2662
{
2663
    KBDQueue *q = &kbd_state.queues[aux];
2664

    
2665
#if defined(DEBUG_MOUSE) || defined(DEBUG_KBD)
2666
    if (aux)
2667
        printf("mouse event: 0x%02x\n", b);
2668
#ifdef DEBUG_KBD
2669
    else
2670
        printf("kbd event: 0x%02x\n", b);
2671
#endif
2672
#endif
2673
    if (q->count >= KBD_QUEUE_SIZE)
2674
        return;
2675
    q->data[q->wptr] = b;
2676
    if (++q->wptr == KBD_QUEUE_SIZE)
2677
        q->wptr = 0;
2678
    q->count++;
2679
    kbd_update_irq(s);
2680
}
2681

    
2682
void kbd_put_keycode(int keycode)
2683
{
2684
    KBDState *s = &kbd_state;
2685
    kbd_queue(s, keycode, 0);
2686
}
2687

    
2688
uint32_t kbd_read_status(CPUX86State *env, uint32_t addr)
2689
{
2690
    KBDState *s = &kbd_state;
2691
    int val;
2692
    val = s->status;
2693
#if defined(DEBUG_KBD) && 0
2694
    printf("kbd: read status=0x%02x\n", val);
2695
#endif
2696
    return val;
2697
}
2698

    
2699
void kbd_write_command(CPUX86State *env, uint32_t addr, uint32_t val)
2700
{
2701
    KBDState *s = &kbd_state;
2702

    
2703
#ifdef DEBUG_KBD
2704
    printf("kbd: write cmd=0x%02x\n", val);
2705
#endif
2706
    switch(val) {
2707
    case KBD_CCMD_READ_MODE:
2708
        kbd_queue(s, s->mode, 0);
2709
        break;
2710
    case KBD_CCMD_WRITE_MODE:
2711
    case KBD_CCMD_WRITE_OBUF:
2712
    case KBD_CCMD_WRITE_AUX_OBUF:
2713
    case KBD_CCMD_WRITE_MOUSE:
2714
    case KBD_CCMD_WRITE_OUTPORT:
2715
        s->write_cmd = val;
2716
        break;
2717
    case KBD_CCMD_MOUSE_DISABLE:
2718
        s->mode |= KBD_MODE_DISABLE_MOUSE;
2719
        break;
2720
    case KBD_CCMD_MOUSE_ENABLE:
2721
        s->mode &= ~KBD_MODE_DISABLE_MOUSE;
2722
        break;
2723
    case KBD_CCMD_TEST_MOUSE:
2724
        kbd_queue(s, 0x00, 0);
2725
        break;
2726
    case KBD_CCMD_SELF_TEST:
2727
        s->status |= KBD_STAT_SELFTEST;
2728
        kbd_queue(s, 0x55, 0);
2729
        break;
2730
    case KBD_CCMD_KBD_TEST:
2731
        kbd_queue(s, 0x00, 0);
2732
        break;
2733
    case KBD_CCMD_KBD_DISABLE:
2734
        s->mode |= KBD_MODE_DISABLE_KBD;
2735
        break;
2736
    case KBD_CCMD_KBD_ENABLE:
2737
        s->mode &= ~KBD_MODE_DISABLE_KBD;
2738
        break;
2739
    case KBD_CCMD_READ_INPORT:
2740
        kbd_queue(s, 0x00, 0);
2741
        break;
2742
    case KBD_CCMD_READ_OUTPORT:
2743
        /* XXX: check that */
2744
        val = 0x01 | (a20_enabled << 1);
2745
        if (s->status & KBD_STAT_OBF)
2746
            val |= 0x10;
2747
        if (s->status & KBD_STAT_MOUSE_OBF)
2748
            val |= 0x20;
2749
        kbd_queue(s, val, 0);
2750
        break;
2751
    case KBD_CCMD_ENABLE_A20:
2752
        a20_enabled = 1;
2753
        break;
2754
    case KBD_CCMD_DISABLE_A20:
2755
        a20_enabled = 0;
2756
        break;
2757
    case KBD_CCMD_RESET:
2758
        reset_requested = 1;
2759
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2760
        break;
2761
    default:
2762
        fprintf(stderr, "vl: unsupported keyboard cmd=0x%02x\n", val);
2763
        break;
2764
    }
2765
}
2766

    
2767
uint32_t kbd_read_data(CPUX86State *env, uint32_t addr)
2768
{
2769
    KBDState *s = &kbd_state;
2770
    KBDQueue *q;
2771
    int val;
2772
    
2773
    q = &s->queues[0]; /* first check KBD data */
2774
    if (q->count == 0)
2775
        q = &s->queues[1]; /* then check AUX data */
2776
    if (q->count == 0) {
2777
        /* XXX: return something else ? */
2778
        val = 0;
2779
    } else {
2780
        val = q->data[q->rptr];
2781
        if (++q->rptr == KBD_QUEUE_SIZE)
2782
            q->rptr = 0;
2783
        q->count--;
2784
        /* reading deasserts IRQ */
2785
        if (q == &s->queues[0])
2786
            pic_set_irq(1, 0);
2787
        else
2788
            pic_set_irq(12, 0);
2789
    }
2790
    /* reassert IRQs if data left */
2791
    kbd_update_irq(s);
2792
#ifdef DEBUG_KBD
2793
    printf("kbd: read data=0x%02x\n", val);
2794
#endif
2795
    return val;
2796
}
2797

    
2798
static void kbd_reset_keyboard(KBDState *s)
2799
{
2800
    s->scan_enabled = 1;
2801
}
2802

    
2803
static void kbd_write_keyboard(KBDState *s, int val)
2804
{
2805
    switch(s->kbd_write_cmd) {
2806
    default:
2807
    case -1:
2808
        switch(val) {
2809
        case 0x00:
2810
            kbd_queue(s, KBD_REPLY_ACK, 0);
2811
            break;
2812
        case 0x05:
2813
            kbd_queue(s, KBD_REPLY_RESEND, 0);
2814
            break;
2815
        case KBD_CMD_ECHO:
2816
            kbd_queue(s, KBD_CMD_ECHO, 0);
2817
            break;
2818
        case KBD_CMD_ENABLE:
2819
            s->scan_enabled = 1;
2820
            kbd_queue(s, KBD_REPLY_ACK, 0);
2821
            break;
2822
        case KBD_CMD_SET_LEDS:
2823
        case KBD_CMD_SET_RATE:
2824
            s->kbd_write_cmd = val;
2825
            break;
2826
        case KBD_CMD_RESET_DISABLE:
2827
            kbd_reset_keyboard(s);
2828
            s->scan_enabled = 0;
2829
            kbd_queue(s, KBD_REPLY_ACK, 0);
2830
            break;
2831
        case KBD_CMD_RESET_ENABLE:
2832
            kbd_reset_keyboard(s);
2833
            s->scan_enabled = 1;
2834
            kbd_queue(s, KBD_REPLY_ACK, 0);
2835
            break;
2836
        case KBD_CMD_RESET:
2837
            kbd_reset_keyboard(s);
2838
            kbd_queue(s, KBD_REPLY_ACK, 0);
2839
            kbd_queue(s, KBD_REPLY_POR, 0);
2840
            break;
2841
        default:
2842
            kbd_queue(s, KBD_REPLY_ACK, 0);
2843
            break;
2844
        }
2845
        break;
2846
    case KBD_CMD_SET_LEDS:
2847
        kbd_queue(s, KBD_REPLY_ACK, 0);
2848
        s->kbd_write_cmd = -1;
2849
        break;
2850
    case KBD_CMD_SET_RATE:
2851
        kbd_queue(s, KBD_REPLY_ACK, 0);
2852
        s->kbd_write_cmd = -1;
2853
        break;
2854
    }
2855
}
2856

    
2857
static void kbd_mouse_send_packet(KBDState *s)
2858
{
2859
    unsigned int b;
2860
    int dx1, dy1, dz1;
2861

    
2862
    dx1 = s->mouse_dx;
2863
    dy1 = s->mouse_dy;
2864
    dz1 = s->mouse_dz;
2865
    /* XXX: increase range to 8 bits ? */
2866
    if (dx1 > 127)
2867
        dx1 = 127;
2868
    else if (dx1 < -127)
2869
        dx1 = -127;
2870
    if (dy1 > 127)
2871
        dy1 = 127;
2872
    else if (dy1 < -127)
2873
        dy1 = -127;
2874
    b = 0x08 | ((dx1 < 0) << 4) | ((dy1 < 0) << 5) | (s->mouse_buttons & 0x07);
2875
    kbd_queue(s, b, 1);
2876
    kbd_queue(s, dx1 & 0xff, 1);
2877
    kbd_queue(s, dy1 & 0xff, 1);
2878
    /* extra byte for IMPS/2 or IMEX */
2879
    switch(s->mouse_type) {
2880
    default:
2881
        break;
2882
    case 3:
2883
        if (dz1 > 127)
2884
            dz1 = 127;
2885
        else if (dz1 < -127)
2886
                dz1 = -127;
2887
        kbd_queue(s, dz1 & 0xff, 1);
2888
        break;
2889
    case 4:
2890
        if (dz1 > 7)
2891
            dz1 = 7;
2892
        else if (dz1 < -7)
2893
            dz1 = -7;
2894
        b = (dz1 & 0x0f) | ((s->mouse_buttons & 0x18) << 1);
2895
        kbd_queue(s, b, 1);
2896
        break;
2897
    }
2898

    
2899
    /* update deltas */
2900
    s->mouse_dx -= dx1;
2901
    s->mouse_dy -= dy1;
2902
    s->mouse_dz -= dz1;
2903
}
2904

    
2905
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
2906
{
2907
    KBDState *s = &kbd_state;
2908

    
2909
    /* check if deltas are recorded when disabled */
2910
    if (!(s->mouse_status & MOUSE_STATUS_ENABLED))
2911
        return;
2912

    
2913
    s->mouse_dx += dx;
2914
    s->mouse_dy -= dy;
2915
    s->mouse_dz += dz;
2916
    s->mouse_buttons = buttons_state;
2917
    
2918
    if (!(s->mouse_status & MOUSE_STATUS_REMOTE) &&
2919
        (s->queues[1].count < (KBD_QUEUE_SIZE - 16))) {
2920
        for(;;) {
2921
            /* if not remote, send event. Multiple events are sent if
2922
               too big deltas */
2923
            kbd_mouse_send_packet(s);
2924
            if (s->mouse_dx == 0 && s->mouse_dy == 0 && s->mouse_dz == 0)
2925
                break;
2926
        }
2927
    }
2928
}
2929

    
2930
static void kbd_write_mouse(KBDState *s, int val)
2931
{
2932
#ifdef DEBUG_MOUSE
2933
    printf("kbd: write mouse 0x%02x\n", val);
2934
#endif
2935
    switch(s->mouse_write_cmd) {
2936
    default:
2937
    case -1:
2938
        /* mouse command */
2939
        if (s->mouse_wrap) {
2940
            if (val == AUX_RESET_WRAP) {
2941
                s->mouse_wrap = 0;
2942
                kbd_queue(s, AUX_ACK, 1);
2943
                return;
2944
            } else if (val != AUX_RESET) {
2945
                kbd_queue(s, val, 1);
2946
                return;
2947
            }
2948
        }
2949
        switch(val) {
2950
        case AUX_SET_SCALE11:
2951
            s->mouse_status &= ~MOUSE_STATUS_SCALE21;
2952
            kbd_queue(s, AUX_ACK, 1);
2953
            break;
2954
        case AUX_SET_SCALE21:
2955
            s->mouse_status |= MOUSE_STATUS_SCALE21;
2956
            kbd_queue(s, AUX_ACK, 1);
2957
            break;
2958
        case AUX_SET_STREAM:
2959
            s->mouse_status &= ~MOUSE_STATUS_REMOTE;
2960
            kbd_queue(s, AUX_ACK, 1);
2961
            break;
2962
        case AUX_SET_WRAP:
2963
            s->mouse_wrap = 1;
2964
            kbd_queue(s, AUX_ACK, 1);
2965
            break;
2966
        case AUX_SET_REMOTE:
2967
            s->mouse_status |= MOUSE_STATUS_REMOTE;
2968
            kbd_queue(s, AUX_ACK, 1);
2969
            break;
2970
        case AUX_GET_TYPE:
2971
            kbd_queue(s, AUX_ACK, 1);
2972
            kbd_queue(s, s->mouse_type, 1);
2973
            break;
2974
        case AUX_SET_RES:
2975
        case AUX_SET_SAMPLE:
2976
            s->mouse_write_cmd = val;
2977
            kbd_queue(s, AUX_ACK, 1);
2978
            break;
2979
        case AUX_GET_SCALE:
2980
            kbd_queue(s, AUX_ACK, 1);
2981
            kbd_queue(s, s->mouse_status, 1);
2982
            kbd_queue(s, s->mouse_resolution, 1);
2983
            kbd_queue(s, s->mouse_sample_rate, 1);
2984
            break;
2985
        case AUX_POLL:
2986
            kbd_queue(s, AUX_ACK, 1);
2987
            kbd_mouse_send_packet(s);
2988
            break;
2989
        case AUX_ENABLE_DEV:
2990
            s->mouse_status |= MOUSE_STATUS_ENABLED;
2991
            kbd_queue(s, AUX_ACK, 1);
2992
            break;
2993
        case AUX_DISABLE_DEV:
2994
            s->mouse_status &= ~MOUSE_STATUS_ENABLED;
2995
            kbd_queue(s, AUX_ACK, 1);
2996
            break;
2997
        case AUX_SET_DEFAULT:
2998
            s->mouse_sample_rate = 100;
2999
            s->mouse_resolution = 2;
3000
            s->mouse_status = 0;
3001
            kbd_queue(s, AUX_ACK, 1);
3002
            break;
3003
        case AUX_RESET:
3004
            s->mouse_sample_rate = 100;
3005
            s->mouse_resolution = 2;
3006
            s->mouse_status = 0;
3007
            kbd_queue(s, AUX_ACK, 1);
3008
            kbd_queue(s, 0xaa, 1);
3009
            kbd_queue(s, s->mouse_type, 1);
3010
            break;
3011
        default:
3012
            break;
3013
        }
3014
        break;
3015
    case AUX_SET_SAMPLE:
3016
        s->mouse_sample_rate = val;
3017
#if 0
3018
        /* detect IMPS/2 or IMEX */
3019
        switch(s->mouse_detect_state) {
3020
        default:
3021
        case 0:
3022
            if (val == 200)
3023
                s->mouse_detect_state = 1;
3024
            break;
3025
        case 1:
3026
            if (val == 100)
3027
                s->mouse_detect_state = 2;
3028
            else if (val == 200)
3029
                s->mouse_detect_state = 3;
3030
            else
3031
                s->mouse_detect_state = 0;
3032
            break;
3033
        case 2:
3034
            if (val == 80) 
3035
                s->mouse_type = 3; /* IMPS/2 */
3036
            s->mouse_detect_state = 0;
3037
            break;
3038
        case 3:
3039
            if (val == 80) 
3040
                s->mouse_type = 4; /* IMEX */
3041
            s->mouse_detect_state = 0;
3042
            break;
3043
        }
3044
#endif
3045
        kbd_queue(s, AUX_ACK, 1);
3046
        s->mouse_write_cmd = -1;
3047
        break;
3048
    case AUX_SET_RES:
3049
        s->mouse_resolution = val;
3050
        kbd_queue(s, AUX_ACK, 1);
3051
        s->mouse_write_cmd = -1;
3052
        break;
3053
    }
3054
}
3055

    
3056
void kbd_write_data(CPUX86State *env, uint32_t addr, uint32_t val)
3057
{
3058
    KBDState *s = &kbd_state;
3059

    
3060
#ifdef DEBUG_KBD
3061
    printf("kbd: write data=0x%02x\n", val);
3062
#endif
3063

    
3064
    switch(s->write_cmd) {
3065
    case 0:
3066
        kbd_write_keyboard(s, val);
3067
        break;
3068
    case KBD_CCMD_WRITE_MODE:
3069
        s->mode = val;
3070
        kbd_update_irq(s);
3071
        break;
3072
    case KBD_CCMD_WRITE_OBUF:
3073
        kbd_queue(s, val, 0);
3074
        break;
3075
    case KBD_CCMD_WRITE_AUX_OBUF:
3076
        kbd_queue(s, val, 1);
3077
        break;
3078
    case KBD_CCMD_WRITE_OUTPORT:
3079
        a20_enabled = (val >> 1) & 1;
3080
        if (!(val & 1)) {
3081
            reset_requested = 1;
3082
            cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
3083
        }
3084
        break;
3085
    case KBD_CCMD_WRITE_MOUSE:
3086
        kbd_write_mouse(s, val);
3087
        break;
3088
    default:
3089
        break;
3090
    }
3091
    s->write_cmd = 0;
3092
}
3093

    
3094
void kbd_reset(KBDState *s)
3095
{
3096
    KBDQueue *q;
3097
    int i;
3098

    
3099
    s->kbd_write_cmd = -1;
3100
    s->mouse_write_cmd = -1;
3101
    s->mode = KBD_MODE_KBD_INT | KBD_MODE_MOUSE_INT;
3102
    s->status = KBD_STAT_CMD | KBD_STAT_UNLOCKED;
3103
    for(i = 0; i < 2; i++) {
3104
        q = &s->queues[i];
3105
        q->rptr = 0;
3106
        q->wptr = 0;
3107
        q->count = 0;
3108
    }
3109
}
3110

    
3111
void kbd_init(void)
3112
{
3113
    kbd_reset(&kbd_state);
3114
    register_ioport_read(0x60, 1, kbd_read_data, 1);
3115
    register_ioport_write(0x60, 1, kbd_write_data, 1);
3116
    register_ioport_read(0x64, 1, kbd_read_status, 1);
3117
    register_ioport_write(0x64, 1, kbd_write_command, 1);
3118
}
3119

    
3120
/***********************************************************/
3121
/* Bochs BIOS debug ports */
3122

    
3123
void bochs_bios_write(CPUX86State *env, uint32_t addr, uint32_t val)
3124
{
3125
    switch(addr) {
3126
        /* Bochs BIOS messages */
3127
    case 0x400:
3128
    case 0x401:
3129
        fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
3130
        exit(1);
3131
    case 0x402:
3132
    case 0x403:
3133
#ifdef DEBUG_BIOS
3134
        fprintf(stderr, "%c", val);
3135
#endif
3136
        break;
3137

    
3138
        /* LGPL'ed VGA BIOS messages */
3139
    case 0x501:
3140
    case 0x502:
3141
        fprintf(stderr, "VGA BIOS panic, line %d\n", val);
3142
        exit(1);
3143
    case 0x500:
3144
    case 0x503:
3145
#ifdef DEBUG_BIOS
3146
        fprintf(stderr, "%c", val);
3147
#endif
3148
        break;
3149
    }
3150
}
3151

    
3152
void bochs_bios_init(void)
3153
{
3154
    register_ioport_write(0x400, 1, bochs_bios_write, 2);
3155
    register_ioport_write(0x401, 1, bochs_bios_write, 2);
3156
    register_ioport_write(0x402, 1, bochs_bios_write, 1);
3157
    register_ioport_write(0x403, 1, bochs_bios_write, 1);
3158

    
3159
    register_ioport_write(0x501, 1, bochs_bios_write, 2);
3160
    register_ioport_write(0x502, 1, bochs_bios_write, 2);
3161
    register_ioport_write(0x500, 1, bochs_bios_write, 1);
3162
    register_ioport_write(0x503, 1, bochs_bios_write, 1);
3163
}
3164

    
3165
/***********************************************************/
3166
/* dumb display */
3167

    
3168
/* init terminal so that we can grab keys */
3169
static struct termios oldtty;
3170

    
3171
static void term_exit(void)
3172
{
3173
    tcsetattr (0, TCSANOW, &oldtty);
3174
}
3175

    
3176
static void term_init(void)
3177
{
3178
    struct termios tty;
3179

    
3180
    tcgetattr (0, &tty);
3181
    oldtty = tty;
3182

    
3183
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
3184
                          |INLCR|IGNCR|ICRNL|IXON);
3185
    tty.c_oflag |= OPOST;
3186
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
3187
    /* if graphical mode, we allow Ctrl-C handling */
3188
    if (nographic)
3189
        tty.c_lflag &= ~ISIG;
3190
    tty.c_cflag &= ~(CSIZE|PARENB);
3191
    tty.c_cflag |= CS8;
3192
    tty.c_cc[VMIN] = 1;
3193
    tty.c_cc[VTIME] = 0;
3194
    
3195
    tcsetattr (0, TCSANOW, &tty);
3196

    
3197
    atexit(term_exit);
3198

    
3199
    fcntl(0, F_SETFL, O_NONBLOCK);
3200
}
3201

    
3202
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
3203
{
3204
}
3205

    
3206
static void dumb_resize(DisplayState *ds, int w, int h)
3207
{
3208
}
3209

    
3210
static void dumb_refresh(DisplayState *ds)
3211
{
3212
    vga_update_display();
3213
}
3214

    
3215
void dumb_display_init(DisplayState *ds)
3216
{
3217
    ds->data = NULL;
3218
    ds->linesize = 0;
3219
    ds->depth = 0;
3220
    ds->dpy_update = dumb_update;
3221
    ds->dpy_resize = dumb_resize;
3222
    ds->dpy_refresh = dumb_refresh;
3223
}
3224

    
3225
/***********************************************************/
3226
/* cpu signal handler */
3227
static void host_segv_handler(int host_signum, siginfo_t *info, 
3228
                              void *puc)
3229
{
3230
    if (cpu_signal_handler(host_signum, info, puc))
3231
        return;
3232
    term_exit();
3233
    abort();
3234
}
3235

    
3236
static int timer_irq_pending;
3237
static int timer_irq_count;
3238

    
3239
static int timer_ms;
3240
static int gui_refresh_pending, gui_refresh_count;
3241

    
3242
static void host_alarm_handler(int host_signum, siginfo_t *info, 
3243
                               void *puc)
3244
{
3245
    /* NOTE: since usually the OS asks a 100 Hz clock, there can be
3246
       some drift between cpu_get_ticks() and the interrupt time. So
3247
       we queue some interrupts to avoid missing some */
3248
    timer_irq_count += pit_get_out_edges(&pit_channels[0]);
3249
    if (timer_irq_count) {
3250
        if (timer_irq_count > 2)
3251
            timer_irq_count = 2;
3252
        timer_irq_count--;
3253
        timer_irq_pending = 1;
3254
    }
3255
    gui_refresh_count += timer_ms;
3256
    if (gui_refresh_count >= GUI_REFRESH_INTERVAL) {
3257
        gui_refresh_count = 0;
3258
        gui_refresh_pending = 1;
3259
    }
3260

    
3261
    if (gui_refresh_pending || timer_irq_pending) {
3262
        /* just exit from the cpu to have a chance to handle timers */
3263
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
3264
    }
3265
}
3266

    
3267
unsigned long mmap_addr = PHYS_RAM_BASE;
3268

    
3269
void *get_mmap_addr(unsigned long size)
3270
{
3271
    unsigned long addr;
3272
    addr = mmap_addr;
3273
    mmap_addr += ((size + 4095) & ~4095) + 4096;
3274
    return (void *)addr;
3275
}
3276

    
3277
/* main execution loop */
3278

    
3279
CPUState *cpu_gdbstub_get_env(void *opaque)
3280
{
3281
    return global_env;
3282
}
3283

    
3284
int main_loop(void *opaque)
3285
{
3286
    struct pollfd ufds[3], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
3287
    int ret, n, timeout, serial_ok;
3288
    uint8_t ch;
3289
    CPUState *env = global_env;
3290

    
3291
    if (!term_inited) {
3292
        /* initialize terminal only there so that the user has a
3293
           chance to stop QEMU with Ctrl-C before the gdb connection
3294
           is launched */
3295
        term_inited = 1;
3296
        term_init();
3297
    }
3298

    
3299
    serial_ok = 1;
3300
    for(;;) {
3301
        ret = cpu_x86_exec(env);
3302
        if (reset_requested)
3303
            break;
3304
        if (ret == EXCP_DEBUG)
3305
            return EXCP_DEBUG;
3306
        /* if hlt instruction, we wait until the next IRQ */
3307
        if (ret == EXCP_HLT) 
3308
            timeout = 10;
3309
        else
3310
            timeout = 0;
3311
        /* poll any events */
3312
        serial_ufd = NULL;
3313
        pf = ufds;
3314
        if (serial_ok && !(serial_ports[0].lsr & UART_LSR_DR)) {
3315
            serial_ufd = pf;
3316
            pf->fd = 0;
3317
            pf->events = POLLIN;
3318
            pf++;
3319
        }
3320
        net_ufd = NULL;
3321
        if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
3322
            net_ufd = pf;
3323
            pf->fd = net_fd;
3324
            pf->events = POLLIN;
3325
            pf++;
3326
        }
3327
        gdb_ufd = NULL;
3328
        if (gdbstub_fd > 0) {
3329
            gdb_ufd = pf;
3330
            pf->fd = gdbstub_fd;
3331
            pf->events = POLLIN;
3332
            pf++;
3333
        }
3334

    
3335
        ret = poll(ufds, pf - ufds, timeout);
3336
        if (ret > 0) {
3337
            if (serial_ufd && (serial_ufd->revents & POLLIN)) {
3338
                n = read(0, &ch, 1);
3339
                if (n == 1) {
3340
                    serial_received_byte(&serial_ports[0], ch);
3341
                } else {
3342
                    /* Closed, stop polling. */
3343
                    serial_ok = 0;
3344
                }
3345
            }
3346
            if (net_ufd && (net_ufd->revents & POLLIN)) {
3347
                uint8_t buf[MAX_ETH_FRAME_SIZE];
3348

    
3349
                n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
3350
                if (n > 0) {
3351
                    if (n < 60) {
3352
                        memset(buf + n, 0, 60 - n);
3353
                        n = 60;
3354
                    }
3355
                    ne2000_receive(&ne2000_state, buf, n);
3356
                }
3357
            }
3358
            if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
3359
                uint8_t buf[1];
3360
                /* stop emulation if requested by gdb */
3361
                n = read(gdbstub_fd, buf, 1);
3362
                if (n == 1)
3363
                    break;
3364
            }
3365
        }
3366

    
3367
        /* timer IRQ */
3368
        if (timer_irq_pending) {
3369
            pic_set_irq(0, 1);
3370
            pic_set_irq(0, 0);
3371
            timer_irq_pending = 0;
3372
        }
3373

    
3374
        /* VGA */
3375
        if (gui_refresh_pending) {
3376
            display_state.dpy_refresh(&display_state);
3377
            gui_refresh_pending = 0;
3378
        }
3379
    }
3380
    return EXCP_INTERRUPT;
3381
}
3382

    
3383
void help(void)
3384
{
3385
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
3386
           "usage: qemu [options] [disk_image]\n"
3387
           "\n"
3388
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3389
           "\n"
3390
           "Standard options:\n"
3391
           "-hda file       use 'file' as IDE hard disk 0 image\n"
3392
           "-hdb file       use 'file' as IDE hard disk 1 image\n"
3393
           "-snapshot       write to temporary files instead of disk image files\n"
3394
           "-m megs         set virtual RAM size to megs MB\n"
3395
           "-n script       set network init script [default=%s]\n"
3396
           "-tun-fd fd      this fd talks to tap/tun, use it.\n"
3397
           "-nographic      disable graphical output\n"
3398
           "\n"
3399
           "Linux boot specific (does not require PC BIOS):\n"
3400
           "-kernel bzImage use 'bzImage' as kernel image\n"
3401
           "-append cmdline use 'cmdline' as kernel command line\n"
3402
           "-initrd file    use 'file' as initial ram disk\n"
3403
           "\n"
3404
           "Debug/Expert options:\n"
3405
           "-s              wait gdb connection to port %d\n"
3406
           "-p port         change gdb connection port\n"
3407
           "-d              output log in /tmp/vl.log\n"
3408
           "-hdachs c,h,s   force hard disk 0 geometry (usually qemu can guess it)\n"
3409
           "-L path         set the directory for the BIOS and VGA BIOS\n"
3410
           "\n"
3411
           "During emulation, use C-a h to get terminal commands:\n",
3412
           DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
3413
    term_print_help();
3414
    exit(1);
3415
}
3416

    
3417
struct option long_options[] = {
3418
    { "initrd", 1, NULL, 0, },
3419
    { "hda", 1, NULL, 0, },
3420
    { "hdb", 1, NULL, 0, },
3421
    { "snapshot", 0, NULL, 0, },
3422
    { "hdachs", 1, NULL, 0, },
3423
    { "nographic", 0, NULL, 0, },
3424
    { "kernel", 1, NULL, 0, },
3425
    { "append", 1, NULL, 0, },
3426
    { "tun-fd", 1, NULL, 0, },
3427
    { NULL, 0, NULL, 0 },
3428
};
3429

    
3430
#ifdef CONFIG_SDL
3431
/* SDL use the pthreads and they modify sigaction. We don't
3432
   want that. */
3433
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)
3434
extern void __libc_sigaction();
3435
#define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact)
3436
#else
3437
extern void __sigaction();
3438
#define sigaction(sig, act, oact) __sigaction(sig, act, oact)
3439
#endif
3440
#endif /* CONFIG_SDL */
3441

    
3442
int main(int argc, char **argv)
3443
{
3444
    int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
3445
    int snapshot, linux_boot, total_ram_size;
3446
    struct linux_params *params;
3447
    struct sigaction act;
3448
    struct itimerval itv;
3449
    CPUX86State *env;
3450
    const char *tmpdir, *initrd_filename;
3451
    const char *hd_filename[MAX_DISKS];
3452
    const char *kernel_filename, *kernel_cmdline;
3453
    DisplayState *ds = &display_state;
3454

    
3455
    /* we never want that malloc() uses mmap() */
3456
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
3457
    initrd_filename = NULL;
3458
    for(i = 0; i < MAX_DISKS; i++)
3459
        hd_filename[i] = NULL;
3460
    phys_ram_size = 32 * 1024 * 1024;
3461
    vga_ram_size = VGA_RAM_SIZE;
3462
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
3463
    use_gdbstub = 0;
3464
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
3465
    snapshot = 0;
3466
    nographic = 0;
3467
    kernel_filename = NULL;
3468
    kernel_cmdline = "";
3469
    for(;;) {
3470
        c = getopt_long_only(argc, argv, "hm:dn:sp:L:", long_options, &long_index);
3471
        if (c == -1)
3472
            break;
3473
        switch(c) {
3474
        case 0:
3475
            switch(long_index) {
3476
            case 0:
3477
                initrd_filename = optarg;
3478
                break;
3479
            case 1:
3480
                hd_filename[0] = optarg;
3481
                break;
3482
            case 2:
3483
                hd_filename[1] = optarg;
3484
                break;
3485
            case 3:
3486
                snapshot = 1;
3487
                break;
3488
            case 4:
3489
                {
3490
                    int cyls, heads, secs;
3491
                    const char *p;
3492
                    p = optarg;
3493
                    cyls = strtol(p, (char **)&p, 0);
3494
                    if (*p != ',')
3495
                        goto chs_fail;
3496
                    p++;
3497
                    heads = strtol(p, (char **)&p, 0);
3498
                    if (*p != ',')
3499
                        goto chs_fail;
3500
                    p++;
3501
                    secs = strtol(p, (char **)&p, 0);
3502
                    if (*p != '\0')
3503
                        goto chs_fail;
3504
                    ide_state[0].cylinders = cyls;
3505
                    ide_state[0].heads = heads;
3506
                    ide_state[0].sectors = secs;
3507
                chs_fail: ;
3508
                }
3509
                break;
3510
            case 5:
3511
                nographic = 1;
3512
                break;
3513
            case 6:
3514
                kernel_filename = optarg;
3515
                break;
3516
            case 7:
3517
                kernel_cmdline = optarg;
3518
                break;
3519
            case 8:
3520
                net_fd = atoi(optarg);
3521
                break;
3522
            }
3523
            break;
3524
        case 'h':
3525
            help();
3526
            break;
3527
        case 'm':
3528
            phys_ram_size = atoi(optarg) * 1024 * 1024;
3529
            if (phys_ram_size <= 0)
3530
                help();
3531
            if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
3532
                fprintf(stderr, "vl: at most %d MB RAM can be simulated\n",
3533
                        PHYS_RAM_MAX_SIZE / (1024 * 1024));
3534
                exit(1);
3535
            }
3536
            break;
3537
        case 'd':
3538
            loglevel = 1;
3539
            break;
3540
        case 'n':
3541
            pstrcpy(network_script, sizeof(network_script), optarg);
3542
            break;
3543
        case 's':
3544
            use_gdbstub = 1;
3545
            break;
3546
        case 'p':
3547
            gdbstub_port = atoi(optarg);
3548
            break;
3549
        case 'L':
3550
            bios_dir = optarg;
3551
            break;
3552
        }
3553
    }
3554

    
3555
    if (optind < argc) {
3556
        hd_filename[0] = argv[optind++];
3557
    }
3558

    
3559
    linux_boot = (kernel_filename != NULL);
3560
        
3561
    if (!linux_boot && hd_filename[0] == '\0')
3562
        help();
3563

    
3564
    /* init debug */
3565
    setvbuf(stdout, NULL, _IOLBF, 0);
3566
    if (loglevel) {
3567
        logfile = fopen(DEBUG_LOGFILE, "w");
3568
        if (!logfile) {
3569
            perror(DEBUG_LOGFILE);
3570
            _exit(1);
3571
        }
3572
        setvbuf(logfile, NULL, _IOLBF, 0);
3573
    }
3574

    
3575
    /* init network tun interface */
3576
    if (net_fd < 0)
3577
        net_init();
3578

    
3579
    /* init the memory */
3580
    tmpdir = getenv("QEMU_TMPDIR");
3581
    if (!tmpdir)
3582
        tmpdir = "/tmp";
3583
    snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
3584
    if (mkstemp(phys_ram_file) < 0) {
3585
        fprintf(stderr, "Could not create temporary memory file '%s'\n", 
3586
                phys_ram_file);
3587
        exit(1);
3588
    }
3589
    phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
3590
    if (phys_ram_fd < 0) {
3591
        fprintf(stderr, "Could not open temporary memory file '%s'\n", 
3592
                phys_ram_file);
3593
        exit(1);
3594
    }
3595
    total_ram_size = phys_ram_size + vga_ram_size;
3596
    ftruncate(phys_ram_fd, total_ram_size);
3597
    unlink(phys_ram_file);
3598
    phys_ram_base = mmap(get_mmap_addr(total_ram_size), 
3599
                         total_ram_size, 
3600
                         PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
3601
                         phys_ram_fd, 0);
3602
    if (phys_ram_base == MAP_FAILED) {
3603
        fprintf(stderr, "Could not map physical memory\n");
3604
        exit(1);
3605
    }
3606

    
3607
    /* open the virtual block devices */
3608
    for(i = 0; i < MAX_DISKS; i++) {
3609
        if (hd_filename[i]) {
3610
            bs_table[i] = bdrv_open(hd_filename[i], snapshot);
3611
            if (!bs_table[i]) {
3612
                fprintf(stderr, "vl: could not open hard disk image '%s\n",
3613
                        hd_filename[i]);
3614
                exit(1);
3615
            }
3616
        }
3617
    }
3618

    
3619
    /* init CPU state */
3620
    env = cpu_init();
3621
    global_env = env;
3622
    cpu_single_env = env;
3623

    
3624
    init_ioports();
3625

    
3626
    /* allocate RAM */
3627
    cpu_register_physical_memory(0, phys_ram_size, 0);
3628

    
3629
    if (linux_boot) {
3630
        /* now we can load the kernel */
3631
        ret = load_kernel(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
3632
        if (ret < 0) {
3633
            fprintf(stderr, "vl: could not load kernel '%s'\n", 
3634
                    kernel_filename);
3635
            exit(1);
3636
        }
3637
        
3638
        /* load initrd */
3639
        initrd_size = 0;
3640
        if (initrd_filename) {
3641
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
3642
            if (initrd_size < 0) {
3643
                fprintf(stderr, "vl: could not load initial ram disk '%s'\n", 
3644
                        initrd_filename);
3645
                exit(1);
3646
            }
3647
        }
3648
        
3649
        /* init kernel params */
3650
        params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
3651
        memset(params, 0, sizeof(struct linux_params));
3652
        params->mount_root_rdonly = 0;
3653
        params->cl_magic = 0xA33F;
3654
        params->cl_offset = params->commandline - (uint8_t *)params;
3655
        params->alt_mem_k = (phys_ram_size / 1024) - 1024;
3656
        pstrcat(params->commandline, sizeof(params->commandline), kernel_cmdline);
3657
        params->loader_type = 0x01;
3658
        if (initrd_size > 0) {
3659
            params->initrd_start = INITRD_LOAD_ADDR;
3660
            params->initrd_size = initrd_size;
3661
        }
3662
        params->orig_video_lines = 25;
3663
        params->orig_video_cols = 80;
3664

    
3665
        /* setup basic memory access */
3666
        env->cr[0] = 0x00000033;
3667
        cpu_x86_init_mmu(env);
3668
        
3669
        memset(params->idt_table, 0, sizeof(params->idt_table));
3670
        
3671
        params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
3672
        params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
3673
        
3674
        env->idt.base = (void *)params->idt_table;
3675
        env->idt.limit = sizeof(params->idt_table) - 1;
3676
        env->gdt.base = (void *)params->gdt_table;
3677
        env->gdt.limit = sizeof(params->gdt_table) - 1;
3678
        
3679
        cpu_x86_load_seg_cache(env, R_CS, KERNEL_CS, NULL, 0xffffffff, 0x00cf9a00);
3680
        cpu_x86_load_seg_cache(env, R_DS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3681
        cpu_x86_load_seg_cache(env, R_ES, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3682
        cpu_x86_load_seg_cache(env, R_SS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3683
        cpu_x86_load_seg_cache(env, R_FS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3684
        cpu_x86_load_seg_cache(env, R_GS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3685
        
3686
        env->eip = KERNEL_LOAD_ADDR;
3687
        env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
3688
        env->eflags = 0x2;
3689

    
3690
    } else {
3691
        char buf[1024];
3692

    
3693
        /* RAW PC boot */
3694

    
3695
        /* BIOS load */
3696
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
3697
        ret = load_image(buf, phys_ram_base + 0x000f0000);
3698
        if (ret != 0x10000) {
3699
            fprintf(stderr, "vl: could not load PC bios '%s'\n", buf);
3700
            exit(1);
3701
        }
3702

    
3703
        /* VGA BIOS load */
3704
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
3705
        ret = load_image(buf, phys_ram_base + 0x000c0000);
3706

    
3707
        /* setup basic memory access */
3708
        env->cr[0] = 0x60000010;
3709
        cpu_x86_init_mmu(env);
3710
        
3711
        env->idt.limit = 0xffff;
3712
        env->gdt.limit = 0xffff;
3713
        env->ldt.limit = 0xffff;
3714

    
3715
        /* not correct (CS base=0xffff0000) */
3716
        cpu_x86_load_seg_cache(env, R_CS, 0xf000, (uint8_t *)0x000f0000, 0xffff, 0); 
3717
        cpu_x86_load_seg_cache(env, R_DS, 0, NULL, 0xffff, 0);
3718
        cpu_x86_load_seg_cache(env, R_ES, 0, NULL, 0xffff, 0);
3719
        cpu_x86_load_seg_cache(env, R_SS, 0, NULL, 0xffff, 0);
3720
        cpu_x86_load_seg_cache(env, R_FS, 0, NULL, 0xffff, 0);
3721
        cpu_x86_load_seg_cache(env, R_GS, 0, NULL, 0xffff, 0);
3722

    
3723
        env->eip = 0xfff0;
3724
        env->regs[R_EDX] = 0x600; /* indicate P6 processor */
3725

    
3726
        env->eflags = 0x2;
3727

    
3728
        bochs_bios_init();
3729
    }
3730

    
3731
    /* terminal init */
3732
    if (nographic) {
3733
        dumb_display_init(ds);
3734
    } else {
3735
#ifdef CONFIG_SDL
3736
        sdl_display_init(ds);
3737
#else
3738
        dumb_display_init(ds);
3739
#endif
3740
    }
3741
    /* init basic PC hardware */
3742
    register_ioport_write(0x80, 1, ioport80_write, 1);
3743

    
3744
    vga_init(ds, phys_ram_base + phys_ram_size, phys_ram_size, 
3745
             vga_ram_size);
3746
    cmos_init();
3747
    pic_init();
3748
    pit_init();
3749
    serial_init();
3750
    ne2000_init();
3751
    ide_init();
3752
    kbd_init();
3753
    
3754
    /* setup cpu signal handlers for MMU / self modifying code handling */
3755
    sigfillset(&act.sa_mask);
3756
    act.sa_flags = SA_SIGINFO;
3757
    act.sa_sigaction = host_segv_handler;
3758
    sigaction(SIGSEGV, &act, NULL);
3759
    sigaction(SIGBUS, &act, NULL);
3760

    
3761
    act.sa_sigaction = host_alarm_handler;
3762
    sigaction(SIGALRM, &act, NULL);
3763

    
3764
    itv.it_interval.tv_sec = 0;
3765
    itv.it_interval.tv_usec = 1000;
3766
    itv.it_value.tv_sec = 0;
3767
    itv.it_value.tv_usec = 10 * 1000;
3768
    setitimer(ITIMER_REAL, &itv, NULL);
3769
    /* we probe the tick duration of the kernel to inform the user if
3770
       the emulated kernel requested a too high timer frequency */
3771
    getitimer(ITIMER_REAL, &itv);
3772
    timer_ms = itv.it_interval.tv_usec / 1000;
3773
    pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
3774
        1000000;
3775
    
3776
    if (use_gdbstub) {
3777
        cpu_gdbstub(NULL, main_loop, gdbstub_port);
3778
    } else {
3779
        main_loop(NULL);
3780
    }
3781
    return 0;
3782
}