Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 5aca8c3b

History | View | Annotate | Download (11 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
//#define DEBUG_IRQ_COUNT
26
//#define DEBUG_IRQ
27

    
28
#ifdef DEBUG_IRQ
29
#define DPRINTF(fmt, args...) \
30
do { printf("IRQ: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of interrupt controller in sun4m.
37
 *
38
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 *
42
 * There is a system master controller and one for each cpu.
43
 * 
44
 */
45

    
46
#define MAX_CPUS 16
47

    
48
typedef struct SLAVIO_INTCTLState {
49
    uint32_t intreg_pending[MAX_CPUS];
50
    uint32_t intregm_pending;
51
    uint32_t intregm_disabled;
52
    uint32_t target_cpu;
53
#ifdef DEBUG_IRQ_COUNT
54
    uint64_t irq_count[32];
55
#endif
56
    CPUState *cpu_envs[MAX_CPUS];
57
    const uint32_t *intbit_to_level;
58
} SLAVIO_INTCTLState;
59

    
60
#define INTCTL_MAXADDR 0xf
61
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
62
#define INTCTLM_MAXADDR 0x13
63
#define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
64
#define INTCTLM_MASK 0x1f
65
static void slavio_check_interrupts(void *opaque);
66

    
67
// per-cpu interrupt controller
68
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
69
{
70
    SLAVIO_INTCTLState *s = opaque;
71
    uint32_t saddr;
72
    int cpu;
73

    
74
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
75
    saddr = (addr & INTCTL_MAXADDR) >> 2;
76
    switch (saddr) {
77
    case 0:
78
        return s->intreg_pending[cpu];
79
    default:
80
        break;
81
    }
82
    return 0;
83
}
84

    
85
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
86
{
87
    SLAVIO_INTCTLState *s = opaque;
88
    uint32_t saddr;
89
    int cpu;
90

    
91
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
92
    saddr = (addr & INTCTL_MAXADDR) >> 2;
93
    switch (saddr) {
94
    case 1: // clear pending softints
95
        if (val & 0x4000)
96
            val |= 80000000;
97
        val &= 0xfffe0000;
98
        s->intreg_pending[cpu] &= ~val;
99
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
100
        break;
101
    case 2: // set softint
102
        val &= 0xfffe0000;
103
        s->intreg_pending[cpu] |= val;
104
        slavio_check_interrupts(s);
105
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
106
        break;
107
    default:
108
        break;
109
    }
110
}
111

    
112
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
113
    slavio_intctl_mem_readl,
114
    slavio_intctl_mem_readl,
115
    slavio_intctl_mem_readl,
116
};
117

    
118
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
119
    slavio_intctl_mem_writel,
120
    slavio_intctl_mem_writel,
121
    slavio_intctl_mem_writel,
122
};
123

    
124
// master system interrupt controller
125
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
126
{
127
    SLAVIO_INTCTLState *s = opaque;
128
    uint32_t saddr;
129

    
130
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
131
    switch (saddr) {
132
    case 0:
133
        return s->intregm_pending & 0x7fffffff;
134
    case 1:
135
        return s->intregm_disabled;
136
    case 4:
137
        return s->target_cpu;
138
    default:
139
        break;
140
    }
141
    return 0;
142
}
143

    
144
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
145
{
146
    SLAVIO_INTCTLState *s = opaque;
147
    uint32_t saddr;
148

    
149
    saddr = (addr & INTCTLM_MASK) >> 2;
150
    switch (saddr) {
151
    case 2: // clear (enable)
152
        // Force clear unused bits
153
        val &= ~0x4fb2007f;
154
        s->intregm_disabled &= ~val;
155
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
156
        slavio_check_interrupts(s);
157
        break;
158
    case 3: // set (disable, clear pending)
159
        // Force clear unused bits
160
        val &= ~0x4fb2007f;
161
        s->intregm_disabled |= val;
162
        s->intregm_pending &= ~val;
163
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
164
        break;
165
    case 4:
166
        s->target_cpu = val & (MAX_CPUS - 1);
167
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
168
        break;
169
    default:
170
        break;
171
    }
172
}
173

    
174
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
175
    slavio_intctlm_mem_readl,
176
    slavio_intctlm_mem_readl,
177
    slavio_intctlm_mem_readl,
178
};
179

    
180
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
181
    slavio_intctlm_mem_writel,
182
    slavio_intctlm_mem_writel,
183
    slavio_intctlm_mem_writel,
184
};
185

    
186
void slavio_pic_info(void *opaque)
187
{
188
    SLAVIO_INTCTLState *s = opaque;
189
    int i;
190

    
191
    for (i = 0; i < MAX_CPUS; i++) {
192
        term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
193
    }
194
    term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
195
}
196

    
197
void slavio_irq_info(void *opaque)
198
{
199
#ifndef DEBUG_IRQ_COUNT
200
    term_printf("irq statistic code not compiled.\n");
201
#else
202
    SLAVIO_INTCTLState *s = opaque;
203
    int i;
204
    int64_t count;
205

    
206
    term_printf("IRQ statistics:\n");
207
    for (i = 0; i < 32; i++) {
208
        count = s->irq_count[i];
209
        if (count > 0)
210
            term_printf("%2d: %" PRId64 "\n", i, count);
211
    }
212
#endif
213
}
214

    
215
static void slavio_check_interrupts(void *opaque)
216
{
217
    CPUState *env;
218
    SLAVIO_INTCTLState *s = opaque;
219
    uint32_t pending = s->intregm_pending;
220
    unsigned int i, j, max = 0;
221

    
222
    pending &= ~s->intregm_disabled;
223

    
224
    if (pending && !(s->intregm_disabled & 0x80000000)) {
225
        for (i = 0; i < 32; i++) {
226
            if (pending & (1 << i)) {
227
                if (max < s->intbit_to_level[i])
228
                    max = s->intbit_to_level[i];
229
            }
230
        }
231
        env = s->cpu_envs[s->target_cpu];
232
        if (!env) {
233
            DPRINTF("No CPU %d, not triggered (pending %x)\n", s->target_cpu, pending);
234
        }
235
        else {
236
            if (env->halted)
237
                env->halted = 0;
238
            if (env->interrupt_index == 0) {
239
                DPRINTF("Triggered CPU %d pil %d\n", s->target_cpu, max);
240
#ifdef DEBUG_IRQ_COUNT
241
                s->irq_count[max]++;
242
#endif
243
                env->interrupt_index = TT_EXTINT | max;
244
                cpu_interrupt(env, CPU_INTERRUPT_HARD);
245
            }
246
            else
247
                DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, env->interrupt_index);
248
        }
249
    }
250
    else
251
        DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
252
    
253
    for (i = 0; i < MAX_CPUS; i++) {
254
        max = 0;
255
        env = s->cpu_envs[i];
256
        if (!env)
257
            continue;
258
        for (j = 17; j < 32; j++) {
259
            if (s->intreg_pending[i] & (1 << j)) {
260
                if (max < j - 16)
261
                    max = j - 16;
262
            }
263
        }
264
        if (max > 0) {
265
            if (env->halted)
266
                env->halted = 0;
267
            if (env->interrupt_index == 0) {
268
                DPRINTF("Triggered softint %d for cpu %d (pending %x)\n", max, i, pending);
269
#ifdef DEBUG_IRQ_COUNT
270
                s->irq_count[max]++;
271
#endif
272
                env->interrupt_index = TT_EXTINT | max;
273
                cpu_interrupt(env, CPU_INTERRUPT_HARD);
274
            }
275
        }
276
    }
277
}
278

    
279
/*
280
 * "irq" here is the bit number in the system interrupt register to
281
 * separate serial and keyboard interrupts sharing a level.
282
 */
283
void slavio_set_irq(void *opaque, int irq, int level)
284
{
285
    SLAVIO_INTCTLState *s = opaque;
286

    
287
    DPRINTF("Set cpu %d irq %d level %d\n", s->target_cpu, irq, level);
288
    if (irq < 32) {
289
        uint32_t mask = 1 << irq;
290
        uint32_t pil = s->intbit_to_level[irq];
291
        if (pil > 0) {
292
            if (level) {
293
                s->intregm_pending |= mask;
294
                s->intreg_pending[s->target_cpu] |= 1 << pil;
295
                slavio_check_interrupts(s);
296
            }
297
            else {
298
                s->intregm_pending &= ~mask;
299
                s->intreg_pending[s->target_cpu] &= ~(1 << pil);
300
            }
301
        }
302
    }
303
}
304

    
305
void pic_set_irq_cpu(void *opaque, int irq, int level, unsigned int cpu)
306
{
307
    SLAVIO_INTCTLState *s = opaque;
308

    
309
    DPRINTF("Set cpu %d local irq %d level %d\n", cpu, irq, level);
310
    if (cpu == (unsigned int)-1) {
311
        slavio_set_irq(opaque, irq, level);
312
        return;
313
    }
314
    if (irq < 32) {
315
        uint32_t pil = s->intbit_to_level[irq];
316
            if (pil > 0) {
317
            if (level) {
318
                s->intreg_pending[cpu] |= 1 << pil;
319
            }
320
            else {
321
                s->intreg_pending[cpu] &= ~(1 << pil);
322
            }
323
        }
324
    }
325
    slavio_check_interrupts(s);
326
}
327

    
328
static void slavio_intctl_save(QEMUFile *f, void *opaque)
329
{
330
    SLAVIO_INTCTLState *s = opaque;
331
    int i;
332
    
333
    for (i = 0; i < MAX_CPUS; i++) {
334
        qemu_put_be32s(f, &s->intreg_pending[i]);
335
    }
336
    qemu_put_be32s(f, &s->intregm_pending);
337
    qemu_put_be32s(f, &s->intregm_disabled);
338
    qemu_put_be32s(f, &s->target_cpu);
339
}
340

    
341
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
342
{
343
    SLAVIO_INTCTLState *s = opaque;
344
    int i;
345

    
346
    if (version_id != 1)
347
        return -EINVAL;
348

    
349
    for (i = 0; i < MAX_CPUS; i++) {
350
        qemu_get_be32s(f, &s->intreg_pending[i]);
351
    }
352
    qemu_get_be32s(f, &s->intregm_pending);
353
    qemu_get_be32s(f, &s->intregm_disabled);
354
    qemu_get_be32s(f, &s->target_cpu);
355
    return 0;
356
}
357

    
358
static void slavio_intctl_reset(void *opaque)
359
{
360
    SLAVIO_INTCTLState *s = opaque;
361
    int i;
362

    
363
    for (i = 0; i < MAX_CPUS; i++) {
364
        s->intreg_pending[i] = 0;
365
    }
366
    s->intregm_disabled = ~0xffb2007f;
367
    s->intregm_pending = 0;
368
    s->target_cpu = 0;
369
}
370

    
371
void slavio_intctl_set_cpu(void *opaque, unsigned int cpu, CPUState *env)
372
{
373
    SLAVIO_INTCTLState *s = opaque;
374
    s->cpu_envs[cpu] = env;
375
}
376

    
377
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
378
                         const uint32_t *intbit_to_level,
379
                         qemu_irq **irq)
380
{
381
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
382
    SLAVIO_INTCTLState *s;
383

    
384
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
385
    if (!s)
386
        return NULL;
387

    
388
    s->intbit_to_level = intbit_to_level;
389
    for (i = 0; i < MAX_CPUS; i++) {
390
        slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
391
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
392
                                     slavio_intctl_io_memory);
393
    }
394

    
395
    slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
396
    cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
397

    
398
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
399
    qemu_register_reset(slavio_intctl_reset, s);
400
    *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
401
    slavio_intctl_reset(s);
402
    return s;
403
}
404