Statistics
| Branch: | Revision:

root / target-sh4 / op_helper.c @ 5b7141a1

History | View | Annotate | Download (11.1 kB)

1
/*
2
 *  SH4 emulation
3
 *
4
 *  Copyright (c) 2005 Samuel Tardieu
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19
 */
20
#include <assert.h>
21
#include "exec.h"
22
#include "helper.h"
23

    
24
#ifndef CONFIG_USER_ONLY
25

    
26
#define MMUSUFFIX _mmu
27

    
28
#define SHIFT 0
29
#include "softmmu_template.h"
30

    
31
#define SHIFT 1
32
#include "softmmu_template.h"
33

    
34
#define SHIFT 2
35
#include "softmmu_template.h"
36

    
37
#define SHIFT 3
38
#include "softmmu_template.h"
39

    
40
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
41
{
42
    TranslationBlock *tb;
43
    CPUState *saved_env;
44
    unsigned long pc;
45
    int ret;
46

    
47
    /* XXX: hack to restore env in all cases, even if not called from
48
       generated code */
49
    saved_env = env;
50
    env = cpu_single_env;
51
    ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
52
    if (ret) {
53
        if (retaddr) {
54
            /* now we have a real cpu fault */
55
            pc = (unsigned long) retaddr;
56
            tb = tb_find_pc(pc);
57
            if (tb) {
58
                /* the PC is inside the translated code. It means that we have
59
                   a virtual CPU fault */
60
                cpu_restore_state(tb, env, pc, NULL);
61
            }
62
        }
63
        cpu_loop_exit();
64
    }
65
    env = saved_env;
66
}
67

    
68
#endif
69

    
70
void helper_ldtlb(void)
71
{
72
#ifdef CONFIG_USER_ONLY
73
    /* XXXXX */
74
    assert(0);
75
#else
76
    cpu_load_tlb(env);
77
#endif
78
}
79

    
80
void helper_raise_illegal_instruction(void)
81
{
82
    env->exception_index = 0x180;
83
    cpu_loop_exit();
84
}
85

    
86
void helper_raise_slot_illegal_instruction(void)
87
{
88
    env->exception_index = 0x1a0;
89
    cpu_loop_exit();
90
}
91

    
92
void helper_raise_fpu_disable(void)
93
{
94
  env->exception_index = 0x800;
95
  cpu_loop_exit();
96
}
97

    
98
void helper_raise_slot_fpu_disable(void)
99
{
100
  env->exception_index = 0x820;
101
  cpu_loop_exit();
102
}
103

    
104
void helper_debug(void)
105
{
106
    env->exception_index = EXCP_DEBUG;
107
    cpu_loop_exit();
108
}
109

    
110
void helper_sleep(uint32_t next_pc)
111
{
112
    env->halted = 1;
113
    env->exception_index = EXCP_HLT;
114
    env->pc = next_pc;
115
    cpu_loop_exit();
116
}
117

    
118
void helper_trapa(uint32_t tra)
119
{
120
    env->tra = tra << 2;
121
    env->exception_index = 0x160;
122
    cpu_loop_exit();
123
}
124

    
125
uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
126
{
127
    uint32_t tmp0, tmp1;
128

    
129
    tmp1 = arg0 + arg1;
130
    tmp0 = arg1;
131
    arg1 = tmp1 + (env->sr & 1);
132
    if (tmp0 > tmp1)
133
        env->sr |= SR_T;
134
    else
135
        env->sr &= ~SR_T;
136
    if (tmp1 > arg1)
137
        env->sr |= SR_T;
138
    return arg1;
139
}
140

    
141
uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
142
{
143
    uint32_t dest, src, ans;
144

    
145
    if ((int32_t) arg1 >= 0)
146
        dest = 0;
147
    else
148
        dest = 1;
149
    if ((int32_t) arg0 >= 0)
150
        src = 0;
151
    else
152
        src = 1;
153
    src += dest;
154
    arg1 += arg0;
155
    if ((int32_t) arg1 >= 0)
156
        ans = 0;
157
    else
158
        ans = 1;
159
    ans += dest;
160
    if (src == 0 || src == 2) {
161
        if (ans == 1)
162
            env->sr |= SR_T;
163
        else
164
            env->sr &= ~SR_T;
165
    } else
166
        env->sr &= ~SR_T;
167
    return arg1;
168
}
169

    
170
#define T (env->sr & SR_T)
171
#define Q (env->sr & SR_Q ? 1 : 0)
172
#define M (env->sr & SR_M ? 1 : 0)
173
#define SETT env->sr |= SR_T
174
#define CLRT env->sr &= ~SR_T
175
#define SETQ env->sr |= SR_Q
176
#define CLRQ env->sr &= ~SR_Q
177
#define SETM env->sr |= SR_M
178
#define CLRM env->sr &= ~SR_M
179

    
180
uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
181
{
182
    uint32_t tmp0, tmp2;
183
    uint8_t old_q, tmp1 = 0xff;
184

    
185
    //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
186
    old_q = Q;
187
    if ((0x80000000 & arg1) != 0)
188
        SETQ;
189
    else
190
        CLRQ;
191
    tmp2 = arg0;
192
    arg1 <<= 1;
193
    arg1 |= T;
194
    switch (old_q) {
195
    case 0:
196
        switch (M) {
197
        case 0:
198
            tmp0 = arg1;
199
            arg1 -= tmp2;
200
            tmp1 = arg1 > tmp0;
201
            switch (Q) {
202
            case 0:
203
                if (tmp1)
204
                    SETQ;
205
                else
206
                    CLRQ;
207
                break;
208
            case 1:
209
                if (tmp1 == 0)
210
                    SETQ;
211
                else
212
                    CLRQ;
213
                break;
214
            }
215
            break;
216
        case 1:
217
            tmp0 = arg1;
218
            arg1 += tmp2;
219
            tmp1 = arg1 < tmp0;
220
            switch (Q) {
221
            case 0:
222
                if (tmp1 == 0)
223
                    SETQ;
224
                else
225
                    CLRQ;
226
                break;
227
            case 1:
228
                if (tmp1)
229
                    SETQ;
230
                else
231
                    CLRQ;
232
                break;
233
            }
234
            break;
235
        }
236
        break;
237
    case 1:
238
        switch (M) {
239
        case 0:
240
            tmp0 = arg1;
241
            arg1 += tmp2;
242
            tmp1 = arg1 < tmp0;
243
            switch (Q) {
244
            case 0:
245
                if (tmp1)
246
                    SETQ;
247
                else
248
                    CLRQ;
249
                break;
250
            case 1:
251
                if (tmp1 == 0)
252
                    SETQ;
253
                else
254
                    CLRQ;
255
                break;
256
            }
257
            break;
258
        case 1:
259
            tmp0 = arg1;
260
            arg1 -= tmp2;
261
            tmp1 = arg1 > tmp0;
262
            switch (Q) {
263
            case 0:
264
                if (tmp1 == 0)
265
                    SETQ;
266
                else
267
                    CLRQ;
268
                break;
269
            case 1:
270
                if (tmp1)
271
                    SETQ;
272
                else
273
                    CLRQ;
274
                break;
275
            }
276
            break;
277
        }
278
        break;
279
    }
280
    if (Q == M)
281
        SETT;
282
    else
283
        CLRT;
284
    //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
285
    return arg1;
286
}
287

    
288
void helper_macl(uint32_t arg0, uint32_t arg1)
289
{
290
    int64_t res;
291

    
292
    res = ((uint64_t) env->mach << 32) | env->macl;
293
    res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
294
    env->mach = (res >> 32) & 0xffffffff;
295
    env->macl = res & 0xffffffff;
296
    if (env->sr & SR_S) {
297
        if (res < 0)
298
            env->mach |= 0xffff0000;
299
        else
300
            env->mach &= 0x00007fff;
301
    }
302
}
303

    
304
void helper_macw(uint32_t arg0, uint32_t arg1)
305
{
306
    int64_t res;
307

    
308
    res = ((uint64_t) env->mach << 32) | env->macl;
309
    res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
310
    env->mach = (res >> 32) & 0xffffffff;
311
    env->macl = res & 0xffffffff;
312
    if (env->sr & SR_S) {
313
        if (res < -0x80000000) {
314
            env->mach = 1;
315
            env->macl = 0x80000000;
316
        } else if (res > 0x000000007fffffff) {
317
            env->mach = 1;
318
            env->macl = 0x7fffffff;
319
        }
320
    }
321
}
322

    
323
uint32_t helper_negc(uint32_t arg)
324
{
325
    uint32_t temp;
326

    
327
    temp = -arg;
328
    arg = temp - (env->sr & SR_T);
329
    if (0 < temp)
330
        env->sr |= SR_T;
331
    else
332
        env->sr &= ~SR_T;
333
    if (temp < arg)
334
        env->sr |= SR_T;
335
    return arg;
336
}
337

    
338
uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
339
{
340
    uint32_t tmp0, tmp1;
341

    
342
    tmp1 = arg1 - arg0;
343
    tmp0 = arg1;
344
    arg1 = tmp1 - (env->sr & SR_T);
345
    if (tmp0 < tmp1)
346
        env->sr |= SR_T;
347
    else
348
        env->sr &= ~SR_T;
349
    if (tmp1 < arg1)
350
        env->sr |= SR_T;
351
    return arg1;
352
}
353

    
354
uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
355
{
356
    int32_t dest, src, ans;
357

    
358
    if ((int32_t) arg1 >= 0)
359
        dest = 0;
360
    else
361
        dest = 1;
362
    if ((int32_t) arg0 >= 0)
363
        src = 0;
364
    else
365
        src = 1;
366
    src += dest;
367
    arg1 -= arg0;
368
    if ((int32_t) arg1 >= 0)
369
        ans = 0;
370
    else
371
        ans = 1;
372
    ans += dest;
373
    if (src == 1) {
374
        if (ans == 1)
375
            env->sr |= SR_T;
376
        else
377
            env->sr &= ~SR_T;
378
    } else
379
        env->sr &= ~SR_T;
380
    return arg1;
381
}
382

    
383
static inline void set_t(void)
384
{
385
    env->sr |= SR_T;
386
}
387

    
388
static inline void clr_t(void)
389
{
390
    env->sr &= ~SR_T;
391
}
392

    
393
void helper_ld_fpscr(uint32_t val)
394
{
395
    env->fpscr = val & 0x003fffff;
396
    if (val & 0x01)
397
        set_float_rounding_mode(float_round_to_zero, &env->fp_status);
398
    else
399
        set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
400
}
401

    
402
uint32_t helper_fabs_FT(uint32_t t0)
403
{
404
    CPU_FloatU f;
405
    f.l = t0;
406
    f.f = float32_abs(f.f);
407
    return f.l;
408
}
409

    
410
uint64_t helper_fabs_DT(uint64_t t0)
411
{
412
    CPU_DoubleU d;
413
    d.ll = t0;
414
    d.d = float64_abs(d.d);
415
    return d.ll;
416
}
417

    
418
uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
419
{
420
    CPU_FloatU f0, f1;
421
    f0.l = t0;
422
    f1.l = t1;
423
    f0.f = float32_add(f0.f, f1.f, &env->fp_status);
424
    return f0.l;
425
}
426

    
427
uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
428
{
429
    CPU_DoubleU d0, d1;
430
    d0.ll = t0;
431
    d1.ll = t1;
432
    d0.d = float64_add(d0.d, d1.d, &env->fp_status);
433
    return d0.ll;
434
}
435

    
436
void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
437
{
438
    CPU_FloatU f0, f1;
439
    f0.l = t0;
440
    f1.l = t1;
441

    
442
    if (float32_compare(f0.f, f1.f, &env->fp_status) == 0)
443
        set_t();
444
    else
445
        clr_t();
446
}
447

    
448
void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
449
{
450
    CPU_DoubleU d0, d1;
451
    d0.ll = t0;
452
    d1.ll = t1;
453

    
454
    if (float64_compare(d0.d, d1.d, &env->fp_status) == 0)
455
        set_t();
456
    else
457
        clr_t();
458
}
459

    
460
void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
461
{
462
    CPU_FloatU f0, f1;
463
    f0.l = t0;
464
    f1.l = t1;
465

    
466
    if (float32_compare(f0.f, f1.f, &env->fp_status) == 1)
467
        set_t();
468
    else
469
        clr_t();
470
}
471

    
472
void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
473
{
474
    CPU_DoubleU d0, d1;
475
    d0.ll = t0;
476
    d1.ll = t1;
477

    
478
    if (float64_compare(d0.d, d1.d, &env->fp_status) == 1)
479
        set_t();
480
    else
481
        clr_t();
482
}
483

    
484
uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
485
{
486
    CPU_DoubleU d;
487
    CPU_FloatU f;
488
    f.l = t0;
489
    d.d = float32_to_float64(f.f, &env->fp_status);
490
    return d.ll;
491
}
492

    
493
uint32_t helper_fcnvds_DT_FT(uint64_t t0)
494
{
495
    CPU_DoubleU d;
496
    CPU_FloatU f;
497
    d.ll = t0;
498
    f.f = float64_to_float32(d.d, &env->fp_status);
499
    return f.l;
500
}
501

    
502
uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
503
{
504
    CPU_FloatU f0, f1;
505
    f0.l = t0;
506
    f1.l = t1;
507
    f0.f = float32_div(f0.f, f1.f, &env->fp_status);
508
    return f0.l;
509
}
510

    
511
uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
512
{
513
    CPU_DoubleU d0, d1;
514
    d0.ll = t0;
515
    d1.ll = t1;
516
    d0.d = float64_div(d0.d, d1.d, &env->fp_status);
517
    return d0.ll;
518
}
519

    
520
uint32_t helper_float_FT(uint32_t t0)
521
{
522
    CPU_FloatU f;
523
    f.f = int32_to_float32(t0, &env->fp_status);
524
    return f.l;
525
}
526

    
527
uint64_t helper_float_DT(uint32_t t0)
528
{
529
    CPU_DoubleU d;
530
    d.d = int32_to_float64(t0, &env->fp_status);
531
    return d.ll;
532
}
533

    
534
uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
535
{
536
    CPU_FloatU f0, f1, f2;
537
    f0.l = t0;
538
    f1.l = t1;
539
    f2.l = t2;
540
    f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
541
    f0.f = float32_add(f0.f, f2.f, &env->fp_status);
542
    return f0.l;
543
}
544

    
545
uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
546
{
547
    CPU_FloatU f0, f1;
548
    f0.l = t0;
549
    f1.l = t1;
550
    f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
551
    return f0.l;
552
}
553

    
554
uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
555
{
556
    CPU_DoubleU d0, d1;
557
    d0.ll = t0;
558
    d1.ll = t1;
559
    d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
560
    return d0.ll;
561
}
562

    
563
uint32_t helper_fneg_T(uint32_t t0)
564
{
565
    CPU_FloatU f;
566
    f.l = t0;
567
    f.f = float32_chs(f.f);
568
    return f.l;
569
}
570

    
571
uint32_t helper_fsqrt_FT(uint32_t t0)
572
{
573
    CPU_FloatU f;
574
    f.l = t0;
575
    f.f = float32_sqrt(f.f, &env->fp_status);
576
    return f.l;
577
}
578

    
579
uint64_t helper_fsqrt_DT(uint64_t t0)
580
{
581
    CPU_DoubleU d;
582
    d.ll = t0;
583
    d.d = float64_sqrt(d.d, &env->fp_status);
584
    return d.ll;
585
}
586

    
587
uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
588
{
589
    CPU_FloatU f0, f1;
590
    f0.l = t0;
591
    f1.l = t1;
592
    f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
593
    return f0.l;
594
}
595

    
596
uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
597
{
598
    CPU_DoubleU d0, d1;
599
    d0.ll = t0;
600
    d1.ll = t1;
601
    d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
602
    return d0.ll;
603
}
604

    
605
uint32_t helper_ftrc_FT(uint32_t t0)
606
{
607
    CPU_FloatU f;
608
    f.l = t0;
609
    return float32_to_int32_round_to_zero(f.f, &env->fp_status);
610
}
611

    
612
uint32_t helper_ftrc_DT(uint64_t t0)
613
{
614
    CPU_DoubleU d;
615
    d.ll = t0;
616
    return float64_to_int32_round_to_zero(d.d, &env->fp_status);
617
}