Statistics
| Branch: | Revision:

root / hw / onenand.c @ 5c130f65

History | View | Annotate | Download (19.4 kB)

1
/*
2
 * OneNAND flash memories emulation.
3
 *
4
 * Copyright (C) 2008 Nokia Corporation
5
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6
 *
7
 * This program is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU General Public License as
9
 * published by the Free Software Foundation; either version 2 or
10
 * (at your option) version 3 of the License.
11
 *
12
 * This program is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 * GNU General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU General Public License along
18
 * with this program; if not, write to the Free Software Foundation, Inc.,
19
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20
 */
21

    
22
#include "qemu-common.h"
23
#include "flash.h"
24
#include "irq.h"
25
#include "sysemu.h"
26
#include "block.h"
27

    
28
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
29
#define PAGE_SHIFT        11
30

    
31
/* Fixed */
32
#define BLOCK_SHIFT        (PAGE_SHIFT + 6)
33

    
34
struct onenand_s {
35
    uint32_t id;
36
    int shift;
37
    target_phys_addr_t base;
38
    qemu_irq intr;
39
    qemu_irq rdy;
40
    BlockDriverState *bdrv;
41
    BlockDriverState *bdrv_cur;
42
    uint8_t *image;
43
    uint8_t *otp;
44
    uint8_t *current;
45
    ram_addr_t ram;
46
    uint8_t *boot[2];
47
    uint8_t *data[2][2];
48
    int iomemtype;
49
    int cycle;
50
    int otpmode;
51

    
52
    uint16_t addr[8];
53
    uint16_t unladdr[8];
54
    int bufaddr;
55
    int count;
56
    uint16_t command;
57
    uint16_t config[2];
58
    uint16_t status;
59
    uint16_t intstatus;
60
    uint16_t wpstatus;
61

    
62
    struct ecc_state_s ecc;
63

    
64
    int density_mask;
65
    int secs;
66
    int secs_cur;
67
    int blocks;
68
    uint8_t *blockwp;
69
};
70

    
71
enum {
72
    ONEN_BUF_BLOCK = 0,
73
    ONEN_BUF_BLOCK2 = 1,
74
    ONEN_BUF_DEST_BLOCK = 2,
75
    ONEN_BUF_DEST_PAGE = 3,
76
    ONEN_BUF_PAGE = 7,
77
};
78

    
79
enum {
80
    ONEN_ERR_CMD = 1 << 10,
81
    ONEN_ERR_ERASE = 1 << 11,
82
    ONEN_ERR_PROG = 1 << 12,
83
    ONEN_ERR_LOAD = 1 << 13,
84
};
85

    
86
enum {
87
    ONEN_INT_RESET = 1 << 4,
88
    ONEN_INT_ERASE = 1 << 5,
89
    ONEN_INT_PROG = 1 << 6,
90
    ONEN_INT_LOAD = 1 << 7,
91
    ONEN_INT = 1 << 15,
92
};
93

    
94
enum {
95
    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
96
    ONEN_LOCK_LOCKED = 1 << 1,
97
    ONEN_LOCK_UNLOCKED = 1 << 2,
98
};
99

    
100
void onenand_base_update(void *opaque, target_phys_addr_t new)
101
{
102
    struct onenand_s *s = (struct onenand_s *) opaque;
103

    
104
    s->base = new;
105

    
106
    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
107
     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
108
     * write boot commands.  Also take note of the BWPS bit.  */
109
    cpu_register_physical_memory(s->base + (0x0000 << s->shift),
110
                    0x0200 << s->shift, s->iomemtype);
111
    cpu_register_physical_memory(s->base + (0x0200 << s->shift),
112
                    0xbe00 << s->shift,
113
                    (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
114
    if (s->iomemtype)
115
        cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
116
                    0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
117
}
118

    
119
void onenand_base_unmap(void *opaque)
120
{
121
    struct onenand_s *s = (struct onenand_s *) opaque;
122

    
123
    cpu_register_physical_memory(s->base,
124
                    0x10000 << s->shift, IO_MEM_UNASSIGNED);
125
}
126

    
127
static void onenand_intr_update(struct onenand_s *s)
128
{
129
    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
130
}
131

    
132
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
133
static void onenand_reset(struct onenand_s *s, int cold)
134
{
135
    memset(&s->addr, 0, sizeof(s->addr));
136
    s->command = 0;
137
    s->count = 1;
138
    s->bufaddr = 0;
139
    s->config[0] = 0x40c0;
140
    s->config[1] = 0x0000;
141
    onenand_intr_update(s);
142
    qemu_irq_raise(s->rdy);
143
    s->status = 0x0000;
144
    s->intstatus = cold ? 0x8080 : 0x8010;
145
    s->unladdr[0] = 0;
146
    s->unladdr[1] = 0;
147
    s->wpstatus = 0x0002;
148
    s->cycle = 0;
149
    s->otpmode = 0;
150
    s->bdrv_cur = s->bdrv;
151
    s->current = s->image;
152
    s->secs_cur = s->secs;
153

    
154
    if (cold) {
155
        /* Lock the whole flash */
156
        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
157

    
158
        if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
159
            cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n",
160
                            __FUNCTION__);
161
    }
162
}
163

    
164
static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
165
                void *dest)
166
{
167
    if (s->bdrv_cur)
168
        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
169
    else if (sec + secn > s->secs_cur)
170
        return 1;
171

    
172
    memcpy(dest, s->current + (sec << 9), secn << 9);
173

    
174
    return 0;
175
}
176

    
177
static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
178
                void *src)
179
{
180
    if (s->bdrv_cur)
181
        return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
182
    else if (sec + secn > s->secs_cur)
183
        return 1;
184

    
185
    memcpy(s->current + (sec << 9), src, secn << 9);
186

    
187
    return 0;
188
}
189

    
190
static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
191
                void *dest)
192
{
193
    uint8_t buf[512];
194

    
195
    if (s->bdrv_cur) {
196
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
197
            return 1;
198
        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
199
    } else if (sec + secn > s->secs_cur)
200
        return 1;
201
    else
202
        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
203
 
204
    return 0;
205
}
206

    
207
static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
208
                void *src)
209
{
210
    uint8_t buf[512];
211

    
212
    if (s->bdrv_cur) {
213
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
214
            return 1;
215
        memcpy(buf + ((sec & 31) << 4), src, secn << 4);
216
        return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
217
    } else if (sec + secn > s->secs_cur)
218
        return 1;
219

    
220
    memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
221
 
222
    return 0;
223
}
224

    
225
static inline int onenand_erase(struct onenand_s *s, int sec, int num)
226
{
227
    /* TODO: optimise */
228
    uint8_t buf[512];
229

    
230
    memset(buf, 0xff, sizeof(buf));
231
    for (; num > 0; num --, sec ++) {
232
        if (onenand_prog_main(s, sec, 1, buf))
233
            return 1;
234
        if (onenand_prog_spare(s, sec, 1, buf))
235
            return 1;
236
    }
237

    
238
    return 0;
239
}
240

    
241
static void onenand_command(struct onenand_s *s, int cmd)
242
{
243
    int b;
244
    int sec;
245
    void *buf;
246
#define SETADDR(block, page)                        \
247
    sec = (s->addr[page] & 3) +                        \
248
            ((((s->addr[page] >> 2) & 0x3f) +        \
249
              (((s->addr[block] & 0xfff) |        \
250
                (s->addr[block] >> 15 ?                \
251
                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
252
#define SETBUF_M()                                \
253
    buf = (s->bufaddr & 8) ?                        \
254
            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];        \
255
    buf += (s->bufaddr & 3) << 9;
256
#define SETBUF_S()                                \
257
    buf = (s->bufaddr & 8) ?                        \
258
            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];        \
259
    buf += (s->bufaddr & 3) << 4;
260

    
261
    switch (cmd) {
262
    case 0x00:        /* Load single/multiple sector data unit into buffer */
263
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
264

    
265
        SETBUF_M()
266
        if (onenand_load_main(s, sec, s->count, buf))
267
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
268

    
269
#if 0
270
        SETBUF_S()
271
        if (onenand_load_spare(s, sec, s->count, buf))
272
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
273
#endif
274

    
275
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
276
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
277
         * then we need two split the read/write into two chunks.
278
         */
279
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
280
        break;
281
    case 0x13:        /* Load single/multiple spare sector into buffer */
282
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
283

    
284
        SETBUF_S()
285
        if (onenand_load_spare(s, sec, s->count, buf))
286
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
287

    
288
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
289
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
290
         * then we need two split the read/write into two chunks.
291
         */
292
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
293
        break;
294
    case 0x80:        /* Program single/multiple sector data unit from buffer */
295
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
296

    
297
        SETBUF_M()
298
        if (onenand_prog_main(s, sec, s->count, buf))
299
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
300

    
301
#if 0
302
        SETBUF_S()
303
        if (onenand_prog_spare(s, sec, s->count, buf))
304
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
305
#endif
306

    
307
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
308
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
309
         * then we need two split the read/write into two chunks.
310
         */
311
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
312
        break;
313
    case 0x1a:        /* Program single/multiple spare area sector from buffer */
314
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
315

    
316
        SETBUF_S()
317
        if (onenand_prog_spare(s, sec, s->count, buf))
318
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
319

    
320
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
321
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
322
         * then we need two split the read/write into two chunks.
323
         */
324
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
325
        break;
326
    case 0x1b:        /* Copy-back program */
327
        SETBUF_S()
328

    
329
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
330
        if (onenand_load_main(s, sec, s->count, buf))
331
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
332

    
333
        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
334
        if (onenand_prog_main(s, sec, s->count, buf))
335
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
336

    
337
        /* TODO: spare areas */
338

    
339
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
340
        break;
341

    
342
    case 0x23:        /* Unlock NAND array block(s) */
343
        s->intstatus |= ONEN_INT;
344

    
345
        /* XXX the previous (?) area should be locked automatically */
346
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
347
            if (b >= s->blocks) {
348
                s->status |= ONEN_ERR_CMD;
349
                break;
350
            }
351
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
352
                break;
353

    
354
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
355
        }
356
        break;
357
    case 0x27:        /* Unlock All NAND array blocks */
358
        s->intstatus |= ONEN_INT;
359

    
360
        for (b = 0; b < s->blocks; b ++) {
361
            if (b >= s->blocks) {
362
                s->status |= ONEN_ERR_CMD;
363
                break;
364
            }
365
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
366
                break;
367

    
368
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
369
        }
370
        break;
371

    
372
    case 0x2a:        /* Lock NAND array block(s) */
373
        s->intstatus |= ONEN_INT;
374

    
375
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
376
            if (b >= s->blocks) {
377
                s->status |= ONEN_ERR_CMD;
378
                break;
379
            }
380
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
381
                break;
382

    
383
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
384
        }
385
        break;
386
    case 0x2c:        /* Lock-tight NAND array block(s) */
387
        s->intstatus |= ONEN_INT;
388

    
389
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
390
            if (b >= s->blocks) {
391
                s->status |= ONEN_ERR_CMD;
392
                break;
393
            }
394
            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
395
                continue;
396

    
397
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
398
        }
399
        break;
400

    
401
    case 0x71:        /* Erase-Verify-Read */
402
        s->intstatus |= ONEN_INT;
403
        break;
404
    case 0x95:        /* Multi-block erase */
405
        qemu_irq_pulse(s->intr);
406
        /* Fall through.  */
407
    case 0x94:        /* Block erase */
408
        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
409
                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
410
                << (BLOCK_SHIFT - 9);
411
        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
412
            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
413

    
414
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
415
        break;
416
    case 0xb0:        /* Erase suspend */
417
        break;
418
    case 0x30:        /* Erase resume */
419
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
420
        break;
421

    
422
    case 0xf0:        /* Reset NAND Flash core */
423
        onenand_reset(s, 0);
424
        break;
425
    case 0xf3:        /* Reset OneNAND */
426
        onenand_reset(s, 0);
427
        break;
428

    
429
    case 0x65:        /* OTP Access */
430
        s->intstatus |= ONEN_INT;
431
        s->bdrv_cur = 0;
432
        s->current = s->otp;
433
        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
434
        s->addr[ONEN_BUF_BLOCK] = 0;
435
        s->otpmode = 1;
436
        break;
437

    
438
    default:
439
        s->status |= ONEN_ERR_CMD;
440
        s->intstatus |= ONEN_INT;
441
        fprintf(stderr, "%s: unknown OneNAND command %x\n",
442
                        __FUNCTION__, cmd);
443
    }
444

    
445
    onenand_intr_update(s);
446
}
447

    
448
static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
449
{
450
    struct onenand_s *s = (struct onenand_s *) opaque;
451
    int offset = addr >> s->shift;
452

    
453
    switch (offset) {
454
    case 0x0000 ... 0xc000:
455
        return lduw_le_p(s->boot[0] + addr);
456

    
457
    case 0xf000:        /* Manufacturer ID */
458
        return (s->id >> 16) & 0xff;
459
    case 0xf001:        /* Device ID */
460
        return (s->id >>  8) & 0xff;
461
    /* TODO: get the following values from a real chip!  */
462
    case 0xf002:        /* Version ID */
463
        return (s->id >>  0) & 0xff;
464
    case 0xf003:        /* Data Buffer size */
465
        return 1 << PAGE_SHIFT;
466
    case 0xf004:        /* Boot Buffer size */
467
        return 0x200;
468
    case 0xf005:        /* Amount of buffers */
469
        return 1 | (2 << 8);
470
    case 0xf006:        /* Technology */
471
        return 0;
472

    
473
    case 0xf100 ... 0xf107:        /* Start addresses */
474
        return s->addr[offset - 0xf100];
475

    
476
    case 0xf200:        /* Start buffer */
477
        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
478

    
479
    case 0xf220:        /* Command */
480
        return s->command;
481
    case 0xf221:        /* System Configuration 1 */
482
        return s->config[0] & 0xffe0;
483
    case 0xf222:        /* System Configuration 2 */
484
        return s->config[1];
485

    
486
    case 0xf240:        /* Controller Status */
487
        return s->status;
488
    case 0xf241:        /* Interrupt */
489
        return s->intstatus;
490
    case 0xf24c:        /* Unlock Start Block Address */
491
        return s->unladdr[0];
492
    case 0xf24d:        /* Unlock End Block Address */
493
        return s->unladdr[1];
494
    case 0xf24e:        /* Write Protection Status */
495
        return s->wpstatus;
496

    
497
    case 0xff00:        /* ECC Status */
498
        return 0x00;
499
    case 0xff01:        /* ECC Result of main area data */
500
    case 0xff02:        /* ECC Result of spare area data */
501
    case 0xff03:        /* ECC Result of main area data */
502
    case 0xff04:        /* ECC Result of spare area data */
503
        cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__);
504
        return 0x0000;
505
    }
506

    
507
    fprintf(stderr, "%s: unknown OneNAND register %x\n",
508
                    __FUNCTION__, offset);
509
    return 0;
510
}
511

    
512
static void onenand_write(void *opaque, target_phys_addr_t addr,
513
                uint32_t value)
514
{
515
    struct onenand_s *s = (struct onenand_s *) opaque;
516
    int offset = addr >> s->shift;
517
    int sec;
518

    
519
    switch (offset) {
520
    case 0x0000 ... 0x01ff:
521
    case 0x8000 ... 0x800f:
522
        if (s->cycle) {
523
            s->cycle = 0;
524

    
525
            if (value == 0x0000) {
526
                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
527
                onenand_load_main(s, sec,
528
                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
529
                s->addr[ONEN_BUF_PAGE] += 4;
530
                s->addr[ONEN_BUF_PAGE] &= 0xff;
531
            }
532
            break;
533
        }
534

    
535
        switch (value) {
536
        case 0x00f0:        /* Reset OneNAND */
537
            onenand_reset(s, 0);
538
            break;
539

    
540
        case 0x00e0:        /* Load Data into Buffer */
541
            s->cycle = 1;
542
            break;
543

    
544
        case 0x0090:        /* Read Identification Data */
545
            memset(s->boot[0], 0, 3 << s->shift);
546
            s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
547
            s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
548
            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
549
            break;
550

    
551
        default:
552
            fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
553
                            __FUNCTION__, value);
554
        }
555
        break;
556

    
557
    case 0xf100 ... 0xf107:        /* Start addresses */
558
        s->addr[offset - 0xf100] = value;
559
        break;
560

    
561
    case 0xf200:        /* Start buffer */
562
        s->bufaddr = (value >> 8) & 0xf;
563
        if (PAGE_SHIFT == 11)
564
            s->count = (value & 3) ?: 4;
565
        else if (PAGE_SHIFT == 10)
566
            s->count = (value & 1) ?: 2;
567
        break;
568

    
569
    case 0xf220:        /* Command */
570
        if (s->intstatus & (1 << 15))
571
            break;
572
        s->command = value;
573
        onenand_command(s, s->command);
574
        break;
575
    case 0xf221:        /* System Configuration 1 */
576
        s->config[0] = value;
577
        onenand_intr_update(s);
578
        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
579
        break;
580
    case 0xf222:        /* System Configuration 2 */
581
        s->config[1] = value;
582
        break;
583

    
584
    case 0xf241:        /* Interrupt */
585
        s->intstatus &= value;
586
        if ((1 << 15) & ~s->intstatus)
587
            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
588
                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
589
        onenand_intr_update(s);
590
        break;
591
    case 0xf24c:        /* Unlock Start Block Address */
592
        s->unladdr[0] = value & (s->blocks - 1);
593
        /* For some reason we have to set the end address to by default
594
         * be same as start because the software forgets to write anything
595
         * in there.  */
596
        s->unladdr[1] = value & (s->blocks - 1);
597
        break;
598
    case 0xf24d:        /* Unlock End Block Address */
599
        s->unladdr[1] = value & (s->blocks - 1);
600
        break;
601

    
602
    default:
603
        fprintf(stderr, "%s: unknown OneNAND register %x\n",
604
                        __FUNCTION__, offset);
605
    }
606
}
607

    
608
static CPUReadMemoryFunc *onenand_readfn[] = {
609
    onenand_read,        /* TODO */
610
    onenand_read,
611
    onenand_read,
612
};
613

    
614
static CPUWriteMemoryFunc *onenand_writefn[] = {
615
    onenand_write,        /* TODO */
616
    onenand_write,
617
    onenand_write,
618
};
619

    
620
void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
621
{
622
    struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
623
    int bdrv_index = drive_get_index(IF_MTD, 0, 0);
624
    uint32_t size = 1 << (24 + ((id >> 12) & 7));
625
    void *ram;
626

    
627
    s->shift = regshift;
628
    s->intr = irq;
629
    s->rdy = 0;
630
    s->id = id;
631
    s->blocks = size >> BLOCK_SHIFT;
632
    s->secs = size >> 9;
633
    s->blockwp = qemu_malloc(s->blocks);
634
    s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
635
    s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
636
                    onenand_writefn, s);
637
    if (bdrv_index == -1)
638
        s->image = memset(qemu_malloc(size + (size >> 5)),
639
                        0xff, size + (size >> 5));
640
    else
641
        s->bdrv = drives_table[bdrv_index].bdrv;
642
    s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
643
                    0xff, (64 + 2) << PAGE_SHIFT);
644
    s->ram = qemu_ram_alloc(0xc000 << s->shift);
645
    ram = qemu_get_ram_ptr(s->ram);
646
    s->boot[0] = ram + (0x0000 << s->shift);
647
    s->boot[1] = ram + (0x8000 << s->shift);
648
    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
649
    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
650
    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
651
    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
652

    
653
    onenand_reset(s, 1);
654

    
655
    return s;
656
}
657

    
658
void *onenand_raw_otp(void *opaque)
659
{
660
    struct onenand_s *s = (struct onenand_s *) opaque;
661

    
662
    return s->otp;
663
}