Statistics
| Branch: | Revision:

root / cpu-all.h @ 5cd2c5b6

History | View | Annotate | Download (26.4 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ALL_H
20
#define CPU_ALL_H
21

    
22
#include "qemu-common.h"
23
#include "cpu-common.h"
24

    
25
/* some important defines:
26
 *
27
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28
 * memory accesses.
29
 *
30
 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31
 * otherwise little endian.
32
 *
33
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34
 *
35
 * TARGET_WORDS_BIGENDIAN : same for target cpu
36
 */
37

    
38
#include "softfloat.h"
39

    
40
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41
#define BSWAP_NEEDED
42
#endif
43

    
44
#ifdef BSWAP_NEEDED
45

    
46
static inline uint16_t tswap16(uint16_t s)
47
{
48
    return bswap16(s);
49
}
50

    
51
static inline uint32_t tswap32(uint32_t s)
52
{
53
    return bswap32(s);
54
}
55

    
56
static inline uint64_t tswap64(uint64_t s)
57
{
58
    return bswap64(s);
59
}
60

    
61
static inline void tswap16s(uint16_t *s)
62
{
63
    *s = bswap16(*s);
64
}
65

    
66
static inline void tswap32s(uint32_t *s)
67
{
68
    *s = bswap32(*s);
69
}
70

    
71
static inline void tswap64s(uint64_t *s)
72
{
73
    *s = bswap64(*s);
74
}
75

    
76
#else
77

    
78
static inline uint16_t tswap16(uint16_t s)
79
{
80
    return s;
81
}
82

    
83
static inline uint32_t tswap32(uint32_t s)
84
{
85
    return s;
86
}
87

    
88
static inline uint64_t tswap64(uint64_t s)
89
{
90
    return s;
91
}
92

    
93
static inline void tswap16s(uint16_t *s)
94
{
95
}
96

    
97
static inline void tswap32s(uint32_t *s)
98
{
99
}
100

    
101
static inline void tswap64s(uint64_t *s)
102
{
103
}
104

    
105
#endif
106

    
107
#if TARGET_LONG_SIZE == 4
108
#define tswapl(s) tswap32(s)
109
#define tswapls(s) tswap32s((uint32_t *)(s))
110
#define bswaptls(s) bswap32s(s)
111
#else
112
#define tswapl(s) tswap64(s)
113
#define tswapls(s) tswap64s((uint64_t *)(s))
114
#define bswaptls(s) bswap64s(s)
115
#endif
116

    
117
typedef union {
118
    float32 f;
119
    uint32_t l;
120
} CPU_FloatU;
121

    
122
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123
   endian ! */
124
typedef union {
125
    float64 d;
126
#if defined(HOST_WORDS_BIGENDIAN) \
127
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128
    struct {
129
        uint32_t upper;
130
        uint32_t lower;
131
    } l;
132
#else
133
    struct {
134
        uint32_t lower;
135
        uint32_t upper;
136
    } l;
137
#endif
138
    uint64_t ll;
139
} CPU_DoubleU;
140

    
141
#ifdef TARGET_SPARC
142
typedef union {
143
    float128 q;
144
#if defined(HOST_WORDS_BIGENDIAN) \
145
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146
    struct {
147
        uint32_t upmost;
148
        uint32_t upper;
149
        uint32_t lower;
150
        uint32_t lowest;
151
    } l;
152
    struct {
153
        uint64_t upper;
154
        uint64_t lower;
155
    } ll;
156
#else
157
    struct {
158
        uint32_t lowest;
159
        uint32_t lower;
160
        uint32_t upper;
161
        uint32_t upmost;
162
    } l;
163
    struct {
164
        uint64_t lower;
165
        uint64_t upper;
166
    } ll;
167
#endif
168
} CPU_QuadU;
169
#endif
170

    
171
/* CPU memory access without any memory or io remapping */
172

    
173
/*
174
 * the generic syntax for the memory accesses is:
175
 *
176
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
177
 *
178
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
179
 *
180
 * type is:
181
 * (empty): integer access
182
 *   f    : float access
183
 *
184
 * sign is:
185
 * (empty): for floats or 32 bit size
186
 *   u    : unsigned
187
 *   s    : signed
188
 *
189
 * size is:
190
 *   b: 8 bits
191
 *   w: 16 bits
192
 *   l: 32 bits
193
 *   q: 64 bits
194
 *
195
 * endian is:
196
 * (empty): target cpu endianness or 8 bit access
197
 *   r    : reversed target cpu endianness (not implemented yet)
198
 *   be   : big endian (not implemented yet)
199
 *   le   : little endian (not implemented yet)
200
 *
201
 * access_type is:
202
 *   raw    : host memory access
203
 *   user   : user mode access using soft MMU
204
 *   kernel : kernel mode access using soft MMU
205
 */
206
static inline int ldub_p(const void *ptr)
207
{
208
    return *(uint8_t *)ptr;
209
}
210

    
211
static inline int ldsb_p(const void *ptr)
212
{
213
    return *(int8_t *)ptr;
214
}
215

    
216
static inline void stb_p(void *ptr, int v)
217
{
218
    *(uint8_t *)ptr = v;
219
}
220

    
221
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
222
   kernel handles unaligned load/stores may give better results, but
223
   it is a system wide setting : bad */
224
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
225

    
226
/* conservative code for little endian unaligned accesses */
227
static inline int lduw_le_p(const void *ptr)
228
{
229
#ifdef _ARCH_PPC
230
    int val;
231
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
232
    return val;
233
#else
234
    const uint8_t *p = ptr;
235
    return p[0] | (p[1] << 8);
236
#endif
237
}
238

    
239
static inline int ldsw_le_p(const void *ptr)
240
{
241
#ifdef _ARCH_PPC
242
    int val;
243
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
244
    return (int16_t)val;
245
#else
246
    const uint8_t *p = ptr;
247
    return (int16_t)(p[0] | (p[1] << 8));
248
#endif
249
}
250

    
251
static inline int ldl_le_p(const void *ptr)
252
{
253
#ifdef _ARCH_PPC
254
    int val;
255
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256
    return val;
257
#else
258
    const uint8_t *p = ptr;
259
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
260
#endif
261
}
262

    
263
static inline uint64_t ldq_le_p(const void *ptr)
264
{
265
    const uint8_t *p = ptr;
266
    uint32_t v1, v2;
267
    v1 = ldl_le_p(p);
268
    v2 = ldl_le_p(p + 4);
269
    return v1 | ((uint64_t)v2 << 32);
270
}
271

    
272
static inline void stw_le_p(void *ptr, int v)
273
{
274
#ifdef _ARCH_PPC
275
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
276
#else
277
    uint8_t *p = ptr;
278
    p[0] = v;
279
    p[1] = v >> 8;
280
#endif
281
}
282

    
283
static inline void stl_le_p(void *ptr, int v)
284
{
285
#ifdef _ARCH_PPC
286
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
287
#else
288
    uint8_t *p = ptr;
289
    p[0] = v;
290
    p[1] = v >> 8;
291
    p[2] = v >> 16;
292
    p[3] = v >> 24;
293
#endif
294
}
295

    
296
static inline void stq_le_p(void *ptr, uint64_t v)
297
{
298
    uint8_t *p = ptr;
299
    stl_le_p(p, (uint32_t)v);
300
    stl_le_p(p + 4, v >> 32);
301
}
302

    
303
/* float access */
304

    
305
static inline float32 ldfl_le_p(const void *ptr)
306
{
307
    union {
308
        float32 f;
309
        uint32_t i;
310
    } u;
311
    u.i = ldl_le_p(ptr);
312
    return u.f;
313
}
314

    
315
static inline void stfl_le_p(void *ptr, float32 v)
316
{
317
    union {
318
        float32 f;
319
        uint32_t i;
320
    } u;
321
    u.f = v;
322
    stl_le_p(ptr, u.i);
323
}
324

    
325
static inline float64 ldfq_le_p(const void *ptr)
326
{
327
    CPU_DoubleU u;
328
    u.l.lower = ldl_le_p(ptr);
329
    u.l.upper = ldl_le_p(ptr + 4);
330
    return u.d;
331
}
332

    
333
static inline void stfq_le_p(void *ptr, float64 v)
334
{
335
    CPU_DoubleU u;
336
    u.d = v;
337
    stl_le_p(ptr, u.l.lower);
338
    stl_le_p(ptr + 4, u.l.upper);
339
}
340

    
341
#else
342

    
343
static inline int lduw_le_p(const void *ptr)
344
{
345
    return *(uint16_t *)ptr;
346
}
347

    
348
static inline int ldsw_le_p(const void *ptr)
349
{
350
    return *(int16_t *)ptr;
351
}
352

    
353
static inline int ldl_le_p(const void *ptr)
354
{
355
    return *(uint32_t *)ptr;
356
}
357

    
358
static inline uint64_t ldq_le_p(const void *ptr)
359
{
360
    return *(uint64_t *)ptr;
361
}
362

    
363
static inline void stw_le_p(void *ptr, int v)
364
{
365
    *(uint16_t *)ptr = v;
366
}
367

    
368
static inline void stl_le_p(void *ptr, int v)
369
{
370
    *(uint32_t *)ptr = v;
371
}
372

    
373
static inline void stq_le_p(void *ptr, uint64_t v)
374
{
375
    *(uint64_t *)ptr = v;
376
}
377

    
378
/* float access */
379

    
380
static inline float32 ldfl_le_p(const void *ptr)
381
{
382
    return *(float32 *)ptr;
383
}
384

    
385
static inline float64 ldfq_le_p(const void *ptr)
386
{
387
    return *(float64 *)ptr;
388
}
389

    
390
static inline void stfl_le_p(void *ptr, float32 v)
391
{
392
    *(float32 *)ptr = v;
393
}
394

    
395
static inline void stfq_le_p(void *ptr, float64 v)
396
{
397
    *(float64 *)ptr = v;
398
}
399
#endif
400

    
401
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
402

    
403
static inline int lduw_be_p(const void *ptr)
404
{
405
#if defined(__i386__)
406
    int val;
407
    asm volatile ("movzwl %1, %0\n"
408
                  "xchgb %b0, %h0\n"
409
                  : "=q" (val)
410
                  : "m" (*(uint16_t *)ptr));
411
    return val;
412
#else
413
    const uint8_t *b = ptr;
414
    return ((b[0] << 8) | b[1]);
415
#endif
416
}
417

    
418
static inline int ldsw_be_p(const void *ptr)
419
{
420
#if defined(__i386__)
421
    int val;
422
    asm volatile ("movzwl %1, %0\n"
423
                  "xchgb %b0, %h0\n"
424
                  : "=q" (val)
425
                  : "m" (*(uint16_t *)ptr));
426
    return (int16_t)val;
427
#else
428
    const uint8_t *b = ptr;
429
    return (int16_t)((b[0] << 8) | b[1]);
430
#endif
431
}
432

    
433
static inline int ldl_be_p(const void *ptr)
434
{
435
#if defined(__i386__) || defined(__x86_64__)
436
    int val;
437
    asm volatile ("movl %1, %0\n"
438
                  "bswap %0\n"
439
                  : "=r" (val)
440
                  : "m" (*(uint32_t *)ptr));
441
    return val;
442
#else
443
    const uint8_t *b = ptr;
444
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
445
#endif
446
}
447

    
448
static inline uint64_t ldq_be_p(const void *ptr)
449
{
450
    uint32_t a,b;
451
    a = ldl_be_p(ptr);
452
    b = ldl_be_p((uint8_t *)ptr + 4);
453
    return (((uint64_t)a<<32)|b);
454
}
455

    
456
static inline void stw_be_p(void *ptr, int v)
457
{
458
#if defined(__i386__)
459
    asm volatile ("xchgb %b0, %h0\n"
460
                  "movw %w0, %1\n"
461
                  : "=q" (v)
462
                  : "m" (*(uint16_t *)ptr), "0" (v));
463
#else
464
    uint8_t *d = (uint8_t *) ptr;
465
    d[0] = v >> 8;
466
    d[1] = v;
467
#endif
468
}
469

    
470
static inline void stl_be_p(void *ptr, int v)
471
{
472
#if defined(__i386__) || defined(__x86_64__)
473
    asm volatile ("bswap %0\n"
474
                  "movl %0, %1\n"
475
                  : "=r" (v)
476
                  : "m" (*(uint32_t *)ptr), "0" (v));
477
#else
478
    uint8_t *d = (uint8_t *) ptr;
479
    d[0] = v >> 24;
480
    d[1] = v >> 16;
481
    d[2] = v >> 8;
482
    d[3] = v;
483
#endif
484
}
485

    
486
static inline void stq_be_p(void *ptr, uint64_t v)
487
{
488
    stl_be_p(ptr, v >> 32);
489
    stl_be_p((uint8_t *)ptr + 4, v);
490
}
491

    
492
/* float access */
493

    
494
static inline float32 ldfl_be_p(const void *ptr)
495
{
496
    union {
497
        float32 f;
498
        uint32_t i;
499
    } u;
500
    u.i = ldl_be_p(ptr);
501
    return u.f;
502
}
503

    
504
static inline void stfl_be_p(void *ptr, float32 v)
505
{
506
    union {
507
        float32 f;
508
        uint32_t i;
509
    } u;
510
    u.f = v;
511
    stl_be_p(ptr, u.i);
512
}
513

    
514
static inline float64 ldfq_be_p(const void *ptr)
515
{
516
    CPU_DoubleU u;
517
    u.l.upper = ldl_be_p(ptr);
518
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
519
    return u.d;
520
}
521

    
522
static inline void stfq_be_p(void *ptr, float64 v)
523
{
524
    CPU_DoubleU u;
525
    u.d = v;
526
    stl_be_p(ptr, u.l.upper);
527
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
528
}
529

    
530
#else
531

    
532
static inline int lduw_be_p(const void *ptr)
533
{
534
    return *(uint16_t *)ptr;
535
}
536

    
537
static inline int ldsw_be_p(const void *ptr)
538
{
539
    return *(int16_t *)ptr;
540
}
541

    
542
static inline int ldl_be_p(const void *ptr)
543
{
544
    return *(uint32_t *)ptr;
545
}
546

    
547
static inline uint64_t ldq_be_p(const void *ptr)
548
{
549
    return *(uint64_t *)ptr;
550
}
551

    
552
static inline void stw_be_p(void *ptr, int v)
553
{
554
    *(uint16_t *)ptr = v;
555
}
556

    
557
static inline void stl_be_p(void *ptr, int v)
558
{
559
    *(uint32_t *)ptr = v;
560
}
561

    
562
static inline void stq_be_p(void *ptr, uint64_t v)
563
{
564
    *(uint64_t *)ptr = v;
565
}
566

    
567
/* float access */
568

    
569
static inline float32 ldfl_be_p(const void *ptr)
570
{
571
    return *(float32 *)ptr;
572
}
573

    
574
static inline float64 ldfq_be_p(const void *ptr)
575
{
576
    return *(float64 *)ptr;
577
}
578

    
579
static inline void stfl_be_p(void *ptr, float32 v)
580
{
581
    *(float32 *)ptr = v;
582
}
583

    
584
static inline void stfq_be_p(void *ptr, float64 v)
585
{
586
    *(float64 *)ptr = v;
587
}
588

    
589
#endif
590

    
591
/* target CPU memory access functions */
592
#if defined(TARGET_WORDS_BIGENDIAN)
593
#define lduw_p(p) lduw_be_p(p)
594
#define ldsw_p(p) ldsw_be_p(p)
595
#define ldl_p(p) ldl_be_p(p)
596
#define ldq_p(p) ldq_be_p(p)
597
#define ldfl_p(p) ldfl_be_p(p)
598
#define ldfq_p(p) ldfq_be_p(p)
599
#define stw_p(p, v) stw_be_p(p, v)
600
#define stl_p(p, v) stl_be_p(p, v)
601
#define stq_p(p, v) stq_be_p(p, v)
602
#define stfl_p(p, v) stfl_be_p(p, v)
603
#define stfq_p(p, v) stfq_be_p(p, v)
604
#else
605
#define lduw_p(p) lduw_le_p(p)
606
#define ldsw_p(p) ldsw_le_p(p)
607
#define ldl_p(p) ldl_le_p(p)
608
#define ldq_p(p) ldq_le_p(p)
609
#define ldfl_p(p) ldfl_le_p(p)
610
#define ldfq_p(p) ldfq_le_p(p)
611
#define stw_p(p, v) stw_le_p(p, v)
612
#define stl_p(p, v) stl_le_p(p, v)
613
#define stq_p(p, v) stq_le_p(p, v)
614
#define stfl_p(p, v) stfl_le_p(p, v)
615
#define stfq_p(p, v) stfq_le_p(p, v)
616
#endif
617

    
618
/* MMU memory access macros */
619

    
620
#if defined(CONFIG_USER_ONLY)
621
#include <assert.h>
622
#include "qemu-types.h"
623

    
624
/* On some host systems the guest address space is reserved on the host.
625
 * This allows the guest address space to be offset to a convenient location.
626
 */
627
#if defined(CONFIG_USE_GUEST_BASE)
628
extern unsigned long guest_base;
629
extern int have_guest_base;
630
#define GUEST_BASE guest_base
631
#else
632
#define GUEST_BASE 0ul
633
#endif
634

    
635
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
636
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
637

    
638
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
639
#define h2g_valid(x) 1
640
#else
641
#define h2g_valid(x) ({ \
642
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
643
    __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
644
})
645
#endif
646

    
647
#define h2g(x) ({ \
648
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
649
    /* Check if given address fits target address space */ \
650
    assert(h2g_valid(x)); \
651
    (abi_ulong)__ret; \
652
})
653

    
654
#define saddr(x) g2h(x)
655
#define laddr(x) g2h(x)
656

    
657
#else /* !CONFIG_USER_ONLY */
658
/* NOTE: we use double casts if pointers and target_ulong have
659
   different sizes */
660
#define saddr(x) (uint8_t *)(long)(x)
661
#define laddr(x) (uint8_t *)(long)(x)
662
#endif
663

    
664
#define ldub_raw(p) ldub_p(laddr((p)))
665
#define ldsb_raw(p) ldsb_p(laddr((p)))
666
#define lduw_raw(p) lduw_p(laddr((p)))
667
#define ldsw_raw(p) ldsw_p(laddr((p)))
668
#define ldl_raw(p) ldl_p(laddr((p)))
669
#define ldq_raw(p) ldq_p(laddr((p)))
670
#define ldfl_raw(p) ldfl_p(laddr((p)))
671
#define ldfq_raw(p) ldfq_p(laddr((p)))
672
#define stb_raw(p, v) stb_p(saddr((p)), v)
673
#define stw_raw(p, v) stw_p(saddr((p)), v)
674
#define stl_raw(p, v) stl_p(saddr((p)), v)
675
#define stq_raw(p, v) stq_p(saddr((p)), v)
676
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
677
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
678

    
679

    
680
#if defined(CONFIG_USER_ONLY)
681

    
682
/* if user mode, no other memory access functions */
683
#define ldub(p) ldub_raw(p)
684
#define ldsb(p) ldsb_raw(p)
685
#define lduw(p) lduw_raw(p)
686
#define ldsw(p) ldsw_raw(p)
687
#define ldl(p) ldl_raw(p)
688
#define ldq(p) ldq_raw(p)
689
#define ldfl(p) ldfl_raw(p)
690
#define ldfq(p) ldfq_raw(p)
691
#define stb(p, v) stb_raw(p, v)
692
#define stw(p, v) stw_raw(p, v)
693
#define stl(p, v) stl_raw(p, v)
694
#define stq(p, v) stq_raw(p, v)
695
#define stfl(p, v) stfl_raw(p, v)
696
#define stfq(p, v) stfq_raw(p, v)
697

    
698
#define ldub_code(p) ldub_raw(p)
699
#define ldsb_code(p) ldsb_raw(p)
700
#define lduw_code(p) lduw_raw(p)
701
#define ldsw_code(p) ldsw_raw(p)
702
#define ldl_code(p) ldl_raw(p)
703
#define ldq_code(p) ldq_raw(p)
704

    
705
#define ldub_kernel(p) ldub_raw(p)
706
#define ldsb_kernel(p) ldsb_raw(p)
707
#define lduw_kernel(p) lduw_raw(p)
708
#define ldsw_kernel(p) ldsw_raw(p)
709
#define ldl_kernel(p) ldl_raw(p)
710
#define ldq_kernel(p) ldq_raw(p)
711
#define ldfl_kernel(p) ldfl_raw(p)
712
#define ldfq_kernel(p) ldfq_raw(p)
713
#define stb_kernel(p, v) stb_raw(p, v)
714
#define stw_kernel(p, v) stw_raw(p, v)
715
#define stl_kernel(p, v) stl_raw(p, v)
716
#define stq_kernel(p, v) stq_raw(p, v)
717
#define stfl_kernel(p, v) stfl_raw(p, v)
718
#define stfq_kernel(p, vt) stfq_raw(p, v)
719

    
720
#endif /* defined(CONFIG_USER_ONLY) */
721

    
722
/* page related stuff */
723

    
724
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
725
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
726
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
727

    
728
/* ??? These should be the larger of unsigned long and target_ulong.  */
729
extern unsigned long qemu_real_host_page_size;
730
extern unsigned long qemu_host_page_bits;
731
extern unsigned long qemu_host_page_size;
732
extern unsigned long qemu_host_page_mask;
733

    
734
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
735

    
736
/* same as PROT_xxx */
737
#define PAGE_READ      0x0001
738
#define PAGE_WRITE     0x0002
739
#define PAGE_EXEC      0x0004
740
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
741
#define PAGE_VALID     0x0008
742
/* original state of the write flag (used when tracking self-modifying
743
   code */
744
#define PAGE_WRITE_ORG 0x0010
745
#define PAGE_RESERVED  0x0020
746

    
747
void page_dump(FILE *f);
748

    
749
typedef int (*walk_memory_regions_fn)(void *, unsigned long,
750
                                      unsigned long, unsigned long);
751
int walk_memory_regions(void *, walk_memory_regions_fn);
752

    
753
int page_get_flags(target_ulong address);
754
void page_set_flags(target_ulong start, target_ulong end, int flags);
755
int page_check_range(target_ulong start, target_ulong len, int flags);
756

    
757
void cpu_exec_init_all(unsigned long tb_size);
758
CPUState *cpu_copy(CPUState *env);
759
CPUState *qemu_get_cpu(int cpu);
760

    
761
void cpu_dump_state(CPUState *env, FILE *f,
762
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
763
                    int flags);
764
void cpu_dump_statistics (CPUState *env, FILE *f,
765
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
766
                          int flags);
767

    
768
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
769
    __attribute__ ((__format__ (__printf__, 2, 3)));
770
extern CPUState *first_cpu;
771
extern CPUState *cpu_single_env;
772
extern int64_t qemu_icount;
773
extern int use_icount;
774

    
775
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
776
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
777
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
778
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
779
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
780
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
781
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
782
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
783
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
784
#define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
785
#define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
786
#define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
787

    
788
void cpu_interrupt(CPUState *s, int mask);
789
void cpu_reset_interrupt(CPUState *env, int mask);
790

    
791
void cpu_exit(CPUState *s);
792

    
793
int qemu_cpu_has_work(CPUState *env);
794

    
795
/* Breakpoint/watchpoint flags */
796
#define BP_MEM_READ           0x01
797
#define BP_MEM_WRITE          0x02
798
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
799
#define BP_STOP_BEFORE_ACCESS 0x04
800
#define BP_WATCHPOINT_HIT     0x08
801
#define BP_GDB                0x10
802
#define BP_CPU                0x20
803

    
804
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
805
                          CPUBreakpoint **breakpoint);
806
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
807
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
808
void cpu_breakpoint_remove_all(CPUState *env, int mask);
809
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
810
                          int flags, CPUWatchpoint **watchpoint);
811
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
812
                          target_ulong len, int flags);
813
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
814
void cpu_watchpoint_remove_all(CPUState *env, int mask);
815

    
816
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
817
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
818
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
819

    
820
void cpu_single_step(CPUState *env, int enabled);
821
void cpu_reset(CPUState *s);
822

    
823
/* Return the physical page corresponding to a virtual one. Use it
824
   only for debugging because no protection checks are done. Return -1
825
   if no page found. */
826
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
827

    
828
#define CPU_LOG_TB_OUT_ASM (1 << 0)
829
#define CPU_LOG_TB_IN_ASM  (1 << 1)
830
#define CPU_LOG_TB_OP      (1 << 2)
831
#define CPU_LOG_TB_OP_OPT  (1 << 3)
832
#define CPU_LOG_INT        (1 << 4)
833
#define CPU_LOG_EXEC       (1 << 5)
834
#define CPU_LOG_PCALL      (1 << 6)
835
#define CPU_LOG_IOPORT     (1 << 7)
836
#define CPU_LOG_TB_CPU     (1 << 8)
837
#define CPU_LOG_RESET      (1 << 9)
838

    
839
/* define log items */
840
typedef struct CPULogItem {
841
    int mask;
842
    const char *name;
843
    const char *help;
844
} CPULogItem;
845

    
846
extern const CPULogItem cpu_log_items[];
847

    
848
void cpu_set_log(int log_flags);
849
void cpu_set_log_filename(const char *filename);
850
int cpu_str_to_log_mask(const char *str);
851

    
852
/* memory API */
853

    
854
extern int phys_ram_fd;
855
extern uint8_t *phys_ram_dirty;
856
extern ram_addr_t ram_size;
857
extern ram_addr_t last_ram_offset;
858

    
859
extern const char *mem_path;
860
extern int mem_prealloc;
861

    
862
/* physical memory access */
863

    
864
/* MMIO pages are identified by a combination of an IO device index and
865
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
866
   so only a limited number of ids are avaiable.  */
867

    
868
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
869

    
870
/* Flags stored in the low bits of the TLB virtual address.  These are
871
   defined so that fast path ram access is all zeros.  */
872
/* Zero if TLB entry is valid.  */
873
#define TLB_INVALID_MASK   (1 << 3)
874
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
875
   contain the page physical address.  */
876
#define TLB_NOTDIRTY    (1 << 4)
877
/* Set if TLB entry is an IO callback.  */
878
#define TLB_MMIO        (1 << 5)
879

    
880
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
881
                        uint8_t *buf, int len, int is_write);
882

    
883
#define VGA_DIRTY_FLAG       0x01
884
#define CODE_DIRTY_FLAG      0x02
885
#define MIGRATION_DIRTY_FLAG 0x08
886

    
887
/* read dirty bit (return 0 or 1) */
888
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
889
{
890
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
891
}
892

    
893
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
894
                                                int dirty_flags)
895
{
896
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
897
}
898

    
899
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
900
{
901
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
902
}
903

    
904
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
905
                                     int dirty_flags);
906
void cpu_tlb_update_dirty(CPUState *env);
907

    
908
int cpu_physical_memory_set_dirty_tracking(int enable);
909

    
910
int cpu_physical_memory_get_dirty_tracking(void);
911

    
912
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
913
                                   target_phys_addr_t end_addr);
914

    
915
void dump_exec_info(FILE *f,
916
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
917

    
918
/* Coalesced MMIO regions are areas where write operations can be reordered.
919
 * This usually implies that write operations are side-effect free.  This allows
920
 * batching which can make a major impact on performance when using
921
 * virtualization.
922
 */
923
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
924

    
925
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
926

    
927
void qemu_flush_coalesced_mmio_buffer(void);
928

    
929
/*******************************************/
930
/* host CPU ticks (if available) */
931

    
932
#if defined(_ARCH_PPC)
933

    
934
static inline int64_t cpu_get_real_ticks(void)
935
{
936
    int64_t retval;
937
#ifdef _ARCH_PPC64
938
    /* This reads timebase in one 64bit go and includes Cell workaround from:
939
       http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
940
     */
941
    __asm__ __volatile__ (
942
        "mftb    %0\n\t"
943
        "cmpwi   %0,0\n\t"
944
        "beq-    $-8"
945
        : "=r" (retval));
946
#else
947
    /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
948
    unsigned long junk;
949
    __asm__ __volatile__ (
950
        "mftbu   %1\n\t"
951
        "mftb    %L0\n\t"
952
        "mftbu   %0\n\t"
953
        "cmpw    %0,%1\n\t"
954
        "bne     $-16"
955
        : "=r" (retval), "=r" (junk));
956
#endif
957
    return retval;
958
}
959

    
960
#elif defined(__i386__)
961

    
962
static inline int64_t cpu_get_real_ticks(void)
963
{
964
    int64_t val;
965
    asm volatile ("rdtsc" : "=A" (val));
966
    return val;
967
}
968

    
969
#elif defined(__x86_64__)
970

    
971
static inline int64_t cpu_get_real_ticks(void)
972
{
973
    uint32_t low,high;
974
    int64_t val;
975
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
976
    val = high;
977
    val <<= 32;
978
    val |= low;
979
    return val;
980
}
981

    
982
#elif defined(__hppa__)
983

    
984
static inline int64_t cpu_get_real_ticks(void)
985
{
986
    int val;
987
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
988
    return val;
989
}
990

    
991
#elif defined(__ia64)
992

    
993
static inline int64_t cpu_get_real_ticks(void)
994
{
995
        int64_t val;
996
        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
997
        return val;
998
}
999

    
1000
#elif defined(__s390__)
1001

    
1002
static inline int64_t cpu_get_real_ticks(void)
1003
{
1004
    int64_t val;
1005
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1006
    return val;
1007
}
1008

    
1009
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1010

    
1011
static inline int64_t cpu_get_real_ticks (void)
1012
{
1013
#if     defined(_LP64)
1014
        uint64_t        rval;
1015
        asm volatile("rd %%tick,%0" : "=r"(rval));
1016
        return rval;
1017
#else
1018
        union {
1019
                uint64_t i64;
1020
                struct {
1021
                        uint32_t high;
1022
                        uint32_t low;
1023
                }       i32;
1024
        } rval;
1025
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
1026
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
1027
        return rval.i64;
1028
#endif
1029
}
1030

    
1031
#elif defined(__mips__) && \
1032
      ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
1033
/*
1034
 * binutils wants to use rdhwr only on mips32r2
1035
 * but as linux kernel emulate it, it's fine
1036
 * to use it.
1037
 *
1038
 */
1039
#define MIPS_RDHWR(rd, value) {                 \
1040
    __asm__ __volatile__ (                      \
1041
                          ".set   push\n\t"     \
1042
                          ".set mips32r2\n\t"   \
1043
                          "rdhwr  %0, "rd"\n\t" \
1044
                          ".set   pop"          \
1045
                          : "=r" (value));      \
1046
}
1047

    
1048
static inline int64_t cpu_get_real_ticks(void)
1049
{
1050
/* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
1051
    uint32_t count;
1052
    static uint32_t cyc_per_count = 0;
1053

    
1054
    if (!cyc_per_count)
1055
        MIPS_RDHWR("$3", cyc_per_count);
1056

    
1057
    MIPS_RDHWR("$2", count);
1058
    return (int64_t)(count * cyc_per_count);
1059
}
1060

    
1061
#else
1062
/* The host CPU doesn't have an easily accessible cycle counter.
1063
   Just return a monotonically increasing value.  This will be
1064
   totally wrong, but hopefully better than nothing.  */
1065
static inline int64_t cpu_get_real_ticks (void)
1066
{
1067
    static int64_t ticks = 0;
1068
    return ticks++;
1069
}
1070
#endif
1071

    
1072
/* profiling */
1073
#ifdef CONFIG_PROFILER
1074
static inline int64_t profile_getclock(void)
1075
{
1076
    return cpu_get_real_ticks();
1077
}
1078

    
1079
extern int64_t qemu_time, qemu_time_start;
1080
extern int64_t tlb_flush_time;
1081
extern int64_t dev_time;
1082
#endif
1083

    
1084
void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
1085
                        uint64_t mcg_status, uint64_t addr, uint64_t misc);
1086

    
1087
#endif /* CPU_ALL_H */