Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 5dcb6b91

History | View | Annotate | Download (10.9 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
//#define DEBUG_IRQ_COUNT
26
//#define DEBUG_IRQ
27

    
28
#ifdef DEBUG_IRQ
29
#define DPRINTF(fmt, args...) \
30
do { printf("IRQ: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of interrupt controller in sun4m.
37
 *
38
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 *
42
 * There is a system master controller and one for each cpu.
43
 * 
44
 */
45

    
46
#define MAX_CPUS 16
47

    
48
typedef struct SLAVIO_INTCTLState {
49
    uint32_t intreg_pending[MAX_CPUS];
50
    uint32_t intregm_pending;
51
    uint32_t intregm_disabled;
52
    uint32_t target_cpu;
53
#ifdef DEBUG_IRQ_COUNT
54
    uint64_t irq_count[32];
55
#endif
56
    CPUState *cpu_envs[MAX_CPUS];
57
    const uint32_t *intbit_to_level;
58
} SLAVIO_INTCTLState;
59

    
60
#define INTCTL_MAXADDR 0xf
61
#define INTCTLM_MAXADDR 0xf
62
static void slavio_check_interrupts(void *opaque);
63

    
64
// per-cpu interrupt controller
65
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
66
{
67
    SLAVIO_INTCTLState *s = opaque;
68
    uint32_t saddr;
69
    int cpu;
70

    
71
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
72
    saddr = (addr & INTCTL_MAXADDR) >> 2;
73
    switch (saddr) {
74
    case 0:
75
        return s->intreg_pending[cpu];
76
    default:
77
        break;
78
    }
79
    return 0;
80
}
81

    
82
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
83
{
84
    SLAVIO_INTCTLState *s = opaque;
85
    uint32_t saddr;
86
    int cpu;
87

    
88
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
89
    saddr = (addr & INTCTL_MAXADDR) >> 2;
90
    switch (saddr) {
91
    case 1: // clear pending softints
92
        if (val & 0x4000)
93
            val |= 80000000;
94
        val &= 0xfffe0000;
95
        s->intreg_pending[cpu] &= ~val;
96
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
97
        break;
98
    case 2: // set softint
99
        val &= 0xfffe0000;
100
        s->intreg_pending[cpu] |= val;
101
        slavio_check_interrupts(s);
102
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
103
        break;
104
    default:
105
        break;
106
    }
107
}
108

    
109
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
110
    slavio_intctl_mem_readl,
111
    slavio_intctl_mem_readl,
112
    slavio_intctl_mem_readl,
113
};
114

    
115
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
116
    slavio_intctl_mem_writel,
117
    slavio_intctl_mem_writel,
118
    slavio_intctl_mem_writel,
119
};
120

    
121
// master system interrupt controller
122
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
123
{
124
    SLAVIO_INTCTLState *s = opaque;
125
    uint32_t saddr;
126

    
127
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
128
    switch (saddr) {
129
    case 0:
130
        return s->intregm_pending & 0x7fffffff;
131
    case 1:
132
        return s->intregm_disabled;
133
    case 4:
134
        return s->target_cpu;
135
    default:
136
        break;
137
    }
138
    return 0;
139
}
140

    
141
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
142
{
143
    SLAVIO_INTCTLState *s = opaque;
144
    uint32_t saddr;
145

    
146
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
147
    switch (saddr) {
148
    case 2: // clear (enable)
149
        // Force clear unused bits
150
        val &= ~0x4fb2007f;
151
        s->intregm_disabled &= ~val;
152
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
153
        slavio_check_interrupts(s);
154
        break;
155
    case 3: // set (disable, clear pending)
156
        // Force clear unused bits
157
        val &= ~0x4fb2007f;
158
        s->intregm_disabled |= val;
159
        s->intregm_pending &= ~val;
160
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
161
        break;
162
    case 4:
163
        s->target_cpu = val & (MAX_CPUS - 1);
164
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
165
        break;
166
    default:
167
        break;
168
    }
169
}
170

    
171
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
172
    slavio_intctlm_mem_readl,
173
    slavio_intctlm_mem_readl,
174
    slavio_intctlm_mem_readl,
175
};
176

    
177
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
178
    slavio_intctlm_mem_writel,
179
    slavio_intctlm_mem_writel,
180
    slavio_intctlm_mem_writel,
181
};
182

    
183
void slavio_pic_info(void *opaque)
184
{
185
    SLAVIO_INTCTLState *s = opaque;
186
    int i;
187

    
188
    for (i = 0; i < MAX_CPUS; i++) {
189
        term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
190
    }
191
    term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
192
}
193

    
194
void slavio_irq_info(void *opaque)
195
{
196
#ifndef DEBUG_IRQ_COUNT
197
    term_printf("irq statistic code not compiled.\n");
198
#else
199
    SLAVIO_INTCTLState *s = opaque;
200
    int i;
201
    int64_t count;
202

    
203
    term_printf("IRQ statistics:\n");
204
    for (i = 0; i < 32; i++) {
205
        count = s->irq_count[i];
206
        if (count > 0)
207
            term_printf("%2d: %" PRId64 "\n", i, count);
208
    }
209
#endif
210
}
211

    
212
static void slavio_check_interrupts(void *opaque)
213
{
214
    CPUState *env;
215
    SLAVIO_INTCTLState *s = opaque;
216
    uint32_t pending = s->intregm_pending;
217
    unsigned int i, j, max = 0;
218

    
219
    pending &= ~s->intregm_disabled;
220

    
221
    if (pending && !(s->intregm_disabled & 0x80000000)) {
222
        for (i = 0; i < 32; i++) {
223
            if (pending & (1 << i)) {
224
                if (max < s->intbit_to_level[i])
225
                    max = s->intbit_to_level[i];
226
            }
227
        }
228
        env = s->cpu_envs[s->target_cpu];
229
        if (!env) {
230
            DPRINTF("No CPU %d, not triggered (pending %x)\n", s->target_cpu, pending);
231
        }
232
        else {
233
            if (env->halted)
234
                env->halted = 0;
235
            if (env->interrupt_index == 0) {
236
                DPRINTF("Triggered CPU %d pil %d\n", s->target_cpu, max);
237
#ifdef DEBUG_IRQ_COUNT
238
                s->irq_count[max]++;
239
#endif
240
                env->interrupt_index = TT_EXTINT | max;
241
                cpu_interrupt(env, CPU_INTERRUPT_HARD);
242
            }
243
            else
244
                DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, env->interrupt_index);
245
        }
246
    }
247
    else
248
        DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
249
    
250
    for (i = 0; i < MAX_CPUS; i++) {
251
        max = 0;
252
        env = s->cpu_envs[i];
253
        if (!env)
254
            continue;
255
        for (j = 17; j < 32; j++) {
256
            if (s->intreg_pending[i] & (1 << j)) {
257
                if (max < j - 16)
258
                    max = j - 16;
259
            }
260
        }
261
        if (max > 0) {
262
            if (env->halted)
263
                env->halted = 0;
264
            if (env->interrupt_index == 0) {
265
                DPRINTF("Triggered softint %d for cpu %d (pending %x)\n", max, i, pending);
266
#ifdef DEBUG_IRQ_COUNT
267
                s->irq_count[max]++;
268
#endif
269
                env->interrupt_index = TT_EXTINT | max;
270
                cpu_interrupt(env, CPU_INTERRUPT_HARD);
271
            }
272
        }
273
    }
274
}
275

    
276
/*
277
 * "irq" here is the bit number in the system interrupt register to
278
 * separate serial and keyboard interrupts sharing a level.
279
 */
280
void slavio_set_irq(void *opaque, int irq, int level)
281
{
282
    SLAVIO_INTCTLState *s = opaque;
283

    
284
    DPRINTF("Set cpu %d irq %d level %d\n", s->target_cpu, irq, level);
285
    if (irq < 32) {
286
        uint32_t mask = 1 << irq;
287
        uint32_t pil = s->intbit_to_level[irq];
288
        if (pil > 0) {
289
            if (level) {
290
                s->intregm_pending |= mask;
291
                s->intreg_pending[s->target_cpu] |= 1 << pil;
292
                slavio_check_interrupts(s);
293
            }
294
            else {
295
                s->intregm_pending &= ~mask;
296
                s->intreg_pending[s->target_cpu] &= ~(1 << pil);
297
            }
298
        }
299
    }
300
}
301

    
302
void pic_set_irq_cpu(void *opaque, int irq, int level, unsigned int cpu)
303
{
304
    SLAVIO_INTCTLState *s = opaque;
305

    
306
    DPRINTF("Set cpu %d local irq %d level %d\n", cpu, irq, level);
307
    if (cpu == (unsigned int)-1) {
308
        slavio_set_irq(opaque, irq, level);
309
        return;
310
    }
311
    if (irq < 32) {
312
        uint32_t pil = s->intbit_to_level[irq];
313
            if (pil > 0) {
314
            if (level) {
315
                s->intreg_pending[cpu] |= 1 << pil;
316
            }
317
            else {
318
                s->intreg_pending[cpu] &= ~(1 << pil);
319
            }
320
        }
321
    }
322
    slavio_check_interrupts(s);
323
}
324

    
325
static void slavio_intctl_save(QEMUFile *f, void *opaque)
326
{
327
    SLAVIO_INTCTLState *s = opaque;
328
    int i;
329
    
330
    for (i = 0; i < MAX_CPUS; i++) {
331
        qemu_put_be32s(f, &s->intreg_pending[i]);
332
    }
333
    qemu_put_be32s(f, &s->intregm_pending);
334
    qemu_put_be32s(f, &s->intregm_disabled);
335
    qemu_put_be32s(f, &s->target_cpu);
336
}
337

    
338
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
339
{
340
    SLAVIO_INTCTLState *s = opaque;
341
    int i;
342

    
343
    if (version_id != 1)
344
        return -EINVAL;
345

    
346
    for (i = 0; i < MAX_CPUS; i++) {
347
        qemu_get_be32s(f, &s->intreg_pending[i]);
348
    }
349
    qemu_get_be32s(f, &s->intregm_pending);
350
    qemu_get_be32s(f, &s->intregm_disabled);
351
    qemu_get_be32s(f, &s->target_cpu);
352
    return 0;
353
}
354

    
355
static void slavio_intctl_reset(void *opaque)
356
{
357
    SLAVIO_INTCTLState *s = opaque;
358
    int i;
359

    
360
    for (i = 0; i < MAX_CPUS; i++) {
361
        s->intreg_pending[i] = 0;
362
    }
363
    s->intregm_disabled = ~0xffb2007f;
364
    s->intregm_pending = 0;
365
    s->target_cpu = 0;
366
}
367

    
368
void slavio_intctl_set_cpu(void *opaque, unsigned int cpu, CPUState *env)
369
{
370
    SLAVIO_INTCTLState *s = opaque;
371
    s->cpu_envs[cpu] = env;
372
}
373

    
374
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
375
                         const uint32_t *intbit_to_level,
376
                         qemu_irq **irq)
377
{
378
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
379
    SLAVIO_INTCTLState *s;
380

    
381
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
382
    if (!s)
383
        return NULL;
384

    
385
    s->intbit_to_level = intbit_to_level;
386
    for (i = 0; i < MAX_CPUS; i++) {
387
        slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
388
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory);
389
    }
390

    
391
    slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
392
    cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory);
393

    
394
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
395
    qemu_register_reset(slavio_intctl_reset, s);
396
    *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
397
    slavio_intctl_reset(s);
398
    return s;
399
}
400