Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ 5dcb6b91

History | View | Annotate | Download (7.9 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_TIMER
27

    
28
#ifdef DEBUG_TIMER
29
#define DPRINTF(fmt, args...) \
30
do { printf("TIMER: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of hardware timer in sun4m.
37
 *
38
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 * 
42
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43
 * are zero. Bit 31 is 1 when count has been reached.
44
 *
45
 * Per-CPU timers interrupt local CPU, system timer uses normal
46
 * interrupt routing.
47
 *
48
 */
49

    
50
typedef struct SLAVIO_TIMERState {
51
    uint32_t limit, count, counthigh;
52
    int64_t count_load_time;
53
    int64_t expire_time;
54
    int64_t stop_time, tick_offset;
55
    QEMUTimer *irq_timer;
56
    int irq;
57
    int reached, stopped;
58
    int mode; // 0 = processor, 1 = user, 2 = system
59
    unsigned int cpu;
60
    void *intctl;
61
} SLAVIO_TIMERState;
62

    
63
#define TIMER_MAXADDR 0x1f
64
#define CNT_FREQ 2000000
65

    
66
// Update count, set irq, update expire_time
67
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
68
{
69
    int out;
70
    int64_t diff, ticks, count;
71
    uint32_t limit;
72

    
73
    // There are three clock tick units: CPU ticks, register units
74
    // (nanoseconds), and counter ticks (500 ns).
75
    if (s->mode == 1 && s->stopped)
76
        ticks = s->stop_time;
77
    else
78
        ticks = qemu_get_clock(vm_clock) - s->tick_offset;
79

    
80
    out = (ticks > s->expire_time);
81
    if (out)
82
        s->reached = 0x80000000;
83
    // Convert register units to counter ticks
84
    limit = s->limit >> 9;
85

    
86
    if (!limit)
87
        limit = 0x7fffffff >> 9;
88

    
89
    // Convert cpu ticks to counter ticks
90
    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
91

    
92
    // Calculate what the counter should be, convert to register
93
    // units
94
    count = diff % limit;
95
    s->count = count << 9;
96
    s->counthigh = count >> 22;
97

    
98
    // Expire time: CPU ticks left to next interrupt
99
    // Convert remaining counter ticks to CPU ticks
100
    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
101

    
102
    DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
103

    
104
    if (s->mode != 1)
105
        pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
106
}
107

    
108
// timer callback
109
static void slavio_timer_irq(void *opaque)
110
{
111
    SLAVIO_TIMERState *s = opaque;
112

    
113
    if (!s->irq_timer)
114
        return;
115
    slavio_timer_get_out(s);
116
    if (s->mode != 1)
117
        qemu_mod_timer(s->irq_timer, s->expire_time);
118
}
119

    
120
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
121
{
122
    SLAVIO_TIMERState *s = opaque;
123
    uint32_t saddr;
124

    
125
    saddr = (addr & TIMER_MAXADDR) >> 2;
126
    switch (saddr) {
127
    case 0:
128
        // read limit (system counter mode) or read most signifying
129
        // part of counter (user mode)
130
        if (s->mode != 1) {
131
            // clear irq
132
            pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
133
            s->reached = 0;
134
            return s->limit;
135
        }
136
        else {
137
            slavio_timer_get_out(s);
138
            return s->counthigh & 0x7fffffff;
139
        }
140
    case 1:
141
        // read counter and reached bit (system mode) or read lsbits
142
        // of counter (user mode)
143
        slavio_timer_get_out(s);
144
        if (s->mode != 1)
145
            return (s->count & 0x7fffffff) | s->reached;
146
        else
147
            return s->count;
148
    case 3:
149
        // read start/stop status
150
        return s->stopped;
151
    case 4:
152
        // read user/system mode
153
        return s->mode & 1;
154
    default:
155
        return 0;
156
    }
157
}
158

    
159
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
160
{
161
    SLAVIO_TIMERState *s = opaque;
162
    uint32_t saddr;
163

    
164
    saddr = (addr & TIMER_MAXADDR) >> 2;
165
    switch (saddr) {
166
    case 0:
167
        // set limit, reset counter
168
        s->count_load_time = qemu_get_clock(vm_clock);
169
        // fall through
170
    case 2:
171
        // set limit without resetting counter
172
        if (!val)
173
            s->limit = 0x7fffffff;
174
        else
175
            s->limit = val & 0x7fffffff;
176
        slavio_timer_irq(s);
177
        break;
178
    case 3:
179
        // start/stop user counter
180
        if (s->mode == 1) {
181
            if (val & 1) {
182
                s->stop_time = qemu_get_clock(vm_clock);
183
                s->stopped = 1;
184
            }
185
            else {
186
                if (s->stopped)
187
                    s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
188
                s->stopped = 0;
189
            }
190
        }
191
        break;
192
    case 4:
193
        // bit 0: user (1) or system (0) counter mode
194
        if (s->mode == 0 || s->mode == 1)
195
            s->mode = val & 1;
196
        break;
197
    default:
198
        break;
199
    }
200
}
201

    
202
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
203
    slavio_timer_mem_readl,
204
    slavio_timer_mem_readl,
205
    slavio_timer_mem_readl,
206
};
207

    
208
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
209
    slavio_timer_mem_writel,
210
    slavio_timer_mem_writel,
211
    slavio_timer_mem_writel,
212
};
213

    
214
static void slavio_timer_save(QEMUFile *f, void *opaque)
215
{
216
    SLAVIO_TIMERState *s = opaque;
217

    
218
    qemu_put_be32s(f, &s->limit);
219
    qemu_put_be32s(f, &s->count);
220
    qemu_put_be32s(f, &s->counthigh);
221
    qemu_put_be64s(f, &s->count_load_time);
222
    qemu_put_be64s(f, &s->expire_time);
223
    qemu_put_be64s(f, &s->stop_time);
224
    qemu_put_be64s(f, &s->tick_offset);
225
    qemu_put_be32s(f, &s->irq);
226
    qemu_put_be32s(f, &s->reached);
227
    qemu_put_be32s(f, &s->stopped);
228
    qemu_put_be32s(f, &s->mode);
229
}
230

    
231
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
232
{
233
    SLAVIO_TIMERState *s = opaque;
234
    
235
    if (version_id != 1)
236
        return -EINVAL;
237

    
238
    qemu_get_be32s(f, &s->limit);
239
    qemu_get_be32s(f, &s->count);
240
    qemu_get_be32s(f, &s->counthigh);
241
    qemu_get_be64s(f, &s->count_load_time);
242
    qemu_get_be64s(f, &s->expire_time);
243
    qemu_get_be64s(f, &s->stop_time);
244
    qemu_get_be64s(f, &s->tick_offset);
245
    qemu_get_be32s(f, &s->irq);
246
    qemu_get_be32s(f, &s->reached);
247
    qemu_get_be32s(f, &s->stopped);
248
    qemu_get_be32s(f, &s->mode);
249
    return 0;
250
}
251

    
252
static void slavio_timer_reset(void *opaque)
253
{
254
    SLAVIO_TIMERState *s = opaque;
255

    
256
    s->limit = 0;
257
    s->count = 0;
258
    s->count_load_time = qemu_get_clock(vm_clock);;
259
    s->stop_time = s->count_load_time;
260
    s->tick_offset = 0;
261
    s->reached = 0;
262
    s->mode &= 2;
263
    s->stopped = 1;
264
    slavio_timer_irq(s);
265
}
266

    
267
void slavio_timer_init(target_phys_addr_t addr, int irq, int mode,
268
                       unsigned int cpu, void *intctl)
269
{
270
    int slavio_timer_io_memory;
271
    SLAVIO_TIMERState *s;
272

    
273
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
274
    if (!s)
275
        return;
276
    s->irq = irq;
277
    s->mode = mode;
278
    s->cpu = cpu;
279
    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
280
    s->intctl = intctl;
281

    
282
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
283
                                                    slavio_timer_mem_write, s);
284
    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
285
    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
286
    qemu_register_reset(slavio_timer_reset, s);
287
    slavio_timer_reset(s);
288
}