Statistics
| Branch: | Revision:

root / target-mips / op_helper.c @ 5e4ef64c

History | View | Annotate | Download (40.6 kB)

1
/*
2
 *  MIPS emulation helpers for qemu.
3
 * 
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include <stdlib.h>
21
#include "exec.h"
22

    
23
#define GETPC() (__builtin_return_address(0))
24

    
25
/*****************************************************************************/
26
/* Exceptions processing helpers */
27

    
28
void do_raise_exception_err (uint32_t exception, int error_code)
29
{
30
#if 1
31
    if (logfile && exception < 0x100)
32
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33
#endif
34
    env->exception_index = exception;
35
    env->error_code = error_code;
36
    T0 = 0;
37
    cpu_loop_exit();
38
}
39

    
40
void do_raise_exception (uint32_t exception)
41
{
42
    do_raise_exception_err(exception, 0);
43
}
44

    
45
void do_restore_state (void *pc_ptr)
46
{
47
  TranslationBlock *tb;
48
  unsigned long pc = (unsigned long) pc_ptr;
49

    
50
  tb = tb_find_pc (pc);
51
  cpu_restore_state (tb, env, pc, NULL);
52
}
53

    
54
void do_raise_exception_direct_err (uint32_t exception, int error_code)
55
{
56
    do_restore_state (GETPC ());
57
    do_raise_exception_err (exception, error_code);
58
}
59

    
60
void do_raise_exception_direct (uint32_t exception)
61
{
62
    do_raise_exception_direct_err (exception, 0);
63
}
64

    
65
#define MEMSUFFIX _raw
66
#include "op_helper_mem.c"
67
#undef MEMSUFFIX
68
#if !defined(CONFIG_USER_ONLY)
69
#define MEMSUFFIX _user
70
#include "op_helper_mem.c"
71
#undef MEMSUFFIX
72
#define MEMSUFFIX _kernel
73
#include "op_helper_mem.c"
74
#undef MEMSUFFIX
75
#endif
76

    
77
#ifdef TARGET_MIPS64
78
#if TARGET_LONG_BITS > HOST_LONG_BITS
79
/* Those might call libgcc functions.  */
80
void do_dsll (void)
81
{
82
    T0 = T0 << T1;
83
}
84

    
85
void do_dsll32 (void)
86
{
87
    T0 = T0 << (T1 + 32);
88
}
89

    
90
void do_dsra (void)
91
{
92
    T0 = (int64_t)T0 >> T1;
93
}
94

    
95
void do_dsra32 (void)
96
{
97
    T0 = (int64_t)T0 >> (T1 + 32);
98
}
99

    
100
void do_dsrl (void)
101
{
102
    T0 = T0 >> T1;
103
}
104

    
105
void do_dsrl32 (void)
106
{
107
    T0 = T0 >> (T1 + 32);
108
}
109

    
110
void do_drotr (void)
111
{
112
    target_ulong tmp;
113

    
114
    if (T1) {
115
       tmp = T0 << (0x40 - T1);
116
       T0 = (T0 >> T1) | tmp;
117
    }
118
}
119

    
120
void do_drotr32 (void)
121
{
122
    target_ulong tmp;
123

    
124
    if (T1) {
125
       tmp = T0 << (0x40 - (32 + T1));
126
       T0 = (T0 >> (32 + T1)) | tmp;
127
    }
128
}
129

    
130
void do_dsllv (void)
131
{
132
    T0 = T1 << (T0 & 0x3F);
133
}
134

    
135
void do_dsrav (void)
136
{
137
    T0 = (int64_t)T1 >> (T0 & 0x3F);
138
}
139

    
140
void do_dsrlv (void)
141
{
142
    T0 = T1 >> (T0 & 0x3F);
143
}
144

    
145
void do_drotrv (void)
146
{
147
    target_ulong tmp;
148

    
149
    T0 &= 0x3F;
150
    if (T0) {
151
       tmp = T1 << (0x40 - T0);
152
       T0 = (T1 >> T0) | tmp;
153
    } else
154
       T0 = T1;
155
}
156
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
157
#endif /* TARGET_MIPS64 */
158

    
159
/* 64 bits arithmetic for 32 bits hosts */
160
#if TARGET_LONG_BITS > HOST_LONG_BITS
161
static inline uint64_t get_HILO (void)
162
{
163
    return (env->HI << 32) | (uint32_t)env->LO;
164
}
165

    
166
static inline void set_HILO (uint64_t HILO)
167
{
168
    env->LO = (int32_t)HILO;
169
    env->HI = (int32_t)(HILO >> 32);
170
}
171

    
172
void do_mult (void)
173
{
174
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
175
}
176

    
177
void do_multu (void)
178
{
179
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
180
}
181

    
182
void do_madd (void)
183
{
184
    int64_t tmp;
185

    
186
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
187
    set_HILO((int64_t)get_HILO() + tmp);
188
}
189

    
190
void do_maddu (void)
191
{
192
    uint64_t tmp;
193

    
194
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
195
    set_HILO(get_HILO() + tmp);
196
}
197

    
198
void do_msub (void)
199
{
200
    int64_t tmp;
201

    
202
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
203
    set_HILO((int64_t)get_HILO() - tmp);
204
}
205

    
206
void do_msubu (void)
207
{
208
    uint64_t tmp;
209

    
210
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
211
    set_HILO(get_HILO() - tmp);
212
}
213
#endif
214

    
215
#if HOST_LONG_BITS < 64
216
void do_div (void)
217
{
218
    /* 64bit datatypes because we may see overflow/underflow. */
219
    if (T1 != 0) {
220
        env->LO = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
221
        env->HI = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
222
    }
223
}
224
#endif
225

    
226
#ifdef TARGET_MIPS64
227
void do_ddiv (void)
228
{
229
    if (T1 != 0) {
230
        lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
231
        env->LO = res.quot;
232
        env->HI = res.rem;
233
    }
234
}
235

    
236
#if TARGET_LONG_BITS > HOST_LONG_BITS
237
void do_ddivu (void)
238
{
239
    if (T1 != 0) {
240
        env->LO = T0 / T1;
241
        env->HI = T0 % T1;
242
    }
243
}
244
#endif
245
#endif /* TARGET_MIPS64 */
246

    
247
#if defined(CONFIG_USER_ONLY) 
248
void do_mfc0_random (void)
249
{
250
    cpu_abort(env, "mfc0 random\n");
251
}
252

    
253
void do_mfc0_count (void)
254
{
255
    cpu_abort(env, "mfc0 count\n");
256
}
257

    
258
void cpu_mips_store_count(CPUState *env, uint32_t value)
259
{
260
    cpu_abort(env, "mtc0 count\n");
261
}
262

    
263
void cpu_mips_store_compare(CPUState *env, uint32_t value)
264
{
265
    cpu_abort(env, "mtc0 compare\n");
266
}
267

    
268
void cpu_mips_update_irq(CPUState *env)
269
{
270
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
271
}
272

    
273
void do_mtc0_status_debug(uint32_t old, uint32_t val)
274
{
275
    cpu_abort(env, "mtc0 status debug\n");
276
}
277

    
278
void do_mtc0_status_irqraise_debug (void)
279
{
280
    cpu_abort(env, "mtc0 status irqraise debug\n");
281
}
282

    
283
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
284
{
285
    cpu_abort(env, "mips_tlb_flush\n");
286
}
287

    
288
#else
289

    
290
/* CP0 helpers */
291
void do_mfc0_random (void)
292
{
293
    T0 = (int32_t)cpu_mips_get_random(env);
294
}
295

    
296
void do_mfc0_count (void)
297
{
298
    T0 = (int32_t)cpu_mips_get_count(env);
299
}
300

    
301
void do_mtc0_status_debug(uint32_t old, uint32_t val)
302
{
303
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
304
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
305
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
306
            env->CP0_Cause);
307
    (env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
308
                                  : fputs("\n", logfile);
309
}
310

    
311
void do_mtc0_status_irqraise_debug(void)
312
{
313
    fprintf(logfile, "Raise pending IRQs\n");
314
}
315

    
316
void fpu_handle_exception(void)
317
{
318
#ifdef CONFIG_SOFTFLOAT
319
    int flags = get_float_exception_flags(&env->fp_status);
320
    unsigned int cpuflags = 0, enable, cause = 0;
321

    
322
    enable = GET_FP_ENABLE(env->fcr31);
323

    
324
    /* determine current flags */   
325
    if (flags & float_flag_invalid) {
326
        cpuflags |= FP_INVALID;
327
        cause |= FP_INVALID & enable;
328
    }
329
    if (flags & float_flag_divbyzero) {
330
        cpuflags |= FP_DIV0;    
331
        cause |= FP_DIV0 & enable;
332
    }
333
    if (flags & float_flag_overflow) {
334
        cpuflags |= FP_OVERFLOW;    
335
        cause |= FP_OVERFLOW & enable;
336
    }
337
    if (flags & float_flag_underflow) {
338
        cpuflags |= FP_UNDERFLOW;   
339
        cause |= FP_UNDERFLOW & enable;
340
    }
341
    if (flags & float_flag_inexact) {
342
        cpuflags |= FP_INEXACT; 
343
        cause |= FP_INEXACT & enable;
344
    }
345
    SET_FP_FLAGS(env->fcr31, cpuflags);
346
    SET_FP_CAUSE(env->fcr31, cause);
347
#else
348
    SET_FP_FLAGS(env->fcr31, 0);
349
    SET_FP_CAUSE(env->fcr31, 0);
350
#endif
351
}
352

    
353
/* TLB management */
354
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
355
{
356
    /* Flush qemu's TLB and discard all shadowed entries.  */
357
    tlb_flush (env, flush_global);
358
    env->tlb_in_use = env->nb_tlb;
359
}
360

    
361
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
362
{
363
    /* Discard entries from env->tlb[first] onwards.  */
364
    while (env->tlb_in_use > first) {
365
        r4k_invalidate_tlb(env, --env->tlb_in_use, 0);
366
    }
367
}
368

    
369
static void r4k_fill_tlb (int idx)
370
{
371
    r4k_tlb_t *tlb;
372

    
373
    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
374
    tlb = &env->mmu.r4k.tlb[idx];
375
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
376
#ifdef TARGET_MIPS64
377
    tlb->VPN &= env->SEGMask;
378
#endif
379
    tlb->ASID = env->CP0_EntryHi & 0xFF;
380
    tlb->PageMask = env->CP0_PageMask;
381
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
382
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
383
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
384
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
385
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
386
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
387
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
388
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
389
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
390
}
391

    
392
void r4k_do_tlbwi (void)
393
{
394
    /* Discard cached TLB entries.  We could avoid doing this if the
395
       tlbwi is just upgrading access permissions on the current entry;
396
       that might be a further win.  */
397
    r4k_mips_tlb_flush_extra (env, env->nb_tlb);
398

    
399
    r4k_invalidate_tlb(env, env->CP0_Index % env->nb_tlb, 0);
400
    r4k_fill_tlb(env->CP0_Index % env->nb_tlb);
401
}
402

    
403
void r4k_do_tlbwr (void)
404
{
405
    int r = cpu_mips_get_random(env);
406

    
407
    r4k_invalidate_tlb(env, r, 1);
408
    r4k_fill_tlb(r);
409
}
410

    
411
void r4k_do_tlbp (void)
412
{
413
    r4k_tlb_t *tlb;
414
    target_ulong mask;
415
    target_ulong tag;
416
    target_ulong VPN;
417
    uint8_t ASID;
418
    int i;
419

    
420
    ASID = env->CP0_EntryHi & 0xFF;
421
    for (i = 0; i < env->nb_tlb; i++) {
422
        tlb = &env->mmu.r4k.tlb[i];
423
        /* 1k pages are not supported. */
424
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
425
        tag = env->CP0_EntryHi & ~mask;
426
        VPN = tlb->VPN & ~mask;
427
        /* Check ASID, virtual page number & size */
428
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
429
            /* TLB match */
430
            env->CP0_Index = i;
431
            break;
432
        }
433
    }
434
    if (i == env->nb_tlb) {
435
        /* No match.  Discard any shadow entries, if any of them match.  */
436
        for (i = env->nb_tlb; i < env->tlb_in_use; i++) {
437
            tlb = &env->mmu.r4k.tlb[i];
438
            /* 1k pages are not supported. */
439
            mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
440
            tag = env->CP0_EntryHi & ~mask;
441
            VPN = tlb->VPN & ~mask;
442
            /* Check ASID, virtual page number & size */
443
            if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
444
                r4k_mips_tlb_flush_extra (env, i);
445
                break;
446
            }
447
        }
448

    
449
        env->CP0_Index |= 0x80000000;
450
    }
451
}
452

    
453
void r4k_do_tlbr (void)
454
{
455
    r4k_tlb_t *tlb;
456
    uint8_t ASID;
457

    
458
    ASID = env->CP0_EntryHi & 0xFF;
459
    tlb = &env->mmu.r4k.tlb[env->CP0_Index % env->nb_tlb];
460

    
461
    /* If this will change the current ASID, flush qemu's TLB.  */
462
    if (ASID != tlb->ASID)
463
        cpu_mips_tlb_flush (env, 1);
464

    
465
    r4k_mips_tlb_flush_extra(env, env->nb_tlb);
466

    
467
    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
468
    env->CP0_PageMask = tlb->PageMask;
469
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
470
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
471
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
472
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
473
}
474

    
475
#endif /* !CONFIG_USER_ONLY */
476

    
477
void dump_ldst (const unsigned char *func)
478
{
479
    if (loglevel)
480
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
481
}
482

    
483
void dump_sc (void)
484
{
485
    if (loglevel) {
486
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
487
                T1, T0, env->CP0_LLAddr);
488
    }
489
}
490

    
491
void debug_pre_eret (void)
492
{
493
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
494
            env->PC, env->CP0_EPC);
495
    if (env->CP0_Status & (1 << CP0St_ERL))
496
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
497
    if (env->hflags & MIPS_HFLAG_DM)
498
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
499
    fputs("\n", logfile);
500
}
501

    
502
void debug_post_eret (void)
503
{
504
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
505
            env->PC, env->CP0_EPC);
506
    if (env->CP0_Status & (1 << CP0St_ERL))
507
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
508
    if (env->hflags & MIPS_HFLAG_DM)
509
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
510
    if (env->hflags & MIPS_HFLAG_UM)
511
        fputs(", UM\n", logfile);
512
    else
513
        fputs("\n", logfile);
514
}
515

    
516
void do_pmon (int function)
517
{
518
    function /= 2;
519
    switch (function) {
520
    case 2: /* TODO: char inbyte(int waitflag); */
521
        if (env->gpr[4] == 0)
522
            env->gpr[2] = -1;
523
        /* Fall through */
524
    case 11: /* TODO: char inbyte (void); */
525
        env->gpr[2] = -1;
526
        break;
527
    case 3:
528
    case 12:
529
        printf("%c", (char)(env->gpr[4] & 0xFF));
530
        break;
531
    case 17:
532
        break;
533
    case 158:
534
        {
535
            unsigned char *fmt = (void *)(unsigned long)env->gpr[4];
536
            printf("%s", fmt);
537
        }
538
        break;
539
    }
540
}
541

    
542
#if !defined(CONFIG_USER_ONLY) 
543

    
544
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
545

    
546
#define MMUSUFFIX _mmu
547
#define ALIGNED_ONLY
548

    
549
#define SHIFT 0
550
#include "softmmu_template.h"
551

    
552
#define SHIFT 1
553
#include "softmmu_template.h"
554

    
555
#define SHIFT 2
556
#include "softmmu_template.h"
557

    
558
#define SHIFT 3
559
#include "softmmu_template.h"
560

    
561
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
562
{
563
    env->CP0_BadVAddr = addr;
564
    do_restore_state (retaddr);
565
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
566
}
567

    
568
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
569
{
570
    TranslationBlock *tb;
571
    CPUState *saved_env;
572
    unsigned long pc;
573
    int ret;
574

    
575
    /* XXX: hack to restore env in all cases, even if not called from
576
       generated code */
577
    saved_env = env;
578
    env = cpu_single_env;
579
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1);
580
    if (ret) {
581
        if (retaddr) {
582
            /* now we have a real cpu fault */
583
            pc = (unsigned long)retaddr;
584
            tb = tb_find_pc(pc);
585
            if (tb) {
586
                /* the PC is inside the translated code. It means that we have
587
                   a virtual CPU fault */
588
                cpu_restore_state(tb, env, pc, NULL);
589
            }
590
        }
591
        do_raise_exception_err(env->exception_index, env->error_code);
592
    }
593
    env = saved_env;
594
}
595

    
596
#endif
597

    
598
/* Complex FPU operations which may need stack space. */
599

    
600
#define FLOAT_SIGN32 (1 << 31)
601
#define FLOAT_SIGN64 (1ULL << 63)
602
#define FLOAT_ONE32 (0x3f8 << 20)
603
#define FLOAT_ONE64 (0x3ffULL << 52)
604
#define FLOAT_TWO32 (1 << 30)
605
#define FLOAT_TWO64 (1ULL << 62)
606

    
607
/* convert MIPS rounding mode in FCR31 to IEEE library */
608
unsigned int ieee_rm[] = {
609
    float_round_nearest_even,
610
    float_round_to_zero,
611
    float_round_up,
612
    float_round_down
613
};
614

    
615
#define RESTORE_ROUNDING_MODE \
616
    set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
617

    
618
void do_ctc1 (void)
619
{
620
    switch(T1) {
621
    case 25:
622
        if (T0 & 0xffffff00)
623
            return;
624
        env->fcr31 = (env->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
625
                     ((T0 & 0x1) << 23);
626
        break;
627
    case 26:
628
        if (T0 & 0x007c0000)
629
            return;
630
        env->fcr31 = (env->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
631
        break;
632
    case 28:
633
        if (T0 & 0x007c0000)
634
            return;
635
        env->fcr31 = (env->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
636
                     ((T0 & 0x4) << 22);
637
        break;
638
    case 31:
639
        if (T0 & 0x007c0000)
640
            return;
641
        env->fcr31 = T0;
642
        break;
643
    default:
644
        return;
645
    }
646
    /* set rounding mode */
647
    RESTORE_ROUNDING_MODE;
648
    set_float_exception_flags(0, &env->fp_status);
649
    if ((GET_FP_ENABLE(env->fcr31) | 0x20) & GET_FP_CAUSE(env->fcr31))
650
        do_raise_exception(EXCP_FPE);
651
}
652

    
653
inline char ieee_ex_to_mips(char xcpt)
654
{
655
    return (xcpt & float_flag_inexact) >> 5 |
656
           (xcpt & float_flag_underflow) >> 3 |
657
           (xcpt & float_flag_overflow) >> 1 |
658
           (xcpt & float_flag_divbyzero) << 1 |
659
           (xcpt & float_flag_invalid) << 4;
660
}
661

    
662
inline char mips_ex_to_ieee(char xcpt)
663
{
664
    return (xcpt & FP_INEXACT) << 5 |
665
           (xcpt & FP_UNDERFLOW) << 3 |
666
           (xcpt & FP_OVERFLOW) << 1 |
667
           (xcpt & FP_DIV0) >> 1 |
668
           (xcpt & FP_INVALID) >> 4;
669
}
670

    
671
inline void update_fcr31(void)
672
{
673
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fp_status));
674

    
675
    SET_FP_CAUSE(env->fcr31, tmp);
676
    if (GET_FP_ENABLE(env->fcr31) & tmp)
677
        do_raise_exception(EXCP_FPE);
678
    else
679
        UPDATE_FP_FLAGS(env->fcr31, tmp);
680
}
681

    
682
#define FLOAT_OP(name, p) void do_float_##name##_##p(void)
683

    
684
FLOAT_OP(cvtd, s)
685
{
686
    set_float_exception_flags(0, &env->fp_status);
687
    FDT2 = float32_to_float64(FST0, &env->fp_status);
688
    update_fcr31();
689
}
690
FLOAT_OP(cvtd, w)
691
{
692
    set_float_exception_flags(0, &env->fp_status);
693
    FDT2 = int32_to_float64(WT0, &env->fp_status);
694
    update_fcr31();
695
}
696
FLOAT_OP(cvtd, l)
697
{
698
    set_float_exception_flags(0, &env->fp_status);
699
    FDT2 = int64_to_float64(DT0, &env->fp_status);
700
    update_fcr31();
701
}
702
FLOAT_OP(cvtl, d)
703
{
704
    set_float_exception_flags(0, &env->fp_status);
705
    DT2 = float64_to_int64(FDT0, &env->fp_status);
706
    update_fcr31();
707
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
708
        DT2 = 0x7fffffffffffffffULL;
709
}
710
FLOAT_OP(cvtl, s)
711
{
712
    set_float_exception_flags(0, &env->fp_status);
713
    DT2 = float32_to_int64(FST0, &env->fp_status);
714
    update_fcr31();
715
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
716
        DT2 = 0x7fffffffffffffffULL;
717
}
718

    
719
FLOAT_OP(cvtps, pw)
720
{
721
    set_float_exception_flags(0, &env->fp_status);
722
    FST2 = int32_to_float32(WT0, &env->fp_status);
723
    FSTH2 = int32_to_float32(WTH0, &env->fp_status);
724
    update_fcr31();
725
}
726
FLOAT_OP(cvtpw, ps)
727
{
728
    set_float_exception_flags(0, &env->fp_status);
729
    WT2 = float32_to_int32(FST0, &env->fp_status);
730
    WTH2 = float32_to_int32(FSTH0, &env->fp_status);
731
    update_fcr31();
732
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
733
        WT2 = 0x7fffffff;
734
}
735
FLOAT_OP(cvts, d)
736
{
737
    set_float_exception_flags(0, &env->fp_status);
738
    FST2 = float64_to_float32(FDT0, &env->fp_status);
739
    update_fcr31();
740
}
741
FLOAT_OP(cvts, w)
742
{
743
    set_float_exception_flags(0, &env->fp_status);
744
    FST2 = int32_to_float32(WT0, &env->fp_status);
745
    update_fcr31();
746
}
747
FLOAT_OP(cvts, l)
748
{
749
    set_float_exception_flags(0, &env->fp_status);
750
    FST2 = int64_to_float32(DT0, &env->fp_status);
751
    update_fcr31();
752
}
753
FLOAT_OP(cvts, pl)
754
{
755
    set_float_exception_flags(0, &env->fp_status);
756
    WT2 = WT0;
757
    update_fcr31();
758
}
759
FLOAT_OP(cvts, pu)
760
{
761
    set_float_exception_flags(0, &env->fp_status);
762
    WT2 = WTH0;
763
    update_fcr31();
764
}
765
FLOAT_OP(cvtw, s)
766
{
767
    set_float_exception_flags(0, &env->fp_status);
768
    WT2 = float32_to_int32(FST0, &env->fp_status);
769
    update_fcr31();
770
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
771
        WT2 = 0x7fffffff;
772
}
773
FLOAT_OP(cvtw, d)
774
{
775
    set_float_exception_flags(0, &env->fp_status);
776
    WT2 = float64_to_int32(FDT0, &env->fp_status);
777
    update_fcr31();
778
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
779
        WT2 = 0x7fffffff;
780
}
781

    
782
FLOAT_OP(roundl, d)
783
{
784
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
785
    DT2 = float64_to_int64(FDT0, &env->fp_status);
786
    RESTORE_ROUNDING_MODE;
787
    update_fcr31();
788
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
789
        DT2 = 0x7fffffffffffffffULL;
790
}
791
FLOAT_OP(roundl, s)
792
{
793
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
794
    DT2 = float32_to_int64(FST0, &env->fp_status);
795
    RESTORE_ROUNDING_MODE;
796
    update_fcr31();
797
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
798
        DT2 = 0x7fffffffffffffffULL;
799
}
800
FLOAT_OP(roundw, d)
801
{
802
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
803
    WT2 = float64_to_int32(FDT0, &env->fp_status);
804
    RESTORE_ROUNDING_MODE;
805
    update_fcr31();
806
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
807
        WT2 = 0x7fffffff;
808
}
809
FLOAT_OP(roundw, s)
810
{
811
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
812
    WT2 = float32_to_int32(FST0, &env->fp_status);
813
    RESTORE_ROUNDING_MODE;
814
    update_fcr31();
815
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
816
        WT2 = 0x7fffffff;
817
}
818

    
819
FLOAT_OP(truncl, d)
820
{
821
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fp_status);
822
    update_fcr31();
823
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
824
        DT2 = 0x7fffffffffffffffULL;
825
}
826
FLOAT_OP(truncl, s)
827
{
828
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fp_status);
829
    update_fcr31();
830
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
831
        DT2 = 0x7fffffffffffffffULL;
832
}
833
FLOAT_OP(truncw, d)
834
{
835
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status);
836
    update_fcr31();
837
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
838
        WT2 = 0x7fffffff;
839
}
840
FLOAT_OP(truncw, s)
841
{
842
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status);
843
    update_fcr31();
844
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
845
        WT2 = 0x7fffffff;
846
}
847

    
848
FLOAT_OP(ceill, d)
849
{
850
    set_float_rounding_mode(float_round_up, &env->fp_status);
851
    DT2 = float64_to_int64(FDT0, &env->fp_status);
852
    RESTORE_ROUNDING_MODE;
853
    update_fcr31();
854
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
855
        DT2 = 0x7fffffffffffffffULL;
856
}
857
FLOAT_OP(ceill, s)
858
{
859
    set_float_rounding_mode(float_round_up, &env->fp_status);
860
    DT2 = float32_to_int64(FST0, &env->fp_status);
861
    RESTORE_ROUNDING_MODE;
862
    update_fcr31();
863
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
864
        DT2 = 0x7fffffffffffffffULL;
865
}
866
FLOAT_OP(ceilw, d)
867
{
868
    set_float_rounding_mode(float_round_up, &env->fp_status);
869
    WT2 = float64_to_int32(FDT0, &env->fp_status);
870
    RESTORE_ROUNDING_MODE;
871
    update_fcr31();
872
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
873
        WT2 = 0x7fffffff;
874
}
875
FLOAT_OP(ceilw, s)
876
{
877
    set_float_rounding_mode(float_round_up, &env->fp_status);
878
    WT2 = float32_to_int32(FST0, &env->fp_status);
879
    RESTORE_ROUNDING_MODE;
880
    update_fcr31();
881
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
882
        WT2 = 0x7fffffff;
883
}
884

    
885
FLOAT_OP(floorl, d)
886
{
887
    set_float_rounding_mode(float_round_down, &env->fp_status);
888
    DT2 = float64_to_int64(FDT0, &env->fp_status);
889
    RESTORE_ROUNDING_MODE;
890
    update_fcr31();
891
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
892
        DT2 = 0x7fffffffffffffffULL;
893
}
894
FLOAT_OP(floorl, s)
895
{
896
    set_float_rounding_mode(float_round_down, &env->fp_status);
897
    DT2 = float32_to_int64(FST0, &env->fp_status);
898
    RESTORE_ROUNDING_MODE;
899
    update_fcr31();
900
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
901
        DT2 = 0x7fffffffffffffffULL;
902
}
903
FLOAT_OP(floorw, d)
904
{
905
    set_float_rounding_mode(float_round_down, &env->fp_status);
906
    WT2 = float64_to_int32(FDT0, &env->fp_status);
907
    RESTORE_ROUNDING_MODE;
908
    update_fcr31();
909
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
910
        WT2 = 0x7fffffff;
911
}
912
FLOAT_OP(floorw, s)
913
{
914
    set_float_rounding_mode(float_round_down, &env->fp_status);
915
    WT2 = float32_to_int32(FST0, &env->fp_status);
916
    RESTORE_ROUNDING_MODE;
917
    update_fcr31();
918
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
919
        WT2 = 0x7fffffff;
920
}
921

    
922
/* MIPS specific unary operations */
923
FLOAT_OP(recip, d)
924
{
925
    set_float_exception_flags(0, &env->fp_status);
926
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fp_status);
927
    update_fcr31();
928
}
929
FLOAT_OP(recip, s)
930
{
931
    set_float_exception_flags(0, &env->fp_status);
932
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status);
933
    update_fcr31();
934
}
935

    
936
FLOAT_OP(rsqrt, d)
937
{
938
    set_float_exception_flags(0, &env->fp_status);
939
    FDT2 = float64_sqrt(FDT0, &env->fp_status);
940
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fp_status);
941
    update_fcr31();
942
}
943
FLOAT_OP(rsqrt, s)
944
{
945
    set_float_exception_flags(0, &env->fp_status);
946
    FST2 = float32_sqrt(FST0, &env->fp_status);
947
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status);
948
    update_fcr31();
949
}
950

    
951
FLOAT_OP(recip1, d)
952
{
953
    set_float_exception_flags(0, &env->fp_status);
954
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fp_status);
955
    update_fcr31();
956
}
957
FLOAT_OP(recip1, s)
958
{
959
    set_float_exception_flags(0, &env->fp_status);
960
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status);
961
    update_fcr31();
962
}
963
FLOAT_OP(recip1, ps)
964
{
965
    set_float_exception_flags(0, &env->fp_status);
966
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fp_status);
967
    FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fp_status);
968
    update_fcr31();
969
}
970

    
971
FLOAT_OP(rsqrt1, d)
972
{
973
    set_float_exception_flags(0, &env->fp_status);
974
    FDT2 = float64_sqrt(FDT0, &env->fp_status);
975
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fp_status);
976
    update_fcr31();
977
}
978
FLOAT_OP(rsqrt1, s)
979
{
980
    set_float_exception_flags(0, &env->fp_status);
981
    FST2 = float32_sqrt(FST0, &env->fp_status);
982
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status);
983
    update_fcr31();
984
}
985
FLOAT_OP(rsqrt1, ps)
986
{
987
    set_float_exception_flags(0, &env->fp_status);
988
    FST2 = float32_sqrt(FST0, &env->fp_status);
989
    FSTH2 = float32_sqrt(FSTH0, &env->fp_status);
990
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fp_status);
991
    FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fp_status);
992
    update_fcr31();
993
}
994

    
995
/* binary operations */
996
#define FLOAT_BINOP(name) \
997
FLOAT_OP(name, d)         \
998
{                         \
999
    set_float_exception_flags(0, &env->fp_status);            \
1000
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status);    \
1001
    update_fcr31();                                           \
1002
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID)                \
1003
        FDT2 = 0x7ff7ffffffffffffULL;                         \
1004
    else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {       \
1005
        if ((env->fcr31 & 0x3) == 0)                          \
1006
            FDT2 &= FLOAT_SIGN64;                             \
1007
    }                     \
1008
}                         \
1009
FLOAT_OP(name, s)         \
1010
{                         \
1011
    set_float_exception_flags(0, &env->fp_status);            \
1012
    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);    \
1013
    update_fcr31();                                           \
1014
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID)                \
1015
        FST2 = 0x7fbfffff;                                    \
1016
    else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {       \
1017
        if ((env->fcr31 & 0x3) == 0)                          \
1018
            FST2 &= FLOAT_SIGN32;                             \
1019
    }                     \
1020
}                         \
1021
FLOAT_OP(name, ps)        \
1022
{                         \
1023
    set_float_exception_flags(0, &env->fp_status);            \
1024
    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);    \
1025
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fp_status); \
1026
    update_fcr31();       \
1027
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) {              \
1028
        FST2 = 0x7fbfffff;                                    \
1029
        FSTH2 = 0x7fbfffff;                                   \
1030
    } else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {     \
1031
        if ((env->fcr31 & 0x3) == 0) {                        \
1032
            FST2 &= FLOAT_SIGN32;                             \
1033
            FSTH2 &= FLOAT_SIGN32;                            \
1034
        }                 \
1035
    }                     \
1036
}
1037
FLOAT_BINOP(add)
1038
FLOAT_BINOP(sub)
1039
FLOAT_BINOP(mul)
1040
FLOAT_BINOP(div)
1041
#undef FLOAT_BINOP
1042

    
1043
/* MIPS specific binary operations */
1044
FLOAT_OP(recip2, d)
1045
{
1046
    set_float_exception_flags(0, &env->fp_status);
1047
    FDT2 = float64_mul(FDT0, FDT2, &env->fp_status);
1048
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fp_status) ^ FLOAT_SIGN64;
1049
    update_fcr31();
1050
}
1051
FLOAT_OP(recip2, s)
1052
{
1053
    set_float_exception_flags(0, &env->fp_status);
1054
    FST2 = float32_mul(FST0, FST2, &env->fp_status);
1055
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32;
1056
    update_fcr31();
1057
}
1058
FLOAT_OP(recip2, ps)
1059
{
1060
    set_float_exception_flags(0, &env->fp_status);
1061
    FST2 = float32_mul(FST0, FST2, &env->fp_status);
1062
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fp_status);
1063
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32;
1064
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fp_status) ^ FLOAT_SIGN32;
1065
    update_fcr31();
1066
}
1067

    
1068
FLOAT_OP(rsqrt2, d)
1069
{
1070
    set_float_exception_flags(0, &env->fp_status);
1071
    FDT2 = float64_mul(FDT0, FDT2, &env->fp_status);
1072
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fp_status);
1073
    FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fp_status) ^ FLOAT_SIGN64;
1074
    update_fcr31();
1075
}
1076
FLOAT_OP(rsqrt2, s)
1077
{
1078
    set_float_exception_flags(0, &env->fp_status);
1079
    FST2 = float32_mul(FST0, FST2, &env->fp_status);
1080
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status);
1081
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32;
1082
    update_fcr31();
1083
}
1084
FLOAT_OP(rsqrt2, ps)
1085
{
1086
    set_float_exception_flags(0, &env->fp_status);
1087
    FST2 = float32_mul(FST0, FST2, &env->fp_status);
1088
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fp_status);
1089
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fp_status);
1090
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fp_status);
1091
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32;
1092
    FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fp_status) ^ FLOAT_SIGN32;
1093
    update_fcr31();
1094
}
1095

    
1096
FLOAT_OP(addr, ps)
1097
{
1098
    set_float_exception_flags(0, &env->fp_status);
1099
    FST2 = float32_add (FST0, FSTH0, &env->fp_status);
1100
    FSTH2 = float32_add (FST1, FSTH1, &env->fp_status);
1101
    update_fcr31();
1102
}
1103

    
1104
FLOAT_OP(mulr, ps)
1105
{
1106
    set_float_exception_flags(0, &env->fp_status);
1107
    FST2 = float32_mul (FST0, FSTH0, &env->fp_status);
1108
    FSTH2 = float32_mul (FST1, FSTH1, &env->fp_status);
1109
    update_fcr31();
1110
}
1111

    
1112
/* compare operations */
1113
#define FOP_COND_D(op, cond)                   \
1114
void do_cmp_d_ ## op (long cc)                 \
1115
{                                              \
1116
    int c = cond;                              \
1117
    update_fcr31();                            \
1118
    if (c)                                     \
1119
        SET_FP_COND(cc, env);                  \
1120
    else                                       \
1121
        CLEAR_FP_COND(cc, env);                \
1122
}                                              \
1123
void do_cmpabs_d_ ## op (long cc)              \
1124
{                                              \
1125
    int c;                                     \
1126
    FDT0 &= ~FLOAT_SIGN64;                     \
1127
    FDT1 &= ~FLOAT_SIGN64;                     \
1128
    c = cond;                                  \
1129
    update_fcr31();                            \
1130
    if (c)                                     \
1131
        SET_FP_COND(cc, env);                  \
1132
    else                                       \
1133
        CLEAR_FP_COND(cc, env);                \
1134
}
1135

    
1136
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1137
{
1138
    if (float64_is_signaling_nan(a) ||
1139
        float64_is_signaling_nan(b) ||
1140
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1141
        float_raise(float_flag_invalid, status);
1142
        return 1;
1143
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
1144
        return 1;
1145
    } else {
1146
        return 0;
1147
    }
1148
}
1149

    
1150
/* NOTE: the comma operator will make "cond" to eval to false,
1151
 * but float*_is_unordered() is still called. */
1152
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fp_status), 0))
1153
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fp_status))
1154
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
1155
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_eq(FDT0, FDT1, &env->fp_status))
1156
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
1157
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_lt(FDT0, FDT1, &env->fp_status))
1158
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
1159
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_le(FDT0, FDT1, &env->fp_status))
1160
/* NOTE: the comma operator will make "cond" to eval to false,
1161
 * but float*_is_unordered() is still called. */
1162
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fp_status), 0))
1163
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fp_status))
1164
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
1165
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_eq(FDT0, FDT1, &env->fp_status))
1166
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
1167
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_lt(FDT0, FDT1, &env->fp_status))
1168
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
1169
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_le(FDT0, FDT1, &env->fp_status))
1170

    
1171
#define FOP_COND_S(op, cond)                   \
1172
void do_cmp_s_ ## op (long cc)                 \
1173
{                                              \
1174
    int c = cond;                              \
1175
    update_fcr31();                            \
1176
    if (c)                                     \
1177
        SET_FP_COND(cc, env);                  \
1178
    else                                       \
1179
        CLEAR_FP_COND(cc, env);                \
1180
}                                              \
1181
void do_cmpabs_s_ ## op (long cc)              \
1182
{                                              \
1183
    int c;                                     \
1184
    FST0 &= ~FLOAT_SIGN32;                     \
1185
    FST1 &= ~FLOAT_SIGN32;                     \
1186
    c = cond;                                  \
1187
    update_fcr31();                            \
1188
    if (c)                                     \
1189
        SET_FP_COND(cc, env);                  \
1190
    else                                       \
1191
        CLEAR_FP_COND(cc, env);                \
1192
}
1193

    
1194
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1195
{
1196
    if (float32_is_signaling_nan(a) ||
1197
        float32_is_signaling_nan(b) ||
1198
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1199
        float_raise(float_flag_invalid, status);
1200
        return 1;
1201
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
1202
        return 1;
1203
    } else {
1204
        return 0;
1205
    }
1206
}
1207

    
1208
/* NOTE: the comma operator will make "cond" to eval to false,
1209
 * but float*_is_unordered() is still called. */
1210
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0))
1211
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fp_status))
1212
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
1213
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_eq(FST0, FST1, &env->fp_status))
1214
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
1215
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_lt(FST0, FST1, &env->fp_status))
1216
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
1217
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_le(FST0, FST1, &env->fp_status))
1218
/* NOTE: the comma operator will make "cond" to eval to false,
1219
 * but float*_is_unordered() is still called. */
1220
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0))
1221
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status))
1222
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
1223
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_eq(FST0, FST1, &env->fp_status))
1224
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
1225
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_lt(FST0, FST1, &env->fp_status))
1226
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
1227
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_le(FST0, FST1, &env->fp_status))
1228

    
1229
#define FOP_COND_PS(op, condl, condh)          \
1230
void do_cmp_ps_ ## op (long cc)                \
1231
{                                              \
1232
    int cl = condl;                            \
1233
    int ch = condh;                            \
1234
    update_fcr31();                            \
1235
    if (cl)                                    \
1236
        SET_FP_COND(cc, env);                  \
1237
    else                                       \
1238
        CLEAR_FP_COND(cc, env);                \
1239
    if (ch)                                    \
1240
        SET_FP_COND(cc + 1, env);              \
1241
    else                                       \
1242
        CLEAR_FP_COND(cc + 1, env);            \
1243
}                                              \
1244
void do_cmpabs_ps_ ## op (long cc)             \
1245
{                                              \
1246
    int cl, ch;                                \
1247
    FST0 &= ~FLOAT_SIGN32;                     \
1248
    FSTH0 &= ~FLOAT_SIGN32;                    \
1249
    FST1 &= ~FLOAT_SIGN32;                     \
1250
    FSTH1 &= ~FLOAT_SIGN32;                    \
1251
    cl = condl;                                \
1252
    ch = condh;                                \
1253
    update_fcr31();                            \
1254
    if (cl)                                    \
1255
        SET_FP_COND(cc, env);                  \
1256
    else                                       \
1257
        CLEAR_FP_COND(cc, env);                \
1258
    if (ch)                                    \
1259
        SET_FP_COND(cc + 1, env);              \
1260
    else                                       \
1261
        CLEAR_FP_COND(cc + 1, env);            \
1262
}
1263

    
1264
/* NOTE: the comma operator will make "cond" to eval to false,
1265
 * but float*_is_unordered() is still called. */
1266
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0),
1267
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status), 0))
1268
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fp_status),
1269
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status))
1270
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_eq(FST0, FST1, &env->fp_status),
1271
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
1272
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_eq(FST0, FST1, &env->fp_status),
1273
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fp_status))
1274
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_lt(FST0, FST1, &env->fp_status),
1275
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
1276
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_lt(FST0, FST1, &env->fp_status),
1277
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fp_status))
1278
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_le(FST0, FST1, &env->fp_status),
1279
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
1280
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_le(FST0, FST1, &env->fp_status),
1281
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_le(FSTH0, FSTH1, &env->fp_status))
1282
/* NOTE: the comma operator will make "cond" to eval to false,
1283
 * but float*_is_unordered() is still called. */
1284
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0),
1285
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status), 0))
1286
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status),
1287
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status))
1288
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_eq(FST0, FST1, &env->fp_status),
1289
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
1290
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_eq(FST0, FST1, &env->fp_status),
1291
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fp_status))
1292
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_lt(FST0, FST1, &env->fp_status),
1293
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
1294
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_lt(FST0, FST1, &env->fp_status),
1295
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fp_status))
1296
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_le(FST0, FST1, &env->fp_status),
1297
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
1298
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_le(FST0, FST1, &env->fp_status),
1299
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_le(FSTH0, FSTH1, &env->fp_status))