root / hw / etraxfs_timer.c @ 5ef98b47
History | View | Annotate | Download (8.1 kB)
1 |
/*
|
---|---|
2 |
* QEMU ETRAX Timers
|
3 |
*
|
4 |
* Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
|
5 |
*
|
6 |
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
* of this software and associated documentation files (the "Software"), to deal
|
8 |
* in the Software without restriction, including without limitation the rights
|
9 |
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
* copies of the Software, and to permit persons to whom the Software is
|
11 |
* furnished to do so, subject to the following conditions:
|
12 |
*
|
13 |
* The above copyright notice and this permission notice shall be included in
|
14 |
* all copies or substantial portions of the Software.
|
15 |
*
|
16 |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17 |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18 |
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
19 |
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20 |
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21 |
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
22 |
* THE SOFTWARE.
|
23 |
*/
|
24 |
#include <stdio.h> |
25 |
#include <sys/time.h> |
26 |
#include "hw.h" |
27 |
#include "sysemu.h" |
28 |
#include "qemu-timer.h" |
29 |
|
30 |
#define D(x)
|
31 |
|
32 |
#define RW_TMR0_DIV 0x00 |
33 |
#define R_TMR0_DATA 0x04 |
34 |
#define RW_TMR0_CTRL 0x08 |
35 |
#define RW_TMR1_DIV 0x10 |
36 |
#define R_TMR1_DATA 0x14 |
37 |
#define RW_TMR1_CTRL 0x18 |
38 |
#define R_TIME 0x38 |
39 |
#define RW_WD_CTRL 0x40 |
40 |
#define R_WD_STAT 0x44 |
41 |
#define RW_INTR_MASK 0x48 |
42 |
#define RW_ACK_INTR 0x4c |
43 |
#define R_INTR 0x50 |
44 |
#define R_MASKED_INTR 0x54 |
45 |
|
46 |
struct fs_timer_t {
|
47 |
CPUState *env; |
48 |
qemu_irq *irq; |
49 |
qemu_irq *nmi; |
50 |
target_phys_addr_t base; |
51 |
|
52 |
QEMUBH *bh_t0; |
53 |
QEMUBH *bh_t1; |
54 |
QEMUBH *bh_wd; |
55 |
ptimer_state *ptimer_t0; |
56 |
ptimer_state *ptimer_t1; |
57 |
ptimer_state *ptimer_wd; |
58 |
struct timeval last;
|
59 |
|
60 |
int wd_hits;
|
61 |
|
62 |
/* Control registers. */
|
63 |
uint32_t rw_tmr0_div; |
64 |
uint32_t r_tmr0_data; |
65 |
uint32_t rw_tmr0_ctrl; |
66 |
|
67 |
uint32_t rw_tmr1_div; |
68 |
uint32_t r_tmr1_data; |
69 |
uint32_t rw_tmr1_ctrl; |
70 |
|
71 |
uint32_t rw_wd_ctrl; |
72 |
|
73 |
uint32_t rw_intr_mask; |
74 |
uint32_t rw_ack_intr; |
75 |
uint32_t r_intr; |
76 |
uint32_t r_masked_intr; |
77 |
}; |
78 |
|
79 |
static uint32_t timer_rinvalid (void *opaque, target_phys_addr_t addr) |
80 |
{ |
81 |
struct fs_timer_t *t = opaque;
|
82 |
CPUState *env = t->env; |
83 |
cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n",
|
84 |
addr, env->pc); |
85 |
return 0; |
86 |
} |
87 |
|
88 |
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr) |
89 |
{ |
90 |
struct fs_timer_t *t = opaque;
|
91 |
D(CPUState *env = t->env); |
92 |
uint32_t r = 0;
|
93 |
|
94 |
/* Make addr relative to this instances base. */
|
95 |
addr -= t->base; |
96 |
switch (addr) {
|
97 |
case R_TMR0_DATA:
|
98 |
break;
|
99 |
case R_TMR1_DATA:
|
100 |
D(printf ("R_TMR1_DATA\n"));
|
101 |
break;
|
102 |
case R_TIME:
|
103 |
r = qemu_get_clock(vm_clock) * 10;
|
104 |
break;
|
105 |
case RW_INTR_MASK:
|
106 |
r = t->rw_intr_mask; |
107 |
break;
|
108 |
case R_MASKED_INTR:
|
109 |
r = t->r_intr & t->rw_intr_mask; |
110 |
break;
|
111 |
default:
|
112 |
D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
|
113 |
break;
|
114 |
} |
115 |
return r;
|
116 |
} |
117 |
|
118 |
static void |
119 |
timer_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
|
120 |
{ |
121 |
struct fs_timer_t *t = opaque;
|
122 |
CPUState *env = t->env; |
123 |
cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n",
|
124 |
addr, env->pc); |
125 |
} |
126 |
|
127 |
#define TIMER_SLOWDOWN 1 |
128 |
static void update_ctrl(struct fs_timer_t *t, int tnum) |
129 |
{ |
130 |
unsigned int op; |
131 |
unsigned int freq; |
132 |
unsigned int freq_hz; |
133 |
unsigned int div; |
134 |
uint32_t ctrl; |
135 |
|
136 |
ptimer_state *timer; |
137 |
|
138 |
if (tnum == 0) { |
139 |
ctrl = t->rw_tmr0_ctrl; |
140 |
div = t->rw_tmr0_div; |
141 |
timer = t->ptimer_t0; |
142 |
} else {
|
143 |
ctrl = t->rw_tmr1_ctrl; |
144 |
div = t->rw_tmr1_div; |
145 |
timer = t->ptimer_t1; |
146 |
} |
147 |
|
148 |
|
149 |
op = ctrl & 3;
|
150 |
freq = ctrl >> 2;
|
151 |
freq_hz = 32000000;
|
152 |
|
153 |
switch (freq)
|
154 |
{ |
155 |
case 0: |
156 |
case 1: |
157 |
D(printf ("extern or disabled timer clock?\n"));
|
158 |
break;
|
159 |
case 4: freq_hz = 29493000; break; |
160 |
case 5: freq_hz = 32000000; break; |
161 |
case 6: freq_hz = 32768000; break; |
162 |
case 7: freq_hz = 100001000; break; |
163 |
default:
|
164 |
abort(); |
165 |
break;
|
166 |
} |
167 |
|
168 |
D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
|
169 |
div = div * TIMER_SLOWDOWN; |
170 |
div >>= 10;
|
171 |
freq_hz >>= 10;
|
172 |
ptimer_set_freq(timer, freq_hz); |
173 |
ptimer_set_limit(timer, div, 0);
|
174 |
|
175 |
switch (op)
|
176 |
{ |
177 |
case 0: |
178 |
/* Load. */
|
179 |
ptimer_set_limit(timer, div, 1);
|
180 |
break;
|
181 |
case 1: |
182 |
/* Hold. */
|
183 |
ptimer_stop(timer); |
184 |
break;
|
185 |
case 2: |
186 |
/* Run. */
|
187 |
ptimer_run(timer, 0);
|
188 |
break;
|
189 |
default:
|
190 |
abort(); |
191 |
break;
|
192 |
} |
193 |
} |
194 |
|
195 |
static void timer_update_irq(struct fs_timer_t *t) |
196 |
{ |
197 |
t->r_intr &= ~(t->rw_ack_intr); |
198 |
t->r_masked_intr = t->r_intr & t->rw_intr_mask; |
199 |
|
200 |
D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
|
201 |
if (t->r_masked_intr)
|
202 |
qemu_irq_raise(t->irq[0]);
|
203 |
else
|
204 |
qemu_irq_lower(t->irq[0]);
|
205 |
} |
206 |
|
207 |
static void timer0_hit(void *opaque) |
208 |
{ |
209 |
struct fs_timer_t *t = opaque;
|
210 |
t->r_intr |= 1;
|
211 |
timer_update_irq(t); |
212 |
} |
213 |
|
214 |
static void timer1_hit(void *opaque) |
215 |
{ |
216 |
struct fs_timer_t *t = opaque;
|
217 |
t->r_intr |= 2;
|
218 |
timer_update_irq(t); |
219 |
} |
220 |
|
221 |
static void watchdog_hit(void *opaque) |
222 |
{ |
223 |
struct fs_timer_t *t = opaque;
|
224 |
if (t->wd_hits == 0) { |
225 |
/* real hw gives a single tick before reseting but we are
|
226 |
a bit friendlier to compensate for our slower execution. */
|
227 |
ptimer_set_count(t->ptimer_wd, 10);
|
228 |
ptimer_run(t->ptimer_wd, 1);
|
229 |
qemu_irq_raise(t->nmi[0]);
|
230 |
} |
231 |
else
|
232 |
qemu_system_reset_request(); |
233 |
|
234 |
t->wd_hits++; |
235 |
} |
236 |
|
237 |
static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value) |
238 |
{ |
239 |
unsigned int wd_en = t->rw_wd_ctrl & (1 << 8); |
240 |
unsigned int wd_key = t->rw_wd_ctrl >> 9; |
241 |
unsigned int wd_cnt = t->rw_wd_ctrl & 511; |
242 |
unsigned int new_key = value >> 9 & ((1 << 7) - 1); |
243 |
unsigned int new_cmd = (value >> 8) & 1; |
244 |
|
245 |
/* If the watchdog is enabled, they written key must match the
|
246 |
complement of the previous. */
|
247 |
wd_key = ~wd_key & ((1 << 7) - 1); |
248 |
|
249 |
if (wd_en && wd_key != new_key)
|
250 |
return;
|
251 |
|
252 |
D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n",
|
253 |
wd_en, new_key, wd_key, new_cmd, wd_cnt)); |
254 |
|
255 |
if (t->wd_hits)
|
256 |
qemu_irq_lower(t->nmi[0]);
|
257 |
|
258 |
t->wd_hits = 0;
|
259 |
|
260 |
ptimer_set_freq(t->ptimer_wd, 760);
|
261 |
if (wd_cnt == 0) |
262 |
wd_cnt = 256;
|
263 |
ptimer_set_count(t->ptimer_wd, wd_cnt); |
264 |
if (new_cmd)
|
265 |
ptimer_run(t->ptimer_wd, 1);
|
266 |
else
|
267 |
ptimer_stop(t->ptimer_wd); |
268 |
|
269 |
t->rw_wd_ctrl = value; |
270 |
} |
271 |
|
272 |
static void |
273 |
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
|
274 |
{ |
275 |
struct fs_timer_t *t = opaque;
|
276 |
CPUState *env = t->env; |
277 |
|
278 |
/* Make addr relative to this instances base. */
|
279 |
addr -= t->base; |
280 |
switch (addr)
|
281 |
{ |
282 |
case RW_TMR0_DIV:
|
283 |
t->rw_tmr0_div = value; |
284 |
break;
|
285 |
case RW_TMR0_CTRL:
|
286 |
D(printf ("RW_TMR0_CTRL=%x\n", value));
|
287 |
t->rw_tmr0_ctrl = value; |
288 |
update_ctrl(t, 0);
|
289 |
break;
|
290 |
case RW_TMR1_DIV:
|
291 |
t->rw_tmr1_div = value; |
292 |
break;
|
293 |
case RW_TMR1_CTRL:
|
294 |
D(printf ("RW_TMR1_CTRL=%x\n", value));
|
295 |
t->rw_tmr1_ctrl = value; |
296 |
update_ctrl(t, 1);
|
297 |
break;
|
298 |
case RW_INTR_MASK:
|
299 |
D(printf ("RW_INTR_MASK=%x\n", value));
|
300 |
t->rw_intr_mask = value; |
301 |
timer_update_irq(t); |
302 |
break;
|
303 |
case RW_WD_CTRL:
|
304 |
timer_watchdog_update(t, value); |
305 |
break;
|
306 |
case RW_ACK_INTR:
|
307 |
t->rw_ack_intr = value; |
308 |
timer_update_irq(t); |
309 |
t->rw_ack_intr = 0;
|
310 |
break;
|
311 |
default:
|
312 |
printf ("%s %x %x pc=%x\n",
|
313 |
__func__, addr, value, env->pc); |
314 |
break;
|
315 |
} |
316 |
} |
317 |
|
318 |
static CPUReadMemoryFunc *timer_read[] = {
|
319 |
&timer_rinvalid, |
320 |
&timer_rinvalid, |
321 |
&timer_readl, |
322 |
}; |
323 |
|
324 |
static CPUWriteMemoryFunc *timer_write[] = {
|
325 |
&timer_winvalid, |
326 |
&timer_winvalid, |
327 |
&timer_writel, |
328 |
}; |
329 |
|
330 |
static void etraxfs_timer_reset(void *opaque) |
331 |
{ |
332 |
struct fs_timer_t *t = opaque;
|
333 |
|
334 |
ptimer_stop(t->ptimer_t0); |
335 |
ptimer_stop(t->ptimer_t1); |
336 |
ptimer_stop(t->ptimer_wd); |
337 |
t->rw_wd_ctrl = 0;
|
338 |
t->r_intr = 0;
|
339 |
t->rw_intr_mask = 0;
|
340 |
qemu_irq_lower(t->irq[0]);
|
341 |
} |
342 |
|
343 |
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
|
344 |
target_phys_addr_t base) |
345 |
{ |
346 |
static struct fs_timer_t *t; |
347 |
int timer_regs;
|
348 |
|
349 |
t = qemu_mallocz(sizeof *t);
|
350 |
if (!t)
|
351 |
return;
|
352 |
|
353 |
t->bh_t0 = qemu_bh_new(timer0_hit, t); |
354 |
t->bh_t1 = qemu_bh_new(timer1_hit, t); |
355 |
t->bh_wd = qemu_bh_new(watchdog_hit, t); |
356 |
t->ptimer_t0 = ptimer_init(t->bh_t0); |
357 |
t->ptimer_t1 = ptimer_init(t->bh_t1); |
358 |
t->ptimer_wd = ptimer_init(t->bh_wd); |
359 |
t->irq = irqs; |
360 |
t->nmi = nmi; |
361 |
t->env = env; |
362 |
t->base = base; |
363 |
|
364 |
timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
|
365 |
cpu_register_physical_memory (base, 0x5c, timer_regs);
|
366 |
|
367 |
qemu_register_reset(etraxfs_timer_reset, t); |
368 |
} |