Statistics
| Branch: | Revision:

root / fpu / softfloat-native.c @ 5fafdf24

History | View | Annotate | Download (10.5 kB)

1 158142c2 bellard
/* Native implementation of soft float functions. Only a single status
2 158142c2 bellard
   context is supported */
3 158142c2 bellard
#include "softfloat.h"
4 158142c2 bellard
#include <math.h>
5 158142c2 bellard
6 158142c2 bellard
void set_float_rounding_mode(int val STATUS_PARAM)
7 158142c2 bellard
{
8 158142c2 bellard
    STATUS(float_rounding_mode) = val;
9 fdbb4691 bellard
#if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
10 158142c2 bellard
    fpsetround(val);
11 158142c2 bellard
#elif defined(__arm__)
12 158142c2 bellard
    /* nothing to do */
13 158142c2 bellard
#else
14 158142c2 bellard
    fesetround(val);
15 158142c2 bellard
#endif
16 158142c2 bellard
}
17 158142c2 bellard
18 158142c2 bellard
#ifdef FLOATX80
19 158142c2 bellard
void set_floatx80_rounding_precision(int val STATUS_PARAM)
20 158142c2 bellard
{
21 158142c2 bellard
    STATUS(floatx80_rounding_precision) = val;
22 158142c2 bellard
}
23 158142c2 bellard
#endif
24 158142c2 bellard
25 fdbb4691 bellard
#if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26 fdbb4691 bellard
#define lrint(d)                ((int32_t)rint(d))
27 fdbb4691 bellard
#define llrint(d)                ((int64_t)rint(d))
28 fdbb4691 bellard
#define lrintf(f)                ((int32_t)rint(f))
29 fdbb4691 bellard
#define llrintf(f)                ((int64_t)rint(f))
30 fdbb4691 bellard
#define sqrtf(f)                ((float)sqrt(f))
31 fdbb4691 bellard
#define remainderf(fa, fb)        ((float)remainder(fa, fb))
32 fdbb4691 bellard
#define rintf(f)                ((float)rint(f))
33 fc81ba53 ths
#if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
34 0475a5ca ths
extern long double rintl(long double);
35 0475a5ca ths
extern long double scalbnl(long double, int);
36 0475a5ca ths
37 0475a5ca ths
long long
38 0475a5ca ths
llrintl(long double x) {
39 0475a5ca ths
        return ((long long) rintl(x));
40 0475a5ca ths
}
41 0475a5ca ths
42 0475a5ca ths
long
43 0475a5ca ths
lrintl(long double x) {
44 0475a5ca ths
        return ((long) rintl(x));
45 0475a5ca ths
}
46 0475a5ca ths
47 0475a5ca ths
long double
48 0475a5ca ths
ldexpl(long double x, int n) {
49 0475a5ca ths
        return (scalbnl(x, n));
50 0475a5ca ths
}
51 0475a5ca ths
#endif
52 158142c2 bellard
#endif
53 158142c2 bellard
54 158142c2 bellard
#if defined(__powerpc__)
55 158142c2 bellard
56 158142c2 bellard
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
57 158142c2 bellard
double qemu_rint(double x)
58 158142c2 bellard
{
59 158142c2 bellard
    double y = 4503599627370496.0;
60 158142c2 bellard
    if (fabs(x) >= y)
61 158142c2 bellard
        return x;
62 5fafdf24 ths
    if (x < 0)
63 158142c2 bellard
        y = -y;
64 158142c2 bellard
    y = (x + y) - y;
65 158142c2 bellard
    if (y == 0.0)
66 158142c2 bellard
        y = copysign(y, x);
67 158142c2 bellard
    return y;
68 158142c2 bellard
}
69 158142c2 bellard
70 158142c2 bellard
#define rint qemu_rint
71 158142c2 bellard
#endif
72 158142c2 bellard
73 158142c2 bellard
/*----------------------------------------------------------------------------
74 158142c2 bellard
| Software IEC/IEEE integer-to-floating-point conversion routines.
75 158142c2 bellard
*----------------------------------------------------------------------------*/
76 158142c2 bellard
float32 int32_to_float32(int v STATUS_PARAM)
77 158142c2 bellard
{
78 158142c2 bellard
    return (float32)v;
79 158142c2 bellard
}
80 158142c2 bellard
81 75d62a58 j_mayer
float32 uint32_to_float32(unsigned int v STATUS_PARAM)
82 75d62a58 j_mayer
{
83 75d62a58 j_mayer
    return (float32)v;
84 75d62a58 j_mayer
}
85 75d62a58 j_mayer
86 158142c2 bellard
float64 int32_to_float64(int v STATUS_PARAM)
87 158142c2 bellard
{
88 158142c2 bellard
    return (float64)v;
89 158142c2 bellard
}
90 158142c2 bellard
91 75d62a58 j_mayer
float64 uint32_to_float64(unsigned int v STATUS_PARAM)
92 75d62a58 j_mayer
{
93 75d62a58 j_mayer
    return (float64)v;
94 75d62a58 j_mayer
}
95 75d62a58 j_mayer
96 158142c2 bellard
#ifdef FLOATX80
97 158142c2 bellard
floatx80 int32_to_floatx80(int v STATUS_PARAM)
98 158142c2 bellard
{
99 158142c2 bellard
    return (floatx80)v;
100 158142c2 bellard
}
101 158142c2 bellard
#endif
102 158142c2 bellard
float32 int64_to_float32( int64_t v STATUS_PARAM)
103 158142c2 bellard
{
104 158142c2 bellard
    return (float32)v;
105 158142c2 bellard
}
106 75d62a58 j_mayer
float32 uint64_to_float32( uint64_t v STATUS_PARAM)
107 75d62a58 j_mayer
{
108 75d62a58 j_mayer
    return (float32)v;
109 75d62a58 j_mayer
}
110 158142c2 bellard
float64 int64_to_float64( int64_t v STATUS_PARAM)
111 158142c2 bellard
{
112 158142c2 bellard
    return (float64)v;
113 158142c2 bellard
}
114 75d62a58 j_mayer
float64 uint64_to_float64( uint64_t v STATUS_PARAM)
115 75d62a58 j_mayer
{
116 75d62a58 j_mayer
    return (float64)v;
117 75d62a58 j_mayer
}
118 158142c2 bellard
#ifdef FLOATX80
119 158142c2 bellard
floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
120 158142c2 bellard
{
121 158142c2 bellard
    return (floatx80)v;
122 158142c2 bellard
}
123 158142c2 bellard
#endif
124 158142c2 bellard
125 1b2b0af5 bellard
/* XXX: this code implements the x86 behaviour, not the IEEE one.  */
126 1b2b0af5 bellard
#if HOST_LONG_BITS == 32
127 1b2b0af5 bellard
static inline int long_to_int32(long a)
128 1b2b0af5 bellard
{
129 1b2b0af5 bellard
    return a;
130 1b2b0af5 bellard
}
131 1b2b0af5 bellard
#else
132 1b2b0af5 bellard
static inline int long_to_int32(long a)
133 1b2b0af5 bellard
{
134 5fafdf24 ths
    if (a != (int32_t)a)
135 1b2b0af5 bellard
        a = 0x80000000;
136 1b2b0af5 bellard
    return a;
137 1b2b0af5 bellard
}
138 1b2b0af5 bellard
#endif
139 1b2b0af5 bellard
140 158142c2 bellard
/*----------------------------------------------------------------------------
141 158142c2 bellard
| Software IEC/IEEE single-precision conversion routines.
142 158142c2 bellard
*----------------------------------------------------------------------------*/
143 158142c2 bellard
int float32_to_int32( float32 a STATUS_PARAM)
144 158142c2 bellard
{
145 1b2b0af5 bellard
    return long_to_int32(lrintf(a));
146 158142c2 bellard
}
147 158142c2 bellard
int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
148 158142c2 bellard
{
149 158142c2 bellard
    return (int)a;
150 158142c2 bellard
}
151 158142c2 bellard
int64_t float32_to_int64( float32 a STATUS_PARAM)
152 158142c2 bellard
{
153 158142c2 bellard
    return llrintf(a);
154 158142c2 bellard
}
155 158142c2 bellard
156 158142c2 bellard
int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
157 158142c2 bellard
{
158 158142c2 bellard
    return (int64_t)a;
159 158142c2 bellard
}
160 158142c2 bellard
161 158142c2 bellard
float64 float32_to_float64( float32 a STATUS_PARAM)
162 158142c2 bellard
{
163 158142c2 bellard
    return a;
164 158142c2 bellard
}
165 158142c2 bellard
#ifdef FLOATX80
166 158142c2 bellard
floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
167 158142c2 bellard
{
168 158142c2 bellard
    return a;
169 158142c2 bellard
}
170 158142c2 bellard
#endif
171 158142c2 bellard
172 75d62a58 j_mayer
unsigned int float32_to_uint32( float32 a STATUS_PARAM)
173 75d62a58 j_mayer
{
174 75d62a58 j_mayer
    int64_t v;
175 75d62a58 j_mayer
    unsigned int res;
176 75d62a58 j_mayer
177 75d62a58 j_mayer
    v = llrintf(a);
178 75d62a58 j_mayer
    if (v < 0) {
179 75d62a58 j_mayer
        res = 0;
180 75d62a58 j_mayer
    } else if (v > 0xffffffff) {
181 75d62a58 j_mayer
        res = 0xffffffff;
182 75d62a58 j_mayer
    } else {
183 75d62a58 j_mayer
        res = v;
184 75d62a58 j_mayer
    }
185 75d62a58 j_mayer
    return res;
186 75d62a58 j_mayer
}
187 75d62a58 j_mayer
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
188 75d62a58 j_mayer
{
189 75d62a58 j_mayer
    int64_t v;
190 75d62a58 j_mayer
    unsigned int res;
191 75d62a58 j_mayer
192 75d62a58 j_mayer
    v = (int64_t)a;
193 75d62a58 j_mayer
    if (v < 0) {
194 75d62a58 j_mayer
        res = 0;
195 75d62a58 j_mayer
    } else if (v > 0xffffffff) {
196 75d62a58 j_mayer
        res = 0xffffffff;
197 75d62a58 j_mayer
    } else {
198 75d62a58 j_mayer
        res = v;
199 75d62a58 j_mayer
    }
200 75d62a58 j_mayer
    return res;
201 75d62a58 j_mayer
}
202 75d62a58 j_mayer
203 158142c2 bellard
/*----------------------------------------------------------------------------
204 158142c2 bellard
| Software IEC/IEEE single-precision operations.
205 158142c2 bellard
*----------------------------------------------------------------------------*/
206 158142c2 bellard
float32 float32_round_to_int( float32 a STATUS_PARAM)
207 158142c2 bellard
{
208 158142c2 bellard
    return rintf(a);
209 158142c2 bellard
}
210 158142c2 bellard
211 b109f9f8 bellard
float32 float32_rem( float32 a, float32 b STATUS_PARAM)
212 b109f9f8 bellard
{
213 b109f9f8 bellard
    return remainderf(a, b);
214 b109f9f8 bellard
}
215 b109f9f8 bellard
216 158142c2 bellard
float32 float32_sqrt( float32 a STATUS_PARAM)
217 158142c2 bellard
{
218 158142c2 bellard
    return sqrtf(a);
219 158142c2 bellard
}
220 750afe93 bellard
int float32_compare( float32 a, float32 b STATUS_PARAM )
221 b109f9f8 bellard
{
222 b109f9f8 bellard
    if (a < b) {
223 b109f9f8 bellard
        return -1;
224 b109f9f8 bellard
    } else if (a == b) {
225 b109f9f8 bellard
        return 0;
226 b109f9f8 bellard
    } else if (a > b) {
227 b109f9f8 bellard
        return 1;
228 b109f9f8 bellard
    } else {
229 b109f9f8 bellard
        return 2;
230 b109f9f8 bellard
    }
231 b109f9f8 bellard
}
232 750afe93 bellard
int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
233 b109f9f8 bellard
{
234 b109f9f8 bellard
    if (isless(a, b)) {
235 b109f9f8 bellard
        return -1;
236 b109f9f8 bellard
    } else if (a == b) {
237 b109f9f8 bellard
        return 0;
238 b109f9f8 bellard
    } else if (isgreater(a, b)) {
239 b109f9f8 bellard
        return 1;
240 b109f9f8 bellard
    } else {
241 b109f9f8 bellard
        return 2;
242 b109f9f8 bellard
    }
243 b109f9f8 bellard
}
244 750afe93 bellard
int float32_is_signaling_nan( float32 a1)
245 158142c2 bellard
{
246 158142c2 bellard
    float32u u;
247 158142c2 bellard
    uint32_t a;
248 158142c2 bellard
    u.f = a1;
249 158142c2 bellard
    a = u.i;
250 158142c2 bellard
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
251 158142c2 bellard
}
252 158142c2 bellard
253 158142c2 bellard
/*----------------------------------------------------------------------------
254 158142c2 bellard
| Software IEC/IEEE double-precision conversion routines.
255 158142c2 bellard
*----------------------------------------------------------------------------*/
256 158142c2 bellard
int float64_to_int32( float64 a STATUS_PARAM)
257 158142c2 bellard
{
258 1b2b0af5 bellard
    return long_to_int32(lrint(a));
259 158142c2 bellard
}
260 158142c2 bellard
int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
261 158142c2 bellard
{
262 158142c2 bellard
    return (int)a;
263 158142c2 bellard
}
264 158142c2 bellard
int64_t float64_to_int64( float64 a STATUS_PARAM)
265 158142c2 bellard
{
266 158142c2 bellard
    return llrint(a);
267 158142c2 bellard
}
268 158142c2 bellard
int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
269 158142c2 bellard
{
270 158142c2 bellard
    return (int64_t)a;
271 158142c2 bellard
}
272 158142c2 bellard
float32 float64_to_float32( float64 a STATUS_PARAM)
273 158142c2 bellard
{
274 158142c2 bellard
    return a;
275 158142c2 bellard
}
276 158142c2 bellard
#ifdef FLOATX80
277 158142c2 bellard
floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
278 158142c2 bellard
{
279 158142c2 bellard
    return a;
280 158142c2 bellard
}
281 158142c2 bellard
#endif
282 158142c2 bellard
#ifdef FLOAT128
283 158142c2 bellard
float128 float64_to_float128( float64 a STATUS_PARAM)
284 158142c2 bellard
{
285 158142c2 bellard
    return a;
286 158142c2 bellard
}
287 158142c2 bellard
#endif
288 158142c2 bellard
289 75d62a58 j_mayer
unsigned int float64_to_uint32( float64 a STATUS_PARAM)
290 75d62a58 j_mayer
{
291 75d62a58 j_mayer
    int64_t v;
292 75d62a58 j_mayer
    unsigned int res;
293 75d62a58 j_mayer
294 75d62a58 j_mayer
    v = llrint(a);
295 75d62a58 j_mayer
    if (v < 0) {
296 75d62a58 j_mayer
        res = 0;
297 75d62a58 j_mayer
    } else if (v > 0xffffffff) {
298 75d62a58 j_mayer
        res = 0xffffffff;
299 75d62a58 j_mayer
    } else {
300 75d62a58 j_mayer
        res = v;
301 75d62a58 j_mayer
    }
302 75d62a58 j_mayer
    return res;
303 75d62a58 j_mayer
}
304 75d62a58 j_mayer
unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
305 75d62a58 j_mayer
{
306 75d62a58 j_mayer
    int64_t v;
307 75d62a58 j_mayer
    unsigned int res;
308 75d62a58 j_mayer
309 75d62a58 j_mayer
    v = (int64_t)a;
310 75d62a58 j_mayer
    if (v < 0) {
311 75d62a58 j_mayer
        res = 0;
312 75d62a58 j_mayer
    } else if (v > 0xffffffff) {
313 75d62a58 j_mayer
        res = 0xffffffff;
314 75d62a58 j_mayer
    } else {
315 75d62a58 j_mayer
        res = v;
316 75d62a58 j_mayer
    }
317 75d62a58 j_mayer
    return res;
318 75d62a58 j_mayer
}
319 75d62a58 j_mayer
uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
320 75d62a58 j_mayer
{
321 75d62a58 j_mayer
    int64_t v;
322 75d62a58 j_mayer
323 75d62a58 j_mayer
    v = llrint(a + (float64)INT64_MIN);
324 75d62a58 j_mayer
325 75d62a58 j_mayer
    return v - INT64_MIN;
326 75d62a58 j_mayer
}
327 75d62a58 j_mayer
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
328 75d62a58 j_mayer
{
329 75d62a58 j_mayer
    int64_t v;
330 75d62a58 j_mayer
331 75d62a58 j_mayer
    v = (int64_t)(a + (float64)INT64_MIN);
332 75d62a58 j_mayer
333 75d62a58 j_mayer
    return v - INT64_MIN;
334 75d62a58 j_mayer
}
335 75d62a58 j_mayer
336 158142c2 bellard
/*----------------------------------------------------------------------------
337 158142c2 bellard
| Software IEC/IEEE double-precision operations.
338 158142c2 bellard
*----------------------------------------------------------------------------*/
339 fc81ba53 ths
#if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
340 63a654bb ths
static inline float64 trunc(float64 x)
341 63a654bb ths
{
342 63a654bb ths
    return x < 0 ? -floor(-x) : floor(x);
343 63a654bb ths
}
344 63a654bb ths
#endif
345 e6e5906b pbrook
float64 float64_trunc_to_int( float64 a STATUS_PARAM )
346 e6e5906b pbrook
{
347 e6e5906b pbrook
    return trunc(a);
348 e6e5906b pbrook
}
349 e6e5906b pbrook
350 158142c2 bellard
float64 float64_round_to_int( float64 a STATUS_PARAM )
351 158142c2 bellard
{
352 158142c2 bellard
#if defined(__arm__)
353 158142c2 bellard
    switch(STATUS(float_rounding_mode)) {
354 158142c2 bellard
    default:
355 158142c2 bellard
    case float_round_nearest_even:
356 158142c2 bellard
        asm("rndd %0, %1" : "=f" (a) : "f"(a));
357 158142c2 bellard
        break;
358 158142c2 bellard
    case float_round_down:
359 158142c2 bellard
        asm("rnddm %0, %1" : "=f" (a) : "f"(a));
360 158142c2 bellard
        break;
361 158142c2 bellard
    case float_round_up:
362 158142c2 bellard
        asm("rnddp %0, %1" : "=f" (a) : "f"(a));
363 158142c2 bellard
        break;
364 158142c2 bellard
    case float_round_to_zero:
365 158142c2 bellard
        asm("rnddz %0, %1" : "=f" (a) : "f"(a));
366 158142c2 bellard
        break;
367 158142c2 bellard
    }
368 158142c2 bellard
#else
369 158142c2 bellard
    return rint(a);
370 158142c2 bellard
#endif
371 158142c2 bellard
}
372 158142c2 bellard
373 b109f9f8 bellard
float64 float64_rem( float64 a, float64 b STATUS_PARAM)
374 b109f9f8 bellard
{
375 b109f9f8 bellard
    return remainder(a, b);
376 b109f9f8 bellard
}
377 b109f9f8 bellard
378 158142c2 bellard
float64 float64_sqrt( float64 a STATUS_PARAM)
379 158142c2 bellard
{
380 158142c2 bellard
    return sqrt(a);
381 158142c2 bellard
}
382 750afe93 bellard
int float64_compare( float64 a, float64 b STATUS_PARAM )
383 b109f9f8 bellard
{
384 b109f9f8 bellard
    if (a < b) {
385 b109f9f8 bellard
        return -1;
386 b109f9f8 bellard
    } else if (a == b) {
387 b109f9f8 bellard
        return 0;
388 b109f9f8 bellard
    } else if (a > b) {
389 b109f9f8 bellard
        return 1;
390 b109f9f8 bellard
    } else {
391 b109f9f8 bellard
        return 2;
392 b109f9f8 bellard
    }
393 b109f9f8 bellard
}
394 750afe93 bellard
int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
395 b109f9f8 bellard
{
396 b109f9f8 bellard
    if (isless(a, b)) {
397 b109f9f8 bellard
        return -1;
398 b109f9f8 bellard
    } else if (a == b) {
399 b109f9f8 bellard
        return 0;
400 b109f9f8 bellard
    } else if (isgreater(a, b)) {
401 b109f9f8 bellard
        return 1;
402 b109f9f8 bellard
    } else {
403 b109f9f8 bellard
        return 2;
404 b109f9f8 bellard
    }
405 b109f9f8 bellard
}
406 750afe93 bellard
int float64_is_signaling_nan( float64 a1)
407 158142c2 bellard
{
408 158142c2 bellard
    float64u u;
409 158142c2 bellard
    uint64_t a;
410 158142c2 bellard
    u.f = a1;
411 158142c2 bellard
    a = u.i;
412 158142c2 bellard
    return
413 158142c2 bellard
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
414 158142c2 bellard
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
415 158142c2 bellard
416 158142c2 bellard
}
417 158142c2 bellard
418 750afe93 bellard
int float64_is_nan( float64 a1 )
419 e6e5906b pbrook
{
420 e6e5906b pbrook
    float64u u;
421 e6e5906b pbrook
    uint64_t a;
422 e6e5906b pbrook
    u.f = a1;
423 e6e5906b pbrook
    a = u.i;
424 e6e5906b pbrook
425 e6e5906b pbrook
    return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
426 e6e5906b pbrook
427 e6e5906b pbrook
}
428 e6e5906b pbrook
429 158142c2 bellard
#ifdef FLOATX80
430 158142c2 bellard
431 158142c2 bellard
/*----------------------------------------------------------------------------
432 158142c2 bellard
| Software IEC/IEEE extended double-precision conversion routines.
433 158142c2 bellard
*----------------------------------------------------------------------------*/
434 158142c2 bellard
int floatx80_to_int32( floatx80 a STATUS_PARAM)
435 158142c2 bellard
{
436 1b2b0af5 bellard
    return long_to_int32(lrintl(a));
437 158142c2 bellard
}
438 158142c2 bellard
int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
439 158142c2 bellard
{
440 158142c2 bellard
    return (int)a;
441 158142c2 bellard
}
442 158142c2 bellard
int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
443 158142c2 bellard
{
444 158142c2 bellard
    return llrintl(a);
445 158142c2 bellard
}
446 158142c2 bellard
int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
447 158142c2 bellard
{
448 158142c2 bellard
    return (int64_t)a;
449 158142c2 bellard
}
450 158142c2 bellard
float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
451 158142c2 bellard
{
452 158142c2 bellard
    return a;
453 158142c2 bellard
}
454 158142c2 bellard
float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
455 158142c2 bellard
{
456 158142c2 bellard
    return a;
457 158142c2 bellard
}
458 158142c2 bellard
459 158142c2 bellard
/*----------------------------------------------------------------------------
460 158142c2 bellard
| Software IEC/IEEE extended double-precision operations.
461 158142c2 bellard
*----------------------------------------------------------------------------*/
462 158142c2 bellard
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
463 158142c2 bellard
{
464 158142c2 bellard
    return rintl(a);
465 158142c2 bellard
}
466 b109f9f8 bellard
floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
467 b109f9f8 bellard
{
468 b109f9f8 bellard
    return remainderl(a, b);
469 b109f9f8 bellard
}
470 158142c2 bellard
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
471 158142c2 bellard
{
472 158142c2 bellard
    return sqrtl(a);
473 158142c2 bellard
}
474 750afe93 bellard
int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
475 b109f9f8 bellard
{
476 b109f9f8 bellard
    if (a < b) {
477 b109f9f8 bellard
        return -1;
478 b109f9f8 bellard
    } else if (a == b) {
479 b109f9f8 bellard
        return 0;
480 b109f9f8 bellard
    } else if (a > b) {
481 b109f9f8 bellard
        return 1;
482 b109f9f8 bellard
    } else {
483 b109f9f8 bellard
        return 2;
484 b109f9f8 bellard
    }
485 b109f9f8 bellard
}
486 750afe93 bellard
int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
487 b109f9f8 bellard
{
488 b109f9f8 bellard
    if (isless(a, b)) {
489 b109f9f8 bellard
        return -1;
490 b109f9f8 bellard
    } else if (a == b) {
491 b109f9f8 bellard
        return 0;
492 b109f9f8 bellard
    } else if (isgreater(a, b)) {
493 b109f9f8 bellard
        return 1;
494 b109f9f8 bellard
    } else {
495 b109f9f8 bellard
        return 2;
496 b109f9f8 bellard
    }
497 b109f9f8 bellard
}
498 750afe93 bellard
int floatx80_is_signaling_nan( floatx80 a1)
499 158142c2 bellard
{
500 158142c2 bellard
    floatx80u u;
501 158142c2 bellard
    u.f = a1;
502 158142c2 bellard
    return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
503 158142c2 bellard
}
504 158142c2 bellard
505 158142c2 bellard
#endif