Statistics
| Branch: | Revision:

root / hw / i8254.c @ 5fafdf24

History | View | Annotate | Download (12.8 kB)

1
/*
2
 * QEMU 8253/8254 interval timer emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_PIT
27

    
28
#define RW_STATE_LSB 1
29
#define RW_STATE_MSB 2
30
#define RW_STATE_WORD0 3
31
#define RW_STATE_WORD1 4
32

    
33
typedef struct PITChannelState {
34
    int count; /* can be 65536 */
35
    uint16_t latched_count;
36
    uint8_t count_latched;
37
    uint8_t status_latched;
38
    uint8_t status;
39
    uint8_t read_state;
40
    uint8_t write_state;
41
    uint8_t write_latch;
42
    uint8_t rw_mode;
43
    uint8_t mode;
44
    uint8_t bcd; /* not supported */
45
    uint8_t gate; /* timer start */
46
    int64_t count_load_time;
47
    /* irq handling */
48
    int64_t next_transition_time;
49
    QEMUTimer *irq_timer;
50
    qemu_irq irq;
51
} PITChannelState;
52

    
53
struct PITState {
54
    PITChannelState channels[3];
55
};
56

    
57
static PITState pit_state;
58

    
59
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
60

    
61
static int pit_get_count(PITChannelState *s)
62
{
63
    uint64_t d;
64
    int counter;
65

    
66
    d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
67
    switch(s->mode) {
68
    case 0:
69
    case 1:
70
    case 4:
71
    case 5:
72
        counter = (s->count - d) & 0xffff;
73
        break;
74
    case 3:
75
        /* XXX: may be incorrect for odd counts */
76
        counter = s->count - ((2 * d) % s->count);
77
        break;
78
    default:
79
        counter = s->count - (d % s->count);
80
        break;
81
    }
82
    return counter;
83
}
84

    
85
/* get pit output bit */
86
static int pit_get_out1(PITChannelState *s, int64_t current_time)
87
{
88
    uint64_t d;
89
    int out;
90

    
91
    d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
92
    switch(s->mode) {
93
    default:
94
    case 0:
95
        out = (d >= s->count);
96
        break;
97
    case 1:
98
        out = (d < s->count);
99
        break;
100
    case 2:
101
        if ((d % s->count) == 0 && d != 0)
102
            out = 1;
103
        else
104
            out = 0;
105
        break;
106
    case 3:
107
        out = (d % s->count) < ((s->count + 1) >> 1);
108
        break;
109
    case 4:
110
    case 5:
111
        out = (d == s->count);
112
        break;
113
    }
114
    return out;
115
}
116

    
117
int pit_get_out(PITState *pit, int channel, int64_t current_time)
118
{
119
    PITChannelState *s = &pit->channels[channel];
120
    return pit_get_out1(s, current_time);
121
}
122

    
123
/* return -1 if no transition will occur.  */
124
static int64_t pit_get_next_transition_time(PITChannelState *s,
125
                                            int64_t current_time)
126
{
127
    uint64_t d, next_time, base;
128
    int period2;
129

    
130
    d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
131
    switch(s->mode) {
132
    default:
133
    case 0:
134
    case 1:
135
        if (d < s->count)
136
            next_time = s->count;
137
        else
138
            return -1;
139
        break;
140
    case 2:
141
        base = (d / s->count) * s->count;
142
        if ((d - base) == 0 && d != 0)
143
            next_time = base + s->count;
144
        else
145
            next_time = base + s->count + 1;
146
        break;
147
    case 3:
148
        base = (d / s->count) * s->count;
149
        period2 = ((s->count + 1) >> 1);
150
        if ((d - base) < period2)
151
            next_time = base + period2;
152
        else
153
            next_time = base + s->count;
154
        break;
155
    case 4:
156
    case 5:
157
        if (d < s->count)
158
            next_time = s->count;
159
        else if (d == s->count)
160
            next_time = s->count + 1;
161
        else
162
            return -1;
163
        break;
164
    }
165
    /* convert to timer units */
166
    next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
167
    /* fix potential rounding problems */
168
    /* XXX: better solution: use a clock at PIT_FREQ Hz */
169
    if (next_time <= current_time)
170
        next_time = current_time + 1;
171
    return next_time;
172
}
173

    
174
/* val must be 0 or 1 */
175
void pit_set_gate(PITState *pit, int channel, int val)
176
{
177
    PITChannelState *s = &pit->channels[channel];
178

    
179
    switch(s->mode) {
180
    default:
181
    case 0:
182
    case 4:
183
        /* XXX: just disable/enable counting */
184
        break;
185
    case 1:
186
    case 5:
187
        if (s->gate < val) {
188
            /* restart counting on rising edge */
189
            s->count_load_time = qemu_get_clock(vm_clock);
190
            pit_irq_timer_update(s, s->count_load_time);
191
        }
192
        break;
193
    case 2:
194
    case 3:
195
        if (s->gate < val) {
196
            /* restart counting on rising edge */
197
            s->count_load_time = qemu_get_clock(vm_clock);
198
            pit_irq_timer_update(s, s->count_load_time);
199
        }
200
        /* XXX: disable/enable counting */
201
        break;
202
    }
203
    s->gate = val;
204
}
205

    
206
int pit_get_gate(PITState *pit, int channel)
207
{
208
    PITChannelState *s = &pit->channels[channel];
209
    return s->gate;
210
}
211

    
212
int pit_get_initial_count(PITState *pit, int channel)
213
{
214
    PITChannelState *s = &pit->channels[channel];
215
    return s->count;
216
}
217

    
218
int pit_get_mode(PITState *pit, int channel)
219
{
220
    PITChannelState *s = &pit->channels[channel];
221
    return s->mode;
222
}
223

    
224
static inline void pit_load_count(PITChannelState *s, int val)
225
{
226
    if (val == 0)
227
        val = 0x10000;
228
    s->count_load_time = qemu_get_clock(vm_clock);
229
    s->count = val;
230
    pit_irq_timer_update(s, s->count_load_time);
231
}
232

    
233
/* if already latched, do not latch again */
234
static void pit_latch_count(PITChannelState *s)
235
{
236
    if (!s->count_latched) {
237
        s->latched_count = pit_get_count(s);
238
        s->count_latched = s->rw_mode;
239
    }
240
}
241

    
242
static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
243
{
244
    PITState *pit = opaque;
245
    int channel, access;
246
    PITChannelState *s;
247

    
248
    addr &= 3;
249
    if (addr == 3) {
250
        channel = val >> 6;
251
        if (channel == 3) {
252
            /* read back command */
253
            for(channel = 0; channel < 3; channel++) {
254
                s = &pit->channels[channel];
255
                if (val & (2 << channel)) {
256
                    if (!(val & 0x20)) {
257
                        pit_latch_count(s);
258
                    }
259
                    if (!(val & 0x10) && !s->status_latched) {
260
                        /* status latch */
261
                        /* XXX: add BCD and null count */
262
                        s->status =  (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
263
                            (s->rw_mode << 4) |
264
                            (s->mode << 1) |
265
                            s->bcd;
266
                        s->status_latched = 1;
267
                    }
268
                }
269
            }
270
        } else {
271
            s = &pit->channels[channel];
272
            access = (val >> 4) & 3;
273
            if (access == 0) {
274
                pit_latch_count(s);
275
            } else {
276
                s->rw_mode = access;
277
                s->read_state = access;
278
                s->write_state = access;
279

    
280
                s->mode = (val >> 1) & 7;
281
                s->bcd = val & 1;
282
                /* XXX: update irq timer ? */
283
            }
284
        }
285
    } else {
286
        s = &pit->channels[addr];
287
        switch(s->write_state) {
288
        default:
289
        case RW_STATE_LSB:
290
            pit_load_count(s, val);
291
            break;
292
        case RW_STATE_MSB:
293
            pit_load_count(s, val << 8);
294
            break;
295
        case RW_STATE_WORD0:
296
            s->write_latch = val;
297
            s->write_state = RW_STATE_WORD1;
298
            break;
299
        case RW_STATE_WORD1:
300
            pit_load_count(s, s->write_latch | (val << 8));
301
            s->write_state = RW_STATE_WORD0;
302
            break;
303
        }
304
    }
305
}
306

    
307
static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
308
{
309
    PITState *pit = opaque;
310
    int ret, count;
311
    PITChannelState *s;
312
   
313
    addr &= 3;
314
    s = &pit->channels[addr];
315
    if (s->status_latched) {
316
        s->status_latched = 0;
317
        ret = s->status;
318
    } else if (s->count_latched) {
319
        switch(s->count_latched) {
320
        default:
321
        case RW_STATE_LSB:
322
            ret = s->latched_count & 0xff;
323
            s->count_latched = 0;
324
            break;
325
        case RW_STATE_MSB:
326
            ret = s->latched_count >> 8;
327
            s->count_latched = 0;
328
            break;
329
        case RW_STATE_WORD0:
330
            ret = s->latched_count & 0xff;
331
            s->count_latched = RW_STATE_MSB;
332
            break;
333
        }
334
    } else {
335
        switch(s->read_state) {
336
        default:
337
        case RW_STATE_LSB:
338
            count = pit_get_count(s);
339
            ret = count & 0xff;
340
            break;
341
        case RW_STATE_MSB:
342
            count = pit_get_count(s);
343
            ret = (count >> 8) & 0xff;
344
            break;
345
        case RW_STATE_WORD0:
346
            count = pit_get_count(s);
347
            ret = count & 0xff;
348
            s->read_state = RW_STATE_WORD1;
349
            break;
350
        case RW_STATE_WORD1:
351
            count = pit_get_count(s);
352
            ret = (count >> 8) & 0xff;
353
            s->read_state = RW_STATE_WORD0;
354
            break;
355
        }
356
    }
357
    return ret;
358
}
359

    
360
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
361
{
362
    int64_t expire_time;
363
    int irq_level;
364

    
365
    if (!s->irq_timer)
366
        return;
367
    expire_time = pit_get_next_transition_time(s, current_time);
368
    irq_level = pit_get_out1(s, current_time);
369
    qemu_set_irq(s->irq, irq_level);
370
#ifdef DEBUG_PIT
371
    printf("irq_level=%d next_delay=%f\n",
372
           irq_level,
373
           (double)(expire_time - current_time) / ticks_per_sec);
374
#endif
375
    s->next_transition_time = expire_time;
376
    if (expire_time != -1)
377
        qemu_mod_timer(s->irq_timer, expire_time);
378
    else
379
        qemu_del_timer(s->irq_timer);
380
}
381

    
382
static void pit_irq_timer(void *opaque)
383
{
384
    PITChannelState *s = opaque;
385

    
386
    pit_irq_timer_update(s, s->next_transition_time);
387
}
388

    
389
static void pit_save(QEMUFile *f, void *opaque)
390
{
391
    PITState *pit = opaque;
392
    PITChannelState *s;
393
    int i;
394
   
395
    for(i = 0; i < 3; i++) {
396
        s = &pit->channels[i];
397
        qemu_put_be32s(f, &s->count);
398
        qemu_put_be16s(f, &s->latched_count);
399
        qemu_put_8s(f, &s->count_latched);
400
        qemu_put_8s(f, &s->status_latched);
401
        qemu_put_8s(f, &s->status);
402
        qemu_put_8s(f, &s->read_state);
403
        qemu_put_8s(f, &s->write_state);
404
        qemu_put_8s(f, &s->write_latch);
405
        qemu_put_8s(f, &s->rw_mode);
406
        qemu_put_8s(f, &s->mode);
407
        qemu_put_8s(f, &s->bcd);
408
        qemu_put_8s(f, &s->gate);
409
        qemu_put_be64s(f, &s->count_load_time);
410
        if (s->irq_timer) {
411
            qemu_put_be64s(f, &s->next_transition_time);
412
            qemu_put_timer(f, s->irq_timer);
413
        }
414
    }
415
}
416

    
417
static int pit_load(QEMUFile *f, void *opaque, int version_id)
418
{
419
    PITState *pit = opaque;
420
    PITChannelState *s;
421
    int i;
422
   
423
    if (version_id != 1)
424
        return -EINVAL;
425

    
426
    for(i = 0; i < 3; i++) {
427
        s = &pit->channels[i];
428
        qemu_get_be32s(f, &s->count);
429
        qemu_get_be16s(f, &s->latched_count);
430
        qemu_get_8s(f, &s->count_latched);
431
        qemu_get_8s(f, &s->status_latched);
432
        qemu_get_8s(f, &s->status);
433
        qemu_get_8s(f, &s->read_state);
434
        qemu_get_8s(f, &s->write_state);
435
        qemu_get_8s(f, &s->write_latch);
436
        qemu_get_8s(f, &s->rw_mode);
437
        qemu_get_8s(f, &s->mode);
438
        qemu_get_8s(f, &s->bcd);
439
        qemu_get_8s(f, &s->gate);
440
        qemu_get_be64s(f, &s->count_load_time);
441
        if (s->irq_timer) {
442
            qemu_get_be64s(f, &s->next_transition_time);
443
            qemu_get_timer(f, s->irq_timer);
444
        }
445
    }
446
    return 0;
447
}
448

    
449
static void pit_reset(void *opaque)
450
{
451
    PITState *pit = opaque;
452
    PITChannelState *s;
453
    int i;
454

    
455
    for(i = 0;i < 3; i++) {
456
        s = &pit->channels[i];
457
        s->mode = 3;
458
        s->gate = (i != 2);
459
        pit_load_count(s, 0);
460
    }
461
}
462

    
463
PITState *pit_init(int base, qemu_irq irq)
464
{
465
    PITState *pit = &pit_state;
466
    PITChannelState *s;
467

    
468
    s = &pit->channels[0];
469
    /* the timer 0 is connected to an IRQ */
470
    s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
471
    s->irq = irq;
472

    
473
    register_savevm("i8254", base, 1, pit_save, pit_load, pit);
474

    
475
    qemu_register_reset(pit_reset, pit);
476
    register_ioport_write(base, 4, 1, pit_ioport_write, pit);
477
    register_ioport_read(base, 3, 1, pit_ioport_read, pit);
478

    
479
    pit_reset(pit);
480

    
481
    return pit;
482
}