Statistics
| Branch: | Revision:

root / hw / nand.c @ 5fafdf24

History | View | Annotate | Download (19 kB)

1
/*
2
 * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
3
 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4
 * Samsung Electronic.
5
 *
6
 * Copyright (c) 2006 Openedhand Ltd.
7
 * Written by Andrzej Zaborowski <balrog@zabor.org>
8
 *
9
 * This code is licensed under the GNU GPL v2.
10
 */
11

    
12
#ifndef NAND_IO
13

    
14
# include "vl.h"
15

    
16
# define NAND_CMD_READ0                0x00
17
# define NAND_CMD_READ1                0x01
18
# define NAND_CMD_READ2                0x50
19
# define NAND_CMD_LPREAD2        0x30
20
# define NAND_CMD_NOSERIALREAD2        0x35
21
# define NAND_CMD_RANDOMREAD1        0x05
22
# define NAND_CMD_RANDOMREAD2        0xe0
23
# define NAND_CMD_READID        0x90
24
# define NAND_CMD_RESET                0xff
25
# define NAND_CMD_PAGEPROGRAM1        0x80
26
# define NAND_CMD_PAGEPROGRAM2        0x10
27
# define NAND_CMD_CACHEPROGRAM2        0x15
28
# define NAND_CMD_BLOCKERASE1        0x60
29
# define NAND_CMD_BLOCKERASE2        0xd0
30
# define NAND_CMD_READSTATUS        0x70
31
# define NAND_CMD_COPYBACKPRG1        0x85
32

    
33
# define NAND_IOSTATUS_ERROR        (1 << 0)
34
# define NAND_IOSTATUS_PLANE0        (1 << 1)
35
# define NAND_IOSTATUS_PLANE1        (1 << 2)
36
# define NAND_IOSTATUS_PLANE2        (1 << 3)
37
# define NAND_IOSTATUS_PLANE3        (1 << 4)
38
# define NAND_IOSTATUS_BUSY        (1 << 6)
39
# define NAND_IOSTATUS_UNPROTCT        (1 << 7)
40

    
41
# define MAX_PAGE                0x800
42
# define MAX_OOB                0x40
43

    
44
struct nand_flash_s {
45
    uint8_t manf_id, chip_id;
46
    int size, pages;
47
    int page_shift, oob_shift, erase_shift, addr_shift;
48
    uint8_t *storage;
49
    BlockDriverState *bdrv;
50
    int mem_oob;
51

    
52
    int cle, ale, ce, wp, gnd;
53

    
54
    uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
55
    uint8_t *ioaddr;
56
    int iolen;
57

    
58
    uint32_t cmd, addr;
59
    int addrlen;
60
    int status;
61
    int offset;
62

    
63
    void (*blk_write)(struct nand_flash_s *s);
64
    void (*blk_erase)(struct nand_flash_s *s);
65
    void (*blk_load)(struct nand_flash_s *s, uint32_t addr, int offset);
66
};
67

    
68
# define NAND_NO_AUTOINCR        0x00000001
69
# define NAND_BUSWIDTH_16        0x00000002
70
# define NAND_NO_PADDING        0x00000004
71
# define NAND_CACHEPRG                0x00000008
72
# define NAND_COPYBACK                0x00000010
73
# define NAND_IS_AND                0x00000020
74
# define NAND_4PAGE_ARRAY        0x00000040
75
# define NAND_NO_READRDY        0x00000100
76
# define NAND_SAMSUNG_LP        (NAND_NO_PADDING | NAND_COPYBACK)
77

    
78
# define NAND_IO
79

    
80
# define PAGE(addr)                ((addr) >> ADDR_SHIFT)
81
# define PAGE_START(page)        (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
82
# define PAGE_MASK                ((1 << ADDR_SHIFT) - 1)
83
# define OOB_SHIFT                (PAGE_SHIFT - 5)
84
# define OOB_SIZE                (1 << OOB_SHIFT)
85
# define SECTOR(addr)                ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
86
# define SECTOR_OFFSET(addr)        ((addr) & ((511 >> PAGE_SHIFT) << 8))
87

    
88
# define PAGE_SIZE                256
89
# define PAGE_SHIFT                8
90
# define PAGE_SECTORS                1
91
# define ADDR_SHIFT                8
92
# include "nand.c"
93
# define PAGE_SIZE                512
94
# define PAGE_SHIFT                9
95
# define PAGE_SECTORS                1
96
# define ADDR_SHIFT                8
97
# include "nand.c"
98
# define PAGE_SIZE                2048
99
# define PAGE_SHIFT                11
100
# define PAGE_SECTORS                4
101
# define ADDR_SHIFT                16
102
# include "nand.c"
103

    
104
/* Information based on Linux drivers/mtd/nand/nand_ids.c */
105
struct nand_info_s {
106
    int size;
107
    int width;
108
    int page_shift;
109
    int erase_shift;
110
    uint32_t options;
111
} nand_flash_ids[0x100] = {
112
    [0 ... 0xff] = { 0 },
113

    
114
    [0x6e] = { 1,        8,        8, 4, 0 },
115
    [0x64] = { 2,        8,        8, 4, 0 },
116
    [0x6b] = { 4,        8,        9, 4, 0 },
117
    [0xe8] = { 1,        8,        8, 4, 0 },
118
    [0xec] = { 1,        8,        8, 4, 0 },
119
    [0xea] = { 2,        8,        8, 4, 0 },
120
    [0xd5] = { 4,        8,        9, 4, 0 },
121
    [0xe3] = { 4,        8,        9, 4, 0 },
122
    [0xe5] = { 4,        8,        9, 4, 0 },
123
    [0xd6] = { 8,        8,        9, 4, 0 },
124

    
125
    [0x39] = { 8,        8,        9, 4, 0 },
126
    [0xe6] = { 8,        8,        9, 4, 0 },
127
    [0x49] = { 8,        16,        9, 4, NAND_BUSWIDTH_16 },
128
    [0x59] = { 8,        16,        9, 4, NAND_BUSWIDTH_16 },
129

    
130
    [0x33] = { 16,        8,        9, 5, 0 },
131
    [0x73] = { 16,        8,        9, 5, 0 },
132
    [0x43] = { 16,        16,        9, 5, NAND_BUSWIDTH_16 },
133
    [0x53] = { 16,        16,        9, 5, NAND_BUSWIDTH_16 },
134

    
135
    [0x35] = { 32,        8,        9, 5, 0 },
136
    [0x75] = { 32,        8,        9, 5, 0 },
137
    [0x45] = { 32,        16,        9, 5, NAND_BUSWIDTH_16 },
138
    [0x55] = { 32,        16,        9, 5, NAND_BUSWIDTH_16 },
139

    
140
    [0x36] = { 64,        8,        9, 5, 0 },
141
    [0x76] = { 64,        8,        9, 5, 0 },
142
    [0x46] = { 64,        16,        9, 5, NAND_BUSWIDTH_16 },
143
    [0x56] = { 64,        16,        9, 5, NAND_BUSWIDTH_16 },
144

    
145
    [0x78] = { 128,        8,        9, 5, 0 },
146
    [0x39] = { 128,        8,        9, 5, 0 },
147
    [0x79] = { 128,        8,        9, 5, 0 },
148
    [0x72] = { 128,        16,        9, 5, NAND_BUSWIDTH_16 },
149
    [0x49] = { 128,        16,        9, 5, NAND_BUSWIDTH_16 },
150
    [0x74] = { 128,        16,        9, 5, NAND_BUSWIDTH_16 },
151
    [0x59] = { 128,        16,        9, 5, NAND_BUSWIDTH_16 },
152

    
153
    [0x71] = { 256,        8,        9, 5, 0 },
154

    
155
    /*
156
     * These are the new chips with large page size. The pagesize and the
157
     * erasesize is determined from the extended id bytes
158
     */
159
# define LP_OPTIONS        (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
160
# define LP_OPTIONS16        (LP_OPTIONS | NAND_BUSWIDTH_16)
161

    
162
    /* 512 Megabit */
163
    [0xa2] = { 64,        8,        0, 0, LP_OPTIONS },
164
    [0xf2] = { 64,        8,        0, 0, LP_OPTIONS },
165
    [0xb2] = { 64,        16,        0, 0, LP_OPTIONS16 },
166
    [0xc2] = { 64,        16,        0, 0, LP_OPTIONS16 },
167

    
168
    /* 1 Gigabit */
169
    [0xa1] = { 128,        8,        0, 0, LP_OPTIONS },
170
    [0xf1] = { 128,        8,        0, 0, LP_OPTIONS },
171
    [0xb1] = { 128,        16,        0, 0, LP_OPTIONS16 },
172
    [0xc1] = { 128,        16,        0, 0, LP_OPTIONS16 },
173

    
174
    /* 2 Gigabit */
175
    [0xaa] = { 256,        8,        0, 0, LP_OPTIONS },
176
    [0xda] = { 256,        8,        0, 0, LP_OPTIONS },
177
    [0xba] = { 256,        16,        0, 0, LP_OPTIONS16 },
178
    [0xca] = { 256,        16,        0, 0, LP_OPTIONS16 },
179

    
180
    /* 4 Gigabit */
181
    [0xac] = { 512,        8,        0, 0, LP_OPTIONS },
182
    [0xdc] = { 512,        8,        0, 0, LP_OPTIONS },
183
    [0xbc] = { 512,        16,        0, 0, LP_OPTIONS16 },
184
    [0xcc] = { 512,        16,        0, 0, LP_OPTIONS16 },
185

    
186
    /* 8 Gigabit */
187
    [0xa3] = { 1024,        8,        0, 0, LP_OPTIONS },
188
    [0xd3] = { 1024,        8,        0, 0, LP_OPTIONS },
189
    [0xb3] = { 1024,        16,        0, 0, LP_OPTIONS16 },
190
    [0xc3] = { 1024,        16,        0, 0, LP_OPTIONS16 },
191

    
192
    /* 16 Gigabit */
193
    [0xa5] = { 2048,        8,        0, 0, LP_OPTIONS },
194
    [0xd5] = { 2048,        8,        0, 0, LP_OPTIONS },
195
    [0xb5] = { 2048,        16,        0, 0, LP_OPTIONS16 },
196
    [0xc5] = { 2048,        16,        0, 0, LP_OPTIONS16 },
197
};
198

    
199
static void nand_reset(struct nand_flash_s *s)
200
{
201
    s->cmd = NAND_CMD_READ0;
202
    s->addr = 0;
203
    s->addrlen = 0;
204
    s->iolen = 0;
205
    s->offset = 0;
206
    s->status &= NAND_IOSTATUS_UNPROTCT;
207
}
208

    
209
static void nand_command(struct nand_flash_s *s)
210
{
211
    switch (s->cmd) {
212
    case NAND_CMD_READ0:
213
        s->iolen = 0;
214
        break;
215

    
216
    case NAND_CMD_READID:
217
        s->io[0] = s->manf_id;
218
        s->io[1] = s->chip_id;
219
        s->io[2] = 'Q';                /* Don't-care byte (often 0xa5) */
220
        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
221
            s->io[3] = 0x15;        /* Page Size, Block Size, Spare Size.. */
222
        else
223
            s->io[3] = 0xc0;        /* Multi-plane */
224
        s->ioaddr = s->io;
225
        s->iolen = 4;
226
        break;
227

    
228
    case NAND_CMD_RANDOMREAD2:
229
    case NAND_CMD_NOSERIALREAD2:
230
        if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
231
            break;
232

    
233
        s->blk_load(s, s->addr, s->addr & ((1 << s->addr_shift) - 1));
234
        break;
235

    
236
    case NAND_CMD_RESET:
237
        nand_reset(s);
238
        break;
239

    
240
    case NAND_CMD_PAGEPROGRAM1:
241
        s->ioaddr = s->io;
242
        s->iolen = 0;
243
        break;
244

    
245
    case NAND_CMD_PAGEPROGRAM2:
246
        if (s->wp) {
247
            s->blk_write(s);
248
        }
249
        break;
250

    
251
    case NAND_CMD_BLOCKERASE1:
252
        break;
253

    
254
    case NAND_CMD_BLOCKERASE2:
255
        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
256
            s->addr <<= 16;
257
        else
258
            s->addr <<= 8;
259

    
260
        if (s->wp) {
261
            s->blk_erase(s);
262
        }
263
        break;
264

    
265
    case NAND_CMD_READSTATUS:
266
        s->io[0] = s->status;
267
        s->ioaddr = s->io;
268
        s->iolen = 1;
269
        break;
270

    
271
    default:
272
        printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
273
    }
274
}
275

    
276
static void nand_save(QEMUFile *f, void *opaque)
277
{
278
    struct nand_flash_s *s = (struct nand_flash_s *) opaque;
279
    qemu_put_byte(f, s->cle);
280
    qemu_put_byte(f, s->ale);
281
    qemu_put_byte(f, s->ce);
282
    qemu_put_byte(f, s->wp);
283
    qemu_put_byte(f, s->gnd);
284
    qemu_put_buffer(f, s->io, sizeof(s->io));
285
    qemu_put_be32(f, s->ioaddr - s->io);
286
    qemu_put_be32(f, s->iolen);
287

    
288
    qemu_put_be32s(f, &s->cmd);
289
    qemu_put_be32s(f, &s->addr);
290
    qemu_put_be32(f, s->addrlen);
291
    qemu_put_be32(f, s->status);
292
    qemu_put_be32(f, s->offset);
293
    /* XXX: do we want to save s->storage too? */
294
}
295

    
296
static int nand_load(QEMUFile *f, void *opaque, int version_id)
297
{
298
    struct nand_flash_s *s = (struct nand_flash_s *) opaque;
299
    s->cle = qemu_get_byte(f);
300
    s->ale = qemu_get_byte(f);
301
    s->ce = qemu_get_byte(f);
302
    s->wp = qemu_get_byte(f);
303
    s->gnd = qemu_get_byte(f);
304
    qemu_get_buffer(f, s->io, sizeof(s->io));
305
    s->ioaddr = s->io + qemu_get_be32(f);
306
    s->iolen = qemu_get_be32(f);
307
    if (s->ioaddr >= s->io + sizeof(s->io) || s->ioaddr < s->io)
308
        return -EINVAL;
309

    
310
    qemu_get_be32s(f, &s->cmd);
311
    qemu_get_be32s(f, &s->addr);
312
    s->addrlen = qemu_get_be32(f);
313
    s->status = qemu_get_be32(f);
314
    s->offset = qemu_get_be32(f);
315
    return 0;
316
}
317

    
318
static int nand_iid = 0;
319

    
320
/*
321
 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
322
 * outputs are R/B and eight I/O pins.
323
 *
324
 * CE, WP and R/B are active low.
325
 */
326
void nand_setpins(struct nand_flash_s *s,
327
                int cle, int ale, int ce, int wp, int gnd)
328
{
329
    s->cle = cle;
330
    s->ale = ale;
331
    s->ce = ce;
332
    s->wp = wp;
333
    s->gnd = gnd;
334
    if (wp)
335
        s->status |= NAND_IOSTATUS_UNPROTCT;
336
    else
337
        s->status &= ~NAND_IOSTATUS_UNPROTCT;
338
}
339

    
340
void nand_getpins(struct nand_flash_s *s, int *rb)
341
{
342
    *rb = 1;
343
}
344

    
345
void nand_setio(struct nand_flash_s *s, uint8_t value)
346
{
347
    if (!s->ce && s->cle) {
348
        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
349
            if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
350
                return;
351
            if (value == NAND_CMD_RANDOMREAD1) {
352
                s->addr &= ~((1 << s->addr_shift) - 1);
353
                s->addrlen = 0;
354
                return;
355
            }
356
        }
357
        if (value == NAND_CMD_READ0)
358
            s->offset = 0;
359
        else if (value == NAND_CMD_READ1) {
360
            s->offset = 0x100;
361
            value = NAND_CMD_READ0;
362
        }
363
        else if (value == NAND_CMD_READ2) {
364
            s->offset = 1 << s->page_shift;
365
            value = NAND_CMD_READ0;
366
        }
367

    
368
        s->cmd = value;
369

    
370
        if (s->cmd == NAND_CMD_READSTATUS ||
371
                s->cmd == NAND_CMD_PAGEPROGRAM2 ||
372
                s->cmd == NAND_CMD_BLOCKERASE1 ||
373
                s->cmd == NAND_CMD_BLOCKERASE2 ||
374
                s->cmd == NAND_CMD_NOSERIALREAD2 ||
375
                s->cmd == NAND_CMD_RANDOMREAD2 ||
376
                s->cmd == NAND_CMD_RESET)
377
            nand_command(s);
378

    
379
        if (s->cmd != NAND_CMD_RANDOMREAD2) {
380
            s->addrlen = 0;
381
            s->addr = 0;
382
        }
383
    }
384

    
385
    if (s->ale) {
386
        s->addr |= value << (s->addrlen * 8);
387
        s->addrlen ++;
388

    
389
        if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
390
            nand_command(s);
391

    
392
        if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
393
                s->addrlen == 3 && (
394
                    s->cmd == NAND_CMD_READ0 ||
395
                    s->cmd == NAND_CMD_PAGEPROGRAM1))
396
            nand_command(s);
397
        if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
398
               s->addrlen == 4 && (
399
                    s->cmd == NAND_CMD_READ0 ||
400
                    s->cmd == NAND_CMD_PAGEPROGRAM1))
401
            nand_command(s);
402
    }
403

    
404
    if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
405
        if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
406
            s->io[s->iolen ++] = value;
407
    } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
408
        if ((s->addr & ((1 << s->addr_shift) - 1)) <
409
                (1 << s->page_shift) + (1 << s->oob_shift)) {
410
            s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
411
            s->addr ++;
412
        }
413
    }
414
}
415

    
416
uint8_t nand_getio(struct nand_flash_s *s)
417
{
418
    int offset;
419

    
420
    /* Allow sequential reading */
421
    if (!s->iolen && s->cmd == NAND_CMD_READ0) {
422
        offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
423
        s->offset = 0;
424

    
425
        s->blk_load(s, s->addr, offset);
426
        if (s->gnd)
427
            s->iolen = (1 << s->page_shift) - offset;
428
        else
429
            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
430
    }
431

    
432
    if (s->ce || s->iolen <= 0)
433
        return 0;
434

    
435
    s->iolen --;
436
    return *(s->ioaddr ++);
437
}
438

    
439
struct nand_flash_s *nand_init(int manf_id, int chip_id)
440
{
441
    int pagesize;
442
    struct nand_flash_s *s;
443

    
444
    if (nand_flash_ids[chip_id].size == 0) {
445
        cpu_abort(cpu_single_env, "%s: Unsupported NAND chip ID.\n",
446
                        __FUNCTION__);
447
    }
448

    
449
    s = (struct nand_flash_s *) qemu_mallocz(sizeof(struct nand_flash_s));
450
    s->bdrv = mtd_bdrv;
451
    s->manf_id = manf_id;
452
    s->chip_id = chip_id;
453
    s->size = nand_flash_ids[s->chip_id].size << 20;
454
    if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
455
        s->page_shift = 11;
456
        s->erase_shift = 6;
457
    } else {
458
        s->page_shift = nand_flash_ids[s->chip_id].page_shift;
459
        s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
460
    }
461

    
462
    switch (1 << s->page_shift) {
463
    case 256:
464
        nand_init_256(s);
465
        break;
466
    case 512:
467
        nand_init_512(s);
468
        break;
469
    case 2048:
470
        nand_init_2048(s);
471
        break;
472
    default:
473
        cpu_abort(cpu_single_env, "%s: Unsupported NAND block size.\n",
474
                        __FUNCTION__);
475
    }
476

    
477
    pagesize = 1 << s->oob_shift;
478
    s->mem_oob = 1;
479
    if (s->bdrv && bdrv_getlength(s->bdrv) >=
480
                    (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
481
        pagesize = 0;
482
        s->mem_oob = 0;
483
    }
484

    
485
    if (!s->bdrv)
486
        pagesize += 1 << s->page_shift;
487
    if (pagesize)
488
        s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
489
                        0xff, s->pages * pagesize);
490

    
491
    register_savevm("nand", nand_iid ++, 0, nand_save, nand_load, s);
492

    
493
    return s;
494
}
495

    
496
void nand_done(struct nand_flash_s *s)
497
{
498
    if (s->bdrv) {
499
        bdrv_close(s->bdrv);
500
        bdrv_delete(s->bdrv);
501
    }
502

    
503
    if (!s->bdrv || s->mem_oob)
504
        free(s->storage);
505

    
506
    free(s);
507
}
508

    
509
#else
510

    
511
/* Program a single page */
512
static void glue(nand_blk_write_, PAGE_SIZE)(struct nand_flash_s *s)
513
{
514
    uint32_t off, page, sector, soff;
515
    uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
516
    if (PAGE(s->addr) >= s->pages)
517
        return;
518

    
519
    if (!s->bdrv) {
520
        memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
521
                        s->offset, s->io, s->iolen);
522
    } else if (s->mem_oob) {
523
        sector = SECTOR(s->addr);
524
        off = (s->addr & PAGE_MASK) + s->offset;
525
        soff = SECTOR_OFFSET(s->addr);
526
        if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
527
            printf("%s: read error in sector %i\n", __FUNCTION__, sector);
528
            return;
529
        }
530

    
531
        memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
532
        if (off + s->iolen > PAGE_SIZE) {
533
            page = PAGE(s->addr);
534
            memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
535
                            MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
536
        }
537

    
538
        if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
539
            printf("%s: write error in sector %i\n", __FUNCTION__, sector);
540
    } else {
541
        off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
542
        sector = off >> 9;
543
        soff = off & 0x1ff;
544
        if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
545
            printf("%s: read error in sector %i\n", __FUNCTION__, sector);
546
            return;
547
        }
548

    
549
        memcpy(iobuf + soff, s->io, s->iolen);
550

    
551
        if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
552
            printf("%s: write error in sector %i\n", __FUNCTION__, sector);
553
    }
554
    s->offset = 0;
555
}
556

    
557
/* Erase a single block */
558
static void glue(nand_blk_erase_, PAGE_SIZE)(struct nand_flash_s *s)
559
{
560
    uint32_t i, page, addr;
561
    uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
562
    addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
563

    
564
    if (PAGE(addr) >= s->pages)
565
        return;
566

    
567
    if (!s->bdrv) {
568
        memset(s->storage + PAGE_START(addr),
569
                        0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
570
    } else if (s->mem_oob) {
571
        memset(s->storage + (PAGE(addr) << OOB_SHIFT),
572
                        0xff, OOB_SIZE << s->erase_shift);
573
        i = SECTOR(addr);
574
        page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
575
        for (; i < page; i ++)
576
            if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
577
                printf("%s: write error in sector %i\n", __FUNCTION__, i);
578
    } else {
579
        addr = PAGE_START(addr);
580
        page = addr >> 9;
581
        if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
582
            printf("%s: read error in sector %i\n", __FUNCTION__, page);
583
        memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
584
        if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
585
            printf("%s: write error in sector %i\n", __FUNCTION__, page);
586

    
587
        memset(iobuf, 0xff, 0x200);
588
        i = (addr & ~0x1ff) + 0x200;
589
        for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
590
                        i < addr; i += 0x200)
591
            if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
592
                printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
593

    
594
        page = i >> 9;
595
        if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
596
            printf("%s: read error in sector %i\n", __FUNCTION__, page);
597
        memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
598
        if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
599
            printf("%s: write error in sector %i\n", __FUNCTION__, page);
600
    }
601
}
602

    
603
static void glue(nand_blk_load_, PAGE_SIZE)(struct nand_flash_s *s,
604
                uint32_t addr, int offset)
605
{
606
    if (PAGE(addr) >= s->pages)
607
        return;
608

    
609
    if (s->bdrv) {
610
        if (s->mem_oob) {
611
            if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
612
                printf("%s: read error in sector %i\n",
613
                                __FUNCTION__, SECTOR(addr));
614
            memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
615
                            s->storage + (PAGE(s->addr) << OOB_SHIFT),
616
                            OOB_SIZE);
617
            s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
618
        } else {
619
            if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
620
                                    s->io, (PAGE_SECTORS + 2)) == -1)
621
                printf("%s: read error in sector %i\n",
622
                                __FUNCTION__, PAGE_START(addr) >> 9);
623
            s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
624
        }
625
    } else {
626
        memcpy(s->io, s->storage + PAGE_START(s->addr) +
627
                        offset, PAGE_SIZE + OOB_SIZE - offset);
628
        s->ioaddr = s->io;
629
    }
630

    
631
    s->addr &= PAGE_SIZE - 1;
632
    s->addr += PAGE_SIZE;
633
}
634

    
635
static void glue(nand_init_, PAGE_SIZE)(struct nand_flash_s *s)
636
{
637
    s->oob_shift = PAGE_SHIFT - 5;
638
    s->pages = s->size >> PAGE_SHIFT;
639
    s->addr_shift = ADDR_SHIFT;
640

    
641
    s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
642
    s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
643
    s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
644
}
645

    
646
# undef PAGE_SIZE
647
# undef PAGE_SHIFT
648
# undef PAGE_SECTORS
649
# undef ADDR_SHIFT
650
#endif        /* NAND_IO */