Statistics
| Branch: | Revision:

root / vl.c @ 5fafdf24

History | View | Annotate | Download (216.8 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32
#include <zlib.h>
33

    
34
#ifndef _WIN32
35
#include <sys/times.h>
36
#include <sys/wait.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <sys/mman.h>
40
#include <sys/ioctl.h>
41
#include <sys/socket.h>
42
#include <netinet/in.h>
43
#include <dirent.h>
44
#include <netdb.h>
45
#include <sys/select.h>
46
#include <arpa/inet.h>
47
#ifdef _BSD
48
#include <sys/stat.h>
49
#ifndef __APPLE__
50
#include <libutil.h>
51
#endif
52
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
53
#include <freebsd/stdlib.h>
54
#else
55
#ifndef __sun__
56
#include <linux/if.h>
57
#include <linux/if_tun.h>
58
#include <pty.h>
59
#include <malloc.h>
60
#include <linux/rtc.h>
61

    
62
/* For the benefit of older linux systems which don't supply it,
63
   we use a local copy of hpet.h. */
64
/* #include <linux/hpet.h> */
65
#include "hpet.h"
66

    
67
#include <linux/ppdev.h>
68
#include <linux/parport.h>
69
#else
70
#include <sys/stat.h>
71
#include <sys/ethernet.h>
72
#include <sys/sockio.h>
73
#include <netinet/arp.h>
74
#include <netinet/in.h>
75
#include <netinet/in_systm.h>
76
#include <netinet/ip.h>
77
#include <netinet/ip_icmp.h> // must come after ip.h
78
#include <netinet/udp.h>
79
#include <netinet/tcp.h>
80
#include <net/if.h>
81
#include <syslog.h>
82
#include <stropts.h>
83
#endif
84
#endif
85
#else
86
#include <winsock2.h>
87
int inet_aton(const char *cp, struct in_addr *ia);
88
#endif
89

    
90
#if defined(CONFIG_SLIRP)
91
#include "libslirp.h"
92
#endif
93

    
94
#ifdef _WIN32
95
#include <malloc.h>
96
#include <sys/timeb.h>
97
#include <windows.h>
98
#define getopt_long_only getopt_long
99
#define memalign(align, size) malloc(size)
100
#endif
101

    
102
#include "qemu_socket.h"
103

    
104
#ifdef CONFIG_SDL
105
#ifdef __APPLE__
106
#include <SDL/SDL.h>
107
#endif
108
#endif /* CONFIG_SDL */
109

    
110
#ifdef CONFIG_COCOA
111
#undef main
112
#define main qemu_main
113
#endif /* CONFIG_COCOA */
114

    
115
#include "disas.h"
116

    
117
#include "exec-all.h"
118

    
119
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
120
#ifdef __sun__
121
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
122
#else
123
#define SMBD_COMMAND "/usr/sbin/smbd"
124
#endif
125

    
126
//#define DEBUG_UNUSED_IOPORT
127
//#define DEBUG_IOPORT
128

    
129
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
130

    
131
#ifdef TARGET_PPC
132
#define DEFAULT_RAM_SIZE 144
133
#else
134
#define DEFAULT_RAM_SIZE 128
135
#endif
136
/* in ms */
137
#define GUI_REFRESH_INTERVAL 30
138

    
139
/* Max number of USB devices that can be specified on the commandline.  */
140
#define MAX_USB_CMDLINE 8
141

    
142
/* XXX: use a two level table to limit memory usage */
143
#define MAX_IOPORTS 65536
144

    
145
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
146
char phys_ram_file[1024];
147
void *ioport_opaque[MAX_IOPORTS];
148
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
149
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
150
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
151
   to store the VM snapshots */
152
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
153
BlockDriverState *pflash_table[MAX_PFLASH];
154
BlockDriverState *sd_bdrv;
155
BlockDriverState *mtd_bdrv;
156
/* point to the block driver where the snapshots are managed */
157
BlockDriverState *bs_snapshots;
158
int vga_ram_size;
159
static DisplayState display_state;
160
int nographic;
161
const char* keyboard_layout = NULL;
162
int64_t ticks_per_sec;
163
int boot_device = 'c';
164
int ram_size;
165
int pit_min_timer_count = 0;
166
int nb_nics;
167
NICInfo nd_table[MAX_NICS];
168
int vm_running;
169
int rtc_utc = 1;
170
int cirrus_vga_enabled = 1;
171
int vmsvga_enabled = 0;
172
#ifdef TARGET_SPARC
173
int graphic_width = 1024;
174
int graphic_height = 768;
175
int graphic_depth = 8;
176
#else
177
int graphic_width = 800;
178
int graphic_height = 600;
179
int graphic_depth = 15;
180
#endif
181
int full_screen = 0;
182
int no_frame = 0;
183
int no_quit = 0;
184
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
185
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
186
#ifdef TARGET_I386
187
int win2k_install_hack = 0;
188
#endif
189
int usb_enabled = 0;
190
static VLANState *first_vlan;
191
int smp_cpus = 1;
192
const char *vnc_display;
193
#if defined(TARGET_SPARC)
194
#define MAX_CPUS 16
195
#elif defined(TARGET_I386)
196
#define MAX_CPUS 255
197
#else
198
#define MAX_CPUS 1
199
#endif
200
int acpi_enabled = 1;
201
int fd_bootchk = 1;
202
int no_reboot = 0;
203
int cursor_hide = 1;
204
int graphic_rotate = 0;
205
int daemonize = 0;
206
const char *option_rom[MAX_OPTION_ROMS];
207
int nb_option_roms;
208
int semihosting_enabled = 0;
209
int autostart = 1;
210
#ifdef TARGET_ARM
211
int old_param = 0;
212
#endif
213
const char *qemu_name;
214
int alt_grab = 0;
215
#ifdef TARGET_SPARC
216
unsigned int nb_prom_envs = 0;
217
const char *prom_envs[MAX_PROM_ENVS];
218
#endif
219

    
220
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
221

    
222
/***********************************************************/
223
/* x86 ISA bus support */
224

    
225
target_phys_addr_t isa_mem_base = 0;
226
PicState2 *isa_pic;
227

    
228
uint32_t default_ioport_readb(void *opaque, uint32_t address)
229
{
230
#ifdef DEBUG_UNUSED_IOPORT
231
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
232
#endif
233
    return 0xff;
234
}
235

    
236
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
237
{
238
#ifdef DEBUG_UNUSED_IOPORT
239
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
240
#endif
241
}
242

    
243
/* default is to make two byte accesses */
244
uint32_t default_ioport_readw(void *opaque, uint32_t address)
245
{
246
    uint32_t data;
247
    data = ioport_read_table[0][address](ioport_opaque[address], address);
248
    address = (address + 1) & (MAX_IOPORTS - 1);
249
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
250
    return data;
251
}
252

    
253
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
254
{
255
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
256
    address = (address + 1) & (MAX_IOPORTS - 1);
257
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
258
}
259

    
260
uint32_t default_ioport_readl(void *opaque, uint32_t address)
261
{
262
#ifdef DEBUG_UNUSED_IOPORT
263
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
264
#endif
265
    return 0xffffffff;
266
}
267

    
268
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
269
{
270
#ifdef DEBUG_UNUSED_IOPORT
271
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
272
#endif
273
}
274

    
275
void init_ioports(void)
276
{
277
    int i;
278

    
279
    for(i = 0; i < MAX_IOPORTS; i++) {
280
        ioport_read_table[0][i] = default_ioport_readb;
281
        ioport_write_table[0][i] = default_ioport_writeb;
282
        ioport_read_table[1][i] = default_ioport_readw;
283
        ioport_write_table[1][i] = default_ioport_writew;
284
        ioport_read_table[2][i] = default_ioport_readl;
285
        ioport_write_table[2][i] = default_ioport_writel;
286
    }
287
}
288

    
289
/* size is the word size in byte */
290
int register_ioport_read(int start, int length, int size,
291
                         IOPortReadFunc *func, void *opaque)
292
{
293
    int i, bsize;
294

    
295
    if (size == 1) {
296
        bsize = 0;
297
    } else if (size == 2) {
298
        bsize = 1;
299
    } else if (size == 4) {
300
        bsize = 2;
301
    } else {
302
        hw_error("register_ioport_read: invalid size");
303
        return -1;
304
    }
305
    for(i = start; i < start + length; i += size) {
306
        ioport_read_table[bsize][i] = func;
307
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
308
            hw_error("register_ioport_read: invalid opaque");
309
        ioport_opaque[i] = opaque;
310
    }
311
    return 0;
312
}
313

    
314
/* size is the word size in byte */
315
int register_ioport_write(int start, int length, int size,
316
                          IOPortWriteFunc *func, void *opaque)
317
{
318
    int i, bsize;
319

    
320
    if (size == 1) {
321
        bsize = 0;
322
    } else if (size == 2) {
323
        bsize = 1;
324
    } else if (size == 4) {
325
        bsize = 2;
326
    } else {
327
        hw_error("register_ioport_write: invalid size");
328
        return -1;
329
    }
330
    for(i = start; i < start + length; i += size) {
331
        ioport_write_table[bsize][i] = func;
332
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
333
            hw_error("register_ioport_write: invalid opaque");
334
        ioport_opaque[i] = opaque;
335
    }
336
    return 0;
337
}
338

    
339
void isa_unassign_ioport(int start, int length)
340
{
341
    int i;
342

    
343
    for(i = start; i < start + length; i++) {
344
        ioport_read_table[0][i] = default_ioport_readb;
345
        ioport_read_table[1][i] = default_ioport_readw;
346
        ioport_read_table[2][i] = default_ioport_readl;
347

    
348
        ioport_write_table[0][i] = default_ioport_writeb;
349
        ioport_write_table[1][i] = default_ioport_writew;
350
        ioport_write_table[2][i] = default_ioport_writel;
351
    }
352
}
353

    
354
/***********************************************************/
355

    
356
void cpu_outb(CPUState *env, int addr, int val)
357
{
358
#ifdef DEBUG_IOPORT
359
    if (loglevel & CPU_LOG_IOPORT)
360
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
361
#endif   
362
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
363
#ifdef USE_KQEMU
364
    if (env)
365
        env->last_io_time = cpu_get_time_fast();
366
#endif
367
}
368

    
369
void cpu_outw(CPUState *env, int addr, int val)
370
{
371
#ifdef DEBUG_IOPORT
372
    if (loglevel & CPU_LOG_IOPORT)
373
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
374
#endif   
375
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
376
#ifdef USE_KQEMU
377
    if (env)
378
        env->last_io_time = cpu_get_time_fast();
379
#endif
380
}
381

    
382
void cpu_outl(CPUState *env, int addr, int val)
383
{
384
#ifdef DEBUG_IOPORT
385
    if (loglevel & CPU_LOG_IOPORT)
386
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
387
#endif
388
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
389
#ifdef USE_KQEMU
390
    if (env)
391
        env->last_io_time = cpu_get_time_fast();
392
#endif
393
}
394

    
395
int cpu_inb(CPUState *env, int addr)
396
{
397
    int val;
398
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
399
#ifdef DEBUG_IOPORT
400
    if (loglevel & CPU_LOG_IOPORT)
401
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
402
#endif
403
#ifdef USE_KQEMU
404
    if (env)
405
        env->last_io_time = cpu_get_time_fast();
406
#endif
407
    return val;
408
}
409

    
410
int cpu_inw(CPUState *env, int addr)
411
{
412
    int val;
413
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
414
#ifdef DEBUG_IOPORT
415
    if (loglevel & CPU_LOG_IOPORT)
416
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
417
#endif
418
#ifdef USE_KQEMU
419
    if (env)
420
        env->last_io_time = cpu_get_time_fast();
421
#endif
422
    return val;
423
}
424

    
425
int cpu_inl(CPUState *env, int addr)
426
{
427
    int val;
428
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
429
#ifdef DEBUG_IOPORT
430
    if (loglevel & CPU_LOG_IOPORT)
431
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
432
#endif
433
#ifdef USE_KQEMU
434
    if (env)
435
        env->last_io_time = cpu_get_time_fast();
436
#endif
437
    return val;
438
}
439

    
440
/***********************************************************/
441
void hw_error(const char *fmt, ...)
442
{
443
    va_list ap;
444
    CPUState *env;
445

    
446
    va_start(ap, fmt);
447
    fprintf(stderr, "qemu: hardware error: ");
448
    vfprintf(stderr, fmt, ap);
449
    fprintf(stderr, "\n");
450
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
451
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
452
#ifdef TARGET_I386
453
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
454
#else
455
        cpu_dump_state(env, stderr, fprintf, 0);
456
#endif
457
    }
458
    va_end(ap);
459
    abort();
460
}
461

    
462
/***********************************************************/
463
/* keyboard/mouse */
464

    
465
static QEMUPutKBDEvent *qemu_put_kbd_event;
466
static void *qemu_put_kbd_event_opaque;
467
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
468
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
469

    
470
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
471
{
472
    qemu_put_kbd_event_opaque = opaque;
473
    qemu_put_kbd_event = func;
474
}
475

    
476
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
477
                                                void *opaque, int absolute,
478
                                                const char *name)
479
{
480
    QEMUPutMouseEntry *s, *cursor;
481

    
482
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
483
    if (!s)
484
        return NULL;
485

    
486
    s->qemu_put_mouse_event = func;
487
    s->qemu_put_mouse_event_opaque = opaque;
488
    s->qemu_put_mouse_event_absolute = absolute;
489
    s->qemu_put_mouse_event_name = qemu_strdup(name);
490
    s->next = NULL;
491

    
492
    if (!qemu_put_mouse_event_head) {
493
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
494
        return s;
495
    }
496

    
497
    cursor = qemu_put_mouse_event_head;
498
    while (cursor->next != NULL)
499
        cursor = cursor->next;
500

    
501
    cursor->next = s;
502
    qemu_put_mouse_event_current = s;
503

    
504
    return s;
505
}
506

    
507
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
508
{
509
    QEMUPutMouseEntry *prev = NULL, *cursor;
510

    
511
    if (!qemu_put_mouse_event_head || entry == NULL)
512
        return;
513

    
514
    cursor = qemu_put_mouse_event_head;
515
    while (cursor != NULL && cursor != entry) {
516
        prev = cursor;
517
        cursor = cursor->next;
518
    }
519

    
520
    if (cursor == NULL) // does not exist or list empty
521
        return;
522
    else if (prev == NULL) { // entry is head
523
        qemu_put_mouse_event_head = cursor->next;
524
        if (qemu_put_mouse_event_current == entry)
525
            qemu_put_mouse_event_current = cursor->next;
526
        qemu_free(entry->qemu_put_mouse_event_name);
527
        qemu_free(entry);
528
        return;
529
    }
530

    
531
    prev->next = entry->next;
532

    
533
    if (qemu_put_mouse_event_current == entry)
534
        qemu_put_mouse_event_current = prev;
535

    
536
    qemu_free(entry->qemu_put_mouse_event_name);
537
    qemu_free(entry);
538
}
539

    
540
void kbd_put_keycode(int keycode)
541
{
542
    if (qemu_put_kbd_event) {
543
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
544
    }
545
}
546

    
547
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
548
{
549
    QEMUPutMouseEvent *mouse_event;
550
    void *mouse_event_opaque;
551
    int width;
552

    
553
    if (!qemu_put_mouse_event_current) {
554
        return;
555
    }
556

    
557
    mouse_event =
558
        qemu_put_mouse_event_current->qemu_put_mouse_event;
559
    mouse_event_opaque =
560
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
561

    
562
    if (mouse_event) {
563
        if (graphic_rotate) {
564
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
565
                width = 0x7fff;
566
            else
567
                width = graphic_width;
568
            mouse_event(mouse_event_opaque,
569
                                 width - dy, dx, dz, buttons_state);
570
        } else
571
            mouse_event(mouse_event_opaque,
572
                                 dx, dy, dz, buttons_state);
573
    }
574
}
575

    
576
int kbd_mouse_is_absolute(void)
577
{
578
    if (!qemu_put_mouse_event_current)
579
        return 0;
580

    
581
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
582
}
583

    
584
void do_info_mice(void)
585
{
586
    QEMUPutMouseEntry *cursor;
587
    int index = 0;
588

    
589
    if (!qemu_put_mouse_event_head) {
590
        term_printf("No mouse devices connected\n");
591
        return;
592
    }
593

    
594
    term_printf("Mouse devices available:\n");
595
    cursor = qemu_put_mouse_event_head;
596
    while (cursor != NULL) {
597
        term_printf("%c Mouse #%d: %s\n",
598
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
599
                    index, cursor->qemu_put_mouse_event_name);
600
        index++;
601
        cursor = cursor->next;
602
    }
603
}
604

    
605
void do_mouse_set(int index)
606
{
607
    QEMUPutMouseEntry *cursor;
608
    int i = 0;
609

    
610
    if (!qemu_put_mouse_event_head) {
611
        term_printf("No mouse devices connected\n");
612
        return;
613
    }
614

    
615
    cursor = qemu_put_mouse_event_head;
616
    while (cursor != NULL && index != i) {
617
        i++;
618
        cursor = cursor->next;
619
    }
620

    
621
    if (cursor != NULL)
622
        qemu_put_mouse_event_current = cursor;
623
    else
624
        term_printf("Mouse at given index not found\n");
625
}
626

    
627
/* compute with 96 bit intermediate result: (a*b)/c */
628
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
629
{
630
    union {
631
        uint64_t ll;
632
        struct {
633
#ifdef WORDS_BIGENDIAN
634
            uint32_t high, low;
635
#else
636
            uint32_t low, high;
637
#endif           
638
        } l;
639
    } u, res;
640
    uint64_t rl, rh;
641

    
642
    u.ll = a;
643
    rl = (uint64_t)u.l.low * (uint64_t)b;
644
    rh = (uint64_t)u.l.high * (uint64_t)b;
645
    rh += (rl >> 32);
646
    res.l.high = rh / c;
647
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
648
    return res.ll;
649
}
650

    
651
/***********************************************************/
652
/* real time host monotonic timer */
653

    
654
#define QEMU_TIMER_BASE 1000000000LL
655

    
656
#ifdef WIN32
657

    
658
static int64_t clock_freq;
659

    
660
static void init_get_clock(void)
661
{
662
    LARGE_INTEGER freq;
663
    int ret;
664
    ret = QueryPerformanceFrequency(&freq);
665
    if (ret == 0) {
666
        fprintf(stderr, "Could not calibrate ticks\n");
667
        exit(1);
668
    }
669
    clock_freq = freq.QuadPart;
670
}
671

    
672
static int64_t get_clock(void)
673
{
674
    LARGE_INTEGER ti;
675
    QueryPerformanceCounter(&ti);
676
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
677
}
678

    
679
#else
680

    
681
static int use_rt_clock;
682

    
683
static void init_get_clock(void)
684
{
685
    use_rt_clock = 0;
686
#if defined(__linux__)
687
    {
688
        struct timespec ts;
689
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
690
            use_rt_clock = 1;
691
        }
692
    }
693
#endif
694
}
695

    
696
static int64_t get_clock(void)
697
{
698
#if defined(__linux__)
699
    if (use_rt_clock) {
700
        struct timespec ts;
701
        clock_gettime(CLOCK_MONOTONIC, &ts);
702
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
703
    } else
704
#endif
705
    {
706
        /* XXX: using gettimeofday leads to problems if the date
707
           changes, so it should be avoided. */
708
        struct timeval tv;
709
        gettimeofday(&tv, NULL);
710
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
711
    }
712
}
713

    
714
#endif
715

    
716
/***********************************************************/
717
/* guest cycle counter */
718

    
719
static int64_t cpu_ticks_prev;
720
static int64_t cpu_ticks_offset;
721
static int64_t cpu_clock_offset;
722
static int cpu_ticks_enabled;
723

    
724
/* return the host CPU cycle counter and handle stop/restart */
725
int64_t cpu_get_ticks(void)
726
{
727
    if (!cpu_ticks_enabled) {
728
        return cpu_ticks_offset;
729
    } else {
730
        int64_t ticks;
731
        ticks = cpu_get_real_ticks();
732
        if (cpu_ticks_prev > ticks) {
733
            /* Note: non increasing ticks may happen if the host uses
734
               software suspend */
735
            cpu_ticks_offset += cpu_ticks_prev - ticks;
736
        }
737
        cpu_ticks_prev = ticks;
738
        return ticks + cpu_ticks_offset;
739
    }
740
}
741

    
742
/* return the host CPU monotonic timer and handle stop/restart */
743
static int64_t cpu_get_clock(void)
744
{
745
    int64_t ti;
746
    if (!cpu_ticks_enabled) {
747
        return cpu_clock_offset;
748
    } else {
749
        ti = get_clock();
750
        return ti + cpu_clock_offset;
751
    }
752
}
753

    
754
/* enable cpu_get_ticks() */
755
void cpu_enable_ticks(void)
756
{
757
    if (!cpu_ticks_enabled) {
758
        cpu_ticks_offset -= cpu_get_real_ticks();
759
        cpu_clock_offset -= get_clock();
760
        cpu_ticks_enabled = 1;
761
    }
762
}
763

    
764
/* disable cpu_get_ticks() : the clock is stopped. You must not call
765
   cpu_get_ticks() after that.  */
766
void cpu_disable_ticks(void)
767
{
768
    if (cpu_ticks_enabled) {
769
        cpu_ticks_offset = cpu_get_ticks();
770
        cpu_clock_offset = cpu_get_clock();
771
        cpu_ticks_enabled = 0;
772
    }
773
}
774

    
775
/***********************************************************/
776
/* timers */
777

    
778
#define QEMU_TIMER_REALTIME 0
779
#define QEMU_TIMER_VIRTUAL  1
780

    
781
struct QEMUClock {
782
    int type;
783
    /* XXX: add frequency */
784
};
785

    
786
struct QEMUTimer {
787
    QEMUClock *clock;
788
    int64_t expire_time;
789
    QEMUTimerCB *cb;
790
    void *opaque;
791
    struct QEMUTimer *next;
792
};
793

    
794
struct qemu_alarm_timer {
795
    char const *name;
796
    unsigned int flags;
797

    
798
    int (*start)(struct qemu_alarm_timer *t);
799
    void (*stop)(struct qemu_alarm_timer *t);
800
    void (*rearm)(struct qemu_alarm_timer *t);
801
    void *priv;
802
};
803

    
804
#define ALARM_FLAG_DYNTICKS  0x1
805

    
806
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
807
{
808
    return t->flags & ALARM_FLAG_DYNTICKS;
809
}
810

    
811
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
812
{
813
    if (!alarm_has_dynticks(t))
814
        return;
815

    
816
    t->rearm(t);
817
}
818

    
819
/* TODO: MIN_TIMER_REARM_US should be optimized */
820
#define MIN_TIMER_REARM_US 250
821

    
822
static struct qemu_alarm_timer *alarm_timer;
823

    
824
#ifdef _WIN32
825

    
826
struct qemu_alarm_win32 {
827
    MMRESULT timerId;
828
    HANDLE host_alarm;
829
    unsigned int period;
830
} alarm_win32_data = {0, NULL, -1};
831

    
832
static int win32_start_timer(struct qemu_alarm_timer *t);
833
static void win32_stop_timer(struct qemu_alarm_timer *t);
834
static void win32_rearm_timer(struct qemu_alarm_timer *t);
835

    
836
#else
837

    
838
static int unix_start_timer(struct qemu_alarm_timer *t);
839
static void unix_stop_timer(struct qemu_alarm_timer *t);
840

    
841
#ifdef __linux__
842

    
843
static int dynticks_start_timer(struct qemu_alarm_timer *t);
844
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
845
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
846

    
847
static int hpet_start_timer(struct qemu_alarm_timer *t);
848
static void hpet_stop_timer(struct qemu_alarm_timer *t);
849

    
850
static int rtc_start_timer(struct qemu_alarm_timer *t);
851
static void rtc_stop_timer(struct qemu_alarm_timer *t);
852

    
853
#endif /* __linux__ */
854

    
855
#endif /* _WIN32 */
856

    
857
static struct qemu_alarm_timer alarm_timers[] = {
858
#ifndef _WIN32
859
#ifdef __linux__
860
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
861
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
862
    /* HPET - if available - is preferred */
863
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
864
    /* ...otherwise try RTC */
865
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
866
#endif
867
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
868
#else
869
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
870
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
871
    {"win32", 0, win32_start_timer,
872
     win32_stop_timer, NULL, &alarm_win32_data},
873
#endif
874
    {NULL, }
875
};
876

    
877
static void show_available_alarms()
878
{
879
    int i;
880

    
881
    printf("Available alarm timers, in order of precedence:\n");
882
    for (i = 0; alarm_timers[i].name; i++)
883
        printf("%s\n", alarm_timers[i].name);
884
}
885

    
886
static void configure_alarms(char const *opt)
887
{
888
    int i;
889
    int cur = 0;
890
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
891
    char *arg;
892
    char *name;
893

    
894
    if (!strcmp(opt, "help")) {
895
        show_available_alarms();
896
        exit(0);
897
    }
898

    
899
    arg = strdup(opt);
900

    
901
    /* Reorder the array */
902
    name = strtok(arg, ",");
903
    while (name) {
904
        struct qemu_alarm_timer tmp;
905

    
906
        for (i = 0; i < count; i++) {
907
            if (!strcmp(alarm_timers[i].name, name))
908
                break;
909
        }
910

    
911
        if (i == count) {
912
            fprintf(stderr, "Unknown clock %s\n", name);
913
            goto next;
914
        }
915

    
916
        if (i < cur)
917
            /* Ignore */
918
            goto next;
919

    
920
        /* Swap */
921
        tmp = alarm_timers[i];
922
        alarm_timers[i] = alarm_timers[cur];
923
        alarm_timers[cur] = tmp;
924

    
925
        cur++;
926
next:
927
        name = strtok(NULL, ",");
928
    }
929

    
930
    free(arg);
931

    
932
    if (cur) {
933
        /* Disable remaining timers */
934
        for (i = cur; i < count; i++)
935
            alarm_timers[i].name = NULL;
936
    }
937

    
938
    /* debug */
939
    show_available_alarms();
940
}
941

    
942
QEMUClock *rt_clock;
943
QEMUClock *vm_clock;
944

    
945
static QEMUTimer *active_timers[2];
946

    
947
QEMUClock *qemu_new_clock(int type)
948
{
949
    QEMUClock *clock;
950
    clock = qemu_mallocz(sizeof(QEMUClock));
951
    if (!clock)
952
        return NULL;
953
    clock->type = type;
954
    return clock;
955
}
956

    
957
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
958
{
959
    QEMUTimer *ts;
960

    
961
    ts = qemu_mallocz(sizeof(QEMUTimer));
962
    ts->clock = clock;
963
    ts->cb = cb;
964
    ts->opaque = opaque;
965
    return ts;
966
}
967

    
968
void qemu_free_timer(QEMUTimer *ts)
969
{
970
    qemu_free(ts);
971
}
972

    
973
/* stop a timer, but do not dealloc it */
974
void qemu_del_timer(QEMUTimer *ts)
975
{
976
    QEMUTimer **pt, *t;
977

    
978
    /* NOTE: this code must be signal safe because
979
       qemu_timer_expired() can be called from a signal. */
980
    pt = &active_timers[ts->clock->type];
981
    for(;;) {
982
        t = *pt;
983
        if (!t)
984
            break;
985
        if (t == ts) {
986
            *pt = t->next;
987
            break;
988
        }
989
        pt = &t->next;
990
    }
991

    
992
    qemu_rearm_alarm_timer(alarm_timer);
993
}
994

    
995
/* modify the current timer so that it will be fired when current_time
996
   >= expire_time. The corresponding callback will be called. */
997
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
998
{
999
    QEMUTimer **pt, *t;
1000

    
1001
    qemu_del_timer(ts);
1002

    
1003
    /* add the timer in the sorted list */
1004
    /* NOTE: this code must be signal safe because
1005
       qemu_timer_expired() can be called from a signal. */
1006
    pt = &active_timers[ts->clock->type];
1007
    for(;;) {
1008
        t = *pt;
1009
        if (!t)
1010
            break;
1011
        if (t->expire_time > expire_time)
1012
            break;
1013
        pt = &t->next;
1014
    }
1015
    ts->expire_time = expire_time;
1016
    ts->next = *pt;
1017
    *pt = ts;
1018
}
1019

    
1020
int qemu_timer_pending(QEMUTimer *ts)
1021
{
1022
    QEMUTimer *t;
1023
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1024
        if (t == ts)
1025
            return 1;
1026
    }
1027
    return 0;
1028
}
1029

    
1030
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1031
{
1032
    if (!timer_head)
1033
        return 0;
1034
    return (timer_head->expire_time <= current_time);
1035
}
1036

    
1037
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1038
{
1039
    QEMUTimer *ts;
1040
   
1041
    for(;;) {
1042
        ts = *ptimer_head;
1043
        if (!ts || ts->expire_time > current_time)
1044
            break;
1045
        /* remove timer from the list before calling the callback */
1046
        *ptimer_head = ts->next;
1047
        ts->next = NULL;
1048
       
1049
        /* run the callback (the timer list can be modified) */
1050
        ts->cb(ts->opaque);
1051
    }
1052
    qemu_rearm_alarm_timer(alarm_timer);
1053
}
1054

    
1055
int64_t qemu_get_clock(QEMUClock *clock)
1056
{
1057
    switch(clock->type) {
1058
    case QEMU_TIMER_REALTIME:
1059
        return get_clock() / 1000000;
1060
    default:
1061
    case QEMU_TIMER_VIRTUAL:
1062
        return cpu_get_clock();
1063
    }
1064
}
1065

    
1066
static void init_timers(void)
1067
{
1068
    init_get_clock();
1069
    ticks_per_sec = QEMU_TIMER_BASE;
1070
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1071
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1072
}
1073

    
1074
/* save a timer */
1075
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1076
{
1077
    uint64_t expire_time;
1078

    
1079
    if (qemu_timer_pending(ts)) {
1080
        expire_time = ts->expire_time;
1081
    } else {
1082
        expire_time = -1;
1083
    }
1084
    qemu_put_be64(f, expire_time);
1085
}
1086

    
1087
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1088
{
1089
    uint64_t expire_time;
1090

    
1091
    expire_time = qemu_get_be64(f);
1092
    if (expire_time != -1) {
1093
        qemu_mod_timer(ts, expire_time);
1094
    } else {
1095
        qemu_del_timer(ts);
1096
    }
1097
}
1098

    
1099
static void timer_save(QEMUFile *f, void *opaque)
1100
{
1101
    if (cpu_ticks_enabled) {
1102
        hw_error("cannot save state if virtual timers are running");
1103
    }
1104
    qemu_put_be64s(f, &cpu_ticks_offset);
1105
    qemu_put_be64s(f, &ticks_per_sec);
1106
    qemu_put_be64s(f, &cpu_clock_offset);
1107
}
1108

    
1109
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1110
{
1111
    if (version_id != 1 && version_id != 2)
1112
        return -EINVAL;
1113
    if (cpu_ticks_enabled) {
1114
        return -EINVAL;
1115
    }
1116
    qemu_get_be64s(f, &cpu_ticks_offset);
1117
    qemu_get_be64s(f, &ticks_per_sec);
1118
    if (version_id == 2) {
1119
        qemu_get_be64s(f, &cpu_clock_offset);
1120
    }
1121
    return 0;
1122
}
1123

    
1124
#ifdef _WIN32
1125
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1126
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1127
#else
1128
static void host_alarm_handler(int host_signum)
1129
#endif
1130
{
1131
#if 0
1132
#define DISP_FREQ 1000
1133
    {
1134
        static int64_t delta_min = INT64_MAX;
1135
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1136
        static int count;
1137
        ti = qemu_get_clock(vm_clock);
1138
        if (last_clock != 0) {
1139
            delta = ti - last_clock;
1140
            if (delta < delta_min)
1141
                delta_min = delta;
1142
            if (delta > delta_max)
1143
                delta_max = delta;
1144
            delta_cum += delta;
1145
            if (++count == DISP_FREQ) {
1146
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1147
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1148
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1149
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1150
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1151
                count = 0;
1152
                delta_min = INT64_MAX;
1153
                delta_max = 0;
1154
                delta_cum = 0;
1155
            }
1156
        }
1157
        last_clock = ti;
1158
    }
1159
#endif
1160
    if (alarm_has_dynticks(alarm_timer) ||
1161
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1162
                           qemu_get_clock(vm_clock)) ||
1163
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1164
                           qemu_get_clock(rt_clock))) {
1165
#ifdef _WIN32
1166
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1167
        SetEvent(data->host_alarm);
1168
#endif
1169
        CPUState *env = cpu_single_env;
1170
        if (env) {
1171
            /* stop the currently executing cpu because a timer occured */
1172
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1173
#ifdef USE_KQEMU
1174
            if (env->kqemu_enabled) {
1175
                kqemu_cpu_interrupt(env);
1176
            }
1177
#endif
1178
        }
1179
    }
1180
}
1181

    
1182
static uint64_t qemu_next_deadline(void)
1183
{
1184
    int64_t nearest_delta_us = UINT64_MAX;
1185
    int64_t vmdelta_us;
1186

    
1187
    if (active_timers[QEMU_TIMER_REALTIME])
1188
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1189
                            qemu_get_clock(rt_clock))*1000;
1190

    
1191
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1192
        /* round up */
1193
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1194
                      qemu_get_clock(vm_clock)+999)/1000;
1195
        if (vmdelta_us < nearest_delta_us)
1196
            nearest_delta_us = vmdelta_us;
1197
    }
1198

    
1199
    /* Avoid arming the timer to negative, zero, or too low values */
1200
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1201
        nearest_delta_us = MIN_TIMER_REARM_US;
1202

    
1203
    return nearest_delta_us;
1204
}
1205

    
1206
#ifndef _WIN32
1207

    
1208
#if defined(__linux__)
1209

    
1210
#define RTC_FREQ 1024
1211

    
1212
static void enable_sigio_timer(int fd)
1213
{
1214
    struct sigaction act;
1215

    
1216
    /* timer signal */
1217
    sigfillset(&act.sa_mask);
1218
    act.sa_flags = 0;
1219
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1220
    act.sa_flags |= SA_ONSTACK;
1221
#endif
1222
    act.sa_handler = host_alarm_handler;
1223

    
1224
    sigaction(SIGIO, &act, NULL);
1225
    fcntl(fd, F_SETFL, O_ASYNC);
1226
    fcntl(fd, F_SETOWN, getpid());
1227
}
1228

    
1229
static int hpet_start_timer(struct qemu_alarm_timer *t)
1230
{
1231
    struct hpet_info info;
1232
    int r, fd;
1233

    
1234
    fd = open("/dev/hpet", O_RDONLY);
1235
    if (fd < 0)
1236
        return -1;
1237

    
1238
    /* Set frequency */
1239
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1240
    if (r < 0) {
1241
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1242
                "error, but for better emulation accuracy type:\n"
1243
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1244
        goto fail;
1245
    }
1246

    
1247
    /* Check capabilities */
1248
    r = ioctl(fd, HPET_INFO, &info);
1249
    if (r < 0)
1250
        goto fail;
1251

    
1252
    /* Enable periodic mode */
1253
    r = ioctl(fd, HPET_EPI, 0);
1254
    if (info.hi_flags && (r < 0))
1255
        goto fail;
1256

    
1257
    /* Enable interrupt */
1258
    r = ioctl(fd, HPET_IE_ON, 0);
1259
    if (r < 0)
1260
        goto fail;
1261

    
1262
    enable_sigio_timer(fd);
1263
    t->priv = (void *)(long)fd;
1264

    
1265
    return 0;
1266
fail:
1267
    close(fd);
1268
    return -1;
1269
}
1270

    
1271
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1272
{
1273
    int fd = (long)t->priv;
1274

    
1275
    close(fd);
1276
}
1277

    
1278
static int rtc_start_timer(struct qemu_alarm_timer *t)
1279
{
1280
    int rtc_fd;
1281

    
1282
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1283
    if (rtc_fd < 0)
1284
        return -1;
1285
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1286
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1287
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1288
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1289
        goto fail;
1290
    }
1291
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1292
    fail:
1293
        close(rtc_fd);
1294
        return -1;
1295
    }
1296

    
1297
    enable_sigio_timer(rtc_fd);
1298

    
1299
    t->priv = (void *)(long)rtc_fd;
1300

    
1301
    return 0;
1302
}
1303

    
1304
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1305
{
1306
    int rtc_fd = (long)t->priv;
1307

    
1308
    close(rtc_fd);
1309
}
1310

    
1311
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1312
{
1313
    struct sigevent ev;
1314
    timer_t host_timer;
1315
    struct sigaction act;
1316

    
1317
    sigfillset(&act.sa_mask);
1318
    act.sa_flags = 0;
1319
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1320
    act.sa_flags |= SA_ONSTACK;
1321
#endif
1322
    act.sa_handler = host_alarm_handler;
1323

    
1324
    sigaction(SIGALRM, &act, NULL);
1325

    
1326
    ev.sigev_value.sival_int = 0;
1327
    ev.sigev_notify = SIGEV_SIGNAL;
1328
    ev.sigev_signo = SIGALRM;
1329

    
1330
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1331
        perror("timer_create");
1332

    
1333
        /* disable dynticks */
1334
        fprintf(stderr, "Dynamic Ticks disabled\n");
1335

    
1336
        return -1;
1337
    }
1338

    
1339
    t->priv = (void *)host_timer;
1340

    
1341
    return 0;
1342
}
1343

    
1344
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1345
{
1346
    timer_t host_timer = (timer_t)t->priv;
1347

    
1348
    timer_delete(host_timer);
1349
}
1350

    
1351
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1352
{
1353
    timer_t host_timer = (timer_t)t->priv;
1354
    struct itimerspec timeout;
1355
    int64_t nearest_delta_us = INT64_MAX;
1356
    int64_t current_us;
1357

    
1358
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1359
                !active_timers[QEMU_TIMER_VIRTUAL])
1360
            return;
1361

    
1362
    nearest_delta_us = qemu_next_deadline();
1363

    
1364
    /* check whether a timer is already running */
1365
    if (timer_gettime(host_timer, &timeout)) {
1366
        perror("gettime");
1367
        fprintf(stderr, "Internal timer error: aborting\n");
1368
        exit(1);
1369
    }
1370
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1371
    if (current_us && current_us <= nearest_delta_us)
1372
        return;
1373

    
1374
    timeout.it_interval.tv_sec = 0;
1375
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1376
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1377
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1378
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1379
        perror("settime");
1380
        fprintf(stderr, "Internal timer error: aborting\n");
1381
        exit(1);
1382
    }
1383
}
1384

    
1385
#endif /* defined(__linux__) */
1386

    
1387
static int unix_start_timer(struct qemu_alarm_timer *t)
1388
{
1389
    struct sigaction act;
1390
    struct itimerval itv;
1391
    int err;
1392

    
1393
    /* timer signal */
1394
    sigfillset(&act.sa_mask);
1395
    act.sa_flags = 0;
1396
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1397
    act.sa_flags |= SA_ONSTACK;
1398
#endif
1399
    act.sa_handler = host_alarm_handler;
1400

    
1401
    sigaction(SIGALRM, &act, NULL);
1402

    
1403
    itv.it_interval.tv_sec = 0;
1404
    /* for i386 kernel 2.6 to get 1 ms */
1405
    itv.it_interval.tv_usec = 999;
1406
    itv.it_value.tv_sec = 0;
1407
    itv.it_value.tv_usec = 10 * 1000;
1408

    
1409
    err = setitimer(ITIMER_REAL, &itv, NULL);
1410
    if (err)
1411
        return -1;
1412

    
1413
    return 0;
1414
}
1415

    
1416
static void unix_stop_timer(struct qemu_alarm_timer *t)
1417
{
1418
    struct itimerval itv;
1419

    
1420
    memset(&itv, 0, sizeof(itv));
1421
    setitimer(ITIMER_REAL, &itv, NULL);
1422
}
1423

    
1424
#endif /* !defined(_WIN32) */
1425

    
1426
#ifdef _WIN32
1427

    
1428
static int win32_start_timer(struct qemu_alarm_timer *t)
1429
{
1430
    TIMECAPS tc;
1431
    struct qemu_alarm_win32 *data = t->priv;
1432
    UINT flags;
1433

    
1434
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1435
    if (!data->host_alarm) {
1436
        perror("Failed CreateEvent");
1437
        return -1;
1438
    }
1439

    
1440
    memset(&tc, 0, sizeof(tc));
1441
    timeGetDevCaps(&tc, sizeof(tc));
1442

    
1443
    if (data->period < tc.wPeriodMin)
1444
        data->period = tc.wPeriodMin;
1445

    
1446
    timeBeginPeriod(data->period);
1447

    
1448
    flags = TIME_CALLBACK_FUNCTION;
1449
    if (alarm_has_dynticks(t))
1450
        flags |= TIME_ONESHOT;
1451
    else
1452
        flags |= TIME_PERIODIC;
1453

    
1454
    data->timerId = timeSetEvent(1,         // interval (ms)
1455
                        data->period,       // resolution
1456
                        host_alarm_handler, // function
1457
                        (DWORD)t,           // parameter
1458
                        flags);
1459

    
1460
    if (!data->timerId) {
1461
        perror("Failed to initialize win32 alarm timer");
1462

    
1463
        timeEndPeriod(data->period);
1464
        CloseHandle(data->host_alarm);
1465
        return -1;
1466
    }
1467

    
1468
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1469

    
1470
    return 0;
1471
}
1472

    
1473
static void win32_stop_timer(struct qemu_alarm_timer *t)
1474
{
1475
    struct qemu_alarm_win32 *data = t->priv;
1476

    
1477
    timeKillEvent(data->timerId);
1478
    timeEndPeriod(data->period);
1479

    
1480
    CloseHandle(data->host_alarm);
1481
}
1482

    
1483
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1484
{
1485
    struct qemu_alarm_win32 *data = t->priv;
1486
    uint64_t nearest_delta_us;
1487

    
1488
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1489
                !active_timers[QEMU_TIMER_VIRTUAL])
1490
            return;
1491

    
1492
    nearest_delta_us = qemu_next_deadline();
1493
    nearest_delta_us /= 1000;
1494

    
1495
    timeKillEvent(data->timerId);
1496

    
1497
    data->timerId = timeSetEvent(1,
1498
                        data->period,
1499
                        host_alarm_handler,
1500
                        (DWORD)t,
1501
                        TIME_ONESHOT | TIME_PERIODIC);
1502

    
1503
    if (!data->timerId) {
1504
        perror("Failed to re-arm win32 alarm timer");
1505

    
1506
        timeEndPeriod(data->period);
1507
        CloseHandle(data->host_alarm);
1508
        exit(1);
1509
    }
1510
}
1511

    
1512
#endif /* _WIN32 */
1513

    
1514
static void init_timer_alarm(void)
1515
{
1516
    struct qemu_alarm_timer *t;
1517
    int i, err = -1;
1518

    
1519
    for (i = 0; alarm_timers[i].name; i++) {
1520
        t = &alarm_timers[i];
1521

    
1522
        err = t->start(t);
1523
        if (!err)
1524
            break;
1525
    }
1526

    
1527
    if (err) {
1528
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1529
        fprintf(stderr, "Terminating\n");
1530
        exit(1);
1531
    }
1532

    
1533
    alarm_timer = t;
1534
}
1535

    
1536
void quit_timers(void)
1537
{
1538
    alarm_timer->stop(alarm_timer);
1539
    alarm_timer = NULL;
1540
}
1541

    
1542
/***********************************************************/
1543
/* character device */
1544

    
1545
static void qemu_chr_event(CharDriverState *s, int event)
1546
{
1547
    if (!s->chr_event)
1548
        return;
1549
    s->chr_event(s->handler_opaque, event);
1550
}
1551

    
1552
static void qemu_chr_reset_bh(void *opaque)
1553
{
1554
    CharDriverState *s = opaque;
1555
    qemu_chr_event(s, CHR_EVENT_RESET);
1556
    qemu_bh_delete(s->bh);
1557
    s->bh = NULL;
1558
}
1559

    
1560
void qemu_chr_reset(CharDriverState *s)
1561
{
1562
    if (s->bh == NULL) {
1563
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1564
        qemu_bh_schedule(s->bh);
1565
    }
1566
}
1567

    
1568
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1569
{
1570
    return s->chr_write(s, buf, len);
1571
}
1572

    
1573
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1574
{
1575
    if (!s->chr_ioctl)
1576
        return -ENOTSUP;
1577
    return s->chr_ioctl(s, cmd, arg);
1578
}
1579

    
1580
int qemu_chr_can_read(CharDriverState *s)
1581
{
1582
    if (!s->chr_can_read)
1583
        return 0;
1584
    return s->chr_can_read(s->handler_opaque);
1585
}
1586

    
1587
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1588
{
1589
    s->chr_read(s->handler_opaque, buf, len);
1590
}
1591

    
1592

    
1593
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1594
{
1595
    char buf[4096];
1596
    va_list ap;
1597
    va_start(ap, fmt);
1598
    vsnprintf(buf, sizeof(buf), fmt, ap);
1599
    qemu_chr_write(s, buf, strlen(buf));
1600
    va_end(ap);
1601
}
1602

    
1603
void qemu_chr_send_event(CharDriverState *s, int event)
1604
{
1605
    if (s->chr_send_event)
1606
        s->chr_send_event(s, event);
1607
}
1608

    
1609
void qemu_chr_add_handlers(CharDriverState *s,
1610
                           IOCanRWHandler *fd_can_read,
1611
                           IOReadHandler *fd_read,
1612
                           IOEventHandler *fd_event,
1613
                           void *opaque)
1614
{
1615
    s->chr_can_read = fd_can_read;
1616
    s->chr_read = fd_read;
1617
    s->chr_event = fd_event;
1618
    s->handler_opaque = opaque;
1619
    if (s->chr_update_read_handler)
1620
        s->chr_update_read_handler(s);
1621
}
1622
            
1623
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1624
{
1625
    return len;
1626
}
1627

    
1628
static CharDriverState *qemu_chr_open_null(void)
1629
{
1630
    CharDriverState *chr;
1631

    
1632
    chr = qemu_mallocz(sizeof(CharDriverState));
1633
    if (!chr)
1634
        return NULL;
1635
    chr->chr_write = null_chr_write;
1636
    return chr;
1637
}
1638

    
1639
/* MUX driver for serial I/O splitting */
1640
static int term_timestamps;
1641
static int64_t term_timestamps_start;
1642
#define MAX_MUX 4
1643
typedef struct {
1644
    IOCanRWHandler *chr_can_read[MAX_MUX];
1645
    IOReadHandler *chr_read[MAX_MUX];
1646
    IOEventHandler *chr_event[MAX_MUX];
1647
    void *ext_opaque[MAX_MUX];
1648
    CharDriverState *drv;
1649
    int mux_cnt;
1650
    int term_got_escape;
1651
    int max_size;
1652
} MuxDriver;
1653

    
1654

    
1655
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1656
{
1657
    MuxDriver *d = chr->opaque;
1658
    int ret;
1659
    if (!term_timestamps) {
1660
        ret = d->drv->chr_write(d->drv, buf, len);
1661
    } else {
1662
        int i;
1663

    
1664
        ret = 0;
1665
        for(i = 0; i < len; i++) {
1666
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1667
            if (buf[i] == '\n') {
1668
                char buf1[64];
1669
                int64_t ti;
1670
                int secs;
1671

    
1672
                ti = get_clock();
1673
                if (term_timestamps_start == -1)
1674
                    term_timestamps_start = ti;
1675
                ti -= term_timestamps_start;
1676
                secs = ti / 1000000000;
1677
                snprintf(buf1, sizeof(buf1),
1678
                         "[%02d:%02d:%02d.%03d] ",
1679
                         secs / 3600,
1680
                         (secs / 60) % 60,
1681
                         secs % 60,
1682
                         (int)((ti / 1000000) % 1000));
1683
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1684
            }
1685
        }
1686
    }
1687
    return ret;
1688
}
1689

    
1690
static char *mux_help[] = {
1691
    "% h    print this help\n\r",
1692
    "% x    exit emulator\n\r",
1693
    "% s    save disk data back to file (if -snapshot)\n\r",
1694
    "% t    toggle console timestamps\n\r"
1695
    "% b    send break (magic sysrq)\n\r",
1696
    "% c    switch between console and monitor\n\r",
1697
    "% %  sends %\n\r",
1698
    NULL
1699
};
1700

    
1701
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1702
static void mux_print_help(CharDriverState *chr)
1703
{
1704
    int i, j;
1705
    char ebuf[15] = "Escape-Char";
1706
    char cbuf[50] = "\n\r";
1707

    
1708
    if (term_escape_char > 0 && term_escape_char < 26) {
1709
        sprintf(cbuf,"\n\r");
1710
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1711
    } else {
1712
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1713
    }
1714
    chr->chr_write(chr, cbuf, strlen(cbuf));
1715
    for (i = 0; mux_help[i] != NULL; i++) {
1716
        for (j=0; mux_help[i][j] != '\0'; j++) {
1717
            if (mux_help[i][j] == '%')
1718
                chr->chr_write(chr, ebuf, strlen(ebuf));
1719
            else
1720
                chr->chr_write(chr, &mux_help[i][j], 1);
1721
        }
1722
    }
1723
}
1724

    
1725
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1726
{
1727
    if (d->term_got_escape) {
1728
        d->term_got_escape = 0;
1729
        if (ch == term_escape_char)
1730
            goto send_char;
1731
        switch(ch) {
1732
        case '?':
1733
        case 'h':
1734
            mux_print_help(chr);
1735
            break;
1736
        case 'x':
1737
            {
1738
                 char *term =  "QEMU: Terminated\n\r";
1739
                 chr->chr_write(chr,term,strlen(term));
1740
                 exit(0);
1741
                 break;
1742
            }
1743
        case 's':
1744
            {
1745
                int i;
1746
                for (i = 0; i < MAX_DISKS; i++) {
1747
                    if (bs_table[i])
1748
                        bdrv_commit(bs_table[i]);
1749
                }
1750
                if (mtd_bdrv)
1751
                    bdrv_commit(mtd_bdrv);
1752
            }
1753
            break;
1754
        case 'b':
1755
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1756
            break;
1757
        case 'c':
1758
            /* Switch to the next registered device */
1759
            chr->focus++;
1760
            if (chr->focus >= d->mux_cnt)
1761
                chr->focus = 0;
1762
            break;
1763
       case 't':
1764
           term_timestamps = !term_timestamps;
1765
           term_timestamps_start = -1;
1766
           break;
1767
        }
1768
    } else if (ch == term_escape_char) {
1769
        d->term_got_escape = 1;
1770
    } else {
1771
    send_char:
1772
        return 1;
1773
    }
1774
    return 0;
1775
}
1776

    
1777
static int mux_chr_can_read(void *opaque)
1778
{
1779
    CharDriverState *chr = opaque;
1780
    MuxDriver *d = chr->opaque;
1781
    if (d->chr_can_read[chr->focus])
1782
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1783
    return 0;
1784
}
1785

    
1786
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1787
{
1788
    CharDriverState *chr = opaque;
1789
    MuxDriver *d = chr->opaque;
1790
    int i;
1791
    for(i = 0; i < size; i++)
1792
        if (mux_proc_byte(chr, d, buf[i]))
1793
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1794
}
1795

    
1796
static void mux_chr_event(void *opaque, int event)
1797
{
1798
    CharDriverState *chr = opaque;
1799
    MuxDriver *d = chr->opaque;
1800
    int i;
1801

    
1802
    /* Send the event to all registered listeners */
1803
    for (i = 0; i < d->mux_cnt; i++)
1804
        if (d->chr_event[i])
1805
            d->chr_event[i](d->ext_opaque[i], event);
1806
}
1807

    
1808
static void mux_chr_update_read_handler(CharDriverState *chr)
1809
{
1810
    MuxDriver *d = chr->opaque;
1811

    
1812
    if (d->mux_cnt >= MAX_MUX) {
1813
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1814
        return;
1815
    }
1816
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1817
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1818
    d->chr_read[d->mux_cnt] = chr->chr_read;
1819
    d->chr_event[d->mux_cnt] = chr->chr_event;
1820
    /* Fix up the real driver with mux routines */
1821
    if (d->mux_cnt == 0) {
1822
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1823
                              mux_chr_event, chr);
1824
    }
1825
    chr->focus = d->mux_cnt;
1826
    d->mux_cnt++;
1827
}
1828

    
1829
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1830
{
1831
    CharDriverState *chr;
1832
    MuxDriver *d;
1833

    
1834
    chr = qemu_mallocz(sizeof(CharDriverState));
1835
    if (!chr)
1836
        return NULL;
1837
    d = qemu_mallocz(sizeof(MuxDriver));
1838
    if (!d) {
1839
        free(chr);
1840
        return NULL;
1841
    }
1842

    
1843
    chr->opaque = d;
1844
    d->drv = drv;
1845
    chr->focus = -1;
1846
    chr->chr_write = mux_chr_write;
1847
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1848
    return chr;
1849
}
1850

    
1851

    
1852
#ifdef _WIN32
1853

    
1854
static void socket_cleanup(void)
1855
{
1856
    WSACleanup();
1857
}
1858

    
1859
static int socket_init(void)
1860
{
1861
    WSADATA Data;
1862
    int ret, err;
1863

    
1864
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1865
    if (ret != 0) {
1866
        err = WSAGetLastError();
1867
        fprintf(stderr, "WSAStartup: %d\n", err);
1868
        return -1;
1869
    }
1870
    atexit(socket_cleanup);
1871
    return 0;
1872
}
1873

    
1874
static int send_all(int fd, const uint8_t *buf, int len1)
1875
{
1876
    int ret, len;
1877
   
1878
    len = len1;
1879
    while (len > 0) {
1880
        ret = send(fd, buf, len, 0);
1881
        if (ret < 0) {
1882
            int errno;
1883
            errno = WSAGetLastError();
1884
            if (errno != WSAEWOULDBLOCK) {
1885
                return -1;
1886
            }
1887
        } else if (ret == 0) {
1888
            break;
1889
        } else {
1890
            buf += ret;
1891
            len -= ret;
1892
        }
1893
    }
1894
    return len1 - len;
1895
}
1896

    
1897
void socket_set_nonblock(int fd)
1898
{
1899
    unsigned long opt = 1;
1900
    ioctlsocket(fd, FIONBIO, &opt);
1901
}
1902

    
1903
#else
1904

    
1905
static int unix_write(int fd, const uint8_t *buf, int len1)
1906
{
1907
    int ret, len;
1908

    
1909
    len = len1;
1910
    while (len > 0) {
1911
        ret = write(fd, buf, len);
1912
        if (ret < 0) {
1913
            if (errno != EINTR && errno != EAGAIN)
1914
                return -1;
1915
        } else if (ret == 0) {
1916
            break;
1917
        } else {
1918
            buf += ret;
1919
            len -= ret;
1920
        }
1921
    }
1922
    return len1 - len;
1923
}
1924

    
1925
static inline int send_all(int fd, const uint8_t *buf, int len1)
1926
{
1927
    return unix_write(fd, buf, len1);
1928
}
1929

    
1930
void socket_set_nonblock(int fd)
1931
{
1932
    fcntl(fd, F_SETFL, O_NONBLOCK);
1933
}
1934
#endif /* !_WIN32 */
1935

    
1936
#ifndef _WIN32
1937

    
1938
typedef struct {
1939
    int fd_in, fd_out;
1940
    int max_size;
1941
} FDCharDriver;
1942

    
1943
#define STDIO_MAX_CLIENTS 1
1944
static int stdio_nb_clients = 0;
1945

    
1946
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1947
{
1948
    FDCharDriver *s = chr->opaque;
1949
    return unix_write(s->fd_out, buf, len);
1950
}
1951

    
1952
static int fd_chr_read_poll(void *opaque)
1953
{
1954
    CharDriverState *chr = opaque;
1955
    FDCharDriver *s = chr->opaque;
1956

    
1957
    s->max_size = qemu_chr_can_read(chr);
1958
    return s->max_size;
1959
}
1960

    
1961
static void fd_chr_read(void *opaque)
1962
{
1963
    CharDriverState *chr = opaque;
1964
    FDCharDriver *s = chr->opaque;
1965
    int size, len;
1966
    uint8_t buf[1024];
1967
   
1968
    len = sizeof(buf);
1969
    if (len > s->max_size)
1970
        len = s->max_size;
1971
    if (len == 0)
1972
        return;
1973
    size = read(s->fd_in, buf, len);
1974
    if (size == 0) {
1975
        /* FD has been closed. Remove it from the active list.  */
1976
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1977
        return;
1978
    }
1979
    if (size > 0) {
1980
        qemu_chr_read(chr, buf, size);
1981
    }
1982
}
1983

    
1984
static void fd_chr_update_read_handler(CharDriverState *chr)
1985
{
1986
    FDCharDriver *s = chr->opaque;
1987

    
1988
    if (s->fd_in >= 0) {
1989
        if (nographic && s->fd_in == 0) {
1990
        } else {
1991
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1992
                                 fd_chr_read, NULL, chr);
1993
        }
1994
    }
1995
}
1996

    
1997
/* open a character device to a unix fd */
1998
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1999
{
2000
    CharDriverState *chr;
2001
    FDCharDriver *s;
2002

    
2003
    chr = qemu_mallocz(sizeof(CharDriverState));
2004
    if (!chr)
2005
        return NULL;
2006
    s = qemu_mallocz(sizeof(FDCharDriver));
2007
    if (!s) {
2008
        free(chr);
2009
        return NULL;
2010
    }
2011
    s->fd_in = fd_in;
2012
    s->fd_out = fd_out;
2013
    chr->opaque = s;
2014
    chr->chr_write = fd_chr_write;
2015
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2016

    
2017
    qemu_chr_reset(chr);
2018

    
2019
    return chr;
2020
}
2021

    
2022
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2023
{
2024
    int fd_out;
2025

    
2026
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2027
    if (fd_out < 0)
2028
        return NULL;
2029
    return qemu_chr_open_fd(-1, fd_out);
2030
}
2031

    
2032
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2033
{
2034
    int fd_in, fd_out;
2035
    char filename_in[256], filename_out[256];
2036

    
2037
    snprintf(filename_in, 256, "%s.in", filename);
2038
    snprintf(filename_out, 256, "%s.out", filename);
2039
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2040
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2041
    if (fd_in < 0 || fd_out < 0) {
2042
        if (fd_in >= 0)
2043
            close(fd_in);
2044
        if (fd_out >= 0)
2045
            close(fd_out);
2046
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2047
        if (fd_in < 0)
2048
            return NULL;
2049
    }
2050
    return qemu_chr_open_fd(fd_in, fd_out);
2051
}
2052

    
2053

    
2054
/* for STDIO, we handle the case where several clients use it
2055
   (nographic mode) */
2056

    
2057
#define TERM_FIFO_MAX_SIZE 1
2058

    
2059
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2060
static int term_fifo_size;
2061

    
2062
static int stdio_read_poll(void *opaque)
2063
{
2064
    CharDriverState *chr = opaque;
2065

    
2066
    /* try to flush the queue if needed */
2067
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2068
        qemu_chr_read(chr, term_fifo, 1);
2069
        term_fifo_size = 0;
2070
    }
2071
    /* see if we can absorb more chars */
2072
    if (term_fifo_size == 0)
2073
        return 1;
2074
    else
2075
        return 0;
2076
}
2077

    
2078
static void stdio_read(void *opaque)
2079
{
2080
    int size;
2081
    uint8_t buf[1];
2082
    CharDriverState *chr = opaque;
2083

    
2084
    size = read(0, buf, 1);
2085
    if (size == 0) {
2086
        /* stdin has been closed. Remove it from the active list.  */
2087
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2088
        return;
2089
    }
2090
    if (size > 0) {
2091
        if (qemu_chr_can_read(chr) > 0) {
2092
            qemu_chr_read(chr, buf, 1);
2093
        } else if (term_fifo_size == 0) {
2094
            term_fifo[term_fifo_size++] = buf[0];
2095
        }
2096
    }
2097
}
2098

    
2099
/* init terminal so that we can grab keys */
2100
static struct termios oldtty;
2101
static int old_fd0_flags;
2102

    
2103
static void term_exit(void)
2104
{
2105
    tcsetattr (0, TCSANOW, &oldtty);
2106
    fcntl(0, F_SETFL, old_fd0_flags);
2107
}
2108

    
2109
static void term_init(void)
2110
{
2111
    struct termios tty;
2112

    
2113
    tcgetattr (0, &tty);
2114
    oldtty = tty;
2115
    old_fd0_flags = fcntl(0, F_GETFL);
2116

    
2117
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2118
                          |INLCR|IGNCR|ICRNL|IXON);
2119
    tty.c_oflag |= OPOST;
2120
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2121
    /* if graphical mode, we allow Ctrl-C handling */
2122
    if (nographic)
2123
        tty.c_lflag &= ~ISIG;
2124
    tty.c_cflag &= ~(CSIZE|PARENB);
2125
    tty.c_cflag |= CS8;
2126
    tty.c_cc[VMIN] = 1;
2127
    tty.c_cc[VTIME] = 0;
2128
   
2129
    tcsetattr (0, TCSANOW, &tty);
2130

    
2131
    atexit(term_exit);
2132

    
2133
    fcntl(0, F_SETFL, O_NONBLOCK);
2134
}
2135

    
2136
static CharDriverState *qemu_chr_open_stdio(void)
2137
{
2138
    CharDriverState *chr;
2139

    
2140
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2141
        return NULL;
2142
    chr = qemu_chr_open_fd(0, 1);
2143
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2144
    stdio_nb_clients++;
2145
    term_init();
2146

    
2147
    return chr;
2148
}
2149

    
2150
#if defined(__linux__) || defined(__sun__)
2151
static CharDriverState *qemu_chr_open_pty(void)
2152
{
2153
    struct termios tty;
2154
    char slave_name[1024];
2155
    int master_fd, slave_fd;
2156
   
2157
#if defined(__linux__)
2158
    /* Not satisfying */
2159
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2160
        return NULL;
2161
    }
2162
#endif
2163
   
2164
    /* Disabling local echo and line-buffered output */
2165
    tcgetattr (master_fd, &tty);
2166
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2167
    tty.c_cc[VMIN] = 1;
2168
    tty.c_cc[VTIME] = 0;
2169
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2170

    
2171
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2172
    return qemu_chr_open_fd(master_fd, master_fd);
2173
}
2174

    
2175
static void tty_serial_init(int fd, int speed,
2176
                            int parity, int data_bits, int stop_bits)
2177
{
2178
    struct termios tty;
2179
    speed_t spd;
2180

    
2181
#if 0
2182
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2183
           speed, parity, data_bits, stop_bits);
2184
#endif
2185
    tcgetattr (fd, &tty);
2186

    
2187
    switch(speed) {
2188
    case 50:
2189
        spd = B50;
2190
        break;
2191
    case 75:
2192
        spd = B75;
2193
        break;
2194
    case 300:
2195
        spd = B300;
2196
        break;
2197
    case 600:
2198
        spd = B600;
2199
        break;
2200
    case 1200:
2201
        spd = B1200;
2202
        break;
2203
    case 2400:
2204
        spd = B2400;
2205
        break;
2206
    case 4800:
2207
        spd = B4800;
2208
        break;
2209
    case 9600:
2210
        spd = B9600;
2211
        break;
2212
    case 19200:
2213
        spd = B19200;
2214
        break;
2215
    case 38400:
2216
        spd = B38400;
2217
        break;
2218
    case 57600:
2219
        spd = B57600;
2220
        break;
2221
    default:
2222
    case 115200:
2223
        spd = B115200;
2224
        break;
2225
    }
2226

    
2227
    cfsetispeed(&tty, spd);
2228
    cfsetospeed(&tty, spd);
2229

    
2230
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2231
                          |INLCR|IGNCR|ICRNL|IXON);
2232
    tty.c_oflag |= OPOST;
2233
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2234
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2235
    switch(data_bits) {
2236
    default:
2237
    case 8:
2238
        tty.c_cflag |= CS8;
2239
        break;
2240
    case 7:
2241
        tty.c_cflag |= CS7;
2242
        break;
2243
    case 6:
2244
        tty.c_cflag |= CS6;
2245
        break;
2246
    case 5:
2247
        tty.c_cflag |= CS5;
2248
        break;
2249
    }
2250
    switch(parity) {
2251
    default:
2252
    case 'N':
2253
        break;
2254
    case 'E':
2255
        tty.c_cflag |= PARENB;
2256
        break;
2257
    case 'O':
2258
        tty.c_cflag |= PARENB | PARODD;
2259
        break;
2260
    }
2261
    if (stop_bits == 2)
2262
        tty.c_cflag |= CSTOPB;
2263
   
2264
    tcsetattr (fd, TCSANOW, &tty);
2265
}
2266

    
2267
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2268
{
2269
    FDCharDriver *s = chr->opaque;
2270
   
2271
    switch(cmd) {
2272
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2273
        {
2274
            QEMUSerialSetParams *ssp = arg;
2275
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2276
                            ssp->data_bits, ssp->stop_bits);
2277
        }
2278
        break;
2279
    case CHR_IOCTL_SERIAL_SET_BREAK:
2280
        {
2281
            int enable = *(int *)arg;
2282
            if (enable)
2283
                tcsendbreak(s->fd_in, 1);
2284
        }
2285
        break;
2286
    default:
2287
        return -ENOTSUP;
2288
    }
2289
    return 0;
2290
}
2291

    
2292
static CharDriverState *qemu_chr_open_tty(const char *filename)
2293
{
2294
    CharDriverState *chr;
2295
    int fd;
2296

    
2297
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2298
    fcntl(fd, F_SETFL, O_NONBLOCK);
2299
    tty_serial_init(fd, 115200, 'N', 8, 1);
2300
    chr = qemu_chr_open_fd(fd, fd);
2301
    if (!chr) {
2302
        close(fd);
2303
        return NULL;
2304
    }
2305
    chr->chr_ioctl = tty_serial_ioctl;
2306
    qemu_chr_reset(chr);
2307
    return chr;
2308
}
2309
#else  /* ! __linux__ && ! __sun__ */
2310
static CharDriverState *qemu_chr_open_pty(void)
2311
{
2312
    return NULL;
2313
}
2314
#endif /* __linux__ || __sun__ */
2315

    
2316
#if defined(__linux__)
2317
typedef struct {
2318
    int fd;
2319
    int mode;
2320
} ParallelCharDriver;
2321

    
2322
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2323
{
2324
    if (s->mode != mode) {
2325
        int m = mode;
2326
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2327
            return 0;
2328
        s->mode = mode;
2329
    }
2330
    return 1;
2331
}
2332

    
2333
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2334
{
2335
    ParallelCharDriver *drv = chr->opaque;
2336
    int fd = drv->fd;
2337
    uint8_t b;
2338

    
2339
    switch(cmd) {
2340
    case CHR_IOCTL_PP_READ_DATA:
2341
        if (ioctl(fd, PPRDATA, &b) < 0)
2342
            return -ENOTSUP;
2343
        *(uint8_t *)arg = b;
2344
        break;
2345
    case CHR_IOCTL_PP_WRITE_DATA:
2346
        b = *(uint8_t *)arg;
2347
        if (ioctl(fd, PPWDATA, &b) < 0)
2348
            return -ENOTSUP;
2349
        break;
2350
    case CHR_IOCTL_PP_READ_CONTROL:
2351
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2352
            return -ENOTSUP;
2353
        /* Linux gives only the lowest bits, and no way to know data
2354
           direction! For better compatibility set the fixed upper
2355
           bits. */
2356
        *(uint8_t *)arg = b | 0xc0;
2357
        break;
2358
    case CHR_IOCTL_PP_WRITE_CONTROL:
2359
        b = *(uint8_t *)arg;
2360
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2361
            return -ENOTSUP;
2362
        break;
2363
    case CHR_IOCTL_PP_READ_STATUS:
2364
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2365
            return -ENOTSUP;
2366
        *(uint8_t *)arg = b;
2367
        break;
2368
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2369
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2370
            struct ParallelIOArg *parg = arg;
2371
            int n = read(fd, parg->buffer, parg->count);
2372
            if (n != parg->count) {
2373
                return -EIO;
2374
            }
2375
        }
2376
        break;
2377
    case CHR_IOCTL_PP_EPP_READ:
2378
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2379
            struct ParallelIOArg *parg = arg;
2380
            int n = read(fd, parg->buffer, parg->count);
2381
            if (n != parg->count) {
2382
                return -EIO;
2383
            }
2384
        }
2385
        break;
2386
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2387
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2388
            struct ParallelIOArg *parg = arg;
2389
            int n = write(fd, parg->buffer, parg->count);
2390
            if (n != parg->count) {
2391
                return -EIO;
2392
            }
2393
        }
2394
        break;
2395
    case CHR_IOCTL_PP_EPP_WRITE:
2396
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2397
            struct ParallelIOArg *parg = arg;
2398
            int n = write(fd, parg->buffer, parg->count);
2399
            if (n != parg->count) {
2400
                return -EIO;
2401
            }
2402
        }
2403
        break;
2404
    default:
2405
        return -ENOTSUP;
2406
    }
2407
    return 0;
2408
}
2409

    
2410
static void pp_close(CharDriverState *chr)
2411
{
2412
    ParallelCharDriver *drv = chr->opaque;
2413
    int fd = drv->fd;
2414

    
2415
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2416
    ioctl(fd, PPRELEASE);
2417
    close(fd);
2418
    qemu_free(drv);
2419
}
2420

    
2421
static CharDriverState *qemu_chr_open_pp(const char *filename)
2422
{
2423
    CharDriverState *chr;
2424
    ParallelCharDriver *drv;
2425
    int fd;
2426

    
2427
    TFR(fd = open(filename, O_RDWR));
2428
    if (fd < 0)
2429
        return NULL;
2430

    
2431
    if (ioctl(fd, PPCLAIM) < 0) {
2432
        close(fd);
2433
        return NULL;
2434
    }
2435

    
2436
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2437
    if (!drv) {
2438
        close(fd);
2439
        return NULL;
2440
    }
2441
    drv->fd = fd;
2442
    drv->mode = IEEE1284_MODE_COMPAT;
2443

    
2444
    chr = qemu_mallocz(sizeof(CharDriverState));
2445
    if (!chr) {
2446
        qemu_free(drv);
2447
        close(fd);
2448
        return NULL;
2449
    }
2450
    chr->chr_write = null_chr_write;
2451
    chr->chr_ioctl = pp_ioctl;
2452
    chr->chr_close = pp_close;
2453
    chr->opaque = drv;
2454

    
2455
    qemu_chr_reset(chr);
2456

    
2457
    return chr;
2458
}
2459
#endif /* __linux__ */
2460

    
2461
#else /* _WIN32 */
2462

    
2463
typedef struct {
2464
    int max_size;
2465
    HANDLE hcom, hrecv, hsend;
2466
    OVERLAPPED orecv, osend;
2467
    BOOL fpipe;
2468
    DWORD len;
2469
} WinCharState;
2470

    
2471
#define NSENDBUF 2048
2472
#define NRECVBUF 2048
2473
#define MAXCONNECT 1
2474
#define NTIMEOUT 5000
2475

    
2476
static int win_chr_poll(void *opaque);
2477
static int win_chr_pipe_poll(void *opaque);
2478

    
2479
static void win_chr_close(CharDriverState *chr)
2480
{
2481
    WinCharState *s = chr->opaque;
2482

    
2483
    if (s->hsend) {
2484
        CloseHandle(s->hsend);
2485
        s->hsend = NULL;
2486
    }
2487
    if (s->hrecv) {
2488
        CloseHandle(s->hrecv);
2489
        s->hrecv = NULL;
2490
    }
2491
    if (s->hcom) {
2492
        CloseHandle(s->hcom);
2493
        s->hcom = NULL;
2494
    }
2495
    if (s->fpipe)
2496
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2497
    else
2498
        qemu_del_polling_cb(win_chr_poll, chr);
2499
}
2500

    
2501
static int win_chr_init(CharDriverState *chr, const char *filename)
2502
{
2503
    WinCharState *s = chr->opaque;
2504
    COMMCONFIG comcfg;
2505
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2506
    COMSTAT comstat;
2507
    DWORD size;
2508
    DWORD err;
2509
   
2510
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2511
    if (!s->hsend) {
2512
        fprintf(stderr, "Failed CreateEvent\n");
2513
        goto fail;
2514
    }
2515
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2516
    if (!s->hrecv) {
2517
        fprintf(stderr, "Failed CreateEvent\n");
2518
        goto fail;
2519
    }
2520

    
2521
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2522
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2523
    if (s->hcom == INVALID_HANDLE_VALUE) {
2524
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2525
        s->hcom = NULL;
2526
        goto fail;
2527
    }
2528
   
2529
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2530
        fprintf(stderr, "Failed SetupComm\n");
2531
        goto fail;
2532
    }
2533
   
2534
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2535
    size = sizeof(COMMCONFIG);
2536
    GetDefaultCommConfig(filename, &comcfg, &size);
2537
    comcfg.dcb.DCBlength = sizeof(DCB);
2538
    CommConfigDialog(filename, NULL, &comcfg);
2539

    
2540
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2541
        fprintf(stderr, "Failed SetCommState\n");
2542
        goto fail;
2543
    }
2544

    
2545
    if (!SetCommMask(s->hcom, EV_ERR)) {
2546
        fprintf(stderr, "Failed SetCommMask\n");
2547
        goto fail;
2548
    }
2549

    
2550
    cto.ReadIntervalTimeout = MAXDWORD;
2551
    if (!SetCommTimeouts(s->hcom, &cto)) {
2552
        fprintf(stderr, "Failed SetCommTimeouts\n");
2553
        goto fail;
2554
    }
2555
   
2556
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2557
        fprintf(stderr, "Failed ClearCommError\n");
2558
        goto fail;
2559
    }
2560
    qemu_add_polling_cb(win_chr_poll, chr);
2561
    return 0;
2562

    
2563
 fail:
2564
    win_chr_close(chr);
2565
    return -1;
2566
}
2567

    
2568
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2569
{
2570
    WinCharState *s = chr->opaque;
2571
    DWORD len, ret, size, err;
2572

    
2573
    len = len1;
2574
    ZeroMemory(&s->osend, sizeof(s->osend));
2575
    s->osend.hEvent = s->hsend;
2576
    while (len > 0) {
2577
        if (s->hsend)
2578
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2579
        else
2580
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2581
        if (!ret) {
2582
            err = GetLastError();
2583
            if (err == ERROR_IO_PENDING) {
2584
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2585
                if (ret) {
2586
                    buf += size;
2587
                    len -= size;
2588
                } else {
2589
                    break;
2590
                }
2591
            } else {
2592
                break;
2593
            }
2594
        } else {
2595
            buf += size;
2596
            len -= size;
2597
        }
2598
    }
2599
    return len1 - len;
2600
}
2601

    
2602
static int win_chr_read_poll(CharDriverState *chr)
2603
{
2604
    WinCharState *s = chr->opaque;
2605

    
2606
    s->max_size = qemu_chr_can_read(chr);
2607
    return s->max_size;
2608
}
2609

    
2610
static void win_chr_readfile(CharDriverState *chr)
2611
{
2612
    WinCharState *s = chr->opaque;
2613
    int ret, err;
2614
    uint8_t buf[1024];
2615
    DWORD size;
2616
   
2617
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2618
    s->orecv.hEvent = s->hrecv;
2619
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2620
    if (!ret) {
2621
        err = GetLastError();
2622
        if (err == ERROR_IO_PENDING) {
2623
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2624
        }
2625
    }
2626

    
2627
    if (size > 0) {
2628
        qemu_chr_read(chr, buf, size);
2629
    }
2630
}
2631

    
2632
static void win_chr_read(CharDriverState *chr)
2633
{
2634
    WinCharState *s = chr->opaque;
2635

    
2636
    if (s->len > s->max_size)
2637
        s->len = s->max_size;
2638
    if (s->len == 0)
2639
        return;
2640
   
2641
    win_chr_readfile(chr);
2642
}
2643

    
2644
static int win_chr_poll(void *opaque)
2645
{
2646
    CharDriverState *chr = opaque;
2647
    WinCharState *s = chr->opaque;
2648
    COMSTAT status;
2649
    DWORD comerr;
2650
   
2651
    ClearCommError(s->hcom, &comerr, &status);
2652
    if (status.cbInQue > 0) {
2653
        s->len = status.cbInQue;
2654
        win_chr_read_poll(chr);
2655
        win_chr_read(chr);
2656
        return 1;
2657
    }
2658
    return 0;
2659
}
2660

    
2661
static CharDriverState *qemu_chr_open_win(const char *filename)
2662
{
2663
    CharDriverState *chr;
2664
    WinCharState *s;
2665
   
2666
    chr = qemu_mallocz(sizeof(CharDriverState));
2667
    if (!chr)
2668
        return NULL;
2669
    s = qemu_mallocz(sizeof(WinCharState));
2670
    if (!s) {
2671
        free(chr);
2672
        return NULL;
2673
    }
2674
    chr->opaque = s;
2675
    chr->chr_write = win_chr_write;
2676
    chr->chr_close = win_chr_close;
2677

    
2678
    if (win_chr_init(chr, filename) < 0) {
2679
        free(s);
2680
        free(chr);
2681
        return NULL;
2682
    }
2683
    qemu_chr_reset(chr);
2684
    return chr;
2685
}
2686

    
2687
static int win_chr_pipe_poll(void *opaque)
2688
{
2689
    CharDriverState *chr = opaque;
2690
    WinCharState *s = chr->opaque;
2691
    DWORD size;
2692

    
2693
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2694
    if (size > 0) {
2695
        s->len = size;
2696
        win_chr_read_poll(chr);
2697
        win_chr_read(chr);
2698
        return 1;
2699
    }
2700
    return 0;
2701
}
2702

    
2703
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2704
{
2705
    WinCharState *s = chr->opaque;
2706
    OVERLAPPED ov;
2707
    int ret;
2708
    DWORD size;
2709
    char openname[256];
2710
   
2711
    s->fpipe = TRUE;
2712

    
2713
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2714
    if (!s->hsend) {
2715
        fprintf(stderr, "Failed CreateEvent\n");
2716
        goto fail;
2717
    }
2718
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2719
    if (!s->hrecv) {
2720
        fprintf(stderr, "Failed CreateEvent\n");
2721
        goto fail;
2722
    }
2723
   
2724
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2725
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2726
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2727
                              PIPE_WAIT,
2728
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2729
    if (s->hcom == INVALID_HANDLE_VALUE) {
2730
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2731
        s->hcom = NULL;
2732
        goto fail;
2733
    }
2734

    
2735
    ZeroMemory(&ov, sizeof(ov));
2736
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2737
    ret = ConnectNamedPipe(s->hcom, &ov);
2738
    if (ret) {
2739
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2740
        goto fail;
2741
    }
2742

    
2743
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2744
    if (!ret) {
2745
        fprintf(stderr, "Failed GetOverlappedResult\n");
2746
        if (ov.hEvent) {
2747
            CloseHandle(ov.hEvent);
2748
            ov.hEvent = NULL;
2749
        }
2750
        goto fail;
2751
    }
2752

    
2753
    if (ov.hEvent) {
2754
        CloseHandle(ov.hEvent);
2755
        ov.hEvent = NULL;
2756
    }
2757
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2758
    return 0;
2759

    
2760
 fail:
2761
    win_chr_close(chr);
2762
    return -1;
2763
}
2764

    
2765

    
2766
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2767
{
2768
    CharDriverState *chr;
2769
    WinCharState *s;
2770

    
2771
    chr = qemu_mallocz(sizeof(CharDriverState));
2772
    if (!chr)
2773
        return NULL;
2774
    s = qemu_mallocz(sizeof(WinCharState));
2775
    if (!s) {
2776
        free(chr);
2777
        return NULL;
2778
    }
2779
    chr->opaque = s;
2780
    chr->chr_write = win_chr_write;
2781
    chr->chr_close = win_chr_close;
2782
   
2783
    if (win_chr_pipe_init(chr, filename) < 0) {
2784
        free(s);
2785
        free(chr);
2786
        return NULL;
2787
    }
2788
    qemu_chr_reset(chr);
2789
    return chr;
2790
}
2791

    
2792
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2793
{
2794
    CharDriverState *chr;
2795
    WinCharState *s;
2796

    
2797
    chr = qemu_mallocz(sizeof(CharDriverState));
2798
    if (!chr)
2799
        return NULL;
2800
    s = qemu_mallocz(sizeof(WinCharState));
2801
    if (!s) {
2802
        free(chr);
2803
        return NULL;
2804
    }
2805
    s->hcom = fd_out;
2806
    chr->opaque = s;
2807
    chr->chr_write = win_chr_write;
2808
    qemu_chr_reset(chr);
2809
    return chr;
2810
}
2811

    
2812
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2813
{
2814
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2815
}
2816

    
2817
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2818
{
2819
    HANDLE fd_out;
2820
   
2821
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2822
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2823
    if (fd_out == INVALID_HANDLE_VALUE)
2824
        return NULL;
2825

    
2826
    return qemu_chr_open_win_file(fd_out);
2827
}
2828
#endif /* !_WIN32 */
2829

    
2830
/***********************************************************/
2831
/* UDP Net console */
2832

    
2833
typedef struct {
2834
    int fd;
2835
    struct sockaddr_in daddr;
2836
    char buf[1024];
2837
    int bufcnt;
2838
    int bufptr;
2839
    int max_size;
2840
} NetCharDriver;
2841

    
2842
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2843
{
2844
    NetCharDriver *s = chr->opaque;
2845

    
2846
    return sendto(s->fd, buf, len, 0,
2847
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2848
}
2849

    
2850
static int udp_chr_read_poll(void *opaque)
2851
{
2852
    CharDriverState *chr = opaque;
2853
    NetCharDriver *s = chr->opaque;
2854

    
2855
    s->max_size = qemu_chr_can_read(chr);
2856

    
2857
    /* If there were any stray characters in the queue process them
2858
     * first
2859
     */
2860
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2861
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2862
        s->bufptr++;
2863
        s->max_size = qemu_chr_can_read(chr);
2864
    }
2865
    return s->max_size;
2866
}
2867

    
2868
static void udp_chr_read(void *opaque)
2869
{
2870
    CharDriverState *chr = opaque;
2871
    NetCharDriver *s = chr->opaque;
2872

    
2873
    if (s->max_size == 0)
2874
        return;
2875
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2876
    s->bufptr = s->bufcnt;
2877
    if (s->bufcnt <= 0)
2878
        return;
2879

    
2880
    s->bufptr = 0;
2881
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2882
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2883
        s->bufptr++;
2884
        s->max_size = qemu_chr_can_read(chr);
2885
    }
2886
}
2887

    
2888
static void udp_chr_update_read_handler(CharDriverState *chr)
2889
{
2890
    NetCharDriver *s = chr->opaque;
2891

    
2892
    if (s->fd >= 0) {
2893
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2894
                             udp_chr_read, NULL, chr);
2895
    }
2896
}
2897

    
2898
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2899
#ifndef _WIN32
2900
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2901
#endif
2902
int parse_host_src_port(struct sockaddr_in *haddr,
2903
                        struct sockaddr_in *saddr,
2904
                        const char *str);
2905

    
2906
static CharDriverState *qemu_chr_open_udp(const char *def)
2907
{
2908
    CharDriverState *chr = NULL;
2909
    NetCharDriver *s = NULL;
2910
    int fd = -1;
2911
    struct sockaddr_in saddr;
2912

    
2913
    chr = qemu_mallocz(sizeof(CharDriverState));
2914
    if (!chr)
2915
        goto return_err;
2916
    s = qemu_mallocz(sizeof(NetCharDriver));
2917
    if (!s)
2918
        goto return_err;
2919

    
2920
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2921
    if (fd < 0) {
2922
        perror("socket(PF_INET, SOCK_DGRAM)");
2923
        goto return_err;
2924
    }
2925

    
2926
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2927
        printf("Could not parse: %s\n", def);
2928
        goto return_err;
2929
    }
2930

    
2931
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2932
    {
2933
        perror("bind");
2934
        goto return_err;
2935
    }
2936

    
2937
    s->fd = fd;
2938
    s->bufcnt = 0;
2939
    s->bufptr = 0;
2940
    chr->opaque = s;
2941
    chr->chr_write = udp_chr_write;
2942
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2943
    return chr;
2944

    
2945
return_err:
2946
    if (chr)
2947
        free(chr);
2948
    if (s)
2949
        free(s);
2950
    if (fd >= 0)
2951
        closesocket(fd);
2952
    return NULL;
2953
}
2954

    
2955
/***********************************************************/
2956
/* TCP Net console */
2957

    
2958
typedef struct {
2959
    int fd, listen_fd;
2960
    int connected;
2961
    int max_size;
2962
    int do_telnetopt;
2963
    int do_nodelay;
2964
    int is_unix;
2965
} TCPCharDriver;
2966

    
2967
static void tcp_chr_accept(void *opaque);
2968

    
2969
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2970
{
2971
    TCPCharDriver *s = chr->opaque;
2972
    if (s->connected) {
2973
        return send_all(s->fd, buf, len);
2974
    } else {
2975
        /* XXX: indicate an error ? */
2976
        return len;
2977
    }
2978
}
2979

    
2980
static int tcp_chr_read_poll(void *opaque)
2981
{
2982
    CharDriverState *chr = opaque;
2983
    TCPCharDriver *s = chr->opaque;
2984
    if (!s->connected)
2985
        return 0;
2986
    s->max_size = qemu_chr_can_read(chr);
2987
    return s->max_size;
2988
}
2989

    
2990
#define IAC 255
2991
#define IAC_BREAK 243
2992
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2993
                                      TCPCharDriver *s,
2994
                                      char *buf, int *size)
2995
{
2996
    /* Handle any telnet client's basic IAC options to satisfy char by
2997
     * char mode with no echo.  All IAC options will be removed from
2998
     * the buf and the do_telnetopt variable will be used to track the
2999
     * state of the width of the IAC information.
3000
     *
3001
     * IAC commands come in sets of 3 bytes with the exception of the
3002
     * "IAC BREAK" command and the double IAC.
3003
     */
3004

    
3005
    int i;
3006
    int j = 0;
3007

    
3008
    for (i = 0; i < *size; i++) {
3009
        if (s->do_telnetopt > 1) {
3010
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3011
                /* Double IAC means send an IAC */
3012
                if (j != i)
3013
                    buf[j] = buf[i];
3014
                j++;
3015
                s->do_telnetopt = 1;
3016
            } else {
3017
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3018
                    /* Handle IAC break commands by sending a serial break */
3019
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3020
                    s->do_telnetopt++;
3021
                }
3022
                s->do_telnetopt++;
3023
            }
3024
            if (s->do_telnetopt >= 4) {
3025
                s->do_telnetopt = 1;
3026
            }
3027
        } else {
3028
            if ((unsigned char)buf[i] == IAC) {
3029
                s->do_telnetopt = 2;
3030
            } else {
3031
                if (j != i)
3032
                    buf[j] = buf[i];
3033
                j++;
3034
            }
3035
        }
3036
    }
3037
    *size = j;
3038
}
3039

    
3040
static void tcp_chr_read(void *opaque)
3041
{
3042
    CharDriverState *chr = opaque;
3043
    TCPCharDriver *s = chr->opaque;
3044
    uint8_t buf[1024];
3045
    int len, size;
3046

    
3047
    if (!s->connected || s->max_size <= 0)
3048
        return;
3049
    len = sizeof(buf);
3050
    if (len > s->max_size)
3051
        len = s->max_size;
3052
    size = recv(s->fd, buf, len, 0);
3053
    if (size == 0) {
3054
        /* connection closed */
3055
        s->connected = 0;
3056
        if (s->listen_fd >= 0) {
3057
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3058
        }
3059
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3060
        closesocket(s->fd);
3061
        s->fd = -1;
3062
    } else if (size > 0) {
3063
        if (s->do_telnetopt)
3064
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3065
        if (size > 0)
3066
            qemu_chr_read(chr, buf, size);
3067
    }
3068
}
3069

    
3070
static void tcp_chr_connect(void *opaque)
3071
{
3072
    CharDriverState *chr = opaque;
3073
    TCPCharDriver *s = chr->opaque;
3074

    
3075
    s->connected = 1;
3076
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3077
                         tcp_chr_read, NULL, chr);
3078
    qemu_chr_reset(chr);
3079
}
3080

    
3081
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3082
static void tcp_chr_telnet_init(int fd)
3083
{
3084
    char buf[3];
3085
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3086
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3087
    send(fd, (char *)buf, 3, 0);
3088
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3089
    send(fd, (char *)buf, 3, 0);
3090
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3091
    send(fd, (char *)buf, 3, 0);
3092
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3093
    send(fd, (char *)buf, 3, 0);
3094
}
3095

    
3096
static void socket_set_nodelay(int fd)
3097
{
3098
    int val = 1;
3099
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3100
}
3101

    
3102
static void tcp_chr_accept(void *opaque)
3103
{
3104
    CharDriverState *chr = opaque;
3105
    TCPCharDriver *s = chr->opaque;
3106
    struct sockaddr_in saddr;
3107
#ifndef _WIN32
3108
    struct sockaddr_un uaddr;
3109
#endif
3110
    struct sockaddr *addr;
3111
    socklen_t len;
3112
    int fd;
3113

    
3114
    for(;;) {
3115
#ifndef _WIN32
3116
        if (s->is_unix) {
3117
            len = sizeof(uaddr);
3118
            addr = (struct sockaddr *)&uaddr;
3119
        } else
3120
#endif
3121
        {
3122
            len = sizeof(saddr);
3123
            addr = (struct sockaddr *)&saddr;
3124
        }
3125
        fd = accept(s->listen_fd, addr, &len);
3126
        if (fd < 0 && errno != EINTR) {
3127
            return;
3128
        } else if (fd >= 0) {
3129
            if (s->do_telnetopt)
3130
                tcp_chr_telnet_init(fd);
3131
            break;
3132
        }
3133
    }
3134
    socket_set_nonblock(fd);
3135
    if (s->do_nodelay)
3136
        socket_set_nodelay(fd);
3137
    s->fd = fd;
3138
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3139
    tcp_chr_connect(chr);
3140
}
3141

    
3142
static void tcp_chr_close(CharDriverState *chr)
3143
{
3144
    TCPCharDriver *s = chr->opaque;
3145
    if (s->fd >= 0)
3146
        closesocket(s->fd);
3147
    if (s->listen_fd >= 0)
3148
        closesocket(s->listen_fd);
3149
    qemu_free(s);
3150
}
3151

    
3152
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3153
                                          int is_telnet,
3154
                                          int is_unix)
3155
{
3156
    CharDriverState *chr = NULL;
3157
    TCPCharDriver *s = NULL;
3158
    int fd = -1, ret, err, val;
3159
    int is_listen = 0;
3160
    int is_waitconnect = 1;
3161
    int do_nodelay = 0;
3162
    const char *ptr;
3163
    struct sockaddr_in saddr;
3164
#ifndef _WIN32
3165
    struct sockaddr_un uaddr;
3166
#endif
3167
    struct sockaddr *addr;
3168
    socklen_t addrlen;
3169

    
3170
#ifndef _WIN32
3171
    if (is_unix) {
3172
        addr = (struct sockaddr *)&uaddr;
3173
        addrlen = sizeof(uaddr);
3174
        if (parse_unix_path(&uaddr, host_str) < 0)
3175
            goto fail;
3176
    } else
3177
#endif
3178
    {
3179
        addr = (struct sockaddr *)&saddr;
3180
        addrlen = sizeof(saddr);
3181
        if (parse_host_port(&saddr, host_str) < 0)
3182
            goto fail;
3183
    }
3184

    
3185
    ptr = host_str;
3186
    while((ptr = strchr(ptr,','))) {
3187
        ptr++;
3188
        if (!strncmp(ptr,"server",6)) {
3189
            is_listen = 1;
3190
        } else if (!strncmp(ptr,"nowait",6)) {
3191
            is_waitconnect = 0;
3192
        } else if (!strncmp(ptr,"nodelay",6)) {
3193
            do_nodelay = 1;
3194
        } else {
3195
            printf("Unknown option: %s\n", ptr);
3196
            goto fail;
3197
        }
3198
    }
3199
    if (!is_listen)
3200
        is_waitconnect = 0;
3201

    
3202
    chr = qemu_mallocz(sizeof(CharDriverState));
3203
    if (!chr)
3204
        goto fail;
3205
    s = qemu_mallocz(sizeof(TCPCharDriver));
3206
    if (!s)
3207
        goto fail;
3208

    
3209
#ifndef _WIN32
3210
    if (is_unix)
3211
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3212
    else
3213
#endif
3214
        fd = socket(PF_INET, SOCK_STREAM, 0);
3215

    
3216
    if (fd < 0)
3217
        goto fail;
3218

    
3219
    if (!is_waitconnect)
3220
        socket_set_nonblock(fd);
3221

    
3222
    s->connected = 0;
3223
    s->fd = -1;
3224
    s->listen_fd = -1;
3225
    s->is_unix = is_unix;
3226
    s->do_nodelay = do_nodelay && !is_unix;
3227

    
3228
    chr->opaque = s;
3229
    chr->chr_write = tcp_chr_write;
3230
    chr->chr_close = tcp_chr_close;
3231

    
3232
    if (is_listen) {
3233
        /* allow fast reuse */
3234
#ifndef _WIN32
3235
        if (is_unix) {
3236
            char path[109];
3237
            strncpy(path, uaddr.sun_path, 108);
3238
            path[108] = 0;
3239
            unlink(path);
3240
        } else
3241
#endif
3242
        {
3243
            val = 1;
3244
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3245
        }
3246
       
3247
        ret = bind(fd, addr, addrlen);
3248
        if (ret < 0)
3249
            goto fail;
3250

    
3251
        ret = listen(fd, 0);
3252
        if (ret < 0)
3253
            goto fail;
3254

    
3255
        s->listen_fd = fd;
3256
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3257
        if (is_telnet)
3258
            s->do_telnetopt = 1;
3259
    } else {
3260
        for(;;) {
3261
            ret = connect(fd, addr, addrlen);
3262
            if (ret < 0) {
3263
                err = socket_error();
3264
                if (err == EINTR || err == EWOULDBLOCK) {
3265
                } else if (err == EINPROGRESS) {
3266
                    break;
3267
#ifdef _WIN32
3268
                } else if (err == WSAEALREADY) {
3269
                    break;
3270
#endif
3271
                } else {
3272
                    goto fail;
3273
                }
3274
            } else {
3275
                s->connected = 1;
3276
                break;
3277
            }
3278
        }
3279
        s->fd = fd;
3280
        socket_set_nodelay(fd);
3281
        if (s->connected)
3282
            tcp_chr_connect(chr);
3283
        else
3284
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3285
    }
3286
   
3287
    if (is_listen && is_waitconnect) {
3288
        printf("QEMU waiting for connection on: %s\n", host_str);
3289
        tcp_chr_accept(chr);
3290
        socket_set_nonblock(s->listen_fd);
3291
    }
3292

    
3293
    return chr;
3294
 fail:
3295
    if (fd >= 0)
3296
        closesocket(fd);
3297
    qemu_free(s);
3298
    qemu_free(chr);
3299
    return NULL;
3300
}
3301

    
3302
CharDriverState *qemu_chr_open(const char *filename)
3303
{
3304
    const char *p;
3305

    
3306
    if (!strcmp(filename, "vc")) {
3307
        return text_console_init(&display_state, 0);
3308
    } else if (strstart(filename, "vc:", &p)) {
3309
        return text_console_init(&display_state, p);
3310
    } else if (!strcmp(filename, "null")) {
3311
        return qemu_chr_open_null();
3312
    } else
3313
    if (strstart(filename, "tcp:", &p)) {
3314
        return qemu_chr_open_tcp(p, 0, 0);
3315
    } else
3316
    if (strstart(filename, "telnet:", &p)) {
3317
        return qemu_chr_open_tcp(p, 1, 0);
3318
    } else
3319
    if (strstart(filename, "udp:", &p)) {
3320
        return qemu_chr_open_udp(p);
3321
    } else
3322
    if (strstart(filename, "mon:", &p)) {
3323
        CharDriverState *drv = qemu_chr_open(p);
3324
        if (drv) {
3325
            drv = qemu_chr_open_mux(drv);
3326
            monitor_init(drv, !nographic);
3327
            return drv;
3328
        }
3329
        printf("Unable to open driver: %s\n", p);
3330
        return 0;
3331
    } else
3332
#ifndef _WIN32
3333
    if (strstart(filename, "unix:", &p)) {
3334
        return qemu_chr_open_tcp(p, 0, 1);
3335
    } else if (strstart(filename, "file:", &p)) {
3336
        return qemu_chr_open_file_out(p);
3337
    } else if (strstart(filename, "pipe:", &p)) {
3338
        return qemu_chr_open_pipe(p);
3339
    } else if (!strcmp(filename, "pty")) {
3340
        return qemu_chr_open_pty();
3341
    } else if (!strcmp(filename, "stdio")) {
3342
        return qemu_chr_open_stdio();
3343
    } else
3344
#if defined(__linux__)
3345
    if (strstart(filename, "/dev/parport", NULL)) {
3346
        return qemu_chr_open_pp(filename);
3347
    } else
3348
#endif
3349
#if defined(__linux__) || defined(__sun__)
3350
    if (strstart(filename, "/dev/", NULL)) {
3351
        return qemu_chr_open_tty(filename);
3352
    } else
3353
#endif
3354
#else /* !_WIN32 */
3355
    if (strstart(filename, "COM", NULL)) {
3356
        return qemu_chr_open_win(filename);
3357
    } else
3358
    if (strstart(filename, "pipe:", &p)) {
3359
        return qemu_chr_open_win_pipe(p);
3360
    } else
3361
    if (strstart(filename, "con:", NULL)) {
3362
        return qemu_chr_open_win_con(filename);
3363
    } else
3364
    if (strstart(filename, "file:", &p)) {
3365
        return qemu_chr_open_win_file_out(p);
3366
    }
3367
#endif
3368
    {
3369
        return NULL;
3370
    }
3371
}
3372

    
3373
void qemu_chr_close(CharDriverState *chr)
3374
{
3375
    if (chr->chr_close)
3376
        chr->chr_close(chr);
3377
}
3378

    
3379
/***********************************************************/
3380
/* network device redirectors */
3381

    
3382
void hex_dump(FILE *f, const uint8_t *buf, int size)
3383
{
3384
    int len, i, j, c;
3385

    
3386
    for(i=0;i<size;i+=16) {
3387
        len = size - i;
3388
        if (len > 16)
3389
            len = 16;
3390
        fprintf(f, "%08x ", i);
3391
        for(j=0;j<16;j++) {
3392
            if (j < len)
3393
                fprintf(f, " %02x", buf[i+j]);
3394
            else
3395
                fprintf(f, "   ");
3396
        }
3397
        fprintf(f, " ");
3398
        for(j=0;j<len;j++) {
3399
            c = buf[i+j];
3400
            if (c < ' ' || c > '~')
3401
                c = '.';
3402
            fprintf(f, "%c", c);
3403
        }
3404
        fprintf(f, "\n");
3405
    }
3406
}
3407

    
3408
static int parse_macaddr(uint8_t *macaddr, const char *p)
3409
{
3410
    int i;
3411
    for(i = 0; i < 6; i++) {
3412
        macaddr[i] = strtol(p, (char **)&p, 16);
3413
        if (i == 5) {
3414
            if (*p != '\0')
3415
                return -1;
3416
        } else {
3417
            if (*p != ':')
3418
                return -1;
3419
            p++;
3420
        }
3421
    }
3422
    return 0;
3423
}
3424

    
3425
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3426
{
3427
    const char *p, *p1;
3428
    int len;
3429
    p = *pp;
3430
    p1 = strchr(p, sep);
3431
    if (!p1)
3432
        return -1;
3433
    len = p1 - p;
3434
    p1++;
3435
    if (buf_size > 0) {
3436
        if (len > buf_size - 1)
3437
            len = buf_size - 1;
3438
        memcpy(buf, p, len);
3439
        buf[len] = '\0';
3440
    }
3441
    *pp = p1;
3442
    return 0;
3443
}
3444

    
3445
int parse_host_src_port(struct sockaddr_in *haddr,
3446
                        struct sockaddr_in *saddr,
3447
                        const char *input_str)
3448
{
3449
    char *str = strdup(input_str);
3450
    char *host_str = str;
3451
    char *src_str;
3452
    char *ptr;
3453

    
3454
    /*
3455
     * Chop off any extra arguments at the end of the string which
3456
     * would start with a comma, then fill in the src port information
3457
     * if it was provided else use the "any address" and "any port".
3458
     */
3459
    if ((ptr = strchr(str,',')))
3460
        *ptr = '\0';
3461

    
3462
    if ((src_str = strchr(input_str,'@'))) {
3463
        *src_str = '\0';
3464
        src_str++;
3465
    }
3466

    
3467
    if (parse_host_port(haddr, host_str) < 0)
3468
        goto fail;
3469

    
3470
    if (!src_str || *src_str == '\0')
3471
        src_str = ":0";
3472

    
3473
    if (parse_host_port(saddr, src_str) < 0)
3474
        goto fail;
3475

    
3476
    free(str);
3477
    return(0);
3478

    
3479
fail:
3480
    free(str);
3481
    return -1;
3482
}
3483

    
3484
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3485
{
3486
    char buf[512];
3487
    struct hostent *he;
3488
    const char *p, *r;
3489
    int port;
3490

    
3491
    p = str;
3492
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3493
        return -1;
3494
    saddr->sin_family = AF_INET;
3495
    if (buf[0] == '\0') {
3496
        saddr->sin_addr.s_addr = 0;
3497
    } else {
3498
        if (isdigit(buf[0])) {
3499
            if (!inet_aton(buf, &saddr->sin_addr))
3500
                return -1;
3501
        } else {
3502
            if ((he = gethostbyname(buf)) == NULL)
3503
                return - 1;
3504
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3505
        }
3506
    }
3507
    port = strtol(p, (char **)&r, 0);
3508
    if (r == p)
3509
        return -1;
3510
    saddr->sin_port = htons(port);
3511
    return 0;
3512
}
3513

    
3514
#ifndef _WIN32
3515
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3516
{
3517
    const char *p;
3518
    int len;
3519

    
3520
    len = MIN(108, strlen(str));
3521
    p = strchr(str, ',');
3522
    if (p)
3523
        len = MIN(len, p - str);
3524

    
3525
    memset(uaddr, 0, sizeof(*uaddr));
3526

    
3527
    uaddr->sun_family = AF_UNIX;
3528
    memcpy(uaddr->sun_path, str, len);
3529

    
3530
    return 0;
3531
}
3532
#endif
3533

    
3534
/* find or alloc a new VLAN */
3535
VLANState *qemu_find_vlan(int id)
3536
{
3537
    VLANState **pvlan, *vlan;
3538
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3539
        if (vlan->id == id)
3540
            return vlan;
3541
    }
3542
    vlan = qemu_mallocz(sizeof(VLANState));
3543
    if (!vlan)
3544
        return NULL;
3545
    vlan->id = id;
3546
    vlan->next = NULL;
3547
    pvlan = &first_vlan;
3548
    while (*pvlan != NULL)
3549
        pvlan = &(*pvlan)->next;
3550
    *pvlan = vlan;
3551
    return vlan;
3552
}
3553

    
3554
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3555
                                      IOReadHandler *fd_read,
3556
                                      IOCanRWHandler *fd_can_read,
3557
                                      void *opaque)
3558
{
3559
    VLANClientState *vc, **pvc;
3560
    vc = qemu_mallocz(sizeof(VLANClientState));
3561
    if (!vc)
3562
        return NULL;
3563
    vc->fd_read = fd_read;
3564
    vc->fd_can_read = fd_can_read;
3565
    vc->opaque = opaque;
3566
    vc->vlan = vlan;
3567

    
3568
    vc->next = NULL;
3569
    pvc = &vlan->first_client;
3570
    while (*pvc != NULL)
3571
        pvc = &(*pvc)->next;
3572
    *pvc = vc;
3573
    return vc;
3574
}
3575

    
3576
int qemu_can_send_packet(VLANClientState *vc1)
3577
{
3578
    VLANState *vlan = vc1->vlan;
3579
    VLANClientState *vc;
3580

    
3581
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3582
        if (vc != vc1) {
3583
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3584
                return 1;
3585
        }
3586
    }
3587
    return 0;
3588
}
3589

    
3590
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3591
{
3592
    VLANState *vlan = vc1->vlan;
3593
    VLANClientState *vc;
3594

    
3595
#if 0
3596
    printf("vlan %d send:\n", vlan->id);
3597
    hex_dump(stdout, buf, size);
3598
#endif
3599
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3600
        if (vc != vc1) {
3601
            vc->fd_read(vc->opaque, buf, size);
3602
        }
3603
    }
3604
}
3605

    
3606
#if defined(CONFIG_SLIRP)
3607

    
3608
/* slirp network adapter */
3609

    
3610
static int slirp_inited;
3611
static VLANClientState *slirp_vc;
3612

    
3613
int slirp_can_output(void)
3614
{
3615
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3616
}
3617

    
3618
void slirp_output(const uint8_t *pkt, int pkt_len)
3619
{
3620
#if 0
3621
    printf("slirp output:\n");
3622
    hex_dump(stdout, pkt, pkt_len);
3623
#endif
3624
    if (!slirp_vc)
3625
        return;
3626
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3627
}
3628

    
3629
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3630
{
3631
#if 0
3632
    printf("slirp input:\n");
3633
    hex_dump(stdout, buf, size);
3634
#endif
3635
    slirp_input(buf, size);
3636
}
3637

    
3638
static int net_slirp_init(VLANState *vlan)
3639
{
3640
    if (!slirp_inited) {
3641
        slirp_inited = 1;
3642
        slirp_init();
3643
    }
3644
    slirp_vc = qemu_new_vlan_client(vlan,
3645
                                    slirp_receive, NULL, NULL);
3646
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3647
    return 0;
3648
}
3649

    
3650
static void net_slirp_redir(const char *redir_str)
3651
{
3652
    int is_udp;
3653
    char buf[256], *r;
3654
    const char *p;
3655
    struct in_addr guest_addr;
3656
    int host_port, guest_port;
3657
   
3658
    if (!slirp_inited) {
3659
        slirp_inited = 1;
3660
        slirp_init();
3661
    }
3662

    
3663
    p = redir_str;
3664
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3665
        goto fail;
3666
    if (!strcmp(buf, "tcp")) {
3667
        is_udp = 0;
3668
    } else if (!strcmp(buf, "udp")) {
3669
        is_udp = 1;
3670
    } else {
3671
        goto fail;
3672
    }
3673

    
3674
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3675
        goto fail;
3676
    host_port = strtol(buf, &r, 0);
3677
    if (r == buf)
3678
        goto fail;
3679

    
3680
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3681
        goto fail;
3682
    if (buf[0] == '\0') {
3683
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3684
    }
3685
    if (!inet_aton(buf, &guest_addr))
3686
        goto fail;
3687
   
3688
    guest_port = strtol(p, &r, 0);
3689
    if (r == p)
3690
        goto fail;
3691
   
3692
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3693
        fprintf(stderr, "qemu: could not set up redirection\n");
3694
        exit(1);
3695
    }
3696
    return;
3697
 fail:
3698
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3699
    exit(1);
3700
}
3701
   
3702
#ifndef _WIN32
3703

    
3704
char smb_dir[1024];
3705

    
3706
static void smb_exit(void)
3707
{
3708
    DIR *d;
3709
    struct dirent *de;
3710
    char filename[1024];
3711

    
3712
    /* erase all the files in the directory */
3713
    d = opendir(smb_dir);
3714
    for(;;) {
3715
        de = readdir(d);
3716
        if (!de)
3717
            break;
3718
        if (strcmp(de->d_name, ".") != 0 &&
3719
            strcmp(de->d_name, "..") != 0) {
3720
            snprintf(filename, sizeof(filename), "%s/%s",
3721
                     smb_dir, de->d_name);
3722
            unlink(filename);
3723
        }
3724
    }
3725
    closedir(d);
3726
    rmdir(smb_dir);
3727
}
3728

    
3729
/* automatic user mode samba server configuration */
3730
void net_slirp_smb(const char *exported_dir)
3731
{
3732
    char smb_conf[1024];
3733
    char smb_cmdline[1024];
3734
    FILE *f;
3735

    
3736
    if (!slirp_inited) {
3737
        slirp_inited = 1;
3738
        slirp_init();
3739
    }
3740

    
3741
    /* XXX: better tmp dir construction */
3742
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3743
    if (mkdir(smb_dir, 0700) < 0) {
3744
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3745
        exit(1);
3746
    }
3747
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3748
   
3749
    f = fopen(smb_conf, "w");
3750
    if (!f) {
3751
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3752
        exit(1);
3753
    }
3754
    fprintf(f,
3755
            "[global]\n"
3756
            "private dir=%s\n"
3757
            "smb ports=0\n"
3758
            "socket address=127.0.0.1\n"
3759
            "pid directory=%s\n"
3760
            "lock directory=%s\n"
3761
            "log file=%s/log.smbd\n"
3762
            "smb passwd file=%s/smbpasswd\n"
3763
            "security = share\n"
3764
            "[qemu]\n"
3765
            "path=%s\n"
3766
            "read only=no\n"
3767
            "guest ok=yes\n",
3768
            smb_dir,
3769
            smb_dir,
3770
            smb_dir,
3771
            smb_dir,
3772
            smb_dir,
3773
            exported_dir
3774
            );
3775
    fclose(f);
3776
    atexit(smb_exit);
3777

    
3778
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3779
             SMBD_COMMAND, smb_conf);
3780
   
3781
    slirp_add_exec(0, smb_cmdline, 4, 139);
3782
}
3783

    
3784
#endif /* !defined(_WIN32) */
3785

    
3786
#endif /* CONFIG_SLIRP */
3787

    
3788
#if !defined(_WIN32)
3789

    
3790
typedef struct TAPState {
3791
    VLANClientState *vc;
3792
    int fd;
3793
} TAPState;
3794

    
3795
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3796
{
3797
    TAPState *s = opaque;
3798
    int ret;
3799
    for(;;) {
3800
        ret = write(s->fd, buf, size);
3801
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3802
        } else {
3803
            break;
3804
        }
3805
    }
3806
}
3807

    
3808
static void tap_send(void *opaque)
3809
{
3810
    TAPState *s = opaque;
3811
    uint8_t buf[4096];
3812
    int size;
3813

    
3814
#ifdef __sun__
3815
    struct strbuf sbuf;
3816
    int f = 0;
3817
    sbuf.maxlen = sizeof(buf);
3818
    sbuf.buf = buf;
3819
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3820
#else
3821
    size = read(s->fd, buf, sizeof(buf));
3822
#endif
3823
    if (size > 0) {
3824
        qemu_send_packet(s->vc, buf, size);
3825
    }
3826
}
3827

    
3828
/* fd support */
3829

    
3830
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3831
{
3832
    TAPState *s;
3833

    
3834
    s = qemu_mallocz(sizeof(TAPState));
3835
    if (!s)
3836
        return NULL;
3837
    s->fd = fd;
3838
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3839
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3840
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3841
    return s;
3842
}
3843

    
3844
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3845
static int tap_open(char *ifname, int ifname_size)
3846
{
3847
    int fd;
3848
    char *dev;
3849
    struct stat s;
3850

    
3851
    TFR(fd = open("/dev/tap", O_RDWR));
3852
    if (fd < 0) {
3853
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3854
        return -1;
3855
    }
3856

    
3857
    fstat(fd, &s);
3858
    dev = devname(s.st_rdev, S_IFCHR);
3859
    pstrcpy(ifname, ifname_size, dev);
3860

    
3861
    fcntl(fd, F_SETFL, O_NONBLOCK);
3862
    return fd;
3863
}
3864
#elif defined(__sun__)
3865
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3866
/*
3867
 * Allocate TAP device, returns opened fd.
3868
 * Stores dev name in the first arg(must be large enough).
3869
 */ 
3870
int tap_alloc(char *dev)
3871
{
3872
    int tap_fd, if_fd, ppa = -1;
3873
    static int ip_fd = 0;
3874
    char *ptr;
3875

    
3876
    static int arp_fd = 0;
3877
    int ip_muxid, arp_muxid;
3878
    struct strioctl  strioc_if, strioc_ppa;
3879
    int link_type = I_PLINK;;
3880
    struct lifreq ifr;
3881
    char actual_name[32] = "";
3882

    
3883
    memset(&ifr, 0x0, sizeof(ifr));
3884

    
3885
    if( *dev ){
3886
       ptr = dev;
3887
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
3888
       ppa = atoi(ptr);
3889
    }
3890

    
3891
    /* Check if IP device was opened */
3892
    if( ip_fd )
3893
       close(ip_fd);
3894

    
3895
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3896
    if (ip_fd < 0) {
3897
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3898
       return -1;
3899
    }
3900

    
3901
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3902
    if (tap_fd < 0) {
3903
       syslog(LOG_ERR, "Can't open /dev/tap");
3904
       return -1;
3905
    }
3906

    
3907
    /* Assign a new PPA and get its unit number. */
3908
    strioc_ppa.ic_cmd = TUNNEWPPA;
3909
    strioc_ppa.ic_timout = 0;
3910
    strioc_ppa.ic_len = sizeof(ppa);
3911
    strioc_ppa.ic_dp = (char *)&ppa;
3912
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3913
       syslog (LOG_ERR, "Can't assign new interface");
3914

    
3915
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3916
    if (if_fd < 0) {
3917
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3918
       return -1;
3919
    }
3920
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3921
       syslog(LOG_ERR, "Can't push IP module");
3922
       return -1;
3923
    }
3924

    
3925
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3926
        syslog(LOG_ERR, "Can't get flags\n");
3927

    
3928
    snprintf (actual_name, 32, "tap%d", ppa);
3929
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3930

    
3931
    ifr.lifr_ppa = ppa;
3932
    /* Assign ppa according to the unit number returned by tun device */
3933

    
3934
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3935
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3936
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3937
        syslog (LOG_ERR, "Can't get flags\n");
3938
    /* Push arp module to if_fd */
3939
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3940
        syslog (LOG_ERR, "Can't push ARP module (2)");
3941

    
3942
    /* Push arp module to ip_fd */
3943
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3944
        syslog (LOG_ERR, "I_POP failed\n");
3945
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3946
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3947
    /* Open arp_fd */
3948
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3949
    if (arp_fd < 0)
3950
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3951

    
3952
    /* Set ifname to arp */
3953
    strioc_if.ic_cmd = SIOCSLIFNAME;
3954
    strioc_if.ic_timout = 0;
3955
    strioc_if.ic_len = sizeof(ifr);
3956
    strioc_if.ic_dp = (char *)&ifr;
3957
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3958
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3959
    }
3960

    
3961
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3962
       syslog(LOG_ERR, "Can't link TAP device to IP");
3963
       return -1;
3964
    }
3965

    
3966
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3967
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3968

    
3969
    close (if_fd);
3970

    
3971
    memset(&ifr, 0x0, sizeof(ifr));
3972
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3973
    ifr.lifr_ip_muxid  = ip_muxid;
3974
    ifr.lifr_arp_muxid = arp_muxid;
3975

    
3976
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3977
    {
3978
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3979
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3980
      syslog (LOG_ERR, "Can't set multiplexor id");
3981
    }
3982

    
3983
    sprintf(dev, "tap%d", ppa);
3984
    return tap_fd;
3985
}
3986

    
3987
static int tap_open(char *ifname, int ifname_size)
3988
{
3989
    char  dev[10]="";
3990
    int fd;
3991
    if( (fd = tap_alloc(dev)) < 0 ){
3992
       fprintf(stderr, "Cannot allocate TAP device\n");
3993
       return -1;
3994
    }
3995
    pstrcpy(ifname, ifname_size, dev);
3996
    fcntl(fd, F_SETFL, O_NONBLOCK);
3997
    return fd;
3998
}
3999
#else
4000
static int tap_open(char *ifname, int ifname_size)
4001
{
4002
    struct ifreq ifr;
4003
    int fd, ret;
4004
   
4005
    TFR(fd = open("/dev/net/tun", O_RDWR));
4006
    if (fd < 0) {
4007
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4008
        return -1;
4009
    }
4010
    memset(&ifr, 0, sizeof(ifr));
4011
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4012
    if (ifname[0] != '\0')
4013
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4014
    else
4015
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4016
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4017
    if (ret != 0) {
4018
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4019
        close(fd);
4020
        return -1;
4021
    }
4022
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4023
    fcntl(fd, F_SETFL, O_NONBLOCK);
4024
    return fd;
4025
}
4026
#endif
4027

    
4028
static int net_tap_init(VLANState *vlan, const char *ifname1,
4029
                        const char *setup_script)
4030
{
4031
    TAPState *s;
4032
    int pid, status, fd;
4033
    char *args[3];
4034
    char **parg;
4035
    char ifname[128];
4036

    
4037
    if (ifname1 != NULL)
4038
        pstrcpy(ifname, sizeof(ifname), ifname1);
4039
    else
4040
        ifname[0] = '\0';
4041
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4042
    if (fd < 0)
4043
        return -1;
4044

    
4045
    if (!setup_script || !strcmp(setup_script, "no"))
4046
        setup_script = "";
4047
    if (setup_script[0] != '\0') {
4048
        /* try to launch network init script */
4049
        pid = fork();
4050
        if (pid >= 0) {
4051
            if (pid == 0) {
4052
                int open_max = sysconf (_SC_OPEN_MAX), i;
4053
                for (i = 0; i < open_max; i++)
4054
                    if (i != STDIN_FILENO &&
4055
                        i != STDOUT_FILENO &&
4056
                        i != STDERR_FILENO &&
4057
                        i != fd)
4058
                        close(i);
4059

    
4060
                parg = args;
4061
                *parg++ = (char *)setup_script;
4062
                *parg++ = ifname;
4063
                *parg++ = NULL;
4064
                execv(setup_script, args);
4065
                _exit(1);
4066
            }
4067
            while (waitpid(pid, &status, 0) != pid);
4068
            if (!WIFEXITED(status) ||
4069
                WEXITSTATUS(status) != 0) {
4070
                fprintf(stderr, "%s: could not launch network script\n",
4071
                        setup_script);
4072
                return -1;
4073
            }
4074
        }
4075
    }
4076
    s = net_tap_fd_init(vlan, fd);
4077
    if (!s)
4078
        return -1;
4079
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4080
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4081
    return 0;
4082
}
4083

    
4084
#endif /* !_WIN32 */
4085

    
4086
/* network connection */
4087
typedef struct NetSocketState {
4088
    VLANClientState *vc;
4089
    int fd;
4090
    int state; /* 0 = getting length, 1 = getting data */
4091
    int index;
4092
    int packet_len;
4093
    uint8_t buf[4096];
4094
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4095
} NetSocketState;
4096

    
4097
typedef struct NetSocketListenState {
4098
    VLANState *vlan;
4099
    int fd;
4100
} NetSocketListenState;
4101

    
4102
/* XXX: we consider we can send the whole packet without blocking */
4103
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4104
{
4105
    NetSocketState *s = opaque;
4106
    uint32_t len;
4107
    len = htonl(size);
4108

    
4109
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4110
    send_all(s->fd, buf, size);
4111
}
4112

    
4113
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4114
{
4115
    NetSocketState *s = opaque;
4116
    sendto(s->fd, buf, size, 0,
4117
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4118
}
4119

    
4120
static void net_socket_send(void *opaque)
4121
{
4122
    NetSocketState *s = opaque;
4123
    int l, size, err;
4124
    uint8_t buf1[4096];
4125
    const uint8_t *buf;
4126

    
4127
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4128
    if (size < 0) {
4129
        err = socket_error();
4130
        if (err != EWOULDBLOCK)
4131
            goto eoc;
4132
    } else if (size == 0) {
4133
        /* end of connection */
4134
    eoc:
4135
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4136
        closesocket(s->fd);
4137
        return;
4138
    }
4139
    buf = buf1;
4140
    while (size > 0) {
4141
        /* reassemble a packet from the network */
4142
        switch(s->state) {
4143
        case 0:
4144
            l = 4 - s->index;
4145
            if (l > size)
4146
                l = size;
4147
            memcpy(s->buf + s->index, buf, l);
4148
            buf += l;
4149
            size -= l;
4150
            s->index += l;
4151
            if (s->index == 4) {
4152
                /* got length */
4153
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4154
                s->index = 0;
4155
                s->state = 1;
4156
            }
4157
            break;
4158
        case 1:
4159
            l = s->packet_len - s->index;
4160
            if (l > size)
4161
                l = size;
4162
            memcpy(s->buf + s->index, buf, l);
4163
            s->index += l;
4164
            buf += l;
4165
            size -= l;
4166
            if (s->index >= s->packet_len) {
4167
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4168
                s->index = 0;
4169
                s->state = 0;
4170
            }
4171
            break;
4172
        }
4173
    }
4174
}
4175

    
4176
static void net_socket_send_dgram(void *opaque)
4177
{
4178
    NetSocketState *s = opaque;
4179
    int size;
4180

    
4181
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4182
    if (size < 0)
4183
        return;
4184
    if (size == 0) {
4185
        /* end of connection */
4186
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4187
        return;
4188
    }
4189
    qemu_send_packet(s->vc, s->buf, size);
4190
}
4191

    
4192
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4193
{
4194
    struct ip_mreq imr;
4195
    int fd;
4196
    int val, ret;
4197
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4198
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4199
                inet_ntoa(mcastaddr->sin_addr),
4200
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4201
        return -1;
4202

    
4203
    }
4204
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4205
    if (fd < 0) {
4206
        perror("socket(PF_INET, SOCK_DGRAM)");
4207
        return -1;
4208
    }
4209

    
4210
    val = 1;
4211
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4212
                   (const char *)&val, sizeof(val));
4213
    if (ret < 0) {
4214
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4215
        goto fail;
4216
    }
4217

    
4218
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4219
    if (ret < 0) {
4220
        perror("bind");
4221
        goto fail;
4222
    }
4223
   
4224
    /* Add host to multicast group */
4225
    imr.imr_multiaddr = mcastaddr->sin_addr;
4226
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4227

    
4228
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4229
                     (const char *)&imr, sizeof(struct ip_mreq));
4230
    if (ret < 0) {
4231
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4232
        goto fail;
4233
    }
4234

    
4235
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4236
    val = 1;
4237
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4238
                   (const char *)&val, sizeof(val));
4239
    if (ret < 0) {
4240
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4241
        goto fail;
4242
    }
4243

    
4244
    socket_set_nonblock(fd);
4245
    return fd;
4246
fail:
4247
    if (fd >= 0)
4248
        closesocket(fd);
4249
    return -1;
4250
}
4251

    
4252
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4253
                                          int is_connected)
4254
{
4255
    struct sockaddr_in saddr;
4256
    int newfd;
4257
    socklen_t saddr_len;
4258
    NetSocketState *s;
4259

    
4260
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4261
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4262
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4263
     */
4264

    
4265
    if (is_connected) {
4266
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4267
            /* must be bound */
4268
            if (saddr.sin_addr.s_addr==0) {
4269
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4270
                        fd);
4271
                return NULL;
4272
            }
4273
            /* clone dgram socket */
4274
            newfd = net_socket_mcast_create(&saddr);
4275
            if (newfd < 0) {
4276
                /* error already reported by net_socket_mcast_create() */
4277
                close(fd);
4278
                return NULL;
4279
            }
4280
            /* clone newfd to fd, close newfd */
4281
            dup2(newfd, fd);
4282
            close(newfd);
4283

    
4284
        } else {
4285
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4286
                    fd, strerror(errno));
4287
            return NULL;
4288
        }
4289
    }
4290

    
4291
    s = qemu_mallocz(sizeof(NetSocketState));
4292
    if (!s)
4293
        return NULL;
4294
    s->fd = fd;
4295

    
4296
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4297
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4298

    
4299
    /* mcast: save bound address as dst */
4300
    if (is_connected) s->dgram_dst=saddr;
4301

    
4302
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4303
            "socket: fd=%d (%s mcast=%s:%d)",
4304
            fd, is_connected? "cloned" : "",
4305
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4306
    return s;
4307
}
4308

    
4309
static void net_socket_connect(void *opaque)
4310
{
4311
    NetSocketState *s = opaque;
4312
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4313
}
4314

    
4315
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4316
                                          int is_connected)
4317
{
4318
    NetSocketState *s;
4319
    s = qemu_mallocz(sizeof(NetSocketState));
4320
    if (!s)
4321
        return NULL;
4322
    s->fd = fd;
4323
    s->vc = qemu_new_vlan_client(vlan,
4324
                                 net_socket_receive, NULL, s);
4325
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4326
             "socket: fd=%d", fd);
4327
    if (is_connected) {
4328
        net_socket_connect(s);
4329
    } else {
4330
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4331
    }
4332
    return s;
4333
}
4334

    
4335
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4336
                                          int is_connected)
4337
{
4338
    int so_type=-1, optlen=sizeof(so_type);
4339

    
4340
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4341
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4342
        return NULL;
4343
    }
4344
    switch(so_type) {
4345
    case SOCK_DGRAM:
4346
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4347
    case SOCK_STREAM:
4348
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4349
    default:
4350
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4351
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4352
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4353
    }
4354
    return NULL;
4355
}
4356

    
4357
static void net_socket_accept(void *opaque)
4358
{
4359
    NetSocketListenState *s = opaque;   
4360
    NetSocketState *s1;
4361
    struct sockaddr_in saddr;
4362
    socklen_t len;
4363
    int fd;
4364

    
4365
    for(;;) {
4366
        len = sizeof(saddr);
4367
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4368
        if (fd < 0 && errno != EINTR) {
4369
            return;
4370
        } else if (fd >= 0) {
4371
            break;
4372
        }
4373
    }
4374
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4375
    if (!s1) {
4376
        closesocket(fd);
4377
    } else {
4378
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4379
                 "socket: connection from %s:%d",
4380
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4381
    }
4382
}
4383

    
4384
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4385
{
4386
    NetSocketListenState *s;
4387
    int fd, val, ret;
4388
    struct sockaddr_in saddr;
4389

    
4390
    if (parse_host_port(&saddr, host_str) < 0)
4391
        return -1;
4392
   
4393
    s = qemu_mallocz(sizeof(NetSocketListenState));
4394
    if (!s)
4395
        return -1;
4396

    
4397
    fd = socket(PF_INET, SOCK_STREAM, 0);
4398
    if (fd < 0) {
4399
        perror("socket");
4400
        return -1;
4401
    }
4402
    socket_set_nonblock(fd);
4403

    
4404
    /* allow fast reuse */
4405
    val = 1;
4406
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4407
   
4408
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4409
    if (ret < 0) {
4410
        perror("bind");
4411
        return -1;
4412
    }
4413
    ret = listen(fd, 0);
4414
    if (ret < 0) {
4415
        perror("listen");
4416
        return -1;
4417
    }
4418
    s->vlan = vlan;
4419
    s->fd = fd;
4420
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4421
    return 0;
4422
}
4423

    
4424
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4425
{
4426
    NetSocketState *s;
4427
    int fd, connected, ret, err;
4428
    struct sockaddr_in saddr;
4429

    
4430
    if (parse_host_port(&saddr, host_str) < 0)
4431
        return -1;
4432

    
4433
    fd = socket(PF_INET, SOCK_STREAM, 0);
4434
    if (fd < 0) {
4435
        perror("socket");
4436
        return -1;
4437
    }
4438
    socket_set_nonblock(fd);
4439

    
4440
    connected = 0;
4441
    for(;;) {
4442
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4443
        if (ret < 0) {
4444
            err = socket_error();
4445
            if (err == EINTR || err == EWOULDBLOCK) {
4446
            } else if (err == EINPROGRESS) {
4447
                break;
4448
#ifdef _WIN32
4449
            } else if (err == WSAEALREADY) {
4450
                break;
4451
#endif
4452
            } else {
4453
                perror("connect");
4454
                closesocket(fd);
4455
                return -1;
4456
            }
4457
        } else {
4458
            connected = 1;
4459
            break;
4460
        }
4461
    }
4462
    s = net_socket_fd_init(vlan, fd, connected);
4463
    if (!s)
4464
        return -1;
4465
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4466
             "socket: connect to %s:%d",
4467
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4468
    return 0;
4469
}
4470

    
4471
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4472
{
4473
    NetSocketState *s;
4474
    int fd;
4475
    struct sockaddr_in saddr;
4476

    
4477
    if (parse_host_port(&saddr, host_str) < 0)
4478
        return -1;
4479

    
4480

    
4481
    fd = net_socket_mcast_create(&saddr);
4482
    if (fd < 0)
4483
        return -1;
4484

    
4485
    s = net_socket_fd_init(vlan, fd, 0);
4486
    if (!s)
4487
        return -1;
4488

    
4489
    s->dgram_dst = saddr;
4490
   
4491
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4492
             "socket: mcast=%s:%d",
4493
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4494
    return 0;
4495

    
4496
}
4497

    
4498
static int get_param_value(char *buf, int buf_size,
4499
                           const char *tag, const char *str)
4500
{
4501
    const char *p;
4502
    char *q;
4503
    char option[128];
4504

    
4505
    p = str;
4506
    for(;;) {
4507
        q = option;
4508
        while (*p != '\0' && *p != '=') {
4509
            if ((q - option) < sizeof(option) - 1)
4510
                *q++ = *p;
4511
            p++;
4512
        }
4513
        *q = '\0';
4514
        if (*p != '=')
4515
            break;
4516
        p++;
4517
        if (!strcmp(tag, option)) {
4518
            q = buf;
4519
            while (*p != '\0' && *p != ',') {
4520
                if ((q - buf) < buf_size - 1)
4521
                    *q++ = *p;
4522
                p++;
4523
            }
4524
            *q = '\0';
4525
            return q - buf;
4526
        } else {
4527
            while (*p != '\0' && *p != ',') {
4528
                p++;
4529
            }
4530
        }
4531
        if (*p != ',')
4532
            break;
4533
        p++;
4534
    }
4535
    return 0;
4536
}
4537

    
4538
static int net_client_init(const char *str)
4539
{
4540
    const char *p;
4541
    char *q;
4542
    char device[64];
4543
    char buf[1024];
4544
    int vlan_id, ret;
4545
    VLANState *vlan;
4546

    
4547
    p = str;
4548
    q = device;
4549
    while (*p != '\0' && *p != ',') {
4550
        if ((q - device) < sizeof(device) - 1)
4551
            *q++ = *p;
4552
        p++;
4553
    }
4554
    *q = '\0';
4555
    if (*p == ',')
4556
        p++;
4557
    vlan_id = 0;
4558
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4559
        vlan_id = strtol(buf, NULL, 0);
4560
    }
4561
    vlan = qemu_find_vlan(vlan_id);
4562
    if (!vlan) {
4563
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4564
        return -1;
4565
    }
4566
    if (!strcmp(device, "nic")) {
4567
        NICInfo *nd;
4568
        uint8_t *macaddr;
4569

    
4570
        if (nb_nics >= MAX_NICS) {
4571
            fprintf(stderr, "Too Many NICs\n");
4572
            return -1;
4573
        }
4574
        nd = &nd_table[nb_nics];
4575
        macaddr = nd->macaddr;
4576
        macaddr[0] = 0x52;
4577
        macaddr[1] = 0x54;
4578
        macaddr[2] = 0x00;
4579
        macaddr[3] = 0x12;
4580
        macaddr[4] = 0x34;
4581
        macaddr[5] = 0x56 + nb_nics;
4582

    
4583
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4584
            if (parse_macaddr(macaddr, buf) < 0) {
4585
                fprintf(stderr, "invalid syntax for ethernet address\n");
4586
                return -1;
4587
            }
4588
        }
4589
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4590
            nd->model = strdup(buf);
4591
        }
4592
        nd->vlan = vlan;
4593
        nb_nics++;
4594
        vlan->nb_guest_devs++;
4595
        ret = 0;
4596
    } else
4597
    if (!strcmp(device, "none")) {
4598
        /* does nothing. It is needed to signal that no network cards
4599
           are wanted */
4600
        ret = 0;
4601
    } else
4602
#ifdef CONFIG_SLIRP
4603
    if (!strcmp(device, "user")) {
4604
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4605
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4606
        }
4607
        vlan->nb_host_devs++;
4608
        ret = net_slirp_init(vlan);
4609
    } else
4610
#endif
4611
#ifdef _WIN32
4612
    if (!strcmp(device, "tap")) {
4613
        char ifname[64];
4614
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4615
            fprintf(stderr, "tap: no interface name\n");
4616
            return -1;
4617
        }
4618
        vlan->nb_host_devs++;
4619
        ret = tap_win32_init(vlan, ifname);
4620
    } else
4621
#else
4622
    if (!strcmp(device, "tap")) {
4623
        char ifname[64];
4624
        char setup_script[1024];
4625
        int fd;
4626
        vlan->nb_host_devs++;
4627
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4628
            fd = strtol(buf, NULL, 0);
4629
            ret = -1;
4630
            if (net_tap_fd_init(vlan, fd))
4631
                ret = 0;
4632
        } else {
4633
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4634
                ifname[0] = '\0';
4635
            }
4636
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4637
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4638
            }
4639
            ret = net_tap_init(vlan, ifname, setup_script);
4640
        }
4641
    } else
4642
#endif
4643
    if (!strcmp(device, "socket")) {
4644
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4645
            int fd;
4646
            fd = strtol(buf, NULL, 0);
4647
            ret = -1;
4648
            if (net_socket_fd_init(vlan, fd, 1))
4649
                ret = 0;
4650
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4651
            ret = net_socket_listen_init(vlan, buf);
4652
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4653
            ret = net_socket_connect_init(vlan, buf);
4654
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4655
            ret = net_socket_mcast_init(vlan, buf);
4656
        } else {
4657
            fprintf(stderr, "Unknown socket options: %s\n", p);
4658
            return -1;
4659
        }
4660
        vlan->nb_host_devs++;
4661
    } else
4662
    {
4663
        fprintf(stderr, "Unknown network device: %s\n", device);
4664
        return -1;
4665
    }
4666
    if (ret < 0) {
4667
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4668
    }
4669
   
4670
    return ret;
4671
}
4672

    
4673
void do_info_network(void)
4674
{
4675
    VLANState *vlan;
4676
    VLANClientState *vc;
4677

    
4678
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4679
        term_printf("VLAN %d devices:\n", vlan->id);
4680
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4681
            term_printf("  %s\n", vc->info_str);
4682
    }
4683
}
4684

    
4685
/***********************************************************/
4686
/* USB devices */
4687

    
4688
static USBPort *used_usb_ports;
4689
static USBPort *free_usb_ports;
4690

    
4691
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4692
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4693
                            usb_attachfn attach)
4694
{
4695
    port->opaque = opaque;
4696
    port->index = index;
4697
    port->attach = attach;
4698
    port->next = free_usb_ports;
4699
    free_usb_ports = port;
4700
}
4701

    
4702
static int usb_device_add(const char *devname)
4703
{
4704
    const char *p;
4705
    USBDevice *dev;
4706
    USBPort *port;
4707

    
4708
    if (!free_usb_ports)
4709
        return -1;
4710

    
4711
    if (strstart(devname, "host:", &p)) {
4712
        dev = usb_host_device_open(p);
4713
    } else if (!strcmp(devname, "mouse")) {
4714
        dev = usb_mouse_init();
4715
    } else if (!strcmp(devname, "tablet")) {
4716
        dev = usb_tablet_init();
4717
    } else if (!strcmp(devname, "keyboard")) {
4718
        dev = usb_keyboard_init();
4719
    } else if (strstart(devname, "disk:", &p)) {
4720
        dev = usb_msd_init(p);
4721
    } else if (!strcmp(devname, "wacom-tablet")) {
4722
        dev = usb_wacom_init();
4723
    } else {
4724
        return -1;
4725
    }
4726
    if (!dev)
4727
        return -1;
4728

    
4729
    /* Find a USB port to add the device to.  */
4730
    port = free_usb_ports;
4731
    if (!port->next) {
4732
        USBDevice *hub;
4733

    
4734
        /* Create a new hub and chain it on.  */
4735
        free_usb_ports = NULL;
4736
        port->next = used_usb_ports;
4737
        used_usb_ports = port;
4738

    
4739
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4740
        usb_attach(port, hub);
4741
        port = free_usb_ports;
4742
    }
4743

    
4744
    free_usb_ports = port->next;
4745
    port->next = used_usb_ports;
4746
    used_usb_ports = port;
4747
    usb_attach(port, dev);
4748
    return 0;
4749
}
4750

    
4751
static int usb_device_del(const char *devname)
4752
{
4753
    USBPort *port;
4754
    USBPort **lastp;
4755
    USBDevice *dev;
4756
    int bus_num, addr;
4757
    const char *p;
4758

    
4759
    if (!used_usb_ports)
4760
        return -1;
4761

    
4762
    p = strchr(devname, '.');
4763
    if (!p)
4764
        return -1;
4765
    bus_num = strtoul(devname, NULL, 0);
4766
    addr = strtoul(p + 1, NULL, 0);
4767
    if (bus_num != 0)
4768
        return -1;
4769

    
4770
    lastp = &used_usb_ports;
4771
    port = used_usb_ports;
4772
    while (port && port->dev->addr != addr) {
4773
        lastp = &port->next;
4774
        port = port->next;
4775
    }
4776

    
4777
    if (!port)
4778
        return -1;
4779

    
4780
    dev = port->dev;
4781
    *lastp = port->next;
4782
    usb_attach(port, NULL);
4783
    dev->handle_destroy(dev);
4784
    port->next = free_usb_ports;
4785
    free_usb_ports = port;
4786
    return 0;
4787
}
4788

    
4789
void do_usb_add(const char *devname)
4790
{
4791
    int ret;
4792
    ret = usb_device_add(devname);
4793
    if (ret < 0)
4794
        term_printf("Could not add USB device '%s'\n", devname);
4795
}
4796

    
4797
void do_usb_del(const char *devname)
4798
{
4799
    int ret;
4800
    ret = usb_device_del(devname);
4801
    if (ret < 0)
4802
        term_printf("Could not remove USB device '%s'\n", devname);
4803
}
4804

    
4805
void usb_info(void)
4806
{
4807
    USBDevice *dev;
4808
    USBPort *port;
4809
    const char *speed_str;
4810

    
4811
    if (!usb_enabled) {
4812
        term_printf("USB support not enabled\n");
4813
        return;
4814
    }
4815

    
4816
    for (port = used_usb_ports; port; port = port->next) {
4817
        dev = port->dev;
4818
        if (!dev)
4819
            continue;
4820
        switch(dev->speed) {
4821
        case USB_SPEED_LOW:
4822
            speed_str = "1.5";
4823
            break;
4824
        case USB_SPEED_FULL:
4825
            speed_str = "12";
4826
            break;
4827
        case USB_SPEED_HIGH:
4828
            speed_str = "480";
4829
            break;
4830
        default:
4831
            speed_str = "?";
4832
            break;
4833
        }
4834
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
4835
                    0, dev->addr, speed_str, dev->devname);
4836
    }
4837
}
4838

    
4839
/***********************************************************/
4840
/* PCMCIA/Cardbus */
4841

    
4842
static struct pcmcia_socket_entry_s {
4843
    struct pcmcia_socket_s *socket;
4844
    struct pcmcia_socket_entry_s *next;
4845
} *pcmcia_sockets = 0;
4846

    
4847
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4848
{
4849
    struct pcmcia_socket_entry_s *entry;
4850

    
4851
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4852
    entry->socket = socket;
4853
    entry->next = pcmcia_sockets;
4854
    pcmcia_sockets = entry;
4855
}
4856

    
4857
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4858
{
4859
    struct pcmcia_socket_entry_s *entry, **ptr;
4860

    
4861
    ptr = &pcmcia_sockets;
4862
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4863
        if (entry->socket == socket) {
4864
            *ptr = entry->next;
4865
            qemu_free(entry);
4866
        }
4867
}
4868

    
4869
void pcmcia_info(void)
4870
{
4871
    struct pcmcia_socket_entry_s *iter;
4872
    if (!pcmcia_sockets)
4873
        term_printf("No PCMCIA sockets\n");
4874

    
4875
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4876
        term_printf("%s: %s\n", iter->socket->slot_string,
4877
                    iter->socket->attached ? iter->socket->card_string :
4878
                    "Empty");
4879
}
4880

    
4881
/***********************************************************/
4882
/* dumb display */
4883

    
4884
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4885
{
4886
}
4887

    
4888
static void dumb_resize(DisplayState *ds, int w, int h)
4889
{
4890
}
4891

    
4892
static void dumb_refresh(DisplayState *ds)
4893
{
4894
#if defined(CONFIG_SDL)
4895
    vga_hw_update();
4896
#endif
4897
}
4898

    
4899
static void dumb_display_init(DisplayState *ds)
4900
{
4901
    ds->data = NULL;
4902
    ds->linesize = 0;
4903
    ds->depth = 0;
4904
    ds->dpy_update = dumb_update;
4905
    ds->dpy_resize = dumb_resize;
4906
    ds->dpy_refresh = dumb_refresh;
4907
}
4908

    
4909
/***********************************************************/
4910
/* I/O handling */
4911

    
4912
#define MAX_IO_HANDLERS 64
4913

    
4914
typedef struct IOHandlerRecord {
4915
    int fd;
4916
    IOCanRWHandler *fd_read_poll;
4917
    IOHandler *fd_read;
4918
    IOHandler *fd_write;
4919
    int deleted;
4920
    void *opaque;
4921
    /* temporary data */
4922
    struct pollfd *ufd;
4923
    struct IOHandlerRecord *next;
4924
} IOHandlerRecord;
4925

    
4926
static IOHandlerRecord *first_io_handler;
4927

    
4928
/* XXX: fd_read_poll should be suppressed, but an API change is
4929
   necessary in the character devices to suppress fd_can_read(). */
4930
int qemu_set_fd_handler2(int fd,
4931
                         IOCanRWHandler *fd_read_poll,
4932
                         IOHandler *fd_read,
4933
                         IOHandler *fd_write,
4934
                         void *opaque)
4935
{
4936
    IOHandlerRecord **pioh, *ioh;
4937

    
4938
    if (!fd_read && !fd_write) {
4939
        pioh = &first_io_handler;
4940
        for(;;) {
4941
            ioh = *pioh;
4942
            if (ioh == NULL)
4943
                break;
4944
            if (ioh->fd == fd) {
4945
                ioh->deleted = 1;
4946
                break;
4947
            }
4948
            pioh = &ioh->next;
4949
        }
4950
    } else {
4951
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4952
            if (ioh->fd == fd)
4953
                goto found;
4954
        }
4955
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4956
        if (!ioh)
4957
            return -1;
4958
        ioh->next = first_io_handler;
4959
        first_io_handler = ioh;
4960
    found:
4961
        ioh->fd = fd;
4962
        ioh->fd_read_poll = fd_read_poll;
4963
        ioh->fd_read = fd_read;
4964
        ioh->fd_write = fd_write;
4965
        ioh->opaque = opaque;
4966
        ioh->deleted = 0;
4967
    }
4968
    return 0;
4969
}
4970

    
4971
int qemu_set_fd_handler(int fd,
4972
                        IOHandler *fd_read,
4973
                        IOHandler *fd_write,
4974
                        void *opaque)
4975
{
4976
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4977
}
4978

    
4979
/***********************************************************/
4980
/* Polling handling */
4981

    
4982
typedef struct PollingEntry {
4983
    PollingFunc *func;
4984
    void *opaque;
4985
    struct PollingEntry *next;
4986
} PollingEntry;
4987

    
4988
static PollingEntry *first_polling_entry;
4989

    
4990
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4991
{
4992
    PollingEntry **ppe, *pe;
4993
    pe = qemu_mallocz(sizeof(PollingEntry));
4994
    if (!pe)
4995
        return -1;
4996
    pe->func = func;
4997
    pe->opaque = opaque;
4998
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4999
    *ppe = pe;
5000
    return 0;
5001
}
5002

    
5003
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5004
{
5005
    PollingEntry **ppe, *pe;
5006
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5007
        pe = *ppe;
5008
        if (pe->func == func && pe->opaque == opaque) {
5009
            *ppe = pe->next;
5010
            qemu_free(pe);
5011
            break;
5012
        }
5013
    }
5014
}
5015

    
5016
#ifdef _WIN32
5017
/***********************************************************/
5018
/* Wait objects support */
5019
typedef struct WaitObjects {
5020
    int num;
5021
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5022
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5023
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5024
} WaitObjects;
5025

    
5026
static WaitObjects wait_objects = {0};
5027
   
5028
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5029
{
5030
    WaitObjects *w = &wait_objects;
5031

    
5032
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5033
        return -1;
5034
    w->events[w->num] = handle;
5035
    w->func[w->num] = func;
5036
    w->opaque[w->num] = opaque;
5037
    w->num++;
5038
    return 0;
5039
}
5040

    
5041
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5042
{
5043
    int i, found;
5044
    WaitObjects *w = &wait_objects;
5045

    
5046
    found = 0;
5047
    for (i = 0; i < w->num; i++) {
5048
        if (w->events[i] == handle)
5049
            found = 1;
5050
        if (found) {
5051
            w->events[i] = w->events[i + 1];
5052
            w->func[i] = w->func[i + 1];
5053
            w->opaque[i] = w->opaque[i + 1];
5054
        }           
5055
    }
5056
    if (found)
5057
        w->num--;
5058
}
5059
#endif
5060

    
5061
/***********************************************************/
5062
/* savevm/loadvm support */
5063

    
5064
#define IO_BUF_SIZE 32768
5065

    
5066
struct QEMUFile {
5067
    FILE *outfile;
5068
    BlockDriverState *bs;
5069
    int is_file;
5070
    int is_writable;
5071
    int64_t base_offset;
5072
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5073
                           when reading */
5074
    int buf_index;
5075
    int buf_size; /* 0 when writing */
5076
    uint8_t buf[IO_BUF_SIZE];
5077
};
5078

    
5079
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5080
{
5081
    QEMUFile *f;
5082

    
5083
    f = qemu_mallocz(sizeof(QEMUFile));
5084
    if (!f)
5085
        return NULL;
5086
    if (!strcmp(mode, "wb")) {
5087
        f->is_writable = 1;
5088
    } else if (!strcmp(mode, "rb")) {
5089
        f->is_writable = 0;
5090
    } else {
5091
        goto fail;
5092
    }
5093
    f->outfile = fopen(filename, mode);
5094
    if (!f->outfile)
5095
        goto fail;
5096
    f->is_file = 1;
5097
    return f;
5098
 fail:
5099
    if (f->outfile)
5100
        fclose(f->outfile);
5101
    qemu_free(f);
5102
    return NULL;
5103
}
5104

    
5105
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5106
{
5107
    QEMUFile *f;
5108

    
5109
    f = qemu_mallocz(sizeof(QEMUFile));
5110
    if (!f)
5111
        return NULL;
5112
    f->is_file = 0;
5113
    f->bs = bs;
5114
    f->is_writable = is_writable;
5115
    f->base_offset = offset;
5116
    return f;
5117
}
5118

    
5119
void qemu_fflush(QEMUFile *f)
5120
{
5121
    if (!f->is_writable)
5122
        return;
5123
    if (f->buf_index > 0) {
5124
        if (f->is_file) {
5125
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5126
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5127
        } else {
5128
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5129
                        f->buf, f->buf_index);
5130
        }
5131
        f->buf_offset += f->buf_index;
5132
        f->buf_index = 0;
5133
    }
5134
}
5135

    
5136
static void qemu_fill_buffer(QEMUFile *f)
5137
{
5138
    int len;
5139

    
5140
    if (f->is_writable)
5141
        return;
5142
    if (f->is_file) {
5143
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5144
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5145
        if (len < 0)
5146
            len = 0;
5147
    } else {
5148
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5149
                         f->buf, IO_BUF_SIZE);
5150
        if (len < 0)
5151
            len = 0;
5152
    }
5153
    f->buf_index = 0;
5154
    f->buf_size = len;
5155
    f->buf_offset += len;
5156
}
5157

    
5158
void qemu_fclose(QEMUFile *f)
5159
{
5160
    if (f->is_writable)
5161
        qemu_fflush(f);
5162
    if (f->is_file) {
5163
        fclose(f->outfile);
5164
    }
5165
    qemu_free(f);
5166
}
5167

    
5168
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5169
{
5170
    int l;
5171
    while (size > 0) {
5172
        l = IO_BUF_SIZE - f->buf_index;
5173
        if (l > size)
5174
            l = size;
5175
        memcpy(f->buf + f->buf_index, buf, l);
5176
        f->buf_index += l;
5177
        buf += l;
5178
        size -= l;
5179
        if (f->buf_index >= IO_BUF_SIZE)
5180
            qemu_fflush(f);
5181
    }
5182
}
5183

    
5184
void qemu_put_byte(QEMUFile *f, int v)
5185
{
5186
    f->buf[f->buf_index++] = v;
5187
    if (f->buf_index >= IO_BUF_SIZE)
5188
        qemu_fflush(f);
5189
}
5190

    
5191
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5192
{
5193
    int size, l;
5194

    
5195
    size = size1;
5196
    while (size > 0) {
5197
        l = f->buf_size - f->buf_index;
5198
        if (l == 0) {
5199
            qemu_fill_buffer(f);
5200
            l = f->buf_size - f->buf_index;
5201
            if (l == 0)
5202
                break;
5203
        }
5204
        if (l > size)
5205
            l = size;
5206
        memcpy(buf, f->buf + f->buf_index, l);
5207
        f->buf_index += l;
5208
        buf += l;
5209
        size -= l;
5210
    }
5211
    return size1 - size;
5212
}
5213

    
5214
int qemu_get_byte(QEMUFile *f)
5215
{
5216
    if (f->buf_index >= f->buf_size) {
5217
        qemu_fill_buffer(f);
5218
        if (f->buf_index >= f->buf_size)
5219
            return 0;
5220
    }
5221
    return f->buf[f->buf_index++];
5222
}
5223

    
5224
int64_t qemu_ftell(QEMUFile *f)
5225
{
5226
    return f->buf_offset - f->buf_size + f->buf_index;
5227
}
5228

    
5229
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5230
{
5231
    if (whence == SEEK_SET) {
5232
        /* nothing to do */
5233
    } else if (whence == SEEK_CUR) {
5234
        pos += qemu_ftell(f);
5235
    } else {
5236
        /* SEEK_END not supported */
5237
        return -1;
5238
    }
5239
    if (f->is_writable) {
5240
        qemu_fflush(f);
5241
        f->buf_offset = pos;
5242
    } else {
5243
        f->buf_offset = pos;
5244
        f->buf_index = 0;
5245
        f->buf_size = 0;
5246
    }
5247
    return pos;
5248
}
5249

    
5250
void qemu_put_be16(QEMUFile *f, unsigned int v)
5251
{
5252
    qemu_put_byte(f, v >> 8);
5253
    qemu_put_byte(f, v);
5254
}
5255

    
5256
void qemu_put_be32(QEMUFile *f, unsigned int v)
5257
{
5258
    qemu_put_byte(f, v >> 24);
5259
    qemu_put_byte(f, v >> 16);
5260
    qemu_put_byte(f, v >> 8);
5261
    qemu_put_byte(f, v);
5262
}
5263

    
5264
void qemu_put_be64(QEMUFile *f, uint64_t v)
5265
{
5266
    qemu_put_be32(f, v >> 32);
5267
    qemu_put_be32(f, v);
5268
}
5269

    
5270
unsigned int qemu_get_be16(QEMUFile *f)
5271
{
5272
    unsigned int v;
5273
    v = qemu_get_byte(f) << 8;
5274
    v |= qemu_get_byte(f);
5275
    return v;
5276
}
5277

    
5278
unsigned int qemu_get_be32(QEMUFile *f)
5279
{
5280
    unsigned int v;
5281
    v = qemu_get_byte(f) << 24;
5282
    v |= qemu_get_byte(f) << 16;
5283
    v |= qemu_get_byte(f) << 8;
5284
    v |= qemu_get_byte(f);
5285
    return v;
5286
}
5287

    
5288
uint64_t qemu_get_be64(QEMUFile *f)
5289
{
5290
    uint64_t v;
5291
    v = (uint64_t)qemu_get_be32(f) << 32;
5292
    v |= qemu_get_be32(f);
5293
    return v;
5294
}
5295

    
5296
typedef struct SaveStateEntry {
5297
    char idstr[256];
5298
    int instance_id;
5299
    int version_id;
5300
    SaveStateHandler *save_state;
5301
    LoadStateHandler *load_state;
5302
    void *opaque;
5303
    struct SaveStateEntry *next;
5304
} SaveStateEntry;
5305

    
5306
static SaveStateEntry *first_se;
5307

    
5308
int register_savevm(const char *idstr,
5309
                    int instance_id,
5310
                    int version_id,
5311
                    SaveStateHandler *save_state,
5312
                    LoadStateHandler *load_state,
5313
                    void *opaque)
5314
{
5315
    SaveStateEntry *se, **pse;
5316

    
5317
    se = qemu_malloc(sizeof(SaveStateEntry));
5318
    if (!se)
5319
        return -1;
5320
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5321
    se->instance_id = instance_id;
5322
    se->version_id = version_id;
5323
    se->save_state = save_state;
5324
    se->load_state = load_state;
5325
    se->opaque = opaque;
5326
    se->next = NULL;
5327

    
5328
    /* add at the end of list */
5329
    pse = &first_se;
5330
    while (*pse != NULL)
5331
        pse = &(*pse)->next;
5332
    *pse = se;
5333
    return 0;
5334
}
5335

    
5336
#define QEMU_VM_FILE_MAGIC   0x5145564d
5337
#define QEMU_VM_FILE_VERSION 0x00000002
5338

    
5339
int qemu_savevm_state(QEMUFile *f)
5340
{
5341
    SaveStateEntry *se;
5342
    int len, ret;
5343
    int64_t cur_pos, len_pos, total_len_pos;
5344

    
5345
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5346
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5347
    total_len_pos = qemu_ftell(f);
5348
    qemu_put_be64(f, 0); /* total size */
5349

    
5350
    for(se = first_se; se != NULL; se = se->next) {
5351
        /* ID string */
5352
        len = strlen(se->idstr);
5353
        qemu_put_byte(f, len);
5354
        qemu_put_buffer(f, se->idstr, len);
5355

    
5356
        qemu_put_be32(f, se->instance_id);
5357
        qemu_put_be32(f, se->version_id);
5358

    
5359
        /* record size: filled later */
5360
        len_pos = qemu_ftell(f);
5361
        qemu_put_be32(f, 0);
5362
       
5363
        se->save_state(f, se->opaque);
5364

    
5365
        /* fill record size */
5366
        cur_pos = qemu_ftell(f);
5367
        len = cur_pos - len_pos - 4;
5368
        qemu_fseek(f, len_pos, SEEK_SET);
5369
        qemu_put_be32(f, len);
5370
        qemu_fseek(f, cur_pos, SEEK_SET);
5371
    }
5372
    cur_pos = qemu_ftell(f);
5373
    qemu_fseek(f, total_len_pos, SEEK_SET);
5374
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5375
    qemu_fseek(f, cur_pos, SEEK_SET);
5376

    
5377
    ret = 0;
5378
    return ret;
5379
}
5380

    
5381
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5382
{
5383
    SaveStateEntry *se;
5384

    
5385
    for(se = first_se; se != NULL; se = se->next) {
5386
        if (!strcmp(se->idstr, idstr) &&
5387
            instance_id == se->instance_id)
5388
            return se;
5389
    }
5390
    return NULL;
5391
}
5392

    
5393
int qemu_loadvm_state(QEMUFile *f)
5394
{
5395
    SaveStateEntry *se;
5396
    int len, ret, instance_id, record_len, version_id;
5397
    int64_t total_len, end_pos, cur_pos;
5398
    unsigned int v;
5399
    char idstr[256];
5400
   
5401
    v = qemu_get_be32(f);
5402
    if (v != QEMU_VM_FILE_MAGIC)
5403
        goto fail;
5404
    v = qemu_get_be32(f);
5405
    if (v != QEMU_VM_FILE_VERSION) {
5406
    fail:
5407
        ret = -1;
5408
        goto the_end;
5409
    }
5410
    total_len = qemu_get_be64(f);
5411
    end_pos = total_len + qemu_ftell(f);
5412
    for(;;) {
5413
        if (qemu_ftell(f) >= end_pos)
5414
            break;
5415
        len = qemu_get_byte(f);
5416
        qemu_get_buffer(f, idstr, len);
5417
        idstr[len] = '\0';
5418
        instance_id = qemu_get_be32(f);
5419
        version_id = qemu_get_be32(f);
5420
        record_len = qemu_get_be32(f);
5421
#if 0
5422
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
5423
               idstr, instance_id, version_id, record_len);
5424
#endif
5425
        cur_pos = qemu_ftell(f);
5426
        se = find_se(idstr, instance_id);
5427
        if (!se) {
5428
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5429
                    instance_id, idstr);
5430
        } else {
5431
            ret = se->load_state(f, se->opaque, version_id);
5432
            if (ret < 0) {
5433
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5434
                        instance_id, idstr);
5435
            }
5436
        }
5437
        /* always seek to exact end of record */
5438
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5439
    }
5440
    ret = 0;
5441
 the_end:
5442
    return ret;
5443
}
5444

    
5445
/* device can contain snapshots */
5446
static int bdrv_can_snapshot(BlockDriverState *bs)
5447
{
5448
    return (bs &&
5449
            !bdrv_is_removable(bs) &&
5450
            !bdrv_is_read_only(bs));
5451
}
5452

    
5453
/* device must be snapshots in order to have a reliable snapshot */
5454
static int bdrv_has_snapshot(BlockDriverState *bs)
5455
{
5456
    return (bs &&
5457
            !bdrv_is_removable(bs) &&
5458
            !bdrv_is_read_only(bs));
5459
}
5460

    
5461
static BlockDriverState *get_bs_snapshots(void)
5462
{
5463
    BlockDriverState *bs;
5464
    int i;
5465

    
5466
    if (bs_snapshots)
5467
        return bs_snapshots;
5468
    for(i = 0; i <= MAX_DISKS; i++) {
5469
        bs = bs_table[i];
5470
        if (bdrv_can_snapshot(bs))
5471
            goto ok;
5472
    }
5473
    return NULL;
5474
 ok:
5475
    bs_snapshots = bs;
5476
    return bs;
5477
}
5478

    
5479
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5480
                              const char *name)
5481
{
5482
    QEMUSnapshotInfo *sn_tab, *sn;
5483
    int nb_sns, i, ret;
5484
   
5485
    ret = -ENOENT;
5486
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5487
    if (nb_sns < 0)
5488
        return ret;
5489
    for(i = 0; i < nb_sns; i++) {
5490
        sn = &sn_tab[i];
5491
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5492
            *sn_info = *sn;
5493
            ret = 0;
5494
            break;
5495
        }
5496
    }
5497
    qemu_free(sn_tab);
5498
    return ret;
5499
}
5500

    
5501
void do_savevm(const char *name)
5502
{
5503
    BlockDriverState *bs, *bs1;
5504
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5505
    int must_delete, ret, i;
5506
    BlockDriverInfo bdi1, *bdi = &bdi1;
5507
    QEMUFile *f;
5508
    int saved_vm_running;
5509
#ifdef _WIN32
5510
    struct _timeb tb;
5511
#else
5512
    struct timeval tv;
5513
#endif
5514

    
5515
    bs = get_bs_snapshots();
5516
    if (!bs) {
5517
        term_printf("No block device can accept snapshots\n");
5518
        return;
5519
    }
5520

    
5521
    /* ??? Should this occur after vm_stop?  */
5522
    qemu_aio_flush();
5523

    
5524
    saved_vm_running = vm_running;
5525
    vm_stop(0);
5526
   
5527
    must_delete = 0;
5528
    if (name) {
5529
        ret = bdrv_snapshot_find(bs, old_sn, name);
5530
        if (ret >= 0) {
5531
            must_delete = 1;
5532
        }
5533
    }
5534
    memset(sn, 0, sizeof(*sn));
5535
    if (must_delete) {
5536
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5537
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5538
    } else {
5539
        if (name)
5540
            pstrcpy(sn->name, sizeof(sn->name), name);
5541
    }
5542

    
5543
    /* fill auxiliary fields */
5544
#ifdef _WIN32
5545
    _ftime(&tb);
5546
    sn->date_sec = tb.time;
5547
    sn->date_nsec = tb.millitm * 1000000;
5548
#else
5549
    gettimeofday(&tv, NULL);
5550
    sn->date_sec = tv.tv_sec;
5551
    sn->date_nsec = tv.tv_usec * 1000;
5552
#endif
5553
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5554
   
5555
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5556
        term_printf("Device %s does not support VM state snapshots\n",
5557
                    bdrv_get_device_name(bs));
5558
        goto the_end;
5559
    }
5560
   
5561
    /* save the VM state */
5562
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5563
    if (!f) {
5564
        term_printf("Could not open VM state file\n");
5565
        goto the_end;
5566
    }
5567
    ret = qemu_savevm_state(f);
5568
    sn->vm_state_size = qemu_ftell(f);
5569
    qemu_fclose(f);
5570
    if (ret < 0) {
5571
        term_printf("Error %d while writing VM\n", ret);
5572
        goto the_end;
5573
    }
5574
   
5575
    /* create the snapshots */
5576

    
5577
    for(i = 0; i < MAX_DISKS; i++) {
5578
        bs1 = bs_table[i];
5579
        if (bdrv_has_snapshot(bs1)) {
5580
            if (must_delete) {
5581
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5582
                if (ret < 0) {
5583
                    term_printf("Error while deleting snapshot on '%s'\n",
5584
                                bdrv_get_device_name(bs1));
5585
                }
5586
            }
5587
            ret = bdrv_snapshot_create(bs1, sn);
5588
            if (ret < 0) {
5589
                term_printf("Error while creating snapshot on '%s'\n",
5590
                            bdrv_get_device_name(bs1));
5591
            }
5592
        }
5593
    }
5594

    
5595
 the_end:
5596
    if (saved_vm_running)
5597
        vm_start();
5598
}
5599

    
5600
void do_loadvm(const char *name)
5601
{
5602
    BlockDriverState *bs, *bs1;
5603
    BlockDriverInfo bdi1, *bdi = &bdi1;
5604
    QEMUFile *f;
5605
    int i, ret;
5606
    int saved_vm_running;
5607

    
5608
    bs = get_bs_snapshots();
5609
    if (!bs) {
5610
        term_printf("No block device supports snapshots\n");
5611
        return;
5612
    }
5613
   
5614
    /* Flush all IO requests so they don't interfere with the new state.  */
5615
    qemu_aio_flush();
5616

    
5617
    saved_vm_running = vm_running;
5618
    vm_stop(0);
5619

    
5620
    for(i = 0; i <= MAX_DISKS; i++) {
5621
        bs1 = bs_table[i];
5622
        if (bdrv_has_snapshot(bs1)) {
5623
            ret = bdrv_snapshot_goto(bs1, name);
5624
            if (ret < 0) {
5625
                if (bs != bs1)
5626
                    term_printf("Warning: ");
5627
                switch(ret) {
5628
                case -ENOTSUP:
5629
                    term_printf("Snapshots not supported on device '%s'\n",
5630
                                bdrv_get_device_name(bs1));
5631
                    break;
5632
                case -ENOENT:
5633
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5634
                                name, bdrv_get_device_name(bs1));
5635
                    break;
5636
                default:
5637
                    term_printf("Error %d while activating snapshot on '%s'\n",
5638
                                ret, bdrv_get_device_name(bs1));
5639
                    break;
5640
                }
5641
                /* fatal on snapshot block device */
5642
                if (bs == bs1)
5643
                    goto the_end;
5644
            }
5645
        }
5646
    }
5647

    
5648
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5649
        term_printf("Device %s does not support VM state snapshots\n",
5650
                    bdrv_get_device_name(bs));
5651
        return;
5652
    }
5653
   
5654
    /* restore the VM state */
5655
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5656
    if (!f) {
5657
        term_printf("Could not open VM state file\n");
5658
        goto the_end;
5659
    }
5660
    ret = qemu_loadvm_state(f);
5661
    qemu_fclose(f);
5662
    if (ret < 0) {
5663
        term_printf("Error %d while loading VM state\n", ret);
5664
    }
5665
 the_end:
5666
    if (saved_vm_running)
5667
        vm_start();
5668
}
5669

    
5670
void do_delvm(const char *name)
5671
{
5672
    BlockDriverState *bs, *bs1;
5673
    int i, ret;
5674

    
5675
    bs = get_bs_snapshots();
5676
    if (!bs) {
5677
        term_printf("No block device supports snapshots\n");
5678
        return;
5679
    }
5680
   
5681
    for(i = 0; i <= MAX_DISKS; i++) {
5682
        bs1 = bs_table[i];
5683
        if (bdrv_has_snapshot(bs1)) {
5684
            ret = bdrv_snapshot_delete(bs1, name);
5685
            if (ret < 0) {
5686
                if (ret == -ENOTSUP)
5687
                    term_printf("Snapshots not supported on device '%s'\n",
5688
                                bdrv_get_device_name(bs1));
5689
                else
5690
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5691
                                ret, bdrv_get_device_name(bs1));
5692
            }
5693
        }
5694
    }
5695
}
5696

    
5697
void do_info_snapshots(void)
5698
{
5699
    BlockDriverState *bs, *bs1;
5700
    QEMUSnapshotInfo *sn_tab, *sn;
5701
    int nb_sns, i;
5702
    char buf[256];
5703

    
5704
    bs = get_bs_snapshots();
5705
    if (!bs) {
5706
        term_printf("No available block device supports snapshots\n");
5707
        return;
5708
    }
5709
    term_printf("Snapshot devices:");
5710
    for(i = 0; i <= MAX_DISKS; i++) {
5711
        bs1 = bs_table[i];
5712
        if (bdrv_has_snapshot(bs1)) {
5713
            if (bs == bs1)
5714
                term_printf(" %s", bdrv_get_device_name(bs1));
5715
        }
5716
    }
5717
    term_printf("\n");
5718

    
5719
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5720
    if (nb_sns < 0) {
5721
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5722
        return;
5723
    }
5724
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5725
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5726
    for(i = 0; i < nb_sns; i++) {
5727
        sn = &sn_tab[i];
5728
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5729
    }
5730
    qemu_free(sn_tab);
5731
}
5732

    
5733
/***********************************************************/
5734
/* cpu save/restore */
5735

    
5736
#if defined(TARGET_I386)
5737

    
5738
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5739
{
5740
    qemu_put_be32(f, dt->selector);
5741
    qemu_put_betl(f, dt->base);
5742
    qemu_put_be32(f, dt->limit);
5743
    qemu_put_be32(f, dt->flags);
5744
}
5745

    
5746
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5747
{
5748
    dt->selector = qemu_get_be32(f);
5749
    dt->base = qemu_get_betl(f);
5750
    dt->limit = qemu_get_be32(f);
5751
    dt->flags = qemu_get_be32(f);
5752
}
5753

    
5754
void cpu_save(QEMUFile *f, void *opaque)
5755
{
5756
    CPUState *env = opaque;
5757
    uint16_t fptag, fpus, fpuc, fpregs_format;
5758
    uint32_t hflags;
5759
    int i;
5760
   
5761
    for(i = 0; i < CPU_NB_REGS; i++)
5762
        qemu_put_betls(f, &env->regs[i]);
5763
    qemu_put_betls(f, &env->eip);
5764
    qemu_put_betls(f, &env->eflags);
5765
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5766
    qemu_put_be32s(f, &hflags);
5767
   
5768
    /* FPU */
5769
    fpuc = env->fpuc;
5770
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5771
    fptag = 0;
5772
    for(i = 0; i < 8; i++) {
5773
        fptag |= ((!env->fptags[i]) << i);
5774
    }
5775
   
5776
    qemu_put_be16s(f, &fpuc);
5777
    qemu_put_be16s(f, &fpus);
5778
    qemu_put_be16s(f, &fptag);
5779

    
5780
#ifdef USE_X86LDOUBLE
5781
    fpregs_format = 0;
5782
#else
5783
    fpregs_format = 1;
5784
#endif
5785
    qemu_put_be16s(f, &fpregs_format);
5786
   
5787
    for(i = 0; i < 8; i++) {
5788
#ifdef USE_X86LDOUBLE
5789
        {
5790
            uint64_t mant;
5791
            uint16_t exp;
5792
            /* we save the real CPU data (in case of MMX usage only 'mant'
5793
               contains the MMX register */
5794
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5795
            qemu_put_be64(f, mant);
5796
            qemu_put_be16(f, exp);
5797
        }
5798
#else
5799
        /* if we use doubles for float emulation, we save the doubles to
5800
           avoid losing information in case of MMX usage. It can give
5801
           problems if the image is restored on a CPU where long
5802
           doubles are used instead. */
5803
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5804
#endif
5805
    }
5806

    
5807
    for(i = 0; i < 6; i++)
5808
        cpu_put_seg(f, &env->segs[i]);
5809
    cpu_put_seg(f, &env->ldt);
5810
    cpu_put_seg(f, &env->tr);
5811
    cpu_put_seg(f, &env->gdt);
5812
    cpu_put_seg(f, &env->idt);
5813
   
5814
    qemu_put_be32s(f, &env->sysenter_cs);
5815
    qemu_put_be32s(f, &env->sysenter_esp);
5816
    qemu_put_be32s(f, &env->sysenter_eip);
5817
   
5818
    qemu_put_betls(f, &env->cr[0]);
5819
    qemu_put_betls(f, &env->cr[2]);
5820
    qemu_put_betls(f, &env->cr[3]);
5821
    qemu_put_betls(f, &env->cr[4]);
5822
   
5823
    for(i = 0; i < 8; i++)
5824
        qemu_put_betls(f, &env->dr[i]);
5825

    
5826
    /* MMU */
5827
    qemu_put_be32s(f, &env->a20_mask);
5828

    
5829
    /* XMM */
5830
    qemu_put_be32s(f, &env->mxcsr);
5831
    for(i = 0; i < CPU_NB_REGS; i++) {
5832
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5833
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5834
    }
5835

    
5836
#ifdef TARGET_X86_64
5837
    qemu_put_be64s(f, &env->efer);
5838
    qemu_put_be64s(f, &env->star);
5839
    qemu_put_be64s(f, &env->lstar);
5840
    qemu_put_be64s(f, &env->cstar);
5841
    qemu_put_be64s(f, &env->fmask);
5842
    qemu_put_be64s(f, &env->kernelgsbase);
5843
#endif
5844
    qemu_put_be32s(f, &env->smbase);
5845
}
5846

    
5847
#ifdef USE_X86LDOUBLE
5848
/* XXX: add that in a FPU generic layer */
5849
union x86_longdouble {
5850
    uint64_t mant;
5851
    uint16_t exp;
5852
};
5853

    
5854
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5855
#define EXPBIAS1 1023
5856
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5857
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5858

    
5859
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5860
{
5861
    int e;
5862
    /* mantissa */
5863
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5864
    /* exponent + sign */
5865
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5866
    e |= SIGND1(temp) >> 16;
5867
    p->exp = e;
5868
}
5869
#endif
5870

    
5871
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5872
{
5873
    CPUState *env = opaque;
5874
    int i, guess_mmx;
5875
    uint32_t hflags;
5876
    uint16_t fpus, fpuc, fptag, fpregs_format;
5877

    
5878
    if (version_id != 3 && version_id != 4)
5879
        return -EINVAL;
5880
    for(i = 0; i < CPU_NB_REGS; i++)
5881
        qemu_get_betls(f, &env->regs[i]);
5882
    qemu_get_betls(f, &env->eip);
5883
    qemu_get_betls(f, &env->eflags);
5884
    qemu_get_be32s(f, &hflags);
5885

    
5886
    qemu_get_be16s(f, &fpuc);
5887
    qemu_get_be16s(f, &fpus);
5888
    qemu_get_be16s(f, &fptag);
5889
    qemu_get_be16s(f, &fpregs_format);
5890
   
5891
    /* NOTE: we cannot always restore the FPU state if the image come
5892
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5893
       if we are in an MMX state to restore correctly in that case. */
5894
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5895
    for(i = 0; i < 8; i++) {
5896
        uint64_t mant;
5897
        uint16_t exp;
5898
       
5899
        switch(fpregs_format) {
5900
        case 0:
5901
            mant = qemu_get_be64(f);
5902
            exp = qemu_get_be16(f);
5903
#ifdef USE_X86LDOUBLE
5904
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5905
#else
5906
            /* difficult case */
5907
            if (guess_mmx)
5908
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5909
            else
5910
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5911
#endif
5912
            break;
5913
        case 1:
5914
            mant = qemu_get_be64(f);
5915
#ifdef USE_X86LDOUBLE
5916
            {
5917
                union x86_longdouble *p;
5918
                /* difficult case */
5919
                p = (void *)&env->fpregs[i];
5920
                if (guess_mmx) {
5921
                    p->mant = mant;
5922
                    p->exp = 0xffff;
5923
                } else {
5924
                    fp64_to_fp80(p, mant);
5925
                }
5926
            }
5927
#else
5928
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5929
#endif           
5930
            break;
5931
        default:
5932
            return -EINVAL;
5933
        }
5934
    }
5935

    
5936
    env->fpuc = fpuc;
5937
    /* XXX: restore FPU round state */
5938
    env->fpstt = (fpus >> 11) & 7;
5939
    env->fpus = fpus & ~0x3800;
5940
    fptag ^= 0xff;
5941
    for(i = 0; i < 8; i++) {
5942
        env->fptags[i] = (fptag >> i) & 1;
5943
    }
5944
   
5945
    for(i = 0; i < 6; i++)
5946
        cpu_get_seg(f, &env->segs[i]);
5947
    cpu_get_seg(f, &env->ldt);
5948
    cpu_get_seg(f, &env->tr);
5949
    cpu_get_seg(f, &env->gdt);
5950
    cpu_get_seg(f, &env->idt);
5951
   
5952
    qemu_get_be32s(f, &env->sysenter_cs);
5953
    qemu_get_be32s(f, &env->sysenter_esp);
5954
    qemu_get_be32s(f, &env->sysenter_eip);
5955
   
5956
    qemu_get_betls(f, &env->cr[0]);
5957
    qemu_get_betls(f, &env->cr[2]);
5958
    qemu_get_betls(f, &env->cr[3]);
5959
    qemu_get_betls(f, &env->cr[4]);
5960
   
5961
    for(i = 0; i < 8; i++)
5962
        qemu_get_betls(f, &env->dr[i]);
5963

    
5964
    /* MMU */
5965
    qemu_get_be32s(f, &env->a20_mask);
5966

    
5967
    qemu_get_be32s(f, &env->mxcsr);
5968
    for(i = 0; i < CPU_NB_REGS; i++) {
5969
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5970
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5971
    }
5972

    
5973
#ifdef TARGET_X86_64
5974
    qemu_get_be64s(f, &env->efer);
5975
    qemu_get_be64s(f, &env->star);
5976
    qemu_get_be64s(f, &env->lstar);
5977
    qemu_get_be64s(f, &env->cstar);
5978
    qemu_get_be64s(f, &env->fmask);
5979
    qemu_get_be64s(f, &env->kernelgsbase);
5980
#endif
5981
    if (version_id >= 4)
5982
        qemu_get_be32s(f, &env->smbase);
5983

    
5984
    /* XXX: compute hflags from scratch, except for CPL and IIF */
5985
    env->hflags = hflags;
5986
    tlb_flush(env, 1);
5987
    return 0;
5988
}
5989

    
5990
#elif defined(TARGET_PPC)
5991
void cpu_save(QEMUFile *f, void *opaque)
5992
{
5993
}
5994

    
5995
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5996
{
5997
    return 0;
5998
}
5999

    
6000
#elif defined(TARGET_MIPS)
6001
void cpu_save(QEMUFile *f, void *opaque)
6002
{
6003
}
6004

    
6005
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6006
{
6007
    return 0;
6008
}
6009

    
6010
#elif defined(TARGET_SPARC)
6011
void cpu_save(QEMUFile *f, void *opaque)
6012
{
6013
    CPUState *env = opaque;
6014
    int i;
6015
    uint32_t tmp;
6016

    
6017
    for(i = 0; i < 8; i++)
6018
        qemu_put_betls(f, &env->gregs[i]);
6019
    for(i = 0; i < NWINDOWS * 16; i++)
6020
        qemu_put_betls(f, &env->regbase[i]);
6021

    
6022
    /* FPU */
6023
    for(i = 0; i < TARGET_FPREGS; i++) {
6024
        union {
6025
            float32 f;
6026
            uint32_t i;
6027
        } u;
6028
        u.f = env->fpr[i];
6029
        qemu_put_be32(f, u.i);
6030
    }
6031

    
6032
    qemu_put_betls(f, &env->pc);
6033
    qemu_put_betls(f, &env->npc);
6034
    qemu_put_betls(f, &env->y);
6035
    tmp = GET_PSR(env);
6036
    qemu_put_be32(f, tmp);
6037
    qemu_put_betls(f, &env->fsr);
6038
    qemu_put_betls(f, &env->tbr);
6039
#ifndef TARGET_SPARC64
6040
    qemu_put_be32s(f, &env->wim);
6041
    /* MMU */
6042
    for(i = 0; i < 16; i++)
6043
        qemu_put_be32s(f, &env->mmuregs[i]);
6044
#endif
6045
}
6046

    
6047
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6048
{
6049
    CPUState *env = opaque;
6050
    int i;
6051
    uint32_t tmp;
6052

    
6053
    for(i = 0; i < 8; i++)
6054
        qemu_get_betls(f, &env->gregs[i]);
6055
    for(i = 0; i < NWINDOWS * 16; i++)
6056
        qemu_get_betls(f, &env->regbase[i]);
6057

    
6058
    /* FPU */
6059
    for(i = 0; i < TARGET_FPREGS; i++) {
6060
        union {
6061
            float32 f;
6062
            uint32_t i;
6063
        } u;
6064
        u.i = qemu_get_be32(f);
6065
        env->fpr[i] = u.f;
6066
    }
6067

    
6068
    qemu_get_betls(f, &env->pc);
6069
    qemu_get_betls(f, &env->npc);
6070
    qemu_get_betls(f, &env->y);
6071
    tmp = qemu_get_be32(f);
6072
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6073
                     correctly updated */
6074
    PUT_PSR(env, tmp);
6075
    qemu_get_betls(f, &env->fsr);
6076
    qemu_get_betls(f, &env->tbr);
6077
#ifndef TARGET_SPARC64
6078
    qemu_get_be32s(f, &env->wim);
6079
    /* MMU */
6080
    for(i = 0; i < 16; i++)
6081
        qemu_get_be32s(f, &env->mmuregs[i]);
6082
#endif
6083
    tlb_flush(env, 1);
6084
    return 0;
6085
}
6086

    
6087
#elif defined(TARGET_ARM)
6088

    
6089
void cpu_save(QEMUFile *f, void *opaque)
6090
{
6091
    int i;
6092
    CPUARMState *env = (CPUARMState *)opaque;
6093

    
6094
    for (i = 0; i < 16; i++) {
6095
        qemu_put_be32(f, env->regs[i]);
6096
    }
6097
    qemu_put_be32(f, cpsr_read(env));
6098
    qemu_put_be32(f, env->spsr);
6099
    for (i = 0; i < 6; i++) {
6100
        qemu_put_be32(f, env->banked_spsr[i]);
6101
        qemu_put_be32(f, env->banked_r13[i]);
6102
        qemu_put_be32(f, env->banked_r14[i]);
6103
    }
6104
    for (i = 0; i < 5; i++) {
6105
        qemu_put_be32(f, env->usr_regs[i]);
6106
        qemu_put_be32(f, env->fiq_regs[i]);
6107
    }
6108
    qemu_put_be32(f, env->cp15.c0_cpuid);
6109
    qemu_put_be32(f, env->cp15.c0_cachetype);
6110
    qemu_put_be32(f, env->cp15.c1_sys);
6111
    qemu_put_be32(f, env->cp15.c1_coproc);
6112
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6113
    qemu_put_be32(f, env->cp15.c2_base);
6114
    qemu_put_be32(f, env->cp15.c2_data);
6115
    qemu_put_be32(f, env->cp15.c2_insn);
6116
    qemu_put_be32(f, env->cp15.c3);
6117
    qemu_put_be32(f, env->cp15.c5_insn);
6118
    qemu_put_be32(f, env->cp15.c5_data);
6119
    for (i = 0; i < 8; i++) {
6120
        qemu_put_be32(f, env->cp15.c6_region[i]);
6121
    }
6122
    qemu_put_be32(f, env->cp15.c6_insn);
6123
    qemu_put_be32(f, env->cp15.c6_data);
6124
    qemu_put_be32(f, env->cp15.c9_insn);
6125
    qemu_put_be32(f, env->cp15.c9_data);
6126
    qemu_put_be32(f, env->cp15.c13_fcse);
6127
    qemu_put_be32(f, env->cp15.c13_context);
6128
    qemu_put_be32(f, env->cp15.c15_cpar);
6129

    
6130
    qemu_put_be32(f, env->features);
6131

    
6132
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6133
        for (i = 0;  i < 16; i++) {
6134
            CPU_DoubleU u;
6135
            u.d = env->vfp.regs[i];
6136
            qemu_put_be32(f, u.l.upper);
6137
            qemu_put_be32(f, u.l.lower);
6138
        }
6139
        for (i = 0; i < 16; i++) {
6140
            qemu_put_be32(f, env->vfp.xregs[i]);
6141
        }
6142

    
6143
        /* TODO: Should use proper FPSCR access functions.  */
6144
        qemu_put_be32(f, env->vfp.vec_len);
6145
        qemu_put_be32(f, env->vfp.vec_stride);
6146
    }
6147

    
6148
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6149
        for (i = 0; i < 16; i++) {
6150
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6151
        }
6152
        for (i = 0; i < 16; i++) {
6153
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6154
        }
6155
    }
6156
}
6157

    
6158
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6159
{
6160
    CPUARMState *env = (CPUARMState *)opaque;
6161
    int i;
6162

    
6163
    if (version_id != 0)
6164
        return -EINVAL;
6165

    
6166
    for (i = 0; i < 16; i++) {
6167
        env->regs[i] = qemu_get_be32(f);
6168
    }
6169
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6170
    env->spsr = qemu_get_be32(f);
6171
    for (i = 0; i < 6; i++) {
6172
        env->banked_spsr[i] = qemu_get_be32(f);
6173
        env->banked_r13[i] = qemu_get_be32(f);
6174
        env->banked_r14[i] = qemu_get_be32(f);
6175
    }
6176
    for (i = 0; i < 5; i++) {
6177
        env->usr_regs[i] = qemu_get_be32(f);
6178
        env->fiq_regs[i] = qemu_get_be32(f);
6179
    }
6180
    env->cp15.c0_cpuid = qemu_get_be32(f);
6181
    env->cp15.c0_cachetype = qemu_get_be32(f);
6182
    env->cp15.c1_sys = qemu_get_be32(f);
6183
    env->cp15.c1_coproc = qemu_get_be32(f);
6184
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6185
    env->cp15.c2_base = qemu_get_be32(f);
6186
    env->cp15.c2_data = qemu_get_be32(f);
6187
    env->cp15.c2_insn = qemu_get_be32(f);
6188
    env->cp15.c3 = qemu_get_be32(f);
6189
    env->cp15.c5_insn = qemu_get_be32(f);
6190
    env->cp15.c5_data = qemu_get_be32(f);
6191
    for (i = 0; i < 8; i++) {
6192
        env->cp15.c6_region[i] = qemu_get_be32(f);
6193
    }
6194
    env->cp15.c6_insn = qemu_get_be32(f);
6195
    env->cp15.c6_data = qemu_get_be32(f);
6196
    env->cp15.c9_insn = qemu_get_be32(f);
6197
    env->cp15.c9_data = qemu_get_be32(f);
6198
    env->cp15.c13_fcse = qemu_get_be32(f);
6199
    env->cp15.c13_context = qemu_get_be32(f);
6200
    env->cp15.c15_cpar = qemu_get_be32(f);
6201

    
6202
    env->features = qemu_get_be32(f);
6203

    
6204
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6205
        for (i = 0;  i < 16; i++) {
6206
            CPU_DoubleU u;
6207
            u.l.upper = qemu_get_be32(f);
6208
            u.l.lower = qemu_get_be32(f);
6209
            env->vfp.regs[i] = u.d;
6210
        }
6211
        for (i = 0; i < 16; i++) {
6212
            env->vfp.xregs[i] = qemu_get_be32(f);
6213
        }
6214

    
6215
        /* TODO: Should use proper FPSCR access functions.  */
6216
        env->vfp.vec_len = qemu_get_be32(f);
6217
        env->vfp.vec_stride = qemu_get_be32(f);
6218
    }
6219

    
6220
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6221
        for (i = 0; i < 16; i++) {
6222
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6223
        }
6224
        for (i = 0; i < 16; i++) {
6225
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6226
        }
6227
    }
6228

    
6229
    return 0;
6230
}
6231

    
6232
#else
6233

    
6234
#warning No CPU save/restore functions
6235

    
6236
#endif
6237

    
6238
/***********************************************************/
6239
/* ram save/restore */
6240

    
6241
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6242
{
6243
    int v;
6244

    
6245
    v = qemu_get_byte(f);
6246
    switch(v) {
6247
    case 0:
6248
        if (qemu_get_buffer(f, buf, len) != len)
6249
            return -EIO;
6250
        break;
6251
    case 1:
6252
        v = qemu_get_byte(f);
6253
        memset(buf, v, len);
6254
        break;
6255
    default:
6256
        return -EINVAL;
6257
    }
6258
    return 0;
6259
}
6260

    
6261
static int ram_load_v1(QEMUFile *f, void *opaque)
6262
{
6263
    int i, ret;
6264

    
6265
    if (qemu_get_be32(f) != phys_ram_size)
6266
        return -EINVAL;
6267
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6268
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6269
        if (ret)
6270
            return ret;
6271
    }
6272
    return 0;
6273
}
6274

    
6275
#define BDRV_HASH_BLOCK_SIZE 1024
6276
#define IOBUF_SIZE 4096
6277
#define RAM_CBLOCK_MAGIC 0xfabe
6278

    
6279
typedef struct RamCompressState {
6280
    z_stream zstream;
6281
    QEMUFile *f;
6282
    uint8_t buf[IOBUF_SIZE];
6283
} RamCompressState;
6284

    
6285
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6286
{
6287
    int ret;
6288
    memset(s, 0, sizeof(*s));
6289
    s->f = f;
6290
    ret = deflateInit2(&s->zstream, 1,
6291
                       Z_DEFLATED, 15,
6292
                       9, Z_DEFAULT_STRATEGY);
6293
    if (ret != Z_OK)
6294
        return -1;
6295
    s->zstream.avail_out = IOBUF_SIZE;
6296
    s->zstream.next_out = s->buf;
6297
    return 0;
6298
}
6299

    
6300
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6301
{
6302
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6303
    qemu_put_be16(s->f, len);
6304
    qemu_put_buffer(s->f, buf, len);
6305
}
6306

    
6307
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6308
{
6309
    int ret;
6310

    
6311
    s->zstream.avail_in = len;
6312
    s->zstream.next_in = (uint8_t *)buf;
6313
    while (s->zstream.avail_in > 0) {
6314
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6315
        if (ret != Z_OK)
6316
            return -1;
6317
        if (s->zstream.avail_out == 0) {
6318
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6319
            s->zstream.avail_out = IOBUF_SIZE;
6320
            s->zstream.next_out = s->buf;
6321
        }
6322
    }
6323
    return 0;
6324
}
6325

    
6326
static void ram_compress_close(RamCompressState *s)
6327
{
6328
    int len, ret;
6329

    
6330
    /* compress last bytes */
6331
    for(;;) {
6332
        ret = deflate(&s->zstream, Z_FINISH);
6333
        if (ret == Z_OK || ret == Z_STREAM_END) {
6334
            len = IOBUF_SIZE - s->zstream.avail_out;
6335
            if (len > 0) {
6336
                ram_put_cblock(s, s->buf, len);
6337
            }
6338
            s->zstream.avail_out = IOBUF_SIZE;
6339
            s->zstream.next_out = s->buf;
6340
            if (ret == Z_STREAM_END)
6341
                break;
6342
        } else {
6343
            goto fail;
6344
        }
6345
    }
6346
fail:
6347
    deflateEnd(&s->zstream);
6348
}
6349

    
6350
typedef struct RamDecompressState {
6351
    z_stream zstream;
6352
    QEMUFile *f;
6353
    uint8_t buf[IOBUF_SIZE];
6354
} RamDecompressState;
6355

    
6356
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6357
{
6358
    int ret;
6359
    memset(s, 0, sizeof(*s));
6360
    s->f = f;
6361
    ret = inflateInit(&s->zstream);
6362
    if (ret != Z_OK)
6363
        return -1;
6364
    return 0;
6365
}
6366

    
6367
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6368
{
6369
    int ret, clen;
6370

    
6371
    s->zstream.avail_out = len;
6372
    s->zstream.next_out = buf;
6373
    while (s->zstream.avail_out > 0) {
6374
        if (s->zstream.avail_in == 0) {
6375
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6376
                return -1;
6377
            clen = qemu_get_be16(s->f);
6378
            if (clen > IOBUF_SIZE)
6379
                return -1;
6380
            qemu_get_buffer(s->f, s->buf, clen);
6381
            s->zstream.avail_in = clen;
6382
            s->zstream.next_in = s->buf;
6383
        }
6384
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6385
        if (ret != Z_OK && ret != Z_STREAM_END) {
6386
            return -1;
6387
        }
6388
    }
6389
    return 0;
6390
}
6391

    
6392
static void ram_decompress_close(RamDecompressState *s)
6393
{
6394
    inflateEnd(&s->zstream);
6395
}
6396

    
6397
static void ram_save(QEMUFile *f, void *opaque)
6398
{
6399
    int i;
6400
    RamCompressState s1, *s = &s1;
6401
    uint8_t buf[10];
6402
   
6403
    qemu_put_be32(f, phys_ram_size);
6404
    if (ram_compress_open(s, f) < 0)
6405
        return;
6406
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6407
#if 0
6408
        if (tight_savevm_enabled) {
6409
            int64_t sector_num;
6410
            int j;
6411

6412
            /* find if the memory block is available on a virtual
6413
               block device */
6414
            sector_num = -1;
6415
            for(j = 0; j < MAX_DISKS; j++) {
6416
                if (bs_table[j]) {
6417
                    sector_num = bdrv_hash_find(bs_table[j],
6418
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6419
                    if (sector_num >= 0)
6420
                        break;
6421
                }
6422
            }
6423
            if (j == MAX_DISKS)
6424
                goto normal_compress;
6425
            buf[0] = 1;
6426
            buf[1] = j;
6427
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6428
            ram_compress_buf(s, buf, 10);
6429
        } else
6430
#endif
6431
        {
6432
            //        normal_compress:
6433
            buf[0] = 0;
6434
            ram_compress_buf(s, buf, 1);
6435
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6436
        }
6437
    }
6438
    ram_compress_close(s);
6439
}
6440

    
6441
static int ram_load(QEMUFile *f, void *opaque, int version_id)
6442
{
6443
    RamDecompressState s1, *s = &s1;
6444
    uint8_t buf[10];
6445
    int i;
6446

    
6447
    if (version_id == 1)
6448
        return ram_load_v1(f, opaque);
6449
    if (version_id != 2)
6450
        return -EINVAL;
6451
    if (qemu_get_be32(f) != phys_ram_size)
6452
        return -EINVAL;
6453
    if (ram_decompress_open(s, f) < 0)
6454
        return -EINVAL;
6455
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6456
        if (ram_decompress_buf(s, buf, 1) < 0) {
6457
            fprintf(stderr, "Error while reading ram block header\n");
6458
            goto error;
6459
        }
6460
        if (buf[0] == 0) {
6461
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6462
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6463
                goto error;
6464
            }
6465
        } else
6466
#if 0
6467
        if (buf[0] == 1) {
6468
            int bs_index;
6469
            int64_t sector_num;
6470

6471
            ram_decompress_buf(s, buf + 1, 9);
6472
            bs_index = buf[1];
6473
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6474
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6475
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
6476
                goto error;
6477
            }
6478
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6479
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6480
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6481
                        bs_index, sector_num);
6482
                goto error;
6483
            }
6484
        } else
6485
#endif
6486
        {
6487
        error:
6488
            printf("Error block header\n");
6489
            return -EINVAL;
6490
        }
6491
    }
6492
    ram_decompress_close(s);
6493
    return 0;
6494
}
6495

    
6496
/***********************************************************/
6497
/* bottom halves (can be seen as timers which expire ASAP) */
6498

    
6499
struct QEMUBH {
6500
    QEMUBHFunc *cb;
6501
    void *opaque;
6502
    int scheduled;
6503
    QEMUBH *next;
6504
};
6505

    
6506
static QEMUBH *first_bh = NULL;
6507

    
6508
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6509
{
6510
    QEMUBH *bh;
6511
    bh = qemu_mallocz(sizeof(QEMUBH));
6512
    if (!bh)
6513
        return NULL;
6514
    bh->cb = cb;
6515
    bh->opaque = opaque;
6516
    return bh;
6517
}
6518

    
6519
int qemu_bh_poll(void)
6520
{
6521
    QEMUBH *bh, **pbh;
6522
    int ret;
6523

    
6524
    ret = 0;
6525
    for(;;) {
6526
        pbh = &first_bh;
6527
        bh = *pbh;
6528
        if (!bh)
6529
            break;
6530
        ret = 1;
6531
        *pbh = bh->next;
6532
        bh->scheduled = 0;
6533
        bh->cb(bh->opaque);
6534
    }
6535
    return ret;
6536
}
6537

    
6538
void qemu_bh_schedule(QEMUBH *bh)
6539
{
6540
    CPUState *env = cpu_single_env;
6541
    if (bh->scheduled)
6542
        return;
6543
    bh->scheduled = 1;
6544
    bh->next = first_bh;
6545
    first_bh = bh;
6546

    
6547
    /* stop the currently executing CPU to execute the BH ASAP */
6548
    if (env) {
6549
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6550
    }
6551
}
6552

    
6553
void qemu_bh_cancel(QEMUBH *bh)
6554
{
6555
    QEMUBH **pbh;
6556
    if (bh->scheduled) {
6557
        pbh = &first_bh;
6558
        while (*pbh != bh)
6559
            pbh = &(*pbh)->next;
6560
        *pbh = bh->next;
6561
        bh->scheduled = 0;
6562
    }
6563
}
6564

    
6565
void qemu_bh_delete(QEMUBH *bh)
6566
{
6567
    qemu_bh_cancel(bh);
6568
    qemu_free(bh);
6569
}
6570

    
6571
/***********************************************************/
6572
/* machine registration */
6573

    
6574
QEMUMachine *first_machine = NULL;
6575

    
6576
int qemu_register_machine(QEMUMachine *m)
6577
{
6578
    QEMUMachine **pm;
6579
    pm = &first_machine;
6580
    while (*pm != NULL)
6581
        pm = &(*pm)->next;
6582
    m->next = NULL;
6583
    *pm = m;
6584
    return 0;
6585
}
6586

    
6587
QEMUMachine *find_machine(const char *name)
6588
{
6589
    QEMUMachine *m;
6590

    
6591
    for(m = first_machine; m != NULL; m = m->next) {
6592
        if (!strcmp(m->name, name))
6593
            return m;
6594
    }
6595
    return NULL;
6596
}
6597

    
6598
/***********************************************************/
6599
/* main execution loop */
6600

    
6601
void gui_update(void *opaque)
6602
{
6603
    DisplayState *ds = opaque;
6604
    ds->dpy_refresh(ds);
6605
    qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6606
}
6607

    
6608
struct vm_change_state_entry {
6609
    VMChangeStateHandler *cb;
6610
    void *opaque;
6611
    LIST_ENTRY (vm_change_state_entry) entries;
6612
};
6613

    
6614
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6615

    
6616
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6617
                                                     void *opaque)
6618
{
6619
    VMChangeStateEntry *e;
6620

    
6621
    e = qemu_mallocz(sizeof (*e));
6622
    if (!e)
6623
        return NULL;
6624

    
6625
    e->cb = cb;
6626
    e->opaque = opaque;
6627
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6628
    return e;
6629
}
6630

    
6631
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6632
{
6633
    LIST_REMOVE (e, entries);
6634
    qemu_free (e);
6635
}
6636

    
6637
static void vm_state_notify(int running)
6638
{
6639
    VMChangeStateEntry *e;
6640

    
6641
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6642
        e->cb(e->opaque, running);
6643
    }
6644
}
6645

    
6646
/* XXX: support several handlers */
6647
static VMStopHandler *vm_stop_cb;
6648
static void *vm_stop_opaque;
6649

    
6650
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6651
{
6652
    vm_stop_cb = cb;
6653
    vm_stop_opaque = opaque;
6654
    return 0;
6655
}
6656

    
6657
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6658
{
6659
    vm_stop_cb = NULL;
6660
}
6661

    
6662
void vm_start(void)
6663
{
6664
    if (!vm_running) {
6665
        cpu_enable_ticks();
6666
        vm_running = 1;
6667
        vm_state_notify(1);
6668
        qemu_rearm_alarm_timer(alarm_timer);
6669
    }
6670
}
6671

    
6672
void vm_stop(int reason)
6673
{
6674
    if (vm_running) {
6675
        cpu_disable_ticks();
6676
        vm_running = 0;
6677
        if (reason != 0) {
6678
            if (vm_stop_cb) {
6679
                vm_stop_cb(vm_stop_opaque, reason);
6680
            }
6681
        }
6682
        vm_state_notify(0);
6683
    }
6684
}
6685

    
6686
/* reset/shutdown handler */
6687

    
6688
typedef struct QEMUResetEntry {
6689
    QEMUResetHandler *func;
6690
    void *opaque;
6691
    struct QEMUResetEntry *next;
6692
} QEMUResetEntry;
6693

    
6694
static QEMUResetEntry *first_reset_entry;
6695
static int reset_requested;
6696
static int shutdown_requested;
6697
static int powerdown_requested;
6698

    
6699
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6700
{
6701
    QEMUResetEntry **pre, *re;
6702

    
6703
    pre = &first_reset_entry;
6704
    while (*pre != NULL)
6705
        pre = &(*pre)->next;
6706
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6707
    re->func = func;
6708
    re->opaque = opaque;
6709
    re->next = NULL;
6710
    *pre = re;
6711
}
6712

    
6713
static void qemu_system_reset(void)
6714
{
6715
    QEMUResetEntry *re;
6716

    
6717
    /* reset all devices */
6718
    for(re = first_reset_entry; re != NULL; re = re->next) {
6719
        re->func(re->opaque);
6720
    }
6721
}
6722

    
6723
void qemu_system_reset_request(void)
6724
{
6725
    if (no_reboot) {
6726
        shutdown_requested = 1;
6727
    } else {
6728
        reset_requested = 1;
6729
    }
6730
    if (cpu_single_env)
6731
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6732
}
6733

    
6734
void qemu_system_shutdown_request(void)
6735
{
6736
    shutdown_requested = 1;
6737
    if (cpu_single_env)
6738
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6739
}
6740

    
6741
void qemu_system_powerdown_request(void)
6742
{
6743
    powerdown_requested = 1;
6744
    if (cpu_single_env)
6745
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6746
}
6747

    
6748
void main_loop_wait(int timeout)
6749
{
6750
    IOHandlerRecord *ioh;
6751
    fd_set rfds, wfds, xfds;
6752
    int ret, nfds;
6753
#ifdef _WIN32
6754
    int ret2, i;
6755
#endif
6756
    struct timeval tv;
6757
    PollingEntry *pe;
6758

    
6759

    
6760
    /* XXX: need to suppress polling by better using win32 events */
6761
    ret = 0;
6762
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6763
        ret |= pe->func(pe->opaque);
6764
    }
6765
#ifdef _WIN32
6766
    if (ret == 0) {
6767
        int err;
6768
        WaitObjects *w = &wait_objects;
6769
       
6770
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6771
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6772
            if (w->func[ret - WAIT_OBJECT_0])
6773
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6774
               
6775
            /* Check for additional signaled events */
6776
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6777
                               
6778
                /* Check if event is signaled */
6779
                ret2 = WaitForSingleObject(w->events[i], 0);
6780
                if(ret2 == WAIT_OBJECT_0) {
6781
                    if (w->func[i])
6782
                        w->func[i](w->opaque[i]);
6783
                } else if (ret2 == WAIT_TIMEOUT) {
6784
                } else {
6785
                    err = GetLastError();
6786
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6787
                }               
6788
            }                
6789
        } else if (ret == WAIT_TIMEOUT) {
6790
        } else {
6791
            err = GetLastError();
6792
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6793
        }
6794
    }
6795
#endif
6796
    /* poll any events */
6797
    /* XXX: separate device handlers from system ones */
6798
    nfds = -1;
6799
    FD_ZERO(&rfds);
6800
    FD_ZERO(&wfds);
6801
    FD_ZERO(&xfds);
6802
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6803
        if (ioh->deleted)
6804
            continue;
6805
        if (ioh->fd_read &&
6806
            (!ioh->fd_read_poll ||
6807
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6808
            FD_SET(ioh->fd, &rfds);
6809
            if (ioh->fd > nfds)
6810
                nfds = ioh->fd;
6811
        }
6812
        if (ioh->fd_write) {
6813
            FD_SET(ioh->fd, &wfds);
6814
            if (ioh->fd > nfds)
6815
                nfds = ioh->fd;
6816
        }
6817
    }
6818
   
6819
    tv.tv_sec = 0;
6820
#ifdef _WIN32
6821
    tv.tv_usec = 0;
6822
#else
6823
    tv.tv_usec = timeout * 1000;
6824
#endif
6825
#if defined(CONFIG_SLIRP)
6826
    if (slirp_inited) {
6827
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6828
    }
6829
#endif
6830
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6831
    if (ret > 0) {
6832
        IOHandlerRecord **pioh;
6833

    
6834
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6835
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6836
                ioh->fd_read(ioh->opaque);
6837
            }
6838
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6839
                ioh->fd_write(ioh->opaque);
6840
            }
6841
        }
6842

    
6843
        /* remove deleted IO handlers */
6844
        pioh = &first_io_handler;
6845
        while (*pioh) {
6846
            ioh = *pioh;
6847
            if (ioh->deleted) {
6848
                *pioh = ioh->next;
6849
                qemu_free(ioh);
6850
            } else
6851
                pioh = &ioh->next;
6852
        }
6853
    }
6854
#if defined(CONFIG_SLIRP)
6855
    if (slirp_inited) {
6856
        if (ret < 0) {
6857
            FD_ZERO(&rfds);
6858
            FD_ZERO(&wfds);
6859
            FD_ZERO(&xfds);
6860
        }
6861
        slirp_select_poll(&rfds, &wfds, &xfds);
6862
    }
6863
#endif
6864
    qemu_aio_poll();
6865

    
6866
    if (vm_running) {
6867
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6868
                        qemu_get_clock(vm_clock));
6869
        /* run dma transfers, if any */
6870
        DMA_run();
6871
    }
6872

    
6873
    /* real time timers */
6874
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6875
                    qemu_get_clock(rt_clock));
6876

    
6877
    /* Check bottom-halves last in case any of the earlier events triggered
6878
       them.  */
6879
    qemu_bh_poll();
6880
   
6881
}
6882

    
6883
static CPUState *cur_cpu;
6884

    
6885
int main_loop(void)
6886
{
6887
    int ret, timeout;
6888
#ifdef CONFIG_PROFILER
6889
    int64_t ti;
6890
#endif
6891
    CPUState *env;
6892

    
6893
    cur_cpu = first_cpu;
6894
    for(;;) {
6895
        if (vm_running) {
6896

    
6897
            env = cur_cpu;
6898
            for(;;) {
6899
                /* get next cpu */
6900
                env = env->next_cpu;
6901
                if (!env)
6902
                    env = first_cpu;
6903
#ifdef CONFIG_PROFILER
6904
                ti = profile_getclock();
6905
#endif
6906
                ret = cpu_exec(env);
6907
#ifdef CONFIG_PROFILER
6908
                qemu_time += profile_getclock() - ti;
6909
#endif
6910
                if (ret == EXCP_HLT) {
6911
                    /* Give the next CPU a chance to run.  */
6912
                    cur_cpu = env;
6913
                    continue;
6914
                }
6915
                if (ret != EXCP_HALTED)
6916
                    break;
6917
                /* all CPUs are halted ? */
6918
                if (env == cur_cpu)
6919
                    break;
6920
            }
6921
            cur_cpu = env;
6922

    
6923
            if (shutdown_requested) {
6924
                ret = EXCP_INTERRUPT;
6925
                break;
6926
            }
6927
            if (reset_requested) {
6928
                reset_requested = 0;
6929
                qemu_system_reset();
6930
                ret = EXCP_INTERRUPT;
6931
            }
6932
            if (powerdown_requested) {
6933
                powerdown_requested = 0;
6934
                qemu_system_powerdown();
6935
                ret = EXCP_INTERRUPT;
6936
            }
6937
            if (ret == EXCP_DEBUG) {
6938
                vm_stop(EXCP_DEBUG);
6939
            }
6940
            /* If all cpus are halted then wait until the next IRQ */
6941
            /* XXX: use timeout computed from timers */
6942
            if (ret == EXCP_HALTED)
6943
                timeout = 10;
6944
            else
6945
                timeout = 0;
6946
        } else {
6947
            timeout = 10;
6948
        }
6949
#ifdef CONFIG_PROFILER
6950
        ti = profile_getclock();
6951
#endif
6952
        main_loop_wait(timeout);
6953
#ifdef CONFIG_PROFILER
6954
        dev_time += profile_getclock() - ti;
6955
#endif
6956
    }
6957
    cpu_disable_ticks();
6958
    return ret;
6959
}
6960

    
6961
static void help(int exitcode)
6962
{
6963
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6964
           "usage: %s [options] [disk_image]\n"
6965
           "\n"
6966
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6967
           "\n"
6968
           "Standard options:\n"
6969
           "-M machine      select emulated machine (-M ? for list)\n"
6970
           "-cpu cpu        select CPU (-cpu ? for list)\n"
6971
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
6972
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
6973
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
6974
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6975
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
6976
           "-sd file        use 'file' as SecureDigital card image\n"
6977
           "-pflash file    use 'file' as a parallel flash image\n"
6978
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6979
           "-snapshot       write to temporary files instead of disk image files\n"
6980
#ifdef CONFIG_SDL
6981
           "-no-frame       open SDL window without a frame and window decorations\n"
6982
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
6983
           "-no-quit        disable SDL window close capability\n"
6984
#endif
6985
#ifdef TARGET_I386
6986
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
6987
#endif
6988
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
6989
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
6990
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
6991
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
6992
#ifndef _WIN32
6993
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
6994
#endif
6995
#ifdef HAS_AUDIO
6996
           "-audio-help     print list of audio drivers and their options\n"
6997
           "-soundhw c1,... enable audio support\n"
6998
           "                and only specified sound cards (comma separated list)\n"
6999
           "                use -soundhw ? to get the list of supported cards\n"
7000
           "                use -soundhw all to enable all of them\n"
7001
#endif
7002
           "-localtime      set the real time clock to local time [default=utc]\n"
7003
           "-full-screen    start in full screen\n"
7004
#ifdef TARGET_I386
7005
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7006
#endif
7007
           "-usb            enable the USB driver (will be the default soon)\n"
7008
           "-usbdevice name add the host or guest USB device 'name'\n"
7009
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7010
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7011
#endif
7012
           "-name string    set the name of the guest\n"
7013
           "\n"
7014
           "Network options:\n"
7015
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7016
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7017
#ifdef CONFIG_SLIRP
7018
           "-net user[,vlan=n][,hostname=host]\n"
7019
           "                connect the user mode network stack to VLAN 'n' and send\n"
7020
           "                hostname 'host' to DHCP clients\n"
7021
#endif
7022
#ifdef _WIN32
7023
           "-net tap[,vlan=n],ifname=name\n"
7024
           "                connect the host TAP network interface to VLAN 'n'\n"
7025
#else
7026
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
7027
           "                connect the host TAP network interface to VLAN 'n' and use\n"
7028
           "                the network script 'file' (default=%s);\n"
7029
           "                use 'script=no' to disable script execution;\n"
7030
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7031
#endif
7032
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7033
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7034
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7035
           "                connect the vlan 'n' to multicast maddr and port\n"
7036
           "-net none       use it alone to have zero network devices; if no -net option\n"
7037
           "                is provided, the default is '-net nic -net user'\n"
7038
           "\n"
7039
#ifdef CONFIG_SLIRP
7040
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7041
           "-bootp file     advertise file in BOOTP replies\n"
7042
#ifndef _WIN32
7043
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7044
#endif
7045
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7046
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7047
#endif
7048
           "\n"
7049
           "Linux boot specific:\n"
7050
           "-kernel bzImage use 'bzImage' as kernel image\n"
7051
           "-append cmdline use 'cmdline' as kernel command line\n"
7052
           "-initrd file    use 'file' as initial ram disk\n"
7053
           "\n"
7054
           "Debug/Expert options:\n"
7055
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7056
           "-serial dev     redirect the serial port to char device 'dev'\n"
7057
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7058
           "-pidfile file   Write PID to 'file'\n"
7059
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7060
           "-s              wait gdb connection to port\n"
7061
           "-p port         set gdb connection port [default=%s]\n"
7062
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7063
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7064
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7065
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7066
#ifdef USE_KQEMU
7067
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7068
           "-no-kqemu       disable KQEMU kernel module usage\n"
7069
#endif
7070
#ifdef USE_CODE_COPY
7071
           "-no-code-copy   disable code copy acceleration\n"
7072
#endif
7073
#ifdef TARGET_I386
7074
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7075
           "                (default is CL-GD5446 PCI VGA)\n"
7076
           "-no-acpi        disable ACPI\n"
7077
#endif
7078
           "-no-reboot      exit instead of rebooting\n"
7079
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7080
           "-vnc display    start a VNC server on display\n"
7081
#ifndef _WIN32
7082
           "-daemonize      daemonize QEMU after initializing\n"
7083
#endif
7084
           "-option-rom rom load a file, rom, into the option ROM space\n"
7085
#ifdef TARGET_SPARC
7086
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7087
#endif
7088
           "-clock          force the use of the given methods for timer alarm.\n"
7089
           "                To see what timers are available use -clock help\n"
7090
           "\n"
7091
           "During emulation, the following keys are useful:\n"
7092
           "ctrl-alt-f      toggle full screen\n"
7093
           "ctrl-alt-n      switch to virtual console 'n'\n"
7094
           "ctrl-alt        toggle mouse and keyboard grab\n"
7095
           "\n"
7096
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7097
           ,
7098
           "qemu",
7099
           DEFAULT_RAM_SIZE,
7100
#ifndef _WIN32
7101
           DEFAULT_NETWORK_SCRIPT,
7102
#endif
7103
           DEFAULT_GDBSTUB_PORT,
7104
           "/tmp/qemu.log");
7105
    exit(exitcode);
7106
}
7107

    
7108
#define HAS_ARG 0x0001
7109

    
7110
enum {
7111
    QEMU_OPTION_h,
7112

    
7113
    QEMU_OPTION_M,
7114
    QEMU_OPTION_cpu,
7115
    QEMU_OPTION_fda,
7116
    QEMU_OPTION_fdb,
7117
    QEMU_OPTION_hda,
7118
    QEMU_OPTION_hdb,
7119
    QEMU_OPTION_hdc,
7120
    QEMU_OPTION_hdd,
7121
    QEMU_OPTION_cdrom,
7122
    QEMU_OPTION_mtdblock,
7123
    QEMU_OPTION_sd,
7124
    QEMU_OPTION_pflash,
7125
    QEMU_OPTION_boot,
7126
    QEMU_OPTION_snapshot,
7127
#ifdef TARGET_I386
7128
    QEMU_OPTION_no_fd_bootchk,
7129
#endif
7130
    QEMU_OPTION_m,
7131
    QEMU_OPTION_nographic,
7132
    QEMU_OPTION_portrait,
7133
#ifdef HAS_AUDIO
7134
    QEMU_OPTION_audio_help,
7135
    QEMU_OPTION_soundhw,
7136
#endif
7137

    
7138
    QEMU_OPTION_net,
7139
    QEMU_OPTION_tftp,
7140
    QEMU_OPTION_bootp,
7141
    QEMU_OPTION_smb,
7142
    QEMU_OPTION_redir,
7143

    
7144
    QEMU_OPTION_kernel,
7145
    QEMU_OPTION_append,
7146
    QEMU_OPTION_initrd,
7147

    
7148
    QEMU_OPTION_S,
7149
    QEMU_OPTION_s,
7150
    QEMU_OPTION_p,
7151
    QEMU_OPTION_d,
7152
    QEMU_OPTION_hdachs,
7153
    QEMU_OPTION_L,
7154
    QEMU_OPTION_no_code_copy,
7155
    QEMU_OPTION_k,
7156
    QEMU_OPTION_localtime,
7157
    QEMU_OPTION_cirrusvga,
7158
    QEMU_OPTION_vmsvga,
7159
    QEMU_OPTION_g,
7160
    QEMU_OPTION_std_vga,
7161
    QEMU_OPTION_echr,
7162
    QEMU_OPTION_monitor,
7163
    QEMU_OPTION_serial,
7164
    QEMU_OPTION_parallel,
7165
    QEMU_OPTION_loadvm,
7166
    QEMU_OPTION_full_screen,
7167
    QEMU_OPTION_no_frame,
7168
    QEMU_OPTION_alt_grab,
7169
    QEMU_OPTION_no_quit,
7170
    QEMU_OPTION_pidfile,
7171
    QEMU_OPTION_no_kqemu,
7172
    QEMU_OPTION_kernel_kqemu,
7173
    QEMU_OPTION_win2k_hack,
7174
    QEMU_OPTION_usb,
7175
    QEMU_OPTION_usbdevice,
7176
    QEMU_OPTION_smp,
7177
    QEMU_OPTION_vnc,
7178
    QEMU_OPTION_no_acpi,
7179
    QEMU_OPTION_no_reboot,
7180
    QEMU_OPTION_show_cursor,
7181
    QEMU_OPTION_daemonize,
7182
    QEMU_OPTION_option_rom,
7183
    QEMU_OPTION_semihosting,
7184
    QEMU_OPTION_name,
7185
    QEMU_OPTION_prom_env,
7186
    QEMU_OPTION_old_param,
7187
    QEMU_OPTION_clock,
7188
};
7189

    
7190
typedef struct QEMUOption {
7191
    const char *name;
7192
    int flags;
7193
    int index;
7194
} QEMUOption;
7195

    
7196
const QEMUOption qemu_options[] = {
7197
    { "h", 0, QEMU_OPTION_h },
7198
    { "help", 0, QEMU_OPTION_h },
7199

    
7200
    { "M", HAS_ARG, QEMU_OPTION_M },
7201
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7202
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7203
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7204
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7205
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7206
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7207
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7208
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7209
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7210
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7211
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7212
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7213
    { "snapshot", 0, QEMU_OPTION_snapshot },
7214
#ifdef TARGET_I386
7215
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7216
#endif
7217
    { "m", HAS_ARG, QEMU_OPTION_m },
7218
    { "nographic", 0, QEMU_OPTION_nographic },
7219
    { "portrait", 0, QEMU_OPTION_portrait },
7220
    { "k", HAS_ARG, QEMU_OPTION_k },
7221
#ifdef HAS_AUDIO
7222
    { "audio-help", 0, QEMU_OPTION_audio_help },
7223
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7224
#endif
7225

    
7226
    { "net", HAS_ARG, QEMU_OPTION_net},
7227
#ifdef CONFIG_SLIRP
7228
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7229
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7230
#ifndef _WIN32
7231
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7232
#endif
7233
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7234
#endif
7235

    
7236
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7237
    { "append", HAS_ARG, QEMU_OPTION_append },
7238
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7239

    
7240
    { "S", 0, QEMU_OPTION_S },
7241
    { "s", 0, QEMU_OPTION_s },
7242
    { "p", HAS_ARG, QEMU_OPTION_p },
7243
    { "d", HAS_ARG, QEMU_OPTION_d },
7244
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7245
    { "L", HAS_ARG, QEMU_OPTION_L },
7246
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7247
#ifdef USE_KQEMU
7248
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7249
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7250
#endif
7251
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7252
    { "g", 1, QEMU_OPTION_g },
7253
#endif
7254
    { "localtime", 0, QEMU_OPTION_localtime },
7255
    { "std-vga", 0, QEMU_OPTION_std_vga },
7256
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7257
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7258
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7259
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7260
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7261
    { "full-screen", 0, QEMU_OPTION_full_screen },
7262
#ifdef CONFIG_SDL
7263
    { "no-frame", 0, QEMU_OPTION_no_frame },
7264
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7265
    { "no-quit", 0, QEMU_OPTION_no_quit },
7266
#endif
7267
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7268
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7269
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7270
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7271
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7272

    
7273
    /* temporary options */
7274
    { "usb", 0, QEMU_OPTION_usb },
7275
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7276
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7277
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7278
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7279
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7280
    { "daemonize", 0, QEMU_OPTION_daemonize },
7281
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7282
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7283
    { "semihosting", 0, QEMU_OPTION_semihosting },
7284
#endif
7285
    { "name", HAS_ARG, QEMU_OPTION_name },
7286
#if defined(TARGET_SPARC)
7287
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7288
#endif
7289
#if defined(TARGET_ARM)
7290
    { "old-param", 0, QEMU_OPTION_old_param },
7291
#endif
7292
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7293
    { NULL },
7294
};
7295

    
7296
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
7297

    
7298
/* this stack is only used during signal handling */
7299
#define SIGNAL_STACK_SIZE 32768
7300

    
7301
static uint8_t *signal_stack;
7302

    
7303
#endif
7304

    
7305
/* password input */
7306

    
7307
int qemu_key_check(BlockDriverState *bs, const char *name)
7308
{
7309
    char password[256];
7310
    int i;
7311

    
7312
    if (!bdrv_is_encrypted(bs))
7313
        return 0;
7314

    
7315
    term_printf("%s is encrypted.\n", name);
7316
    for(i = 0; i < 3; i++) {
7317
        monitor_readline("Password: ", 1, password, sizeof(password));
7318
        if (bdrv_set_key(bs, password) == 0)
7319
            return 0;
7320
        term_printf("invalid password\n");
7321
    }
7322
    return -EPERM;
7323
}
7324

    
7325
static BlockDriverState *get_bdrv(int index)
7326
{
7327
    BlockDriverState *bs;
7328

    
7329
    if (index < 4) {
7330
        bs = bs_table[index];
7331
    } else if (index < 6) {
7332
        bs = fd_table[index - 4];
7333
    } else {
7334
        bs = NULL;
7335
    }
7336
    return bs;
7337
}
7338

    
7339
static void read_passwords(void)
7340
{
7341
    BlockDriverState *bs;
7342
    int i;
7343

    
7344
    for(i = 0; i < 6; i++) {
7345
        bs = get_bdrv(i);
7346
        if (bs)
7347
            qemu_key_check(bs, bdrv_get_device_name(bs));
7348
    }
7349
}
7350

    
7351
/* XXX: currently we cannot use simultaneously different CPUs */
7352
void register_machines(void)
7353
{
7354
#if defined(TARGET_I386)
7355
    qemu_register_machine(&pc_machine);
7356
    qemu_register_machine(&isapc_machine);
7357
#elif defined(TARGET_PPC)
7358
    qemu_register_machine(&heathrow_machine);
7359
    qemu_register_machine(&core99_machine);
7360
    qemu_register_machine(&prep_machine);
7361
    qemu_register_machine(&ref405ep_machine);
7362
    qemu_register_machine(&taihu_machine);
7363
#elif defined(TARGET_MIPS)
7364
    qemu_register_machine(&mips_machine);
7365
    qemu_register_machine(&mips_malta_machine);
7366
    qemu_register_machine(&mips_pica61_machine);
7367
#elif defined(TARGET_SPARC)
7368
#ifdef TARGET_SPARC64
7369
    qemu_register_machine(&sun4u_machine);
7370
#else
7371
    qemu_register_machine(&ss5_machine);
7372
    qemu_register_machine(&ss10_machine);
7373
#endif
7374
#elif defined(TARGET_ARM)
7375
    qemu_register_machine(&integratorcp_machine);
7376
    qemu_register_machine(&versatilepb_machine);
7377
    qemu_register_machine(&versatileab_machine);
7378
    qemu_register_machine(&realview_machine);
7379
    qemu_register_machine(&akitapda_machine);
7380
    qemu_register_machine(&spitzpda_machine);
7381
    qemu_register_machine(&borzoipda_machine);
7382
    qemu_register_machine(&terrierpda_machine);
7383
    qemu_register_machine(&palmte_machine);
7384
#elif defined(TARGET_SH4)
7385
    qemu_register_machine(&shix_machine);
7386
#elif defined(TARGET_ALPHA)
7387
    /* XXX: TODO */
7388
#elif defined(TARGET_M68K)
7389
    qemu_register_machine(&mcf5208evb_machine);
7390
    qemu_register_machine(&an5206_machine);
7391
#else
7392
#error unsupported CPU
7393
#endif
7394
}
7395

    
7396
#ifdef HAS_AUDIO
7397
struct soundhw soundhw[] = {
7398
#ifdef HAS_AUDIO_CHOICE
7399
#ifdef TARGET_I386
7400
    {
7401
        "pcspk",
7402
        "PC speaker",
7403
        0,
7404
        1,
7405
        { .init_isa = pcspk_audio_init }
7406
    },
7407
#endif
7408
    {
7409
        "sb16",
7410
        "Creative Sound Blaster 16",
7411
        0,
7412
        1,
7413
        { .init_isa = SB16_init }
7414
    },
7415

    
7416
#ifdef CONFIG_ADLIB
7417
    {
7418
        "adlib",
7419
#ifdef HAS_YMF262
7420
        "Yamaha YMF262 (OPL3)",
7421
#else
7422
        "Yamaha YM3812 (OPL2)",
7423
#endif
7424
        0,
7425
        1,
7426
        { .init_isa = Adlib_init }
7427
    },
7428
#endif
7429

    
7430
#ifdef CONFIG_GUS
7431
    {
7432
        "gus",
7433
        "Gravis Ultrasound GF1",
7434
        0,
7435
        1,
7436
        { .init_isa = GUS_init }
7437
    },
7438
#endif
7439

    
7440
    {
7441
        "es1370",
7442
        "ENSONIQ AudioPCI ES1370",
7443
        0,
7444
        0,
7445
        { .init_pci = es1370_init }
7446
    },
7447
#endif
7448

    
7449
    { NULL, NULL, 0, 0, { NULL } }
7450
};
7451

    
7452
static void select_soundhw (const char *optarg)
7453
{
7454
    struct soundhw *c;
7455

    
7456
    if (*optarg == '?') {
7457
    show_valid_cards:
7458

    
7459
        printf ("Valid sound card names (comma separated):\n");
7460
        for (c = soundhw; c->name; ++c) {
7461
            printf ("%-11s %s\n", c->name, c->descr);
7462
        }
7463
        printf ("\n-soundhw all will enable all of the above\n");
7464
        exit (*optarg != '?');
7465
    }
7466
    else {
7467
        size_t l;
7468
        const char *p;
7469
        char *e;
7470
        int bad_card = 0;
7471

    
7472
        if (!strcmp (optarg, "all")) {
7473
            for (c = soundhw; c->name; ++c) {
7474
                c->enabled = 1;
7475
            }
7476
            return;
7477
        }
7478

    
7479
        p = optarg;
7480
        while (*p) {
7481
            e = strchr (p, ',');
7482
            l = !e ? strlen (p) : (size_t) (e - p);
7483

    
7484
            for (c = soundhw; c->name; ++c) {
7485
                if (!strncmp (c->name, p, l)) {
7486
                    c->enabled = 1;
7487
                    break;
7488
                }
7489
            }
7490

    
7491
            if (!c->name) {
7492
                if (l > 80) {
7493
                    fprintf (stderr,
7494
                             "Unknown sound card name (too big to show)\n");
7495
                }
7496
                else {
7497
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
7498
                             (int) l, p);
7499
                }
7500
                bad_card = 1;
7501
            }
7502
            p += l + (e != NULL);
7503
        }
7504

    
7505
        if (bad_card)
7506
            goto show_valid_cards;
7507
    }
7508
}
7509
#endif
7510

    
7511
#ifdef _WIN32
7512
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7513
{
7514
    exit(STATUS_CONTROL_C_EXIT);
7515
    return TRUE;
7516
}
7517
#endif
7518

    
7519
#define MAX_NET_CLIENTS 32
7520

    
7521
int main(int argc, char **argv)
7522
{
7523
#ifdef CONFIG_GDBSTUB
7524
    int use_gdbstub;
7525
    const char *gdbstub_port;
7526
#endif
7527
    int i, cdrom_index, pflash_index;
7528
    int snapshot, linux_boot;
7529
    const char *initrd_filename;
7530
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7531
    const char *pflash_filename[MAX_PFLASH];
7532
    const char *sd_filename;
7533
    const char *mtd_filename;
7534
    const char *kernel_filename, *kernel_cmdline;
7535
    DisplayState *ds = &display_state;
7536
    int cyls, heads, secs, translation;
7537
    char net_clients[MAX_NET_CLIENTS][256];
7538
    int nb_net_clients;
7539
    int optind;
7540
    const char *r, *optarg;
7541
    CharDriverState *monitor_hd;
7542
    char monitor_device[128];
7543
    char serial_devices[MAX_SERIAL_PORTS][128];
7544
    int serial_device_index;
7545
    char parallel_devices[MAX_PARALLEL_PORTS][128];
7546
    int parallel_device_index;
7547
    const char *loadvm = NULL;
7548
    QEMUMachine *machine;
7549
    const char *cpu_model;
7550
    char usb_devices[MAX_USB_CMDLINE][128];
7551
    int usb_devices_index;
7552
    int fds[2];
7553
    const char *pid_file = NULL;
7554
    VLANState *vlan;
7555

    
7556
    LIST_INIT (&vm_change_state_head);
7557
#ifndef _WIN32
7558
    {
7559
        struct sigaction act;
7560
        sigfillset(&act.sa_mask);
7561
        act.sa_flags = 0;
7562
        act.sa_handler = SIG_IGN;
7563
        sigaction(SIGPIPE, &act, NULL);
7564
    }
7565
#else
7566
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7567
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7568
       QEMU to run on a single CPU */
7569
    {
7570
        HANDLE h;
7571
        DWORD mask, smask;
7572
        int i;
7573
        h = GetCurrentProcess();
7574
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7575
            for(i = 0; i < 32; i++) {
7576
                if (mask & (1 << i))
7577
                    break;
7578
            }
7579
            if (i != 32) {
7580
                mask = 1 << i;
7581
                SetProcessAffinityMask(h, mask);
7582
            }
7583
        }
7584
    }
7585
#endif
7586

    
7587
    register_machines();
7588
    machine = first_machine;
7589
    cpu_model = NULL;
7590
    initrd_filename = NULL;
7591
    for(i = 0; i < MAX_FD; i++)
7592
        fd_filename[i] = NULL;
7593
    for(i = 0; i < MAX_DISKS; i++)
7594
        hd_filename[i] = NULL;
7595
    for(i = 0; i < MAX_PFLASH; i++)
7596
        pflash_filename[i] = NULL;
7597
    pflash_index = 0;
7598
    sd_filename = NULL;
7599
    mtd_filename = NULL;
7600
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7601
    vga_ram_size = VGA_RAM_SIZE;
7602
#ifdef CONFIG_GDBSTUB
7603
    use_gdbstub = 0;
7604
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7605
#endif
7606
    snapshot = 0;
7607
    nographic = 0;
7608
    kernel_filename = NULL;
7609
    kernel_cmdline = "";
7610
#ifdef TARGET_PPC
7611
    cdrom_index = 1;
7612
#else
7613
    cdrom_index = 2;
7614
#endif
7615
    cyls = heads = secs = 0;
7616
    translation = BIOS_ATA_TRANSLATION_AUTO;
7617
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7618

    
7619
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7620
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7621
        serial_devices[i][0] = '\0';
7622
    serial_device_index = 0;
7623
   
7624
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7625
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7626
        parallel_devices[i][0] = '\0';
7627
    parallel_device_index = 0;
7628
   
7629
    usb_devices_index = 0;
7630
   
7631
    nb_net_clients = 0;
7632

    
7633
    nb_nics = 0;
7634
    /* default mac address of the first network interface */
7635
   
7636
    optind = 1;
7637
    for(;;) {
7638
        if (optind >= argc)
7639
            break;
7640
        r = argv[optind];
7641
        if (r[0] != '-') {
7642
            hd_filename[0] = argv[optind++];
7643
        } else {
7644
            const QEMUOption *popt;
7645

    
7646
            optind++;
7647
            /* Treat --foo the same as -foo.  */
7648
            if (r[1] == '-')
7649
                r++;
7650
            popt = qemu_options;
7651
            for(;;) {
7652
                if (!popt->name) {
7653
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
7654
                            argv[0], r);
7655
                    exit(1);
7656
                }
7657
                if (!strcmp(popt->name, r + 1))
7658
                    break;
7659
                popt++;
7660
            }
7661
            if (popt->flags & HAS_ARG) {
7662
                if (optind >= argc) {
7663
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7664
                            argv[0], r);
7665
                    exit(1);
7666
                }
7667
                optarg = argv[optind++];
7668
            } else {
7669
                optarg = NULL;
7670
            }
7671

    
7672
            switch(popt->index) {
7673
            case QEMU_OPTION_M:
7674
                machine = find_machine(optarg);
7675
                if (!machine) {
7676
                    QEMUMachine *m;
7677
                    printf("Supported machines are:\n");
7678
                    for(m = first_machine; m != NULL; m = m->next) {
7679
                        printf("%-10s %s%s\n",
7680
                               m->name, m->desc,
7681
                               m == first_machine ? " (default)" : "");
7682
                    }
7683
                    exit(*optarg != '?');
7684
                }
7685
                break;
7686
            case QEMU_OPTION_cpu:
7687
                /* hw initialization will check this */
7688
                if (*optarg == '?') {
7689
#if defined(TARGET_PPC)
7690
                    ppc_cpu_list(stdout, &fprintf);
7691
#elif defined(TARGET_ARM)
7692
                    arm_cpu_list();
7693
#elif defined(TARGET_MIPS)
7694
                    mips_cpu_list(stdout, &fprintf);
7695
#elif defined(TARGET_SPARC)
7696
                    sparc_cpu_list(stdout, &fprintf);
7697
#endif
7698
                    exit(0);
7699
                } else {
7700
                    cpu_model = optarg;
7701
                }
7702
                break;
7703
            case QEMU_OPTION_initrd:
7704
                initrd_filename = optarg;
7705
                break;
7706
            case QEMU_OPTION_hda:
7707
            case QEMU_OPTION_hdb:
7708
            case QEMU_OPTION_hdc:
7709
            case QEMU_OPTION_hdd:
7710
                {
7711
                    int hd_index;
7712
                    hd_index = popt->index - QEMU_OPTION_hda;
7713
                    hd_filename[hd_index] = optarg;
7714
                    if (hd_index == cdrom_index)
7715
                        cdrom_index = -1;
7716
                }
7717
                break;
7718
            case QEMU_OPTION_mtdblock:
7719
                mtd_filename = optarg;
7720
                break;
7721
            case QEMU_OPTION_sd:
7722
                sd_filename = optarg;
7723
                break;
7724
            case QEMU_OPTION_pflash:
7725
                if (pflash_index >= MAX_PFLASH) {
7726
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7727
                    exit(1);
7728
                }
7729
                pflash_filename[pflash_index++] = optarg;
7730
                break;
7731
            case QEMU_OPTION_snapshot:
7732
                snapshot = 1;
7733
                break;
7734
            case QEMU_OPTION_hdachs:
7735
                {
7736
                    const char *p;
7737
                    p = optarg;
7738
                    cyls = strtol(p, (char **)&p, 0);
7739
                    if (cyls < 1 || cyls > 16383)
7740
                        goto chs_fail;
7741
                    if (*p != ',')
7742
                        goto chs_fail;
7743
                    p++;
7744
                    heads = strtol(p, (char **)&p, 0);
7745
                    if (heads < 1 || heads > 16)
7746
                        goto chs_fail;
7747
                    if (*p != ',')
7748
                        goto chs_fail;
7749
                    p++;
7750
                    secs = strtol(p, (char **)&p, 0);
7751
                    if (secs < 1 || secs > 63)
7752
                        goto chs_fail;
7753
                    if (*p == ',') {
7754
                        p++;
7755
                        if (!strcmp(p, "none"))
7756
                            translation = BIOS_ATA_TRANSLATION_NONE;
7757
                        else if (!strcmp(p, "lba"))
7758
                            translation = BIOS_ATA_TRANSLATION_LBA;
7759
                        else if (!strcmp(p, "auto"))
7760
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7761
                        else
7762
                            goto chs_fail;
7763
                    } else if (*p != '\0') {
7764
                    chs_fail:
7765
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7766
                        exit(1);
7767
                    }
7768
                }
7769
                break;
7770
            case QEMU_OPTION_nographic:
7771
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7772
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7773
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7774
                nographic = 1;
7775
                break;
7776
            case QEMU_OPTION_portrait:
7777
                graphic_rotate = 1;
7778
                break;
7779
            case QEMU_OPTION_kernel:
7780
                kernel_filename = optarg;
7781
                break;
7782
            case QEMU_OPTION_append:
7783
                kernel_cmdline = optarg;
7784
                break;
7785
            case QEMU_OPTION_cdrom:
7786
                if (cdrom_index >= 0) {
7787
                    hd_filename[cdrom_index] = optarg;
7788
                }
7789
                break;
7790
            case QEMU_OPTION_boot:
7791
                boot_device = optarg[0];
7792
                if (boot_device != 'a' &&
7793
#if defined(TARGET_SPARC) || defined(TARGET_I386)
7794
                    // Network boot
7795
                    boot_device != 'n' &&
7796
#endif
7797
                    boot_device != 'c' && boot_device != 'd') {
7798
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7799
                    exit(1);
7800
                }
7801
                break;
7802
            case QEMU_OPTION_fda:
7803
                fd_filename[0] = optarg;
7804
                break;
7805
            case QEMU_OPTION_fdb:
7806
                fd_filename[1] = optarg;
7807
                break;
7808
#ifdef TARGET_I386
7809
            case QEMU_OPTION_no_fd_bootchk:
7810
                fd_bootchk = 0;
7811
                break;
7812
#endif
7813
            case QEMU_OPTION_no_code_copy:
7814
                code_copy_enabled = 0;
7815
                break;
7816
            case QEMU_OPTION_net:
7817
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7818
                    fprintf(stderr, "qemu: too many network clients\n");
7819
                    exit(1);
7820
                }
7821
                pstrcpy(net_clients[nb_net_clients],
7822
                        sizeof(net_clients[0]),
7823
                        optarg);
7824
                nb_net_clients++;
7825
                break;
7826
#ifdef CONFIG_SLIRP
7827
            case QEMU_OPTION_tftp:
7828
                tftp_prefix = optarg;
7829
                break;
7830
            case QEMU_OPTION_bootp:
7831
                bootp_filename = optarg;
7832
                break;
7833
#ifndef _WIN32
7834
            case QEMU_OPTION_smb:
7835
                net_slirp_smb(optarg);
7836
                break;
7837
#endif
7838
            case QEMU_OPTION_redir:
7839
                net_slirp_redir(optarg);               
7840
                break;
7841
#endif
7842
#ifdef HAS_AUDIO
7843
            case QEMU_OPTION_audio_help:
7844
                AUD_help ();
7845
                exit (0);
7846
                break;
7847
            case QEMU_OPTION_soundhw:
7848
                select_soundhw (optarg);
7849
                break;
7850
#endif
7851
            case QEMU_OPTION_h:
7852
                help(0);
7853
                break;
7854
            case QEMU_OPTION_m:
7855
                ram_size = atoi(optarg) * 1024 * 1024;
7856
                if (ram_size <= 0)
7857
                    help(1);
7858
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7859
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7860
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7861
                    exit(1);
7862
                }
7863
                break;
7864
            case QEMU_OPTION_d:
7865
                {
7866
                    int mask;
7867
                    CPULogItem *item;
7868
                   
7869
                    mask = cpu_str_to_log_mask(optarg);
7870
                    if (!mask) {
7871
                        printf("Log items (comma separated):\n");
7872
                    for(item = cpu_log_items; item->mask != 0; item++) {
7873
                        printf("%-10s %s\n", item->name, item->help);
7874
                    }
7875
                    exit(1);
7876
                    }
7877
                    cpu_set_log(mask);
7878
                }
7879
                break;
7880
#ifdef CONFIG_GDBSTUB
7881
            case QEMU_OPTION_s:
7882
                use_gdbstub = 1;
7883
                break;
7884
            case QEMU_OPTION_p:
7885
                gdbstub_port = optarg;
7886
                break;
7887
#endif
7888
            case QEMU_OPTION_L:
7889
                bios_dir = optarg;
7890
                break;
7891
            case QEMU_OPTION_S:
7892
                autostart = 0;
7893
                break;
7894
            case QEMU_OPTION_k:
7895
                keyboard_layout = optarg;
7896
                break;
7897
            case QEMU_OPTION_localtime:
7898
                rtc_utc = 0;
7899
                break;
7900
            case QEMU_OPTION_cirrusvga:
7901
                cirrus_vga_enabled = 1;
7902
                vmsvga_enabled = 0;
7903
                break;
7904
            case QEMU_OPTION_vmsvga:
7905
                cirrus_vga_enabled = 0;
7906
                vmsvga_enabled = 1;
7907
                break;
7908
            case QEMU_OPTION_std_vga:
7909
                cirrus_vga_enabled = 0;
7910
                vmsvga_enabled = 0;
7911
                break;
7912
            case QEMU_OPTION_g:
7913
                {
7914
                    const char *p;
7915
                    int w, h, depth;
7916
                    p = optarg;
7917
                    w = strtol(p, (char **)&p, 10);
7918
                    if (w <= 0) {
7919
                    graphic_error:
7920
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
7921
                        exit(1);
7922
                    }
7923
                    if (*p != 'x')
7924
                        goto graphic_error;
7925
                    p++;
7926
                    h = strtol(p, (char **)&p, 10);
7927
                    if (h <= 0)
7928
                        goto graphic_error;
7929
                    if (*p == 'x') {
7930
                        p++;
7931
                        depth = strtol(p, (char **)&p, 10);
7932
                        if (depth != 8 && depth != 15 && depth != 16 &&
7933
                            depth != 24 && depth != 32)
7934
                            goto graphic_error;
7935
                    } else if (*p == '\0') {
7936
                        depth = graphic_depth;
7937
                    } else {
7938
                        goto graphic_error;
7939
                    }
7940
                   
7941
                    graphic_width = w;
7942
                    graphic_height = h;
7943
                    graphic_depth = depth;
7944
                }
7945
                break;
7946
            case QEMU_OPTION_echr:
7947
                {
7948
                    char *r;
7949
                    term_escape_char = strtol(optarg, &r, 0);
7950
                    if (r == optarg)
7951
                        printf("Bad argument to echr\n");
7952
                    break;
7953
                }
7954
            case QEMU_OPTION_monitor:
7955
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7956
                break;
7957
            case QEMU_OPTION_serial:
7958
                if (serial_device_index >= MAX_SERIAL_PORTS) {
7959
                    fprintf(stderr, "qemu: too many serial ports\n");
7960
                    exit(1);
7961
                }
7962
                pstrcpy(serial_devices[serial_device_index],
7963
                        sizeof(serial_devices[0]), optarg);
7964
                serial_device_index++;
7965
                break;
7966
            case QEMU_OPTION_parallel:
7967
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7968
                    fprintf(stderr, "qemu: too many parallel ports\n");
7969
                    exit(1);
7970
                }
7971
                pstrcpy(parallel_devices[parallel_device_index],
7972
                        sizeof(parallel_devices[0]), optarg);
7973
                parallel_device_index++;
7974
                break;
7975
            case QEMU_OPTION_loadvm:
7976
                loadvm = optarg;
7977
                break;
7978
            case QEMU_OPTION_full_screen:
7979
                full_screen = 1;
7980
                break;
7981
#ifdef CONFIG_SDL
7982
            case QEMU_OPTION_no_frame:
7983
                no_frame = 1;
7984
                break;
7985
            case QEMU_OPTION_alt_grab:
7986
                alt_grab = 1;
7987
                break;
7988
            case QEMU_OPTION_no_quit:
7989
                no_quit = 1;
7990
                break;
7991
#endif
7992
            case QEMU_OPTION_pidfile:
7993
                pid_file = optarg;
7994
                break;
7995
#ifdef TARGET_I386
7996
            case QEMU_OPTION_win2k_hack:
7997
                win2k_install_hack = 1;
7998
                break;
7999
#endif
8000
#ifdef USE_KQEMU
8001
            case QEMU_OPTION_no_kqemu:
8002
                kqemu_allowed = 0;
8003
                break;
8004
            case QEMU_OPTION_kernel_kqemu:
8005
                kqemu_allowed = 2;
8006
                break;
8007
#endif
8008
            case QEMU_OPTION_usb:
8009
                usb_enabled = 1;
8010
                break;
8011
            case QEMU_OPTION_usbdevice:
8012
                usb_enabled = 1;
8013
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8014
                    fprintf(stderr, "Too many USB devices\n");
8015
                    exit(1);
8016
                }
8017
                pstrcpy(usb_devices[usb_devices_index],
8018
                        sizeof(usb_devices[usb_devices_index]),
8019
                        optarg);
8020
                usb_devices_index++;
8021
                break;
8022
            case QEMU_OPTION_smp:
8023
                smp_cpus = atoi(optarg);
8024
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8025
                    fprintf(stderr, "Invalid number of CPUs\n");
8026
                    exit(1);
8027
                }
8028
                break;
8029
            case QEMU_OPTION_vnc:
8030
                vnc_display = optarg;
8031
                break;
8032
            case QEMU_OPTION_no_acpi:
8033
                acpi_enabled = 0;
8034
                break;
8035
            case QEMU_OPTION_no_reboot:
8036
                no_reboot = 1;
8037
                break;
8038
            case QEMU_OPTION_show_cursor:
8039
                cursor_hide = 0;
8040
                break;
8041
            case QEMU_OPTION_daemonize:
8042
                daemonize = 1;
8043
                break;
8044
            case QEMU_OPTION_option_rom:
8045
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8046
                    fprintf(stderr, "Too many option ROMs\n");
8047
                    exit(1);
8048
                }
8049
                option_rom[nb_option_roms] = optarg;
8050
                nb_option_roms++;
8051
                break;
8052
            case QEMU_OPTION_semihosting:
8053
                semihosting_enabled = 1;
8054
                break;
8055
            case QEMU_OPTION_name:
8056
                qemu_name = optarg;
8057
                break;
8058
#ifdef TARGET_SPARC
8059
            case QEMU_OPTION_prom_env:
8060
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8061
                    fprintf(stderr, "Too many prom variables\n");
8062
                    exit(1);
8063
                }
8064
                prom_envs[nb_prom_envs] = optarg;
8065
                nb_prom_envs++;
8066
                break;
8067
#endif
8068
#ifdef TARGET_ARM
8069
            case QEMU_OPTION_old_param:
8070
                old_param = 1;
8071
#endif
8072
            case QEMU_OPTION_clock:
8073
                configure_alarms(optarg);
8074
                break;
8075
            }
8076
        }
8077
    }
8078

    
8079
#ifndef _WIN32
8080
    if (daemonize && !nographic && vnc_display == NULL) {
8081
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8082
        daemonize = 0;
8083
    }
8084

    
8085
    if (daemonize) {
8086
        pid_t pid;
8087

    
8088
        if (pipe(fds) == -1)
8089
            exit(1);
8090

    
8091
        pid = fork();
8092
        if (pid > 0) {
8093
            uint8_t status;
8094
            ssize_t len;
8095

    
8096
            close(fds[1]);
8097

    
8098
        again:
8099
            len = read(fds[0], &status, 1);
8100
            if (len == -1 && (errno == EINTR))
8101
                goto again;
8102

    
8103
            if (len != 1)
8104
                exit(1);
8105
            else if (status == 1) {
8106
                fprintf(stderr, "Could not acquire pidfile\n");
8107
                exit(1);
8108
            } else
8109
                exit(0);
8110
        } else if (pid < 0)
8111
            exit(1);
8112

    
8113
        setsid();
8114

    
8115
        pid = fork();
8116
        if (pid > 0)
8117
            exit(0);
8118
        else if (pid < 0)
8119
            exit(1);
8120

    
8121
        umask(027);
8122
        chdir("/");
8123

    
8124
        signal(SIGTSTP, SIG_IGN);
8125
        signal(SIGTTOU, SIG_IGN);
8126
        signal(SIGTTIN, SIG_IGN);
8127
    }
8128
#endif
8129

    
8130
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8131
        if (daemonize) {
8132
            uint8_t status = 1;
8133
            write(fds[1], &status, 1);
8134
        } else
8135
            fprintf(stderr, "Could not acquire pid file\n");
8136
        exit(1);
8137
    }
8138

    
8139
#ifdef USE_KQEMU
8140
    if (smp_cpus > 1)
8141
        kqemu_allowed = 0;
8142
#endif
8143
    linux_boot = (kernel_filename != NULL);
8144

    
8145
    if (!linux_boot &&
8146
        boot_device != 'n' &&
8147
        hd_filename[0] == '\0' &&
8148
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8149
        fd_filename[0] == '\0')
8150
        help(1);
8151

    
8152
    /* boot to floppy or the default cd if no hard disk defined yet */
8153
    if (hd_filename[0] == '\0' && boot_device == 'c') {
8154
        if (fd_filename[0] != '\0')
8155
            boot_device = 'a';
8156
        else
8157
            boot_device = 'd';
8158
    }
8159

    
8160
    setvbuf(stdout, NULL, _IOLBF, 0);
8161
   
8162
    init_timers();
8163
    init_timer_alarm();
8164
    qemu_aio_init();
8165

    
8166
#ifdef _WIN32
8167
    socket_init();
8168
#endif
8169

    
8170
    /* init network clients */
8171
    if (nb_net_clients == 0) {
8172
        /* if no clients, we use a default config */
8173
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
8174
                "nic");
8175
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
8176
                "user");
8177
        nb_net_clients = 2;
8178
    }
8179

    
8180
    for(i = 0;i < nb_net_clients; i++) {
8181
        if (net_client_init(net_clients[i]) < 0)
8182
            exit(1);
8183
    }
8184
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8185
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8186
            continue;
8187
        if (vlan->nb_guest_devs == 0) {
8188
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8189
            exit(1);
8190
        }
8191
        if (vlan->nb_host_devs == 0)
8192
            fprintf(stderr,
8193
                    "Warning: vlan %d is not connected to host network\n",
8194
                    vlan->id);
8195
    }
8196

    
8197
#ifdef TARGET_I386
8198
    if (boot_device == 'n') {
8199
        for (i = 0; i < nb_nics; i++) {
8200
            const char *model = nd_table[i].model;
8201
            char buf[1024];
8202
            if (model == NULL)
8203
                model = "ne2k_pci";
8204
            snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8205
            if (get_image_size(buf) > 0) {
8206
                option_rom[nb_option_roms] = strdup(buf);
8207
                nb_option_roms++;
8208
                break;
8209
            }
8210
        }
8211
        if (i == nb_nics) {
8212
            fprintf(stderr, "No valid PXE rom found for network device\n");
8213
            exit(1);
8214
        }
8215
    }
8216
#endif
8217

    
8218
    /* init the memory */
8219
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8220

    
8221
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8222
    if (!phys_ram_base) {
8223
        fprintf(stderr, "Could not allocate physical memory\n");
8224
        exit(1);
8225
    }
8226

    
8227
    /* we always create the cdrom drive, even if no disk is there */
8228
    bdrv_init();
8229
    if (cdrom_index >= 0) {
8230
        bs_table[cdrom_index] = bdrv_new("cdrom");
8231
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8232
    }
8233

    
8234
    /* open the virtual block devices */
8235
    for(i = 0; i < MAX_DISKS; i++) {
8236
        if (hd_filename[i]) {
8237
            if (!bs_table[i]) {
8238
                char buf[64];
8239
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8240
                bs_table[i] = bdrv_new(buf);
8241
            }
8242
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8243
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8244
                        hd_filename[i]);
8245
                exit(1);
8246
            }
8247
            if (i == 0 && cyls != 0) {
8248
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8249
                bdrv_set_translation_hint(bs_table[i], translation);
8250
            }
8251
        }
8252
    }
8253

    
8254
    /* we always create at least one floppy disk */
8255
    fd_table[0] = bdrv_new("fda");
8256
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8257

    
8258
    for(i = 0; i < MAX_FD; i++) {
8259
        if (fd_filename[i]) {
8260
            if (!fd_table[i]) {
8261
                char buf[64];
8262
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8263
                fd_table[i] = bdrv_new(buf);
8264
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8265
            }
8266
            if (fd_filename[i][0] != '\0') {
8267
                if (bdrv_open(fd_table[i], fd_filename[i],
8268
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8269
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8270
                            fd_filename[i]);
8271
                    exit(1);
8272
                }
8273
            }
8274
        }
8275
    }
8276

    
8277
    /* Open the virtual parallel flash block devices */
8278
    for(i = 0; i < MAX_PFLASH; i++) {
8279
        if (pflash_filename[i]) {
8280
            if (!pflash_table[i]) {
8281
                char buf[64];
8282
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8283
                pflash_table[i] = bdrv_new(buf);
8284
            }
8285
            if (bdrv_open(pflash_table[i], pflash_filename[i],
8286
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8287
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
8288
                        pflash_filename[i]);
8289
                exit(1);
8290
            }
8291
        }
8292
    }
8293

    
8294
    sd_bdrv = bdrv_new ("sd");
8295
    /* FIXME: This isn't really a floppy, but it's a reasonable
8296
       approximation.  */
8297
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8298
    if (sd_filename) {
8299
        if (bdrv_open(sd_bdrv, sd_filename,
8300
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8301
            fprintf(stderr, "qemu: could not open SD card image %s\n",
8302
                    sd_filename);
8303
        } else
8304
            qemu_key_check(sd_bdrv, sd_filename);
8305
    }
8306

    
8307
    if (mtd_filename) {
8308
        mtd_bdrv = bdrv_new ("mtd");
8309
        if (bdrv_open(mtd_bdrv, mtd_filename,
8310
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8311
            qemu_key_check(mtd_bdrv, mtd_filename)) {
8312
            fprintf(stderr, "qemu: could not open Flash image %s\n",
8313
                    mtd_filename);
8314
            bdrv_delete(mtd_bdrv);
8315
            mtd_bdrv = 0;
8316
        }
8317
    }
8318

    
8319
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8320
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8321

    
8322
    init_ioports();
8323

    
8324
    /* terminal init */
8325
    memset(&display_state, 0, sizeof(display_state));
8326
    if (nographic) {
8327
        /* nearly nothing to do */
8328
        dumb_display_init(ds);
8329
    } else if (vnc_display != NULL) {
8330
        vnc_display_init(ds);
8331
        if (vnc_display_open(ds, vnc_display) < 0)
8332
            exit(1);
8333
    } else {
8334
#if defined(CONFIG_SDL)
8335
        sdl_display_init(ds, full_screen, no_frame);
8336
#elif defined(CONFIG_COCOA)
8337
        cocoa_display_init(ds, full_screen);
8338
#endif
8339
    }
8340

    
8341
    /* Maintain compatibility with multiple stdio monitors */
8342
    if (!strcmp(monitor_device,"stdio")) {
8343
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8344
            if (!strcmp(serial_devices[i],"mon:stdio")) {
8345
                monitor_device[0] = '\0';
8346
                break;
8347
            } else if (!strcmp(serial_devices[i],"stdio")) {
8348
                monitor_device[0] = '\0';
8349
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8350
                break;
8351
            }
8352
        }
8353
    }
8354
    if (monitor_device[0] != '\0') {
8355
        monitor_hd = qemu_chr_open(monitor_device);
8356
        if (!monitor_hd) {
8357
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8358
            exit(1);
8359
        }
8360
        monitor_init(monitor_hd, !nographic);
8361
    }
8362

    
8363
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8364
        const char *devname = serial_devices[i];
8365
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8366
            serial_hds[i] = qemu_chr_open(devname);
8367
            if (!serial_hds[i]) {
8368
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
8369
                        devname);
8370
                exit(1);
8371
            }
8372
            if (strstart(devname, "vc", 0))
8373
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8374
        }
8375
    }
8376

    
8377
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8378
        const char *devname = parallel_devices[i];
8379
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8380
            parallel_hds[i] = qemu_chr_open(devname);
8381
            if (!parallel_hds[i]) {
8382
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8383
                        devname);
8384
                exit(1);
8385
            }
8386
            if (strstart(devname, "vc", 0))
8387
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8388
        }
8389
    }
8390

    
8391
    machine->init(ram_size, vga_ram_size, boot_device,
8392
                  ds, fd_filename, snapshot,
8393
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8394

    
8395
    /* init USB devices */
8396
    if (usb_enabled) {
8397
        for(i = 0; i < usb_devices_index; i++) {
8398
            if (usb_device_add(usb_devices[i]) < 0) {
8399
                fprintf(stderr, "Warning: could not add USB device %s\n",
8400
                        usb_devices[i]);
8401
            }
8402
        }
8403
    }
8404

    
8405
    if (display_state.dpy_refresh) {
8406
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8407
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8408
    }
8409

    
8410
#ifdef CONFIG_GDBSTUB
8411
    if (use_gdbstub) {
8412
        /* XXX: use standard host:port notation and modify options
8413
           accordingly. */
8414
        if (gdbserver_start(gdbstub_port) < 0) {
8415
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8416
                    gdbstub_port);
8417
            exit(1);
8418
        }
8419
    }
8420
#endif
8421

    
8422
    if (loadvm)
8423
        do_loadvm(loadvm);
8424

    
8425
    {
8426
        /* XXX: simplify init */
8427
        read_passwords();
8428
        if (autostart) {
8429
            vm_start();
8430
        }
8431
    }
8432

    
8433
    if (daemonize) {
8434
        uint8_t status = 0;
8435
        ssize_t len;
8436
        int fd;
8437

    
8438
    again1:
8439
        len = write(fds[1], &status, 1);
8440
        if (len == -1 && (errno == EINTR))
8441
            goto again1;
8442

    
8443
        if (len != 1)
8444
            exit(1);
8445

    
8446
        TFR(fd = open("/dev/null", O_RDWR));
8447
        if (fd == -1)
8448
            exit(1);
8449

    
8450
        dup2(fd, 0);
8451
        dup2(fd, 1);
8452
        dup2(fd, 2);
8453

    
8454
        close(fd);
8455
    }
8456

    
8457
    main_loop();
8458
    quit_timers();
8459
    return 0;
8460
}