root / hw / cuda.c @ 61271e5c
History | View | Annotate | Download (17.9 kB)
1 |
/*
|
---|---|
2 |
* QEMU CUDA support
|
3 |
*
|
4 |
* Copyright (c) 2004 Fabrice Bellard
|
5 |
*
|
6 |
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
* of this software and associated documentation files (the "Software"), to deal
|
8 |
* in the Software without restriction, including without limitation the rights
|
9 |
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
* copies of the Software, and to permit persons to whom the Software is
|
11 |
* furnished to do so, subject to the following conditions:
|
12 |
*
|
13 |
* The above copyright notice and this permission notice shall be included in
|
14 |
* all copies or substantial portions of the Software.
|
15 |
*
|
16 |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17 |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18 |
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
19 |
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20 |
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21 |
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
22 |
* THE SOFTWARE.
|
23 |
*/
|
24 |
#include "vl.h" |
25 |
|
26 |
/* XXX: implement all timer modes */
|
27 |
|
28 |
//#define DEBUG_CUDA
|
29 |
//#define DEBUG_CUDA_PACKET
|
30 |
|
31 |
/* Bits in B data register: all active low */
|
32 |
#define TREQ 0x08 /* Transfer request (input) */ |
33 |
#define TACK 0x10 /* Transfer acknowledge (output) */ |
34 |
#define TIP 0x20 /* Transfer in progress (output) */ |
35 |
|
36 |
/* Bits in ACR */
|
37 |
#define SR_CTRL 0x1c /* Shift register control bits */ |
38 |
#define SR_EXT 0x0c /* Shift on external clock */ |
39 |
#define SR_OUT 0x10 /* Shift out if 1 */ |
40 |
|
41 |
/* Bits in IFR and IER */
|
42 |
#define IER_SET 0x80 /* set bits in IER */ |
43 |
#define IER_CLR 0 /* clear bits in IER */ |
44 |
#define SR_INT 0x04 /* Shift register full/empty */ |
45 |
#define T1_INT 0x40 /* Timer 1 interrupt */ |
46 |
#define T2_INT 0x20 /* Timer 2 interrupt */ |
47 |
|
48 |
/* Bits in ACR */
|
49 |
#define T1MODE 0xc0 /* Timer 1 mode */ |
50 |
#define T1MODE_CONT 0x40 /* continuous interrupts */ |
51 |
|
52 |
/* commands (1st byte) */
|
53 |
#define ADB_PACKET 0 |
54 |
#define CUDA_PACKET 1 |
55 |
#define ERROR_PACKET 2 |
56 |
#define TIMER_PACKET 3 |
57 |
#define POWER_PACKET 4 |
58 |
#define MACIIC_PACKET 5 |
59 |
#define PMU_PACKET 6 |
60 |
|
61 |
|
62 |
/* CUDA commands (2nd byte) */
|
63 |
#define CUDA_WARM_START 0x0 |
64 |
#define CUDA_AUTOPOLL 0x1 |
65 |
#define CUDA_GET_6805_ADDR 0x2 |
66 |
#define CUDA_GET_TIME 0x3 |
67 |
#define CUDA_GET_PRAM 0x7 |
68 |
#define CUDA_SET_6805_ADDR 0x8 |
69 |
#define CUDA_SET_TIME 0x9 |
70 |
#define CUDA_POWERDOWN 0xa |
71 |
#define CUDA_POWERUP_TIME 0xb |
72 |
#define CUDA_SET_PRAM 0xc |
73 |
#define CUDA_MS_RESET 0xd |
74 |
#define CUDA_SEND_DFAC 0xe |
75 |
#define CUDA_BATTERY_SWAP_SENSE 0x10 |
76 |
#define CUDA_RESET_SYSTEM 0x11 |
77 |
#define CUDA_SET_IPL 0x12 |
78 |
#define CUDA_FILE_SERVER_FLAG 0x13 |
79 |
#define CUDA_SET_AUTO_RATE 0x14 |
80 |
#define CUDA_GET_AUTO_RATE 0x16 |
81 |
#define CUDA_SET_DEVICE_LIST 0x19 |
82 |
#define CUDA_GET_DEVICE_LIST 0x1a |
83 |
#define CUDA_SET_ONE_SECOND_MODE 0x1b |
84 |
#define CUDA_SET_POWER_MESSAGES 0x21 |
85 |
#define CUDA_GET_SET_IIC 0x22 |
86 |
#define CUDA_WAKEUP 0x23 |
87 |
#define CUDA_TIMER_TICKLE 0x24 |
88 |
#define CUDA_COMBINED_FORMAT_IIC 0x25 |
89 |
|
90 |
#define CUDA_TIMER_FREQ (4700000 / 6) |
91 |
#define CUDA_ADB_POLL_FREQ 50 |
92 |
|
93 |
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
|
94 |
#define RTC_OFFSET 2082844800 |
95 |
|
96 |
typedef struct CUDATimer { |
97 |
int index;
|
98 |
uint16_t latch; |
99 |
uint16_t counter_value; /* counter value at load time */
|
100 |
int64_t load_time; |
101 |
int64_t next_irq_time; |
102 |
QEMUTimer *timer; |
103 |
} CUDATimer; |
104 |
|
105 |
typedef struct CUDAState { |
106 |
/* cuda registers */
|
107 |
uint8_t b; /* B-side data */
|
108 |
uint8_t a; /* A-side data */
|
109 |
uint8_t dirb; /* B-side direction (1=output) */
|
110 |
uint8_t dira; /* A-side direction (1=output) */
|
111 |
uint8_t sr; /* Shift register */
|
112 |
uint8_t acr; /* Auxiliary control register */
|
113 |
uint8_t pcr; /* Peripheral control register */
|
114 |
uint8_t ifr; /* Interrupt flag register */
|
115 |
uint8_t ier; /* Interrupt enable register */
|
116 |
uint8_t anh; /* A-side data, no handshake */
|
117 |
|
118 |
CUDATimer timers[2];
|
119 |
|
120 |
uint8_t last_b; /* last value of B register */
|
121 |
uint8_t last_acr; /* last value of B register */
|
122 |
|
123 |
int data_in_size;
|
124 |
int data_in_index;
|
125 |
int data_out_index;
|
126 |
|
127 |
SetIRQFunc *set_irq; |
128 |
int irq;
|
129 |
void *irq_opaque;
|
130 |
uint8_t autopoll; |
131 |
uint8_t data_in[128];
|
132 |
uint8_t data_out[16];
|
133 |
QEMUTimer *adb_poll_timer; |
134 |
} CUDAState; |
135 |
|
136 |
static CUDAState cuda_state;
|
137 |
ADBBusState adb_bus; |
138 |
|
139 |
static void cuda_update(CUDAState *s); |
140 |
static void cuda_receive_packet_from_host(CUDAState *s, |
141 |
const uint8_t *data, int len); |
142 |
static void cuda_timer_update(CUDAState *s, CUDATimer *ti, |
143 |
int64_t current_time); |
144 |
|
145 |
static void cuda_update_irq(CUDAState *s) |
146 |
{ |
147 |
if (s->ifr & s->ier & (SR_INT | T1_INT)) {
|
148 |
s->set_irq(s->irq_opaque, s->irq, 1);
|
149 |
} else {
|
150 |
s->set_irq(s->irq_opaque, s->irq, 0);
|
151 |
} |
152 |
} |
153 |
|
154 |
static unsigned int get_counter(CUDATimer *s) |
155 |
{ |
156 |
int64_t d; |
157 |
unsigned int counter; |
158 |
|
159 |
d = muldiv64(qemu_get_clock(vm_clock) - s->load_time, |
160 |
CUDA_TIMER_FREQ, ticks_per_sec); |
161 |
if (s->index == 0) { |
162 |
/* the timer goes down from latch to -1 (period of latch + 2) */
|
163 |
if (d <= (s->counter_value + 1)) { |
164 |
counter = (s->counter_value - d) & 0xffff;
|
165 |
} else {
|
166 |
counter = (d - (s->counter_value + 1)) % (s->latch + 2); |
167 |
counter = (s->latch - counter) & 0xffff;
|
168 |
} |
169 |
} else {
|
170 |
counter = (s->counter_value - d) & 0xffff;
|
171 |
} |
172 |
return counter;
|
173 |
} |
174 |
|
175 |
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val) |
176 |
{ |
177 |
#ifdef DEBUG_CUDA
|
178 |
printf("cuda: T%d.counter=%d\n",
|
179 |
1 + (ti->timer == NULL), val); |
180 |
#endif
|
181 |
ti->load_time = qemu_get_clock(vm_clock); |
182 |
ti->counter_value = val; |
183 |
cuda_timer_update(s, ti, ti->load_time); |
184 |
} |
185 |
|
186 |
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
|
187 |
{ |
188 |
int64_t d, next_time; |
189 |
unsigned int counter; |
190 |
|
191 |
/* current counter value */
|
192 |
d = muldiv64(current_time - s->load_time, |
193 |
CUDA_TIMER_FREQ, ticks_per_sec); |
194 |
/* the timer goes down from latch to -1 (period of latch + 2) */
|
195 |
if (d <= (s->counter_value + 1)) { |
196 |
counter = (s->counter_value - d) & 0xffff;
|
197 |
} else {
|
198 |
counter = (d - (s->counter_value + 1)) % (s->latch + 2); |
199 |
counter = (s->latch - counter) & 0xffff;
|
200 |
} |
201 |
|
202 |
/* Note: we consider the irq is raised on 0 */
|
203 |
if (counter == 0xffff) { |
204 |
next_time = d + s->latch + 1;
|
205 |
} else if (counter == 0) { |
206 |
next_time = d + s->latch + 2;
|
207 |
} else {
|
208 |
next_time = d + counter; |
209 |
} |
210 |
#if 0
|
211 |
#ifdef DEBUG_CUDA
|
212 |
printf("latch=%d counter=%lld delta_next=%lld\n",
|
213 |
s->latch, d, next_time - d);
|
214 |
#endif
|
215 |
#endif
|
216 |
next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) + |
217 |
s->load_time; |
218 |
if (next_time <= current_time)
|
219 |
next_time = current_time + 1;
|
220 |
return next_time;
|
221 |
} |
222 |
|
223 |
static void cuda_timer_update(CUDAState *s, CUDATimer *ti, |
224 |
int64_t current_time) |
225 |
{ |
226 |
if (!ti->timer)
|
227 |
return;
|
228 |
if ((s->acr & T1MODE) != T1MODE_CONT) {
|
229 |
qemu_del_timer(ti->timer); |
230 |
} else {
|
231 |
ti->next_irq_time = get_next_irq_time(ti, current_time); |
232 |
qemu_mod_timer(ti->timer, ti->next_irq_time); |
233 |
} |
234 |
} |
235 |
|
236 |
static void cuda_timer1(void *opaque) |
237 |
{ |
238 |
CUDAState *s = opaque; |
239 |
CUDATimer *ti = &s->timers[0];
|
240 |
|
241 |
cuda_timer_update(s, ti, ti->next_irq_time); |
242 |
s->ifr |= T1_INT; |
243 |
cuda_update_irq(s); |
244 |
} |
245 |
|
246 |
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr) |
247 |
{ |
248 |
CUDAState *s = opaque; |
249 |
uint32_t val; |
250 |
|
251 |
addr = (addr >> 9) & 0xf; |
252 |
switch(addr) {
|
253 |
case 0: |
254 |
val = s->b; |
255 |
break;
|
256 |
case 1: |
257 |
val = s->a; |
258 |
break;
|
259 |
case 2: |
260 |
val = s->dirb; |
261 |
break;
|
262 |
case 3: |
263 |
val = s->dira; |
264 |
break;
|
265 |
case 4: |
266 |
val = get_counter(&s->timers[0]) & 0xff; |
267 |
s->ifr &= ~T1_INT; |
268 |
cuda_update_irq(s); |
269 |
break;
|
270 |
case 5: |
271 |
val = get_counter(&s->timers[0]) >> 8; |
272 |
cuda_update_irq(s); |
273 |
break;
|
274 |
case 6: |
275 |
val = s->timers[0].latch & 0xff; |
276 |
break;
|
277 |
case 7: |
278 |
/* XXX: check this */
|
279 |
val = (s->timers[0].latch >> 8) & 0xff; |
280 |
break;
|
281 |
case 8: |
282 |
val = get_counter(&s->timers[1]) & 0xff; |
283 |
s->ifr &= ~T2_INT; |
284 |
break;
|
285 |
case 9: |
286 |
val = get_counter(&s->timers[1]) >> 8; |
287 |
break;
|
288 |
case 10: |
289 |
val = s->sr; |
290 |
s->ifr &= ~SR_INT; |
291 |
cuda_update_irq(s); |
292 |
break;
|
293 |
case 11: |
294 |
val = s->acr; |
295 |
break;
|
296 |
case 12: |
297 |
val = s->pcr; |
298 |
break;
|
299 |
case 13: |
300 |
val = s->ifr; |
301 |
break;
|
302 |
case 14: |
303 |
val = s->ier; |
304 |
break;
|
305 |
default:
|
306 |
case 15: |
307 |
val = s->anh; |
308 |
break;
|
309 |
} |
310 |
#ifdef DEBUG_CUDA
|
311 |
if (addr != 13 || val != 0) |
312 |
printf("cuda: read: reg=0x%x val=%02x\n", addr, val);
|
313 |
#endif
|
314 |
return val;
|
315 |
} |
316 |
|
317 |
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) |
318 |
{ |
319 |
CUDAState *s = opaque; |
320 |
|
321 |
addr = (addr >> 9) & 0xf; |
322 |
#ifdef DEBUG_CUDA
|
323 |
printf("cuda: write: reg=0x%x val=%02x\n", addr, val);
|
324 |
#endif
|
325 |
|
326 |
switch(addr) {
|
327 |
case 0: |
328 |
s->b = val; |
329 |
cuda_update(s); |
330 |
break;
|
331 |
case 1: |
332 |
s->a = val; |
333 |
break;
|
334 |
case 2: |
335 |
s->dirb = val; |
336 |
break;
|
337 |
case 3: |
338 |
s->dira = val; |
339 |
break;
|
340 |
case 4: |
341 |
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val; |
342 |
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
343 |
break;
|
344 |
case 5: |
345 |
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8); |
346 |
s->ifr &= ~T1_INT; |
347 |
set_counter(s, &s->timers[0], s->timers[0].latch); |
348 |
break;
|
349 |
case 6: |
350 |
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val; |
351 |
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
352 |
break;
|
353 |
case 7: |
354 |
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8); |
355 |
s->ifr &= ~T1_INT; |
356 |
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
357 |
break;
|
358 |
case 8: |
359 |
s->timers[1].latch = val;
|
360 |
set_counter(s, &s->timers[1], val);
|
361 |
break;
|
362 |
case 9: |
363 |
set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch); |
364 |
break;
|
365 |
case 10: |
366 |
s->sr = val; |
367 |
break;
|
368 |
case 11: |
369 |
s->acr = val; |
370 |
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
371 |
cuda_update(s); |
372 |
break;
|
373 |
case 12: |
374 |
s->pcr = val; |
375 |
break;
|
376 |
case 13: |
377 |
/* reset bits */
|
378 |
s->ifr &= ~val; |
379 |
cuda_update_irq(s); |
380 |
break;
|
381 |
case 14: |
382 |
#if 0
|
383 |
if (val & IER_SET) {
|
384 |
/* set bits */
|
385 |
s->ier |= val & 0x7f;
|
386 |
} else {
|
387 |
/* reset bits */
|
388 |
s->ier &= ~val;
|
389 |
}
|
390 |
#else
|
391 |
/* XXX: please explain me why the SPEC is not correct ! */
|
392 |
s->ier = val; |
393 |
#endif
|
394 |
cuda_update_irq(s); |
395 |
break;
|
396 |
default:
|
397 |
case 15: |
398 |
s->anh = val; |
399 |
break;
|
400 |
} |
401 |
} |
402 |
|
403 |
/* NOTE: TIP and TREQ are negated */
|
404 |
static void cuda_update(CUDAState *s) |
405 |
{ |
406 |
int packet_received, len;
|
407 |
|
408 |
packet_received = 0;
|
409 |
if (!(s->b & TIP)) {
|
410 |
/* transfer requested from host */
|
411 |
|
412 |
if (s->acr & SR_OUT) {
|
413 |
/* data output */
|
414 |
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
|
415 |
if (s->data_out_index < sizeof(s->data_out)) { |
416 |
#ifdef DEBUG_CUDA
|
417 |
printf("cuda: send: %02x\n", s->sr);
|
418 |
#endif
|
419 |
s->data_out[s->data_out_index++] = s->sr; |
420 |
s->ifr |= SR_INT; |
421 |
cuda_update_irq(s); |
422 |
} |
423 |
} |
424 |
} else {
|
425 |
if (s->data_in_index < s->data_in_size) {
|
426 |
/* data input */
|
427 |
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
|
428 |
s->sr = s->data_in[s->data_in_index++]; |
429 |
#ifdef DEBUG_CUDA
|
430 |
printf("cuda: recv: %02x\n", s->sr);
|
431 |
#endif
|
432 |
/* indicate end of transfer */
|
433 |
if (s->data_in_index >= s->data_in_size) {
|
434 |
s->b = (s->b | TREQ); |
435 |
} |
436 |
s->ifr |= SR_INT; |
437 |
cuda_update_irq(s); |
438 |
} |
439 |
} |
440 |
} |
441 |
} else {
|
442 |
/* no transfer requested: handle sync case */
|
443 |
if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
|
444 |
/* update TREQ state each time TACK change state */
|
445 |
if (s->b & TACK)
|
446 |
s->b = (s->b | TREQ); |
447 |
else
|
448 |
s->b = (s->b & ~TREQ); |
449 |
s->ifr |= SR_INT; |
450 |
cuda_update_irq(s); |
451 |
} else {
|
452 |
if (!(s->last_b & TIP)) {
|
453 |
/* handle end of host to cuda transfert */
|
454 |
packet_received = (s->data_out_index > 0);
|
455 |
/* always an IRQ at the end of transfert */
|
456 |
s->ifr |= SR_INT; |
457 |
cuda_update_irq(s); |
458 |
} |
459 |
/* signal if there is data to read */
|
460 |
if (s->data_in_index < s->data_in_size) {
|
461 |
s->b = (s->b & ~TREQ); |
462 |
} |
463 |
} |
464 |
} |
465 |
|
466 |
s->last_acr = s->acr; |
467 |
s->last_b = s->b; |
468 |
|
469 |
/* NOTE: cuda_receive_packet_from_host() can call cuda_update()
|
470 |
recursively */
|
471 |
if (packet_received) {
|
472 |
len = s->data_out_index; |
473 |
s->data_out_index = 0;
|
474 |
cuda_receive_packet_from_host(s, s->data_out, len); |
475 |
} |
476 |
} |
477 |
|
478 |
static void cuda_send_packet_to_host(CUDAState *s, |
479 |
const uint8_t *data, int len) |
480 |
{ |
481 |
#ifdef DEBUG_CUDA_PACKET
|
482 |
{ |
483 |
int i;
|
484 |
printf("cuda_send_packet_to_host:\n");
|
485 |
for(i = 0; i < len; i++) |
486 |
printf(" %02x", data[i]);
|
487 |
printf("\n");
|
488 |
} |
489 |
#endif
|
490 |
memcpy(s->data_in, data, len); |
491 |
s->data_in_size = len; |
492 |
s->data_in_index = 0;
|
493 |
cuda_update(s); |
494 |
s->ifr |= SR_INT; |
495 |
cuda_update_irq(s); |
496 |
} |
497 |
|
498 |
static void cuda_adb_poll(void *opaque) |
499 |
{ |
500 |
CUDAState *s = opaque; |
501 |
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
|
502 |
int olen;
|
503 |
|
504 |
olen = adb_poll(&adb_bus, obuf + 2);
|
505 |
if (olen > 0) { |
506 |
obuf[0] = ADB_PACKET;
|
507 |
obuf[1] = 0x40; /* polled data */ |
508 |
cuda_send_packet_to_host(s, obuf, olen + 2);
|
509 |
} |
510 |
qemu_mod_timer(s->adb_poll_timer, |
511 |
qemu_get_clock(vm_clock) + |
512 |
(ticks_per_sec / CUDA_ADB_POLL_FREQ)); |
513 |
} |
514 |
|
515 |
static void cuda_receive_packet(CUDAState *s, |
516 |
const uint8_t *data, int len) |
517 |
{ |
518 |
uint8_t obuf[16];
|
519 |
int ti, autopoll;
|
520 |
|
521 |
switch(data[0]) { |
522 |
case CUDA_AUTOPOLL:
|
523 |
autopoll = (data[1] != 0); |
524 |
if (autopoll != s->autopoll) {
|
525 |
s->autopoll = autopoll; |
526 |
if (autopoll) {
|
527 |
qemu_mod_timer(s->adb_poll_timer, |
528 |
qemu_get_clock(vm_clock) + |
529 |
(ticks_per_sec / CUDA_ADB_POLL_FREQ)); |
530 |
} else {
|
531 |
qemu_del_timer(s->adb_poll_timer); |
532 |
} |
533 |
} |
534 |
obuf[0] = CUDA_PACKET;
|
535 |
obuf[1] = data[1]; |
536 |
cuda_send_packet_to_host(s, obuf, 2);
|
537 |
break;
|
538 |
case CUDA_GET_TIME:
|
539 |
case CUDA_SET_TIME:
|
540 |
/* XXX: add time support ? */
|
541 |
ti = time(NULL) + RTC_OFFSET;
|
542 |
obuf[0] = CUDA_PACKET;
|
543 |
obuf[1] = 0; |
544 |
obuf[2] = 0; |
545 |
obuf[3] = ti >> 24; |
546 |
obuf[4] = ti >> 16; |
547 |
obuf[5] = ti >> 8; |
548 |
obuf[6] = ti;
|
549 |
cuda_send_packet_to_host(s, obuf, 7);
|
550 |
break;
|
551 |
case CUDA_FILE_SERVER_FLAG:
|
552 |
case CUDA_SET_DEVICE_LIST:
|
553 |
case CUDA_SET_AUTO_RATE:
|
554 |
case CUDA_SET_POWER_MESSAGES:
|
555 |
obuf[0] = CUDA_PACKET;
|
556 |
obuf[1] = 0; |
557 |
cuda_send_packet_to_host(s, obuf, 2);
|
558 |
break;
|
559 |
case CUDA_POWERDOWN:
|
560 |
obuf[0] = CUDA_PACKET;
|
561 |
obuf[1] = 0; |
562 |
cuda_send_packet_to_host(s, obuf, 2);
|
563 |
qemu_system_shutdown_request(); |
564 |
break;
|
565 |
default:
|
566 |
break;
|
567 |
} |
568 |
} |
569 |
|
570 |
static void cuda_receive_packet_from_host(CUDAState *s, |
571 |
const uint8_t *data, int len) |
572 |
{ |
573 |
#ifdef DEBUG_CUDA_PACKET
|
574 |
{ |
575 |
int i;
|
576 |
printf("cuda_receive_packet_from_host:\n");
|
577 |
for(i = 0; i < len; i++) |
578 |
printf(" %02x", data[i]);
|
579 |
printf("\n");
|
580 |
} |
581 |
#endif
|
582 |
switch(data[0]) { |
583 |
case ADB_PACKET:
|
584 |
{ |
585 |
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
|
586 |
int olen;
|
587 |
olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1); |
588 |
if (olen > 0) { |
589 |
obuf[0] = ADB_PACKET;
|
590 |
obuf[1] = 0x00; |
591 |
} else {
|
592 |
/* error */
|
593 |
obuf[0] = ADB_PACKET;
|
594 |
obuf[1] = -olen;
|
595 |
olen = 0;
|
596 |
} |
597 |
cuda_send_packet_to_host(s, obuf, olen + 2);
|
598 |
} |
599 |
break;
|
600 |
case CUDA_PACKET:
|
601 |
cuda_receive_packet(s, data + 1, len - 1); |
602 |
break;
|
603 |
} |
604 |
} |
605 |
|
606 |
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value) |
607 |
{ |
608 |
} |
609 |
|
610 |
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value) |
611 |
{ |
612 |
} |
613 |
|
614 |
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr) |
615 |
{ |
616 |
return 0; |
617 |
} |
618 |
|
619 |
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr) |
620 |
{ |
621 |
return 0; |
622 |
} |
623 |
|
624 |
static CPUWriteMemoryFunc *cuda_write[] = {
|
625 |
&cuda_writeb, |
626 |
&cuda_writew, |
627 |
&cuda_writel, |
628 |
}; |
629 |
|
630 |
static CPUReadMemoryFunc *cuda_read[] = {
|
631 |
&cuda_readb, |
632 |
&cuda_readw, |
633 |
&cuda_readl, |
634 |
}; |
635 |
|
636 |
int cuda_init(SetIRQFunc *set_irq, void *irq_opaque, int irq) |
637 |
{ |
638 |
CUDAState *s = &cuda_state; |
639 |
int cuda_mem_index;
|
640 |
|
641 |
s->set_irq = set_irq; |
642 |
s->irq_opaque = irq_opaque; |
643 |
s->irq = irq; |
644 |
|
645 |
s->timers[0].index = 0; |
646 |
s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
|
647 |
s->timers[0].latch = 0xffff; |
648 |
set_counter(s, &s->timers[0], 0xffff); |
649 |
|
650 |
s->timers[1].index = 1; |
651 |
s->timers[1].latch = 0; |
652 |
// s->ier = T1_INT | SR_INT;
|
653 |
s->ier = 0;
|
654 |
set_counter(s, &s->timers[1], 0xffff); |
655 |
|
656 |
s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s); |
657 |
cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
|
658 |
return cuda_mem_index;
|
659 |
} |