Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 64bf3f4e

History | View | Annotate | Download (23 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26

    
27
//#define DEBUG_KVM
28

    
29
#ifdef DEBUG_KVM
30
#define dprintf(fmt, ...) \
31
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32
#else
33
#define dprintf(fmt, ...) \
34
    do { } while (0)
35
#endif
36

    
37
int kvm_arch_init_vcpu(CPUState *env)
38
{
39
    struct {
40
        struct kvm_cpuid2 cpuid;
41
        struct kvm_cpuid_entry2 entries[100];
42
    } __attribute__((packed)) cpuid_data;
43
    uint32_t limit, i, j, cpuid_i;
44
    uint32_t eax, ebx, ecx, edx;
45

    
46
    cpuid_i = 0;
47

    
48
    cpu_x86_cpuid(env, 0, 0, &eax, &ebx, &ecx, &edx);
49
    limit = eax;
50

    
51
    for (i = 0; i <= limit; i++) {
52
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
53

    
54
        switch (i) {
55
        case 2: {
56
            /* Keep reading function 2 till all the input is received */
57
            int times;
58

    
59
            cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
60
            times = eax & 0xff;
61

    
62
            c->function = i;
63
            c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
64
            c->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
65
            c->eax = eax;
66
            c->ebx = ebx;
67
            c->ecx = ecx;
68
            c->edx = edx;
69

    
70
            for (j = 1; j < times; ++j) {
71
                cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
72
                c->function = i;
73
                c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
74
                c->eax = eax;
75
                c->ebx = ebx;
76
                c->ecx = ecx;
77
                c->edx = edx;
78
                c = &cpuid_data.entries[++cpuid_i];
79
            }
80
            break;
81
        }
82
        case 4:
83
        case 0xb:
84
        case 0xd:
85
            for (j = 0; ; j++) {
86
                cpu_x86_cpuid(env, i, j, &eax, &ebx, &ecx, &edx);
87
                c->function = i;
88
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
89
                c->index = j;
90
                c->eax = eax;
91
                c->ebx = ebx;
92
                c->ecx = ecx;
93
                c->edx = edx;
94
                c = &cpuid_data.entries[++cpuid_i];
95

    
96
                if (i == 4 && eax == 0)
97
                    break;
98
                if (i == 0xb && !(ecx & 0xff00))
99
                    break;
100
                if (i == 0xd && eax == 0)
101
                    break;
102
            }
103
            break;
104
        default:
105
            cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
106
            c->function = i;
107
            c->eax = eax;
108
            c->ebx = ebx;
109
            c->ecx = ecx;
110
            c->edx = edx;
111
            break;
112
        }
113
    }
114
    cpu_x86_cpuid(env, 0x80000000, 0, &eax, &ebx, &ecx, &edx);
115
    limit = eax;
116

    
117
    for (i = 0x80000000; i <= limit; i++) {
118
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
119

    
120
        cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
121
        c->function = i;
122
        c->eax = eax;
123
        c->ebx = ebx;
124
        c->ecx = ecx;
125
        c->edx = edx;
126
    }
127

    
128
    cpuid_data.cpuid.nent = cpuid_i;
129

    
130
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
131
}
132

    
133
static int kvm_has_msr_star(CPUState *env)
134
{
135
    static int has_msr_star;
136
    int ret;
137

    
138
    /* first time */
139
    if (has_msr_star == 0) {        
140
        struct kvm_msr_list msr_list, *kvm_msr_list;
141

    
142
        has_msr_star = -1;
143

    
144
        /* Obtain MSR list from KVM.  These are the MSRs that we must
145
         * save/restore */
146
        msr_list.nmsrs = 0;
147
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
148
        if (ret < 0)
149
            return 0;
150

    
151
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
152
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
153

    
154
        kvm_msr_list->nmsrs = msr_list.nmsrs;
155
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
156
        if (ret >= 0) {
157
            int i;
158

    
159
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
160
                if (kvm_msr_list->indices[i] == MSR_STAR) {
161
                    has_msr_star = 1;
162
                    break;
163
                }
164
            }
165
        }
166

    
167
        free(kvm_msr_list);
168
    }
169

    
170
    if (has_msr_star == 1)
171
        return 1;
172
    return 0;
173
}
174

    
175
int kvm_arch_init(KVMState *s, int smp_cpus)
176
{
177
    int ret;
178

    
179
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
180
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
181
     * must be part of guest physical memory, we need to allocate it.  Older
182
     * versions of KVM just assumed that it would be at the end of physical
183
     * memory but that doesn't work with more than 4GB of memory.  We simply
184
     * refuse to work with those older versions of KVM. */
185
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
186
    if (ret <= 0) {
187
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
188
        return ret;
189
    }
190

    
191
    /* this address is 3 pages before the bios, and the bios should present
192
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
193
     * this?
194
     */
195
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
196
}
197
                    
198
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
199
{
200
    lhs->selector = rhs->selector;
201
    lhs->base = rhs->base;
202
    lhs->limit = rhs->limit;
203
    lhs->type = 3;
204
    lhs->present = 1;
205
    lhs->dpl = 3;
206
    lhs->db = 0;
207
    lhs->s = 1;
208
    lhs->l = 0;
209
    lhs->g = 0;
210
    lhs->avl = 0;
211
    lhs->unusable = 0;
212
}
213

    
214
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
215
{
216
    unsigned flags = rhs->flags;
217
    lhs->selector = rhs->selector;
218
    lhs->base = rhs->base;
219
    lhs->limit = rhs->limit;
220
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
221
    lhs->present = (flags & DESC_P_MASK) != 0;
222
    lhs->dpl = rhs->selector & 3;
223
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
224
    lhs->s = (flags & DESC_S_MASK) != 0;
225
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
226
    lhs->g = (flags & DESC_G_MASK) != 0;
227
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
228
    lhs->unusable = 0;
229
}
230

    
231
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
232
{
233
    lhs->selector = rhs->selector;
234
    lhs->base = rhs->base;
235
    lhs->limit = rhs->limit;
236
    lhs->flags =
237
        (rhs->type << DESC_TYPE_SHIFT)
238
        | (rhs->present * DESC_P_MASK)
239
        | (rhs->dpl << DESC_DPL_SHIFT)
240
        | (rhs->db << DESC_B_SHIFT)
241
        | (rhs->s * DESC_S_MASK)
242
        | (rhs->l << DESC_L_SHIFT)
243
        | (rhs->g * DESC_G_MASK)
244
        | (rhs->avl * DESC_AVL_MASK);
245
}
246

    
247
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
248
{
249
    if (set)
250
        *kvm_reg = *qemu_reg;
251
    else
252
        *qemu_reg = *kvm_reg;
253
}
254

    
255
static int kvm_getput_regs(CPUState *env, int set)
256
{
257
    struct kvm_regs regs;
258
    int ret = 0;
259

    
260
    if (!set) {
261
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
262
        if (ret < 0)
263
            return ret;
264
    }
265

    
266
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
267
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
268
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
269
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
270
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
271
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
272
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
273
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
274
#ifdef TARGET_X86_64
275
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
276
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
277
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
278
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
279
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
280
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
281
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
282
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
283
#endif
284

    
285
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
286
    kvm_getput_reg(&regs.rip, &env->eip, set);
287

    
288
    if (set)
289
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
290

    
291
    return ret;
292
}
293

    
294
static int kvm_put_fpu(CPUState *env)
295
{
296
    struct kvm_fpu fpu;
297
    int i;
298

    
299
    memset(&fpu, 0, sizeof fpu);
300
    fpu.fsw = env->fpus & ~(7 << 11);
301
    fpu.fsw |= (env->fpstt & 7) << 11;
302
    fpu.fcw = env->fpuc;
303
    for (i = 0; i < 8; ++i)
304
        fpu.ftwx |= (!env->fptags[i]) << i;
305
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
306
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
307
    fpu.mxcsr = env->mxcsr;
308

    
309
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
310
}
311

    
312
static int kvm_put_sregs(CPUState *env)
313
{
314
    struct kvm_sregs sregs;
315

    
316
    memcpy(sregs.interrupt_bitmap,
317
           env->interrupt_bitmap,
318
           sizeof(sregs.interrupt_bitmap));
319

    
320
    if ((env->eflags & VM_MASK)) {
321
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
322
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
323
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
324
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
325
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
326
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
327
    } else {
328
            set_seg(&sregs.cs, &env->segs[R_CS]);
329
            set_seg(&sregs.ds, &env->segs[R_DS]);
330
            set_seg(&sregs.es, &env->segs[R_ES]);
331
            set_seg(&sregs.fs, &env->segs[R_FS]);
332
            set_seg(&sregs.gs, &env->segs[R_GS]);
333
            set_seg(&sregs.ss, &env->segs[R_SS]);
334

    
335
            if (env->cr[0] & CR0_PE_MASK) {
336
                /* force ss cpl to cs cpl */
337
                sregs.ss.selector = (sregs.ss.selector & ~3) |
338
                        (sregs.cs.selector & 3);
339
                sregs.ss.dpl = sregs.ss.selector & 3;
340
            }
341
    }
342

    
343
    set_seg(&sregs.tr, &env->tr);
344
    set_seg(&sregs.ldt, &env->ldt);
345

    
346
    sregs.idt.limit = env->idt.limit;
347
    sregs.idt.base = env->idt.base;
348
    sregs.gdt.limit = env->gdt.limit;
349
    sregs.gdt.base = env->gdt.base;
350

    
351
    sregs.cr0 = env->cr[0];
352
    sregs.cr2 = env->cr[2];
353
    sregs.cr3 = env->cr[3];
354
    sregs.cr4 = env->cr[4];
355

    
356
    sregs.cr8 = cpu_get_apic_tpr(env);
357
    sregs.apic_base = cpu_get_apic_base(env);
358

    
359
    sregs.efer = env->efer;
360

    
361
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
362
}
363

    
364
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
365
                              uint32_t index, uint64_t value)
366
{
367
    entry->index = index;
368
    entry->data = value;
369
}
370

    
371
static int kvm_put_msrs(CPUState *env)
372
{
373
    struct {
374
        struct kvm_msrs info;
375
        struct kvm_msr_entry entries[100];
376
    } msr_data;
377
    struct kvm_msr_entry *msrs = msr_data.entries;
378
    int n = 0;
379

    
380
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
381
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
382
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
383
    if (kvm_has_msr_star(env))
384
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
385
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
386
#ifdef TARGET_X86_64
387
    /* FIXME if lm capable */
388
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
389
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
390
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
391
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
392
#endif
393
    msr_data.info.nmsrs = n;
394

    
395
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
396

    
397
}
398

    
399

    
400
static int kvm_get_fpu(CPUState *env)
401
{
402
    struct kvm_fpu fpu;
403
    int i, ret;
404

    
405
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
406
    if (ret < 0)
407
        return ret;
408

    
409
    env->fpstt = (fpu.fsw >> 11) & 7;
410
    env->fpus = fpu.fsw;
411
    env->fpuc = fpu.fcw;
412
    for (i = 0; i < 8; ++i)
413
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
414
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
415
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
416
    env->mxcsr = fpu.mxcsr;
417

    
418
    return 0;
419
}
420

    
421
static int kvm_get_sregs(CPUState *env)
422
{
423
    struct kvm_sregs sregs;
424
    uint32_t hflags;
425
    int ret;
426

    
427
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
428
    if (ret < 0)
429
        return ret;
430

    
431
    memcpy(env->interrupt_bitmap, 
432
           sregs.interrupt_bitmap,
433
           sizeof(sregs.interrupt_bitmap));
434

    
435
    get_seg(&env->segs[R_CS], &sregs.cs);
436
    get_seg(&env->segs[R_DS], &sregs.ds);
437
    get_seg(&env->segs[R_ES], &sregs.es);
438
    get_seg(&env->segs[R_FS], &sregs.fs);
439
    get_seg(&env->segs[R_GS], &sregs.gs);
440
    get_seg(&env->segs[R_SS], &sregs.ss);
441

    
442
    get_seg(&env->tr, &sregs.tr);
443
    get_seg(&env->ldt, &sregs.ldt);
444

    
445
    env->idt.limit = sregs.idt.limit;
446
    env->idt.base = sregs.idt.base;
447
    env->gdt.limit = sregs.gdt.limit;
448
    env->gdt.base = sregs.gdt.base;
449

    
450
    env->cr[0] = sregs.cr0;
451
    env->cr[2] = sregs.cr2;
452
    env->cr[3] = sregs.cr3;
453
    env->cr[4] = sregs.cr4;
454

    
455
    cpu_set_apic_base(env, sregs.apic_base);
456

    
457
    env->efer = sregs.efer;
458
    //cpu_set_apic_tpr(env, sregs.cr8);
459

    
460
#define HFLAG_COPY_MASK ~( \
461
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
462
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
463
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
464
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
465

    
466

    
467

    
468
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
469
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
470
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
471
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
472
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
473
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
474
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
475

    
476
    if (env->efer & MSR_EFER_LMA) {
477
        hflags |= HF_LMA_MASK;
478
    }
479

    
480
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
481
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
482
    } else {
483
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
484
                (DESC_B_SHIFT - HF_CS32_SHIFT);
485
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
486
                (DESC_B_SHIFT - HF_SS32_SHIFT);
487
        if (!(env->cr[0] & CR0_PE_MASK) ||
488
                   (env->eflags & VM_MASK) ||
489
                   !(hflags & HF_CS32_MASK)) {
490
                hflags |= HF_ADDSEG_MASK;
491
            } else {
492
                hflags |= ((env->segs[R_DS].base |
493
                                env->segs[R_ES].base |
494
                                env->segs[R_SS].base) != 0) <<
495
                    HF_ADDSEG_SHIFT;
496
            }
497
    }
498
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
499

    
500
    return 0;
501
}
502

    
503
static int kvm_get_msrs(CPUState *env)
504
{
505
    struct {
506
        struct kvm_msrs info;
507
        struct kvm_msr_entry entries[100];
508
    } msr_data;
509
    struct kvm_msr_entry *msrs = msr_data.entries;
510
    int ret, i, n;
511

    
512
    n = 0;
513
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
514
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
515
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
516
    if (kvm_has_msr_star(env))
517
        msrs[n++].index = MSR_STAR;
518
    msrs[n++].index = MSR_IA32_TSC;
519
#ifdef TARGET_X86_64
520
    /* FIXME lm_capable_kernel */
521
    msrs[n++].index = MSR_CSTAR;
522
    msrs[n++].index = MSR_KERNELGSBASE;
523
    msrs[n++].index = MSR_FMASK;
524
    msrs[n++].index = MSR_LSTAR;
525
#endif
526
    msr_data.info.nmsrs = n;
527
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
528
    if (ret < 0)
529
        return ret;
530

    
531
    for (i = 0; i < ret; i++) {
532
        switch (msrs[i].index) {
533
        case MSR_IA32_SYSENTER_CS:
534
            env->sysenter_cs = msrs[i].data;
535
            break;
536
        case MSR_IA32_SYSENTER_ESP:
537
            env->sysenter_esp = msrs[i].data;
538
            break;
539
        case MSR_IA32_SYSENTER_EIP:
540
            env->sysenter_eip = msrs[i].data;
541
            break;
542
        case MSR_STAR:
543
            env->star = msrs[i].data;
544
            break;
545
#ifdef TARGET_X86_64
546
        case MSR_CSTAR:
547
            env->cstar = msrs[i].data;
548
            break;
549
        case MSR_KERNELGSBASE:
550
            env->kernelgsbase = msrs[i].data;
551
            break;
552
        case MSR_FMASK:
553
            env->fmask = msrs[i].data;
554
            break;
555
        case MSR_LSTAR:
556
            env->lstar = msrs[i].data;
557
            break;
558
#endif
559
        case MSR_IA32_TSC:
560
            env->tsc = msrs[i].data;
561
            break;
562
        }
563
    }
564

    
565
    return 0;
566
}
567

    
568
int kvm_arch_put_registers(CPUState *env)
569
{
570
    int ret;
571

    
572
    ret = kvm_getput_regs(env, 1);
573
    if (ret < 0)
574
        return ret;
575

    
576
    ret = kvm_put_fpu(env);
577
    if (ret < 0)
578
        return ret;
579

    
580
    ret = kvm_put_sregs(env);
581
    if (ret < 0)
582
        return ret;
583

    
584
    ret = kvm_put_msrs(env);
585
    if (ret < 0)
586
        return ret;
587

    
588
    return 0;
589
}
590

    
591
int kvm_arch_get_registers(CPUState *env)
592
{
593
    int ret;
594

    
595
    ret = kvm_getput_regs(env, 0);
596
    if (ret < 0)
597
        return ret;
598

    
599
    ret = kvm_get_fpu(env);
600
    if (ret < 0)
601
        return ret;
602

    
603
    ret = kvm_get_sregs(env);
604
    if (ret < 0)
605
        return ret;
606

    
607
    ret = kvm_get_msrs(env);
608
    if (ret < 0)
609
        return ret;
610

    
611
    return 0;
612
}
613

    
614
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
615
{
616
    /* Try to inject an interrupt if the guest can accept it */
617
    if (run->ready_for_interrupt_injection &&
618
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
619
        (env->eflags & IF_MASK)) {
620
        int irq;
621

    
622
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
623
        irq = cpu_get_pic_interrupt(env);
624
        if (irq >= 0) {
625
            struct kvm_interrupt intr;
626
            intr.irq = irq;
627
            /* FIXME: errors */
628
            dprintf("injected interrupt %d\n", irq);
629
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
630
        }
631
    }
632

    
633
    /* If we have an interrupt but the guest is not ready to receive an
634
     * interrupt, request an interrupt window exit.  This will
635
     * cause a return to userspace as soon as the guest is ready to
636
     * receive interrupts. */
637
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
638
        run->request_interrupt_window = 1;
639
    else
640
        run->request_interrupt_window = 0;
641

    
642
    dprintf("setting tpr\n");
643
    run->cr8 = cpu_get_apic_tpr(env);
644

    
645
    return 0;
646
}
647

    
648
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
649
{
650
    if (run->if_flag)
651
        env->eflags |= IF_MASK;
652
    else
653
        env->eflags &= ~IF_MASK;
654
    
655
    cpu_set_apic_tpr(env, run->cr8);
656
    cpu_set_apic_base(env, run->apic_base);
657

    
658
    return 0;
659
}
660

    
661
static int kvm_handle_halt(CPUState *env)
662
{
663
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
664
          (env->eflags & IF_MASK)) &&
665
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
666
        env->halted = 1;
667
        env->exception_index = EXCP_HLT;
668
        return 0;
669
    }
670

    
671
    return 1;
672
}
673

    
674
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
675
{
676
    int ret = 0;
677

    
678
    switch (run->exit_reason) {
679
    case KVM_EXIT_HLT:
680
        dprintf("handle_hlt\n");
681
        ret = kvm_handle_halt(env);
682
        break;
683
    }
684

    
685
    return ret;
686
}
687

    
688
#ifdef KVM_CAP_SET_GUEST_DEBUG
689
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
690
{
691
    const static uint8_t int3 = 0xcc;
692

    
693
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
694
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
695
        return -EINVAL;
696
    return 0;
697
}
698

    
699
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
700
{
701
    uint8_t int3;
702

    
703
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
704
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
705
        return -EINVAL;
706
    return 0;
707
}
708

    
709
static struct {
710
    target_ulong addr;
711
    int len;
712
    int type;
713
} hw_breakpoint[4];
714

    
715
static int nb_hw_breakpoint;
716

    
717
static int find_hw_breakpoint(target_ulong addr, int len, int type)
718
{
719
    int n;
720

    
721
    for (n = 0; n < nb_hw_breakpoint; n++)
722
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
723
            (hw_breakpoint[n].len == len || len == -1))
724
            return n;
725
    return -1;
726
}
727

    
728
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
729
                                  target_ulong len, int type)
730
{
731
    switch (type) {
732
    case GDB_BREAKPOINT_HW:
733
        len = 1;
734
        break;
735
    case GDB_WATCHPOINT_WRITE:
736
    case GDB_WATCHPOINT_ACCESS:
737
        switch (len) {
738
        case 1:
739
            break;
740
        case 2:
741
        case 4:
742
        case 8:
743
            if (addr & (len - 1))
744
                return -EINVAL;
745
            break;
746
        default:
747
            return -EINVAL;
748
        }
749
        break;
750
    default:
751
        return -ENOSYS;
752
    }
753

    
754
    if (nb_hw_breakpoint == 4)
755
        return -ENOBUFS;
756

    
757
    if (find_hw_breakpoint(addr, len, type) >= 0)
758
        return -EEXIST;
759

    
760
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
761
    hw_breakpoint[nb_hw_breakpoint].len = len;
762
    hw_breakpoint[nb_hw_breakpoint].type = type;
763
    nb_hw_breakpoint++;
764

    
765
    return 0;
766
}
767

    
768
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
769
                                  target_ulong len, int type)
770
{
771
    int n;
772

    
773
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
774
    if (n < 0)
775
        return -ENOENT;
776

    
777
    nb_hw_breakpoint--;
778
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
779

    
780
    return 0;
781
}
782

    
783
void kvm_arch_remove_all_hw_breakpoints(void)
784
{
785
    nb_hw_breakpoint = 0;
786
}
787

    
788
static CPUWatchpoint hw_watchpoint;
789

    
790
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
791
{
792
    int handle = 0;
793
    int n;
794

    
795
    if (arch_info->exception == 1) {
796
        if (arch_info->dr6 & (1 << 14)) {
797
            if (cpu_single_env->singlestep_enabled)
798
                handle = 1;
799
        } else {
800
            for (n = 0; n < 4; n++)
801
                if (arch_info->dr6 & (1 << n))
802
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
803
                    case 0x0:
804
                        handle = 1;
805
                        break;
806
                    case 0x1:
807
                        handle = 1;
808
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
809
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
810
                        hw_watchpoint.flags = BP_MEM_WRITE;
811
                        break;
812
                    case 0x3:
813
                        handle = 1;
814
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
815
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
816
                        hw_watchpoint.flags = BP_MEM_ACCESS;
817
                        break;
818
                    }
819
        }
820
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
821
        handle = 1;
822

    
823
    if (!handle)
824
        kvm_update_guest_debug(cpu_single_env,
825
                        (arch_info->exception == 1) ?
826
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
827

    
828
    return handle;
829
}
830

    
831
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
832
{
833
    const uint8_t type_code[] = {
834
        [GDB_BREAKPOINT_HW] = 0x0,
835
        [GDB_WATCHPOINT_WRITE] = 0x1,
836
        [GDB_WATCHPOINT_ACCESS] = 0x3
837
    };
838
    const uint8_t len_code[] = {
839
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
840
    };
841
    int n;
842

    
843
    if (kvm_sw_breakpoints_active(env))
844
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
845

    
846
    if (nb_hw_breakpoint > 0) {
847
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
848
        dbg->arch.debugreg[7] = 0x0600;
849
        for (n = 0; n < nb_hw_breakpoint; n++) {
850
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
851
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
852
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
853
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
854
        }
855
    }
856
}
857
#endif /* KVM_CAP_SET_GUEST_DEBUG */