Statistics
| Branch: | Revision:

root / cpu-exec.c @ 66321a11

History | View | Annotate | Download (37 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50

    
51
/* exit the current TB from a signal handler. The host registers are
52
   restored in a state compatible with the CPU emulator
53
 */
54
void cpu_resume_from_signal(CPUState *env1, void *puc) 
55
{
56
#if !defined(CONFIG_SOFTMMU)
57
    struct ucontext *uc = puc;
58
#endif
59

    
60
    env = env1;
61

    
62
    /* XXX: restore cpu registers saved in host registers */
63

    
64
#if !defined(CONFIG_SOFTMMU)
65
    if (puc) {
66
        /* XXX: use siglongjmp ? */
67
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68
    }
69
#endif
70
    longjmp(env->jmp_env, 1);
71
}
72

    
73
/* main execution loop */
74

    
75
int cpu_exec(CPUState *env1)
76
{
77
    int saved_T0, saved_T1, saved_T2;
78
    CPUState *saved_env;
79
#ifdef reg_EAX
80
    int saved_EAX;
81
#endif
82
#ifdef reg_ECX
83
    int saved_ECX;
84
#endif
85
#ifdef reg_EDX
86
    int saved_EDX;
87
#endif
88
#ifdef reg_EBX
89
    int saved_EBX;
90
#endif
91
#ifdef reg_ESP
92
    int saved_ESP;
93
#endif
94
#ifdef reg_EBP
95
    int saved_EBP;
96
#endif
97
#ifdef reg_ESI
98
    int saved_ESI;
99
#endif
100
#ifdef reg_EDI
101
    int saved_EDI;
102
#endif
103
#ifdef __sparc__
104
    int saved_i7, tmp_T0;
105
#endif
106
    int code_gen_size, ret, interrupt_request;
107
    void (*gen_func)(void);
108
    TranslationBlock *tb, **ptb;
109
    target_ulong cs_base, pc;
110
    uint8_t *tc_ptr;
111
    unsigned int flags;
112

    
113
    /* first we save global registers */
114
    saved_env = env;
115
    env = env1;
116
    saved_T0 = T0;
117
    saved_T1 = T1;
118
    saved_T2 = T2;
119
#ifdef __sparc__
120
    /* we also save i7 because longjmp may not restore it */
121
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
122
#endif
123

    
124
#if defined(TARGET_I386)
125
#ifdef reg_EAX
126
    saved_EAX = EAX;
127
#endif
128
#ifdef reg_ECX
129
    saved_ECX = ECX;
130
#endif
131
#ifdef reg_EDX
132
    saved_EDX = EDX;
133
#endif
134
#ifdef reg_EBX
135
    saved_EBX = EBX;
136
#endif
137
#ifdef reg_ESP
138
    saved_ESP = ESP;
139
#endif
140
#ifdef reg_EBP
141
    saved_EBP = EBP;
142
#endif
143
#ifdef reg_ESI
144
    saved_ESI = ESI;
145
#endif
146
#ifdef reg_EDI
147
    saved_EDI = EDI;
148
#endif
149

    
150
    env_to_regs();
151
    /* put eflags in CPU temporary format */
152
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
154
    CC_OP = CC_OP_EFLAGS;
155
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156
#elif defined(TARGET_ARM)
157
    {
158
        unsigned int psr;
159
        psr = env->cpsr;
160
        env->CF = (psr >> 29) & 1;
161
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162
        env->VF = (psr << 3) & 0x80000000;
163
        env->QF = (psr >> 27) & 1;
164
        env->cpsr = psr & ~CACHED_CPSR_BITS;
165
    }
166
#elif defined(TARGET_SPARC)
167
#elif defined(TARGET_PPC)
168
#else
169
#error unsupported target CPU
170
#endif
171
    env->exception_index = -1;
172

    
173
    /* prepare setjmp context for exception handling */
174
    for(;;) {
175
        if (setjmp(env->jmp_env) == 0) {
176
            env->current_tb = NULL;
177
            /* if an exception is pending, we execute it here */
178
            if (env->exception_index >= 0) {
179
                if (env->exception_index >= EXCP_INTERRUPT) {
180
                    /* exit request from the cpu execution loop */
181
                    ret = env->exception_index;
182
                    break;
183
                } else if (env->user_mode_only) {
184
                    /* if user mode only, we simulate a fake exception
185
                       which will be hanlded outside the cpu execution
186
                       loop */
187
#if defined(TARGET_I386)
188
                    do_interrupt_user(env->exception_index, 
189
                                      env->exception_is_int, 
190
                                      env->error_code, 
191
                                      env->exception_next_eip);
192
#endif
193
                    ret = env->exception_index;
194
                    break;
195
                } else {
196
#if defined(TARGET_I386)
197
                    /* simulate a real cpu exception. On i386, it can
198
                       trigger new exceptions, but we do not handle
199
                       double or triple faults yet. */
200
                    do_interrupt(env->exception_index, 
201
                                 env->exception_is_int, 
202
                                 env->error_code, 
203
                                 env->exception_next_eip, 0);
204
#elif defined(TARGET_PPC)
205
                    do_interrupt(env);
206
#elif defined(TARGET_SPARC)
207
                    do_interrupt(env->exception_index);
208
#endif
209
                }
210
                env->exception_index = -1;
211
            } 
212
#ifdef USE_KQEMU
213
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
214
                int ret;
215
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
216
                ret = kqemu_cpu_exec(env);
217
                /* put eflags in CPU temporary format */
218
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
219
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
220
                CC_OP = CC_OP_EFLAGS;
221
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
222
                if (ret == 1) {
223
                    /* exception */
224
                    longjmp(env->jmp_env, 1);
225
                } else if (ret == 2) {
226
                    /* softmmu execution needed */
227
                } else {
228
                    if (env->interrupt_request != 0) {
229
                        /* hardware interrupt will be executed just after */
230
                    } else {
231
                        /* otherwise, we restart */
232
                        longjmp(env->jmp_env, 1);
233
                    }
234
                }
235
            }
236
#endif
237

    
238
            T0 = 0; /* force lookup of first TB */
239
            for(;;) {
240
#ifdef __sparc__
241
                /* g1 can be modified by some libc? functions */ 
242
                tmp_T0 = T0;
243
#endif            
244
                interrupt_request = env->interrupt_request;
245
                if (__builtin_expect(interrupt_request, 0)) {
246
#if defined(TARGET_I386)
247
                    /* if hardware interrupt pending, we execute it */
248
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
249
                        (env->eflags & IF_MASK) && 
250
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
251
                        int intno;
252
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
253
                        intno = cpu_get_pic_interrupt(env);
254
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
255
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
256
                        }
257
                        do_interrupt(intno, 0, 0, 0, 1);
258
                        /* ensure that no TB jump will be modified as
259
                           the program flow was changed */
260
#ifdef __sparc__
261
                        tmp_T0 = 0;
262
#else
263
                        T0 = 0;
264
#endif
265
                    }
266
#elif defined(TARGET_PPC)
267
#if 0
268
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
269
                        cpu_ppc_reset(env);
270
                    }
271
#endif
272
                    if (msr_ee != 0) {
273
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
274
                            /* Raise it */
275
                            env->exception_index = EXCP_EXTERNAL;
276
                            env->error_code = 0;
277
                            do_interrupt(env);
278
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
279
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
280
                            /* Raise it */
281
                            env->exception_index = EXCP_DECR;
282
                            env->error_code = 0;
283
                            do_interrupt(env);
284
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
285
                        }
286
                    }
287
#elif defined(TARGET_SPARC)
288
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
289
                        (env->psret != 0)) {
290
                        int pil = env->interrupt_index & 15;
291
                        int type = env->interrupt_index & 0xf0;
292

    
293
                        if (((type == TT_EXTINT) &&
294
                             (pil == 15 || pil > env->psrpil)) ||
295
                            type != TT_EXTINT) {
296
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
297
                            do_interrupt(env->interrupt_index);
298
                            env->interrupt_index = 0;
299
                        }
300
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
301
                        //do_interrupt(0, 0, 0, 0, 0);
302
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
303
                    }
304
#endif
305
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
306
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
307
                        /* ensure that no TB jump will be modified as
308
                           the program flow was changed */
309
#ifdef __sparc__
310
                        tmp_T0 = 0;
311
#else
312
                        T0 = 0;
313
#endif
314
                    }
315
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
316
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
317
                        env->exception_index = EXCP_INTERRUPT;
318
                        cpu_loop_exit();
319
                    }
320
                }
321
#ifdef DEBUG_EXEC
322
                if ((loglevel & CPU_LOG_EXEC)) {
323
#if defined(TARGET_I386)
324
                    /* restore flags in standard format */
325
                    env->regs[R_EAX] = EAX;
326
                    env->regs[R_EBX] = EBX;
327
                    env->regs[R_ECX] = ECX;
328
                    env->regs[R_EDX] = EDX;
329
                    env->regs[R_ESI] = ESI;
330
                    env->regs[R_EDI] = EDI;
331
                    env->regs[R_EBP] = EBP;
332
                    env->regs[R_ESP] = ESP;
333
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
334
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
335
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
336
#elif defined(TARGET_ARM)
337
                    env->cpsr = compute_cpsr();
338
                    cpu_dump_state(env, logfile, fprintf, 0);
339
                    env->cpsr &= ~CACHED_CPSR_BITS;
340
#elif defined(TARGET_SPARC)
341
                    cpu_dump_state (env, logfile, fprintf, 0);
342
#elif defined(TARGET_PPC)
343
                    cpu_dump_state(env, logfile, fprintf, 0);
344
#else
345
#error unsupported target CPU 
346
#endif
347
                }
348
#endif
349
                /* we record a subset of the CPU state. It will
350
                   always be the same before a given translated block
351
                   is executed. */
352
#if defined(TARGET_I386)
353
                flags = env->hflags;
354
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
355
                cs_base = env->segs[R_CS].base;
356
                pc = cs_base + env->eip;
357
#elif defined(TARGET_ARM)
358
                flags = env->thumb | (env->vfp.vec_len << 1)
359
                        | (env->vfp.vec_stride << 4);
360
                cs_base = 0;
361
                pc = env->regs[15];
362
#elif defined(TARGET_SPARC)
363
                flags = 0;
364
                cs_base = env->npc;
365
                pc = env->pc;
366
#elif defined(TARGET_PPC)
367
                flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) | (msr_se << MSR_SE);
368
                cs_base = 0;
369
                pc = env->nip;
370
#else
371
#error unsupported CPU
372
#endif
373
                tb = tb_find(&ptb, pc, cs_base, 
374
                             flags);
375
                if (!tb) {
376
                    TranslationBlock **ptb1;
377
                    unsigned int h;
378
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
379
                    
380
                    
381
                    spin_lock(&tb_lock);
382

    
383
                    tb_invalidated_flag = 0;
384
                    
385
                    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
386

    
387
                    /* find translated block using physical mappings */
388
                    phys_pc = get_phys_addr_code(env, pc);
389
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
390
                    phys_page2 = -1;
391
                    h = tb_phys_hash_func(phys_pc);
392
                    ptb1 = &tb_phys_hash[h];
393
                    for(;;) {
394
                        tb = *ptb1;
395
                        if (!tb)
396
                            goto not_found;
397
                        if (tb->pc == pc && 
398
                            tb->page_addr[0] == phys_page1 &&
399
                            tb->cs_base == cs_base && 
400
                            tb->flags == flags) {
401
                            /* check next page if needed */
402
                            if (tb->page_addr[1] != -1) {
403
                                virt_page2 = (pc & TARGET_PAGE_MASK) + 
404
                                    TARGET_PAGE_SIZE;
405
                                phys_page2 = get_phys_addr_code(env, virt_page2);
406
                                if (tb->page_addr[1] == phys_page2)
407
                                    goto found;
408
                            } else {
409
                                goto found;
410
                            }
411
                        }
412
                        ptb1 = &tb->phys_hash_next;
413
                    }
414
                not_found:
415
                    /* if no translated code available, then translate it now */
416
                    tb = tb_alloc(pc);
417
                    if (!tb) {
418
                        /* flush must be done */
419
                        tb_flush(env);
420
                        /* cannot fail at this point */
421
                        tb = tb_alloc(pc);
422
                        /* don't forget to invalidate previous TB info */
423
                        ptb = &tb_hash[tb_hash_func(pc)];
424
                        T0 = 0;
425
                    }
426
                    tc_ptr = code_gen_ptr;
427
                    tb->tc_ptr = tc_ptr;
428
                    tb->cs_base = cs_base;
429
                    tb->flags = flags;
430
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
431
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
432
                    
433
                    /* check next page if needed */
434
                    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
435
                    phys_page2 = -1;
436
                    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
437
                        phys_page2 = get_phys_addr_code(env, virt_page2);
438
                    }
439
                    tb_link_phys(tb, phys_pc, phys_page2);
440

    
441
                found:
442
                    if (tb_invalidated_flag) {
443
                        /* as some TB could have been invalidated because
444
                           of memory exceptions while generating the code, we
445
                           must recompute the hash index here */
446
                        ptb = &tb_hash[tb_hash_func(pc)];
447
                        while (*ptb != NULL)
448
                            ptb = &(*ptb)->hash_next;
449
                        T0 = 0;
450
                    }
451
                    /* we add the TB in the virtual pc hash table */
452
                    *ptb = tb;
453
                    tb->hash_next = NULL;
454
                    tb_link(tb);
455
                    spin_unlock(&tb_lock);
456
                }
457
#ifdef DEBUG_EXEC
458
                if ((loglevel & CPU_LOG_EXEC)) {
459
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
460
                            (long)tb->tc_ptr, tb->pc,
461
                            lookup_symbol(tb->pc));
462
                }
463
#endif
464
#ifdef __sparc__
465
                T0 = tmp_T0;
466
#endif            
467
                /* see if we can patch the calling TB. */
468
                {
469
                    if (T0 != 0
470
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
471
                    && (tb->cflags & CF_CODE_COPY) == 
472
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
473
#endif
474
                    ) {
475
                    spin_lock(&tb_lock);
476
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
477
#if defined(USE_CODE_COPY)
478
                    /* propagates the FP use info */
479
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
480
                        (tb->cflags & CF_FP_USED);
481
#endif
482
                    spin_unlock(&tb_lock);
483
                }
484
                }
485
                tc_ptr = tb->tc_ptr;
486
                env->current_tb = tb;
487
                /* execute the generated code */
488
                gen_func = (void *)tc_ptr;
489
#if defined(__sparc__)
490
                __asm__ __volatile__("call        %0\n\t"
491
                                     "mov        %%o7,%%i0"
492
                                     : /* no outputs */
493
                                     : "r" (gen_func) 
494
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
495
#elif defined(__arm__)
496
                asm volatile ("mov pc, %0\n\t"
497
                              ".global exec_loop\n\t"
498
                              "exec_loop:\n\t"
499
                              : /* no outputs */
500
                              : "r" (gen_func)
501
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
502
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
503
{
504
    if (!(tb->cflags & CF_CODE_COPY)) {
505
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
506
            save_native_fp_state(env);
507
        }
508
        gen_func();
509
    } else {
510
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
511
            restore_native_fp_state(env);
512
        }
513
        /* we work with native eflags */
514
        CC_SRC = cc_table[CC_OP].compute_all();
515
        CC_OP = CC_OP_EFLAGS;
516
        asm(".globl exec_loop\n"
517
            "\n"
518
            "debug1:\n"
519
            "    pushl %%ebp\n"
520
            "    fs movl %10, %9\n"
521
            "    fs movl %11, %%eax\n"
522
            "    andl $0x400, %%eax\n"
523
            "    fs orl %8, %%eax\n"
524
            "    pushl %%eax\n"
525
            "    popf\n"
526
            "    fs movl %%esp, %12\n"
527
            "    fs movl %0, %%eax\n"
528
            "    fs movl %1, %%ecx\n"
529
            "    fs movl %2, %%edx\n"
530
            "    fs movl %3, %%ebx\n"
531
            "    fs movl %4, %%esp\n"
532
            "    fs movl %5, %%ebp\n"
533
            "    fs movl %6, %%esi\n"
534
            "    fs movl %7, %%edi\n"
535
            "    fs jmp *%9\n"
536
            "exec_loop:\n"
537
            "    fs movl %%esp, %4\n"
538
            "    fs movl %12, %%esp\n"
539
            "    fs movl %%eax, %0\n"
540
            "    fs movl %%ecx, %1\n"
541
            "    fs movl %%edx, %2\n"
542
            "    fs movl %%ebx, %3\n"
543
            "    fs movl %%ebp, %5\n"
544
            "    fs movl %%esi, %6\n"
545
            "    fs movl %%edi, %7\n"
546
            "    pushf\n"
547
            "    popl %%eax\n"
548
            "    movl %%eax, %%ecx\n"
549
            "    andl $0x400, %%ecx\n"
550
            "    shrl $9, %%ecx\n"
551
            "    andl $0x8d5, %%eax\n"
552
            "    fs movl %%eax, %8\n"
553
            "    movl $1, %%eax\n"
554
            "    subl %%ecx, %%eax\n"
555
            "    fs movl %%eax, %11\n"
556
            "    fs movl %9, %%ebx\n" /* get T0 value */
557
            "    popl %%ebp\n"
558
            :
559
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
560
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
561
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
562
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
563
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
564
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
565
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
566
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
567
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
568
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
569
            "a" (gen_func),
570
            "m" (*(uint8_t *)offsetof(CPUState, df)),
571
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
572
            : "%ecx", "%edx"
573
            );
574
    }
575
}
576
#else
577
                gen_func();
578
#endif
579
                env->current_tb = NULL;
580
                /* reset soft MMU for next block (it can currently
581
                   only be set by a memory fault) */
582
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
583
                if (env->hflags & HF_SOFTMMU_MASK) {
584
                    env->hflags &= ~HF_SOFTMMU_MASK;
585
                    /* do not allow linking to another block */
586
                    T0 = 0;
587
                }
588
#endif
589
            }
590
        } else {
591
            env_to_regs();
592
        }
593
    } /* for(;;) */
594

    
595

    
596
#if defined(TARGET_I386)
597
#if defined(USE_CODE_COPY)
598
    if (env->native_fp_regs) {
599
        save_native_fp_state(env);
600
    }
601
#endif
602
    /* restore flags in standard format */
603
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
604

    
605
    /* restore global registers */
606
#ifdef reg_EAX
607
    EAX = saved_EAX;
608
#endif
609
#ifdef reg_ECX
610
    ECX = saved_ECX;
611
#endif
612
#ifdef reg_EDX
613
    EDX = saved_EDX;
614
#endif
615
#ifdef reg_EBX
616
    EBX = saved_EBX;
617
#endif
618
#ifdef reg_ESP
619
    ESP = saved_ESP;
620
#endif
621
#ifdef reg_EBP
622
    EBP = saved_EBP;
623
#endif
624
#ifdef reg_ESI
625
    ESI = saved_ESI;
626
#endif
627
#ifdef reg_EDI
628
    EDI = saved_EDI;
629
#endif
630
#elif defined(TARGET_ARM)
631
    env->cpsr = compute_cpsr();
632
    /* XXX: Save/restore host fpu exception state?.  */
633
#elif defined(TARGET_SPARC)
634
#elif defined(TARGET_PPC)
635
#else
636
#error unsupported target CPU
637
#endif
638
#ifdef __sparc__
639
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
640
#endif
641
    T0 = saved_T0;
642
    T1 = saved_T1;
643
    T2 = saved_T2;
644
    env = saved_env;
645
    return ret;
646
}
647

    
648
/* must only be called from the generated code as an exception can be
649
   generated */
650
void tb_invalidate_page_range(target_ulong start, target_ulong end)
651
{
652
    /* XXX: cannot enable it yet because it yields to MMU exception
653
       where NIP != read address on PowerPC */
654
#if 0
655
    target_ulong phys_addr;
656
    phys_addr = get_phys_addr_code(env, start);
657
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
658
#endif
659
}
660

    
661
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
662

    
663
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
664
{
665
    CPUX86State *saved_env;
666

    
667
    saved_env = env;
668
    env = s;
669
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
670
        selector &= 0xffff;
671
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
672
                               (selector << 4), 0xffff, 0);
673
    } else {
674
        load_seg(seg_reg, selector);
675
    }
676
    env = saved_env;
677
}
678

    
679
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
680
{
681
    CPUX86State *saved_env;
682

    
683
    saved_env = env;
684
    env = s;
685
    
686
    helper_fsave((target_ulong)ptr, data32);
687

    
688
    env = saved_env;
689
}
690

    
691
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
692
{
693
    CPUX86State *saved_env;
694

    
695
    saved_env = env;
696
    env = s;
697
    
698
    helper_frstor((target_ulong)ptr, data32);
699

    
700
    env = saved_env;
701
}
702

    
703
#endif /* TARGET_I386 */
704

    
705
#if !defined(CONFIG_SOFTMMU)
706

    
707
#if defined(TARGET_I386)
708

    
709
/* 'pc' is the host PC at which the exception was raised. 'address' is
710
   the effective address of the memory exception. 'is_write' is 1 if a
711
   write caused the exception and otherwise 0'. 'old_set' is the
712
   signal set which should be restored */
713
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
714
                                    int is_write, sigset_t *old_set, 
715
                                    void *puc)
716
{
717
    TranslationBlock *tb;
718
    int ret;
719

    
720
    if (cpu_single_env)
721
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
722
#if defined(DEBUG_SIGNAL)
723
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
724
                pc, address, is_write, *(unsigned long *)old_set);
725
#endif
726
    /* XXX: locking issue */
727
    if (is_write && page_unprotect(address, pc, puc)) {
728
        return 1;
729
    }
730

    
731
    /* see if it is an MMU fault */
732
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
733
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
734
    if (ret < 0)
735
        return 0; /* not an MMU fault */
736
    if (ret == 0)
737
        return 1; /* the MMU fault was handled without causing real CPU fault */
738
    /* now we have a real cpu fault */
739
    tb = tb_find_pc(pc);
740
    if (tb) {
741
        /* the PC is inside the translated code. It means that we have
742
           a virtual CPU fault */
743
        cpu_restore_state(tb, env, pc, puc);
744
    }
745
    if (ret == 1) {
746
#if 0
747
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
748
               env->eip, env->cr[2], env->error_code);
749
#endif
750
        /* we restore the process signal mask as the sigreturn should
751
           do it (XXX: use sigsetjmp) */
752
        sigprocmask(SIG_SETMASK, old_set, NULL);
753
        raise_exception_err(EXCP0E_PAGE, env->error_code);
754
    } else {
755
        /* activate soft MMU for this block */
756
        env->hflags |= HF_SOFTMMU_MASK;
757
        cpu_resume_from_signal(env, puc);
758
    }
759
    /* never comes here */
760
    return 1;
761
}
762

    
763
#elif defined(TARGET_ARM)
764
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
765
                                    int is_write, sigset_t *old_set,
766
                                    void *puc)
767
{
768
    TranslationBlock *tb;
769
    int ret;
770

    
771
    if (cpu_single_env)
772
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
773
#if defined(DEBUG_SIGNAL)
774
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
775
           pc, address, is_write, *(unsigned long *)old_set);
776
#endif
777
    /* XXX: locking issue */
778
    if (is_write && page_unprotect(address, pc, puc)) {
779
        return 1;
780
    }
781
    /* see if it is an MMU fault */
782
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
783
    if (ret < 0)
784
        return 0; /* not an MMU fault */
785
    if (ret == 0)
786
        return 1; /* the MMU fault was handled without causing real CPU fault */
787
    /* now we have a real cpu fault */
788
    tb = tb_find_pc(pc);
789
    if (tb) {
790
        /* the PC is inside the translated code. It means that we have
791
           a virtual CPU fault */
792
        cpu_restore_state(tb, env, pc, puc);
793
    }
794
    /* we restore the process signal mask as the sigreturn should
795
       do it (XXX: use sigsetjmp) */
796
    sigprocmask(SIG_SETMASK, old_set, NULL);
797
    cpu_loop_exit();
798
}
799
#elif defined(TARGET_SPARC)
800
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
801
                                    int is_write, sigset_t *old_set,
802
                                    void *puc)
803
{
804
    TranslationBlock *tb;
805
    int ret;
806

    
807
    if (cpu_single_env)
808
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
809
#if defined(DEBUG_SIGNAL)
810
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
811
           pc, address, is_write, *(unsigned long *)old_set);
812
#endif
813
    /* XXX: locking issue */
814
    if (is_write && page_unprotect(address, pc, puc)) {
815
        return 1;
816
    }
817
    /* see if it is an MMU fault */
818
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
819
    if (ret < 0)
820
        return 0; /* not an MMU fault */
821
    if (ret == 0)
822
        return 1; /* the MMU fault was handled without causing real CPU fault */
823
    /* now we have a real cpu fault */
824
    tb = tb_find_pc(pc);
825
    if (tb) {
826
        /* the PC is inside the translated code. It means that we have
827
           a virtual CPU fault */
828
        cpu_restore_state(tb, env, pc, puc);
829
    }
830
    /* we restore the process signal mask as the sigreturn should
831
       do it (XXX: use sigsetjmp) */
832
    sigprocmask(SIG_SETMASK, old_set, NULL);
833
    cpu_loop_exit();
834
}
835
#elif defined (TARGET_PPC)
836
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
837
                                    int is_write, sigset_t *old_set,
838
                                    void *puc)
839
{
840
    TranslationBlock *tb;
841
    int ret;
842
    
843
    if (cpu_single_env)
844
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
845
#if defined(DEBUG_SIGNAL)
846
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
847
           pc, address, is_write, *(unsigned long *)old_set);
848
#endif
849
    /* XXX: locking issue */
850
    if (is_write && page_unprotect(address, pc, puc)) {
851
        return 1;
852
    }
853

    
854
    /* see if it is an MMU fault */
855
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
856
    if (ret < 0)
857
        return 0; /* not an MMU fault */
858
    if (ret == 0)
859
        return 1; /* the MMU fault was handled without causing real CPU fault */
860

    
861
    /* now we have a real cpu fault */
862
    tb = tb_find_pc(pc);
863
    if (tb) {
864
        /* the PC is inside the translated code. It means that we have
865
           a virtual CPU fault */
866
        cpu_restore_state(tb, env, pc, puc);
867
    }
868
    if (ret == 1) {
869
#if 0
870
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
871
               env->nip, env->error_code, tb);
872
#endif
873
    /* we restore the process signal mask as the sigreturn should
874
       do it (XXX: use sigsetjmp) */
875
        sigprocmask(SIG_SETMASK, old_set, NULL);
876
        do_raise_exception_err(env->exception_index, env->error_code);
877
    } else {
878
        /* activate soft MMU for this block */
879
        cpu_resume_from_signal(env, puc);
880
    }
881
    /* never comes here */
882
    return 1;
883
}
884
#else
885
#error unsupported target CPU
886
#endif
887

    
888
#if defined(__i386__)
889

    
890
#if defined(USE_CODE_COPY)
891
static void cpu_send_trap(unsigned long pc, int trap, 
892
                          struct ucontext *uc)
893
{
894
    TranslationBlock *tb;
895

    
896
    if (cpu_single_env)
897
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
898
    /* now we have a real cpu fault */
899
    tb = tb_find_pc(pc);
900
    if (tb) {
901
        /* the PC is inside the translated code. It means that we have
902
           a virtual CPU fault */
903
        cpu_restore_state(tb, env, pc, uc);
904
    }
905
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
906
    raise_exception_err(trap, env->error_code);
907
}
908
#endif
909

    
910
int cpu_signal_handler(int host_signum, struct siginfo *info, 
911
                       void *puc)
912
{
913
    struct ucontext *uc = puc;
914
    unsigned long pc;
915
    int trapno;
916

    
917
#ifndef REG_EIP
918
/* for glibc 2.1 */
919
#define REG_EIP    EIP
920
#define REG_ERR    ERR
921
#define REG_TRAPNO TRAPNO
922
#endif
923
    pc = uc->uc_mcontext.gregs[REG_EIP];
924
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
925
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
926
    if (trapno == 0x00 || trapno == 0x05) {
927
        /* send division by zero or bound exception */
928
        cpu_send_trap(pc, trapno, uc);
929
        return 1;
930
    } else
931
#endif
932
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
933
                                 trapno == 0xe ? 
934
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
935
                                 &uc->uc_sigmask, puc);
936
}
937

    
938
#elif defined(__x86_64__)
939

    
940
int cpu_signal_handler(int host_signum, struct siginfo *info,
941
                       void *puc)
942
{
943
    struct ucontext *uc = puc;
944
    unsigned long pc;
945

    
946
    pc = uc->uc_mcontext.gregs[REG_RIP];
947
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
948
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
949
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
950
                             &uc->uc_sigmask, puc);
951
}
952

    
953
#elif defined(__powerpc__)
954

    
955
/***********************************************************************
956
 * signal context platform-specific definitions
957
 * From Wine
958
 */
959
#ifdef linux
960
/* All Registers access - only for local access */
961
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
962
/* Gpr Registers access  */
963
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
964
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
965
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
966
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
967
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
968
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
969
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
970
/* Float Registers access  */
971
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
972
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
973
/* Exception Registers access */
974
# define DAR_sig(context)                        REG_sig(dar, context)
975
# define DSISR_sig(context)                        REG_sig(dsisr, context)
976
# define TRAP_sig(context)                        REG_sig(trap, context)
977
#endif /* linux */
978

    
979
#ifdef __APPLE__
980
# include <sys/ucontext.h>
981
typedef struct ucontext SIGCONTEXT;
982
/* All Registers access - only for local access */
983
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
984
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
985
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
986
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
987
/* Gpr Registers access */
988
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
989
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
990
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
991
# define CTR_sig(context)                        REG_sig(ctr, context)
992
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
993
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
994
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
995
/* Float Registers access */
996
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
997
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
998
/* Exception Registers access */
999
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1000
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1001
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1002
#endif /* __APPLE__ */
1003

    
1004
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1005
                       void *puc)
1006
{
1007
    struct ucontext *uc = puc;
1008
    unsigned long pc;
1009
    int is_write;
1010

    
1011
    pc = IAR_sig(uc);
1012
    is_write = 0;
1013
#if 0
1014
    /* ppc 4xx case */
1015
    if (DSISR_sig(uc) & 0x00800000)
1016
        is_write = 1;
1017
#else
1018
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1019
        is_write = 1;
1020
#endif
1021
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1022
                             is_write, &uc->uc_sigmask, puc);
1023
}
1024

    
1025
#elif defined(__alpha__)
1026

    
1027
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1028
                           void *puc)
1029
{
1030
    struct ucontext *uc = puc;
1031
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1032
    uint32_t insn = *pc;
1033
    int is_write = 0;
1034

    
1035
    /* XXX: need kernel patch to get write flag faster */
1036
    switch (insn >> 26) {
1037
    case 0x0d: // stw
1038
    case 0x0e: // stb
1039
    case 0x0f: // stq_u
1040
    case 0x24: // stf
1041
    case 0x25: // stg
1042
    case 0x26: // sts
1043
    case 0x27: // stt
1044
    case 0x2c: // stl
1045
    case 0x2d: // stq
1046
    case 0x2e: // stl_c
1047
    case 0x2f: // stq_c
1048
        is_write = 1;
1049
    }
1050

    
1051
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1052
                             is_write, &uc->uc_sigmask, puc);
1053
}
1054
#elif defined(__sparc__)
1055

    
1056
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1057
                       void *puc)
1058
{
1059
    uint32_t *regs = (uint32_t *)(info + 1);
1060
    void *sigmask = (regs + 20);
1061
    unsigned long pc;
1062
    int is_write;
1063
    uint32_t insn;
1064
    
1065
    /* XXX: is there a standard glibc define ? */
1066
    pc = regs[1];
1067
    /* XXX: need kernel patch to get write flag faster */
1068
    is_write = 0;
1069
    insn = *(uint32_t *)pc;
1070
    if ((insn >> 30) == 3) {
1071
      switch((insn >> 19) & 0x3f) {
1072
      case 0x05: // stb
1073
      case 0x06: // sth
1074
      case 0x04: // st
1075
      case 0x07: // std
1076
      case 0x24: // stf
1077
      case 0x27: // stdf
1078
      case 0x25: // stfsr
1079
        is_write = 1;
1080
        break;
1081
      }
1082
    }
1083
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1084
                             is_write, sigmask, NULL);
1085
}
1086

    
1087
#elif defined(__arm__)
1088

    
1089
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1090
                       void *puc)
1091
{
1092
    struct ucontext *uc = puc;
1093
    unsigned long pc;
1094
    int is_write;
1095
    
1096
    pc = uc->uc_mcontext.gregs[R15];
1097
    /* XXX: compute is_write */
1098
    is_write = 0;
1099
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1100
                             is_write,
1101
                             &uc->uc_sigmask);
1102
}
1103

    
1104
#elif defined(__mc68000)
1105

    
1106
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1107
                       void *puc)
1108
{
1109
    struct ucontext *uc = puc;
1110
    unsigned long pc;
1111
    int is_write;
1112
    
1113
    pc = uc->uc_mcontext.gregs[16];
1114
    /* XXX: compute is_write */
1115
    is_write = 0;
1116
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1117
                             is_write,
1118
                             &uc->uc_sigmask, puc);
1119
}
1120

    
1121
#else
1122

    
1123
#error host CPU specific signal handler needed
1124

    
1125
#endif
1126

    
1127
#endif /* !defined(CONFIG_SOFTMMU) */